
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 6, no. 1, pp. 27–66 (2002)

Planar Graphs with Topological Constraints

Christoph Dornheim

Institut für Informatik
Albert-Ludwigs-Universität
D-79110 Freiburg, Germany

http://www.informatik.uni-freiburg.de/~dornheim
dornheim@informatik.uni-freiburg.de

Abstract

We address in this paper the problem of constructing embeddings of
planar graphs satisfying declarative, user-defined topological constraints.
The constraints consist each of a cycle of the given graph and a set of
its edges to be embedded inside this cycle and a set of its edges to be
embedded outside this cycle. Their practical importance in graph visual-
ization applications is due to the capability of supporting the semantics of
graphs. Additionally, embedding algorithms for planar graphs with topo-
logical constraints can be combined with planar graph drawing algorithms
that transform a given embedding into a topology preserving drawing ac-
cording to particular drawing conventions and aesthetic criteria.

We obtain the following main results on the planarity problem with
topological constraints. Since it turns out to be NP-complete, we develop
a polynomial time algorithm for reducing the problem for arbitrary planar
graphs to a planarity problem with constraints for biconnected graphs.
This allows focussing on biconnected graphs when searching for heuristics
or polynomial time subproblems. We then define a particular subproblem
by restricting the maximum number of vertices that any two distinct cycles
involved in the constraints can have in common. Whereas the problem
remains NP-complete if this number exceeds 1, it can otherwise be solved
in polynomial time. The embedding algorithm we develop for this purpose
is based on the reduction method.

Communicated by H. de Fraysseix and and J. Kratochv́ıl:
submitted May 2000; revised March 2001.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) as part

of the graduate school on Human and Machine Intelligence.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 28

1 Introduction

Most research in the graph drawing field has focussed so far on developing
algorithms that produce drawings of graphs according to particular drawing
conventions and aesthetic criteria (see [5], [6], [11] and [23]). Common drawing
conventions require, for instance, the vertices to have integer coordinates, the
edges to be polylines or straight lines or to be composed of straight line seg-
ments parallel to one of the coordinate axes. Aesthetic criteria are in general
optimization goals such as minimizing the number of edge crossings, maximiz-
ing the minimum distance between vertices or, in case of polyline drawings,
minimizing the number of bends. Both drawing conventions and aesthetic cri-
teria are intended to ensure readability of the drawings. They can be seen as
geometric constraints implicit to the drawing algorithms.

Many applications, however, need a visualization of graphs satisfying user-
defined constraints to emphasize certain semantical aspects. Visual languages
[27], for instance, may require some subgraphs to be drawn with a predefined
shape to support their semantics. And in VLSI design [14] it is often necessary
to have a graph layout where certain vertices are arranged in a group or cluster
[21]. Although “the study of constraints is a strategic research direction for the
graph drawing field” [22], there are only few graph drawing approaches allowing
the user to define constraints. A survey of these approaches and those drawing
algorithms that can be modified to support some sort of constraints is given
in [22]. Again, the resulting constraints are primarily geometric and most of
them are covered by the approach of [15] which supports the specification of
arithmetic linear equality and inequality constraints on the coordinates of the
vertices.

These approaches to constrained graph drawing have often the disadvantage
of not drawing a planar graph without crossings, i.e. as a planar embedding.
For graph planarity without constraints there are many testing and embedding
algorithms developed so far: from conceptually simple procedures such as [4]
(also briefly described in [1]) to more involved linear time procedures such as
the path addition embedding algorithm presented by Mehlhorn and Mutzel [18]
based on the planarity testing procedure of Hopcroft and Tarjan [16] or the
vertex addition embedding algorithm presented by Chiba et al. [3] based on
the planarity testing procedure of Booth and Lueker [2]. However, the problem
of constructing a planar embedding according to explicit constraints has ob-
tained only little attention so far, despite its impact to planar graph theory and
practice. An interesting approach to constrained graph embedding presented in
[19] is the problem of finding a planar embedding such that the user’s prefer-
ences for facial cycles are satisfied. The preferences, or constraints, are specified
by a cost function on the cycles of the graph. In an embedding that satisfies
these constraints the overall costs of its facial cycles are minimized. Another
approach is the construction of planar embeddings for clustered graphs [12]. A
clustered graph is a graph with a user-defined hierarchical structure over the
vertices such that each level decomposes the graph into disjoint clusters. In a
planar drawing of a clustered graph a cluster is represented by a simple region

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 29

containing exactly the vertices that belong to this cluster. Additionally, edges
are allowed to intersect the boundaries of the regions only once; in particular,
edges connecting vertices of the same cluster must be inside the corresponding
region. The embedding algorithm developed in [12] requires the vertices of each
cluster to induce a connected graph. As shown in [9] and [10], these embeddings
can be further transformed into drawings according to specific drawing conven-
tions while preserving their cluster structure. Since many drawing procedures
for planar graphs need a particular embedding (more precisely, a combinatorial
representation of an embedding) as input and produce drawings of the same
topology, the construction of embeddings satisfying given constraints can be
used as a preprocessing step for a wide range of planar graph drawing algo-
rithms.

This paper is devoted to planar graph embedding with topological con-
straints; it considerably extends the previous work in [8]. We define a topo-
logical constraint for a graph to consist of some of its cycle and a set of its edges
to be embedded inside this cycle and a set of its edges to be embedded outside
this cycle. These constraints are clearly topological since topological transfor-
mations of the plane preserve their validity. Note that we build constraints by
sets of edges instead of sets of vertices. If some vertex is to be embedded inside
or outside a given cycle, the corresponding topological constraint can be defined
by using an edge incident to this vertex (if the vertex is isolated, it must be re-
placed by some new edge for the time of the embedding process). To see that in
some situations vertex sets would be insufficient, think of, e.g., Hamilton cycles:
the diagonals of a Hamilton cycle can be embedded inside or outside, but there
is no vertex left to constitute a topological constraint.

The topological constraints are useful in graph embedding whenever the
inner and outer regions of cycles have an intrinsic or user-defined semantics.
Graphs whose vertices and edges represent spatial entities such as road maps
or subway maps often induce some natural meaning to the faces and regions of
their embeddings as well. In this case, topological constraints can be defined
to ensure that the embedded graph preserves some important topological rela-
tionships. Generally, these constraints can be used to impose some structure on
the embedding to be constructed. Consider in Fig. 1 the transition diagram of
a finite automaton accepting the language (a(cde)∗bz+f(hij)∗gz)∗. The main
components of this expression are a(cde)∗bz and f(hij)∗gz, each representing
a cyclic walk starting and ending in q0. Moreover, each component contains a
subcomponent (cde)∗ and (hij)∗ representing cyclic walks starting and ending
in q1 and q6, respectively. To reflect this structure in the diagram, it makes sense
to draw the cycles q0, q1, q7 and q0, q6, q7 representing the main components into
disjoint regions, but to draw the cycles q1, q3, q2 and q6, q5, q4 representing the
corresponding subcomponents inside q0, q1, q7 and q0, q6, q7, respectively. These
requirements can be expressed exactly by topological constraints. Last but not
least, a topological constraint allows one to specify a cycle to be an inner or
outer facial cycle just by postulating the former or latter set, respectively, to
consist of all edges not belonging to that cycle.

The outline of the paper is as follows. Recalling in Sect. 2 the required defi-

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 30

q3q2

q4 q5

q0

q1

q7

q6

g

b

f

z

i

a e
d

j

c

h

Figure 1: A transition diagram of a finite automaton with the language
(a(cde)∗bz + f(hij)∗gz)∗. The structure of this expression is reflected in the
drawing by the topological relationships of the cycles.

nitions and results of planar graph theory, we show in Sect. 3 NP-completeness
of the problem of deciding whether a graph has an embedding satisfying a given
set of topological constraints. In contrast, we present a linear time embedding
algorithm for triconnected graphs. Section 4 is concerned with developing a
polynomial time procedure for reducing the embedding problem with topologi-
cal constraints to biconnected graphs. This can be particularly useful in search-
ing for tractable subproblems. We introduce in Sect. 5 a particular subproblem
defined by the maximum number of vertices two distinct cycles involved in the
constraints have in common. Whereas this problem remains NP-complete if
this number exceeds 1, we develop a polynomial time algorithm for generating
a required embedding if this number is 0 or 1. Finally, we conclude with Sect. 6.

2 Preliminaries

Assuming familiarity with basic graph terminology (see [1] and [7]), we recall
in this section the required fundamentals on planar graphs. For a thorough
presentation of planar graph theory we refer the reader to [24], [7] and [20].

Unless otherwise stated, all graphs are finite, simple and undirected. The
set of vertices and edges of a graph G are denoted V (G) and E(G), respectively.
Paths and cycles in a graph are always simple, i.e. their inner vertices are pair-
wise distinct. A cycle C in G is induced if any edge of G joining two vertices
of C is already an edge in C. Moreover, C is non-separating if the number of
components of G does not increase when deleting C from G. A block means a
maximal connected subgraph without a cutvertex, i.e. a maximal 2-connected
subgraph or a bridge or an isolated vertex. If A denotes the set of cutvertices
of G and B denotes the set of its blocks, then the block graph of G is defined on
A ∪ B by the edges aB with a ∈ B for a ∈ A and B ∈ B. Note that the block
graph of a connected graph is always a tree.

A plane graph (V, E) consists of a finite set V ⊆ R
2 and a finite set E of

Jordan curves connecting two points of V such that any two points are connected

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 31

by at most one curve and the interior of a curve contains no point of V and no
point of any other curve. These points and curves are again called vertices and
edges, respectively, since all graph notions can also be applied to plane graphs.
If there is an isomorphism between an abstract graph G and a plane graph G̃, we
call G̃ an embedding of G in the plane. A graph is planar if it has an embedding
in the plane. In the sequel, G̃ always denotes an embedding of the graph G and
for subgraphs H ⊂ G we often denote the restriction of G̃ to H simply by H̃ .

Every plane graph G divides R
2 \ G into disjoint open arcwise connected

regions called faces of G; the unbounded one is the outer face and the bounded
ones are the inner faces. If a cycle C of G is the boundary of some face, we
call C a facial cycle; depending on whether C is the boundary of an inner or
outer face, we call C an inner or outer facial cycle, respectively. Any cycle C
divides R

2 \ C into two open arcwise connected regions; the bounded one is
the interior of C, denoted by int C, and the unbounded one is the exterior of
C, denoted by ext C. The closure of int C and ext C is denoted by Int C and
Ext C, respectively.

Given a graph G = (V, E) the edge space E(G) of G is the vector space over
the 2-element field F2 = {0, 1} formed by the set of all subsets of E and the
sum A ⊕ B = (A \ B) ∪ (B \ A) for A, B ⊆ E. The cycle space C(G) is the
subspace of E(G) generated by the cycles of G – more precisely, by their edge
sets. The elements of C(G) are unions of edge-disjoint cycles of G. Suppose
G̃ is an embedding of a 2-connected planar graph G and F ′ is the set of all
facial cycles of G̃. Then, as follows from MacLane’s planarity criterion [17],
F = F ′ \ {F} forms a basis of C(G) for any F ∈ F ′ and F is the sum of all
cycles in F . There is always an embedding of G where F is the set of inner facial
cycles and F the outer facial cycle. We often make use of the fact that the edges
of G̃ contained in Int C̃ for some cycle C ⊂ G are exactly the edges of those
inner facial cycles of G̃ whose sum is C. Moreover, any two embeddings of G are
topologically equivalent if they coincide in their outer facial cycle and their set
of inner facial cycles (see [7]). We can thus represent a particular 2-connected
embedding up to topological equivalence just by its outer facial cycle and the
set of its inner facial cycles. If in addition G is 3-connected, the facial cycles of
G̃ can be identified combinatorially as the induced non-separating cycles in G,
as proved by Tutte [26]. This allows representing any embedding of G just by
its outer facial cycle because all these embeddings have the same facial cycles.

Finally, we introduce a notion that plays a fundamental role in graph em-
bedding algorithms following the principle of path addition. Suppose H is a
subgraph of G. Then an H-component of G is either an edge (together with its
ends) in E(G) \E(H) joining two vertices of H or it is a connected component
of G−H together with all edges (and their ends) of G joining this component to
H .1 The vertices of an H-component in H are its vertices of attachment. Sup-
pose C is a cycle in G. Vertices of attachment of a C-component, provided that
there are at least two, divide C into edge-disjoint paths, called segments. We say

1This definition follows [24]. One can find elsewhere in the literature various notions for
H-components, e.g. bridges in [1].

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 32

that two C-components avoid each other if either one of them has fewer than
two vertices of attachment or all vertices of attachment of one C-component
lie in a single segment of the other C-component; otherwise they overlap. The
overlap graph GC of C in G is defined as the graph whose vertices are the
C-components of G such that two vertices are adjacent iff the corresponding C-
components overlap. Overlap graphs can be used even for characterizing planar
graphs: by Tutte’s theorem [25] a graph is planar iff the overlap graph of each
of its cycle is bipartite.

3 Topological Constraints

In this section we introduce topological constraints and present a criterion for
graphs having an embedding that satisfies such constraints. We also show some
basic properties of the computational problem of finding these embeddings:
whereas this problem is in general NP-complete, it can be solved in linear time
for 3-connected graphs.

Definition 1 Let G be a graph and T be a set of triples Ti = 〈Ci, Ini,Outi〉
such that Ci is a cycle in G, Ini,Outi ⊂ E(G) \ E(Ci), Ini ∪ Outi 6= ∅ and
Ini ∩Outi = ∅. These triples are called topological constraints for G.

An embedding G̃ of G satisfies T if for each constraint Ti ∈ T all edges of
Ini are contained in int C̃i and all edges of Outi are contained in ext C̃i; such
an embedding is called a T -embedding. Moreover, G is T -planar if G has a
T -embedding.

Obviously, T -planar graphs are necessarily planar; thus we only consider
planar graphs. Given a planar graph G and a set T of topological constraints
for G, n always denotes the number of vertices of G, m denotes the number of
edges where m ≤ 3n−6 and t denotes the number of constraints in T . Note that
t can be exponential in n. The relevant parameters of the problem of finding
a T -embedding of G are therefore n and t. Since each constraint Ti consists of
at most m edges, the input length of any instance can be assumed to be O(nt).
For convenience, if C is a cycle Ci occurring in some constraint, we often write
InC and OutC instead of Ini and Outi, respectively.

Due to the additional requirements on embeddings, one cannot hope for a
simple Kuratowski-like criterion for T -planarity. In contrast to classical pla-
narity, T -planarity of a graph cannot be simply reduced to its components or
blocks either; even the required topological relationships between its components
can get complex as we will see in the next section. To characterize T -planarity
in Theorem 1, we make use of some properties of 3-connected planar graphs
given in Sect. 2. This theorem is illustrated in Fig. 2.

Theorem 1 Let G be a graph and T be a set of topological constraints. Then,
G is T -planar iff there is a 3-connected planar graph G′ with G ⊆ G′ and
V (G) = V (G′) and a basis F of C(G′) consisting of induced non-separating
cycles of G′ such that for any 〈C, InC ,OutC〉 ∈ T and FC ⊆ F defined by

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 33

C =
⊕

F∈FC
F it holds that x ∈

⋃
F∈FC

F for any x ∈ InC and y 6∈
⋃

F∈FC
F

for any y ∈ OutC .

Proof: (⇒) Suppose G̃ is a T -embedding of G. Triangulating G̃ in the plane
leads to an embedding G̃′ of a maximal planar and thus 3-connected graph G′.
The inner facial cycles of G̃′ are induced non-separating cycles and form a basis
F of C(G′). Let be 〈C, InC , OutC〉 ∈ T and FC be the set of cycles in F whose
sum is C. Since any edge of InC is contained in Int C̃ of G̃, and thus of G̃′, it
belongs to some cycle in FC . Analogously, any edge of OutC is contained in
Ext C̃ of G̃′ and therefore does not belong to some cycle of FC .

(⇐) Let G′ be the supergraph of G satisfying the required properties. Then
there is an embedding G̃′ of G′ with

⊕
F∈F F as the outer facial cycle and all

F ∈ F as inner facial cycles. For any 〈C, InC , OutC〉 ∈ T we have that all edges
of InC are contained in Int C̃ in G̃′ and all edges of OutC are contained in Ext C̃
in G̃′. Thus, we get a T -embedding G̃ by restricting G̃′ to G. 2

yx1

x2

C
G

F1
F2

F3

F4

F8

F7F5
F6

G′

F = {F1, . . . , F8}T = 〈C, {x1, x2}, {y}〉
FC = {F1, F2, F4, F5, F6, F8}

(b)(a)

Figure 2: Illustration of Theorem 1: (a) Graph G with constraint T . (b) Su-
pergraph G′ of G with basis F of C(G) and set FC of those cycles in F whose
sum is C.

In case of 3-connected graphs, this criterion leads directly to an algorithm for
finding a T -embedding. To ensure linear time complexity, we use dual graphs
to represent the relationships between facial cycles (see [7]). Suppose G is a 3-
connected planar graph and F the unique set of facial cycles of some embedding
of G. Any two facial cycles have at most one edge in common and each edge
belongs to exactly two facial cycles. We define the dual graph G∗ on F such
that two facial cycles are adjacent iff they share an edge. Since edges of G are
in a one-to-one correspondence to edges of G∗, let C∗ denote the set of edges in
G∗ that correspond to the edges of C ⊆ E(G). G∗ has the interesting property
that C ⊆ E(G) is a cycle in G iff C∗ is a minimal cut in G∗, i.e. removing C∗

from G∗ separates G∗ into two components U∗, W ∗ ⊂ G∗. These components
satisfy C =

⊕
F∈U∗ F =

⊕
F∈W∗ F . Thus, in any embedding of G U∗ is the

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 34

set of facial cycles inside C and W ∗ is the set of facial cycles outside C, or vice
versa. Figure 3 illustrates the relationship between G and G∗.

F2

F4

F6

G G∗

C

F1

F3

F5 F6
F1

F3 F4
F5

F2

(a) (b)

Figure 3: (a) A 3-connected planar graph G with a cycle C and unique
faces F1, . . . , F6. (b) The dual Graph G∗ of G with minimal cut
C∗ = {F1F6, F2F5, F4F5, F3F6} corresponding to C and the sets U∗ =
{F1, F2, F3, F4}, W ∗ = {F5, F6}.

To find a T -embedding, we only have to decide for each C whether U∗ or W ∗

is the set of facial cycles outside C and to search for a facial cycle F0 belonging
to each of these sets. Then F0 can be chosen as the outer facial cycle. We
describe the algorithm in Fig. 4 and prove its correctness in Theorem 2.

Algorithm embed triconnected graph
Input : G, T
Output : outer facial cycle F0 of some T -embedding

1. Find the set F of facial cycles of some embedding of G.
2. Construct the dual graph G∗.
3. For each 〈C, InC , OutC〉 ∈ T find the components U∗

C , W ∗
C of G∗ − C∗.

Let be UC =
⋃

F∈U∗
C

F and WC =
⋃

F∈W∗
C

F .
If InC ⊂ UC and OutC ⊂ WC , define Z∗

C = W ∗
C ;

else if InC ⊂ WC and OutC ⊂ UC , define Z∗
C = U∗

C ; else stop.
4. If there is some cycle F0 ∈ F belonging to each Z∗

C , return F0.

Figure 4: Embedding algorithm for 3-connected graphs

Theorem 2 Given a 3-connected graph G and a set T of topological con-
straints for G, algorithm embed triconnected graph generates a T -embedding
represented by its outer facial cycle iff G is T -planar. Moreover, it has time
complexity O(nt).

Proof: (⇒) Suppose the algorithm returns some F0. There is some embedding
G̃ of G with inner facial cycles F ′ = F \ {F0} and outer facial cycle F0. By
definition of the Z∗

C , we have for any 〈C, InC , OutC〉 ∈ T and FC := F\Z∗
C ⊆ F ′

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 35

that
⋃

F∈FC
F contains all edges of InC but no edge of OutC . Thus, by Theorem

1, G̃ is a T -embedding.
(⇐) Conversely, assume G to have a T -embedding G̃ with the set F ′ of inner

facial cycles and outer facial cycle F ′
0. We have to show that the algorithm

always generates a cycle F0 as required. Let for any 〈C, InC , OutC〉 ∈ T FC

denote the sum of those cycles in F ′ that sum up to C. FC and (F ′ ∪F ′
0) \ FC

are exactly the components U∗
C , W ∗

C of G∗ − C∗ and, by Theorem 1,
⋃

F∈FC
F

contains all edges of InC but no edge of OutC . Thus, the algorithm defines Z∗
C

to be (F ′ ∪ F ′
0) \ FC . At least F ′

0 belongs to each Z∗
C such that the algorithm

can return some cycle F0 ∈
⋂

C Z∗
C .

Finally, this algorithm can be implemented as an O(nt) procedure: gener-
ating the facial cycles of G by embedding G takes O(n) time as well as the
construction of the dual graph G∗. Since finding the components U∗

C and W ∗
C

of G∗ −C∗ and testing the required conditions can both be done in O(n) time,
step 3 takes all in all O(nt) time. The last step also needs only O(nt) time. 2

Basically, this polynomial time T -planarity algorithm depends on the simple
topological properties of 3-connected planar graphs. The next theorem shows
that in the general case we cannot hope for such a polynomial time solution.
This also holds for some natural restrictions of the problem.

Theorem 3 The problem of T -planarity is NP-complete.

Proof: Membership in NP follows immediately from Theorem 2: we only have
to guess a 3-connected planar supergraph G′ of G and verify in polynomial time
G′ to be T -planar.

Next we show the problem to be NP-hard by transformation from the NP-
complete problem BETWEENNESS (see [13]) defined as: given a finite set
A and a set S of ordered triples of distinct elements from A, is there a one-
to-one function f : A −→ {1, . . . , |A|} such that for each (a, b, c) ∈ S either
f(a) < f(b) < f(c) or f(c) < f(b) < f(a) holds? Let A = {a1, . . . , an} and S
be an arbitrary instance of BETWEENNESS. We associate with A the graph GA

defined by V (GA) = {x, y, a1, . . . , an} and E(GA) = {xai, aiy | i ∈ {1, . . . , n}}.
For any i, j with 1 ≤ i < j ≤ n let Ci,j denote the cycle (x, ai, y, aj, x) illustrated
in Fig. 5. Then, S is encoded by a set TS of topological constraints for GA: let
InCi,j be the set {xak | (ai, ak, aj) ∈ S or (aj , ak, ai) ∈ S} and TS be the set of
triples 〈Ci,j , InCi,j , ∅〉 with nonempty InCi,j .

We show that GA is TS-planar iff there is some function f satisfying the
requirements given above. Suppose G̃A is a TS-embedding of GA where a′

and a′′ are the two vertices of GA belonging to the outer facial cycle of G̃A.
We define a linear order f on A by f(a′) = 1, f(a′′) = n and inductively
f(a) = i if a 6= a′′ and a belongs to the outer facial cycle of G̃A where the
vertices f−1(1), . . . , f−1(i − 1) are removed. It follows immediately that for
each (a, b, c) ∈ S f(b) is between f(a) and f(c).

Conversely, suppose f has the required property. Then GA can be embedded
while preserving the order of f , i.e. f−1(i) and f−1(i + 1) belong to the same

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 36

anaja1

y

x

Ci,jai

Figure 5: Graph GA defined in the proof of Theorem 3

inner facial cycle and f−1(1) and f−1(n) belong to the outer facial cycle. Thus,
all edges of InCi,j are inside Ci,j . 2

According to the special properties of GA and TS defined in the proof, we
can draw some further conclusions. Since GA is 2-connected and has treewidth
2, T -planarity remains NP-complete for the class of graphs having these prop-
erties. Thus, unlike many other graph problems, a bounded treewidth does not
result in a polynomial time solution in case of T -planarity. With respect to the
connectivity number κ of graphs, we get the exact boundary between P and NP:
the problem is NP-complete for κ ≤ 2 while allowing a polynomial time solution
for κ ≥ 3. T -planarity remains also NP-complete for Eulerian graphs since GA

is Eulerian (if |A| is odd, we have to add the edge xy to E(GA)). Interestingly,
NP-completeness holds for topological constraints of the form 〈C, InC , ∅〉. Since
in the proof any xak ∈ InCi,j can be expressed equivalently by xai ∈ OutCk,j

and xaj ∈ OutCi,k
, this is also valid for constraints of the form 〈C, ∅, OutC〉.

4 Reduction to Biconnected Graphs

As far as classical planarity is concerned, the planarity problem of a graph can
be simply reduced to its blocks. Correspondingly, many graph embedding al-
gorithms, e.g. [3] and [18], require the input graph to be 2-connected. The
embedded blocks can be easily merged to an embedding of the whole graph. A
corresponding reduction for T -planarity, however, must involve all the topolog-
ical constraints between the components and blocks. In this section we develop
a polynomial time algorithm providing such a reduction in two steps: first, T -
planarity for a graph is reduced to its components and second, connected graphs
with constraints are reduced to their blocks. Thus, it is sufficient to focus on 2-
connected graphs when searching for polynomial time subproblems or heuristics
to cope with the general NP-complete problem.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 37

4.1 Reducing a Graph to Its Components

Topological constraints for an arbitrary planar graph can considerably differ
from those for a 2-connected graph: this is due to the fact that topological con-
straints between its components or blocks imply yet another sort of constraints
not subsumed by Definition 1. Suppose we have two components H and H ′ of
a graph G and three constraints meaning that x ∈ E(H ′) must be embedded
inside cycles C1 and C2, but outside cycle C3 of H . To find an embedding of
G satisfying these constraints, we have to find an embedding H̃ of H with an
inner face inside C̃1 and C̃2, but outside C̃3 in which we can embed H ′. Thus,
we get a new constraint between cycles of the same component that cannot be
equivalently expressed by topological constraints. Although again topological
by nature, we call constraints of this sort overlap constraints. More formally:

Definition 2 Let G be a graph and L be a set of pairs Li = 〈C-Ini,C-Outi〉 such
that C-Ini and C-Outi are sets of cycles of G. These pairs are called overlap
constraints for G.
An embedding G̃ of G satisfies L if for each constraint Li ∈ L there is a face
of G̃ in the interior of all cycles of C-Ini and in the exterior of all cycles of
C-Outi; such an embedding is called an L-embedding. Moreover, G is L-planar
if G has an L-embedding.

We only consider overlap constraints that are induced by topological con-
straints though they might be of general interest. If a graph has an embedding
satisfying both topological constraints T and overlap constraints L, we call it
T L-planar and its embedding T L-embedding for short. If H is a subgraph of
G, we denote with T |H the set of topological constraints which T induces on H ,
i.e. 〈Ci, Ini ∩ E(H), Outi ∩ E(H)〉 if Ci is a cycle in H and 〈Ci, Ini, Outi〉 ∈ T .

Suppose G is a planar graph, T is a set of topological constraints for G and
H is the set of components of G to which we want to reduce T -planarity. To
represent the induced constraints between distinct components H, H ′ ∈ H, we
define the following sets:

C-InH,H′ = {C ⊂ H | 〈C, InC , OutC〉 ∈ T with InC ∩ E(H ′) 6= ∅},
C-OutH,H′ = {C ⊂ H | 〈C, InC , OutC〉 ∈ T with OutC ∩ E(H ′) 6= ∅}.

The sets C-InH,H′ define moreover a relation ≺ on H by H ′ ≺ H iff C-InH,H′ 6=
∅. This relation means that we have to find an embedding of H that has a face in-
side all cycles of C-InH,H′ and outside all cycles of C-OutH,H′ , thus satisfying the
overlap constraint 〈C-InH,H′ , C-OutH,H′〉. However, there are much more over-
lap constraints for H . Consider the set H′ of all successors of H , i.e. {H ′ | H ′ ≺
H}, and let K be a component of (the undirected graph of) ≺ restricted to H′.
Then all H ′ ∈ K must lie in the same face of an embedding of H . The stronger
overlap constraints for H are thus 〈

⋃
H′∈K C-InH,H′ ,

⋃
H′∈K C-OutH,H′〉 for all

such K.
Now consider an embedding G̃ of G and the induced ordering < on H by

H ′ < H iff G̃|H′ is in some inner face of G̃|H . It can be easily seen, that < is

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 38

a strict partial order with the additional property that H ′ < H and H ′ < H ′′

imply either H < H ′′ or H = H ′′ or H ′′ < H due to planarity. In other words,
< is the transitive closure of a disjoint union of rooted trees. If moreover G̃ is a
T -embedding, the relation ≺ defined above is a subrelation of <. An example
of both relations is given in Fig. 6.2

C-InH1,H3 = {C1}
C-InH1,H4 = {C2}
C-InH2,H3 = {C4}
C-InH2,H4 = {C5}

C-OutH1,H2 = {C3}
C-OutH2,H1 = {C6}

C2C1 C4

H3 H4

C3

C6 C5

H3 H4

H1 H2

H3 H4

C1 C2

C3

H2H1

C4

C6

C5

(b)

(a)
H1

H3 H4

≺

<

G

G̃

H2

Figure 6: (a) A graph G consisting of components H1, . . . , H4 and topological
constraints between them represented by the sets C-InHi,Hj and C-OutHi,Hj ;
these sets define the relation ≺. (b) An embedding G̃ satisfying these constraints
and the relation < induced by G̃.

The method of reducing T -planarity of G to its components consists just in
finding such an extention < of ≺ and appropriate embeddings of the components
of G. Instead of the strict partial ordering <, it is more convenient to construct
its transitive reduction which is a disjoint union of rooted trees. When first con-
sidering subsets H′ ⊂ H such that ≺ |H′ is a connected relation, we can easily
formulate a recursive procedure order components shown in Fig. 7 for construct-
ing the transitive reduction of < w.r.t. to H′. It makes use of an algorithm A for
generating an embedding of a connected graph satisfying given topological and
overlap constraints; we also assume that the faces corresponding to the overlap
constraints are returned. Such an algorithm A is provided by the reduction to
blocks developed in the next section. The procedure order components returns
a tree of embedded components in H′ where an edge from H̃ to H̃ ′ is labelled
with a face of H̃ in which H̃ ′ must be embedded. Figure 8 shows the only two
possible labelled trees that can result from the graph and constraints given in

2Note that we visualize relations like ≺ by drawing an arrow from H to H′ if H′ ≺ H.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 39

Fig. 6 (a). Here we have labelled an edge from H̃ to H̃ ′ by the overlap constraint
for H̃ instead of its corresponding face. The first labelled tree corresponds to
the embedding shown in Fig. 6 (b).

Algorithm order components
Input : H′ ⊂ H such that ≺ |H′ is connected
Output : labelled tree of embedded components of H′

1. Determine the set M of components maximal in ≺ |H′ .
2. Use algorithm A to find an H ∈ M with an embedding H̃ satisfying TH

and set LH of constraints Li = 〈
⋃

H′∈Ki
C-InH,H′ ,

⋃
H′∈Ki

C-OutH,H′〉
for components Ki of ≺ |H′\{H}.
If this succeeds, let Fi be the faces of H̃ corresponding to Li, else stop.

3. For all Ki compute order components(Ki) resulting in labelled trees Ri.
4. Merge the Ri to a new tree with root H̃ by adding edges from H̃ to the

roots of Ri labelled with Fi. Finally, return this new tree.

Figure 7: Algorithm for ordering components

H̃2

H̃1

H̃3 H̃4

H̃2

H̃1

H̃3 H̃4

〈{C1}, ∅〉

〈{C1, C2}, {C3}〉

〈{C4}, ∅〉 〈{C5}, ∅〉 〈{C2}, ∅〉

〈{C4, C5}, {C6}〉

Figure 8: Two labelled trees that can result from procedure order components
for the graph and constraints given in Fig. 6. Instead of faces, the edges are
labelled with the corresponding overlap constraints.

The complete reduction algorithm reduce to components is given in Fig. 9.
To obtain a T -embedding of G, we only have to embed the components of G
according to the structure of the generated trees. Finally, we prove correctness
and the time complexity for this algorithm in Theorem 4. We therefore assume
that an algorithm A is available for embedding a component H with topological
constraints TH and overlap constraints LH . Its time complexity is assumed to
be O(p(nH , kH , tH , lH)) for some polynomial p with parameters nH = |H |, tH =
|TH |, lH = |LH | and the number kH of all cycles occurring in the constraints
of TH and LH . Note that each overlap constraint consists then of at most kH

cycles.

Theorem 4 Let G be a planar graph and T be a set of topological constraints
for G. Then, algorithm reduce to components generates a T -embedding of G iff

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 40

Algorithm reduce to components
Input : G, T
Output : T -embedding of G

1. Determine the set H of components of G.
2. Determine the sets C-InH,H′ and C-OutH,H′ , the induced constraints

TH := T |H and the relation ≺. If ≺ is cyclic, stop.
3. For each component Ki of ≺ compute order components(Ki)

resulting in labelled trees Ri.
4. Construct the embedding of G as described by the Ri, i.e. embed H̃ ′

into face F of H̃ iff there is an edge from H̃ to H̃ ′ labelled with F .

Figure 9: Reduction of T -planarity of a graph to its components

G is T -planar. Moreover, it takes O
(
n4 + n2t + n · p(n, t, t, n)

)
time provided

that the time complexity of A is given by p.

Proof: (⇒) Suppose G̃ is an embedding of G generated by the algorithm and <

is the induced relation on H. We have to show that G̃ is indeed a T -embedding.
Let be 〈C, InC , OutC〉 ∈ T and H̃ be the generated embedding of the component
H ∈ H with C ⊂ H .

First, consider an x ∈ InC belonging to component H ′ ∈ H. If H = H ′, x is
inside C̃ in H̃ since H̃ is a TH -embedding. Otherwise we have H ′ ≺ H . When
choosing H for embedding in step 2 of algorithm order components, H ′ belongs
to some component Ki of ≺ |H′\{H}. Thus, the overlap constraint Li ensures
that all H ′ ∈ Ki are embedded in a face inside C̃ of H̃.

Second, consider an x ∈ OutC belonging to component H ′ ∈ H. Again, if
H = H ′, x is outside C̃ in H̃ since H̃ is a TH -embedding. Otherwise we have
C ∈ C-OutH,H′ . If H ′ < H holds in G̃, H ′ must be in some component Ki

of ≺ |H′\{H} determined in step 2 of algorithm order components. Thus, the
overlap constraint Li ensures that all H ′ ∈ Ki are embedded in a face outside
C̃ of H̃ . If H ′ < H does not hold in G̃, H̃ ′ is obviously outside C̃ of G̃.

(⇐) Conversely, we show that the algorithm indeed finds an embedding of
G if G is T -planar. By the first part of the proof, such an embedding always
satisfies T . So let G̃ be a T -embedding of G and < be its induced relation on
H. Since < is an extention of ≺, ≺ is in particular acyclic. For a connected
subrelation ≺ |H′ of ≺ we denote with G̃′|H′ the restriction of some T -embedding
G̃′ of G to the components in H′. Note that each G̃′|H′ has a unique maximal
component in < |H′ .

We must show that for each call of procedure order components the search
for an appropriate maximal component H always succeeds. For this purpose
we define inductively a T -embedding G̃H′ for each call order components(H′)
such that the maximal component of G̃H′ |H′ is a possible choice in step 2. Let
Ki be the components of ≺ and let G̃′ be the embedding of G built by placing

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 41

all G̃|Ki into different regions of the plane. Obviously, G̃′ satisfies T again.
We define each G̃Ki to be G̃′. Thus, for each call order components(Ki) the
maximal component of G̃Ki |Ki is a possible choice for H in step 2.

Consider now some call order components(H′) and let G̃H′ be already de-
fined. By assumption, the search in step 2 for an H ∈ H′ succeeds; however, H
is not necessarily identical with the maximal component of G̃H′ |H′ . Let Ki be
the components of ≺ |H′\{H} and Fi be the corresponding faces of the generated
embedding H̃ in which the components in Ki must be embedded. Transform
G̃H′ into a new embedding G̃′ of G by replacing G̃H′ |H with H̃ and placing each
G̃H′ |Ki into the face Fi of H̃. Again, G̃′ satisfies T . We define each G̃Ki to be
G̃′. Consequently, for each call order components(Ki) the maximal component
of G̃Ki |Ki is a possible choice for H in step 2. This completes the proof that
the algorithm never stops irregularly if G is T -planar.

Finally, we derive the time complexity of reduce to components from algo-
rithm A. As can be easily seen, step 1, 2 and 4 of reduce to components takes
O(n), O(nt) + O(n2) and O(n) time, respectively. To establish the time needed
by step 3, we consider the call order components(H′) for some H′ ⊂ H. First,
the set M of maximal components of ≺ |H′ can be determined in O(n) time.
For some Hj ∈ M let be nj = |Hj |, tj = |THj |, lj = |LHj | and kj be the number
of cycles occurring in THj and LHj , i.e. the number of cycles in Hj occurring
in T . Then, computing the lj components of ≺ |H′\{Hj} can be done in O(n2)
time and determining the constraints LHj needs O(nkj) time. By assumption,
testing if Hj is THjLHj -planar can be done in O(p(nj , kj , tj , lj)) time. In the
worst case, however, all the Hj ∈ M must be checked. It is clear that

∑
nj = n,∑

kj = t and
∑

tj ≤ t. Additionally, we have
∑

lj ≤ 2n since
∑

lj is largest if
≺ |H′ is a tree and for a tree the sum is twice the number of edges. Thus, step
2 of order components can be done in

∑(
O(n2) + O(nkj) + O(p(nj , kj , tj , lj))

)
= O

(∑
n2 +

∑
nkj + p

(∑
nj ,

∑
kj ,

∑
tj ,

∑
lj

))
= O

(
n3 + nt + p(n, t, t, n)

)
.

Since the number of calls of order components is bounded by n, we get the overall
complexity O

(
n4 + n2t + n · p(n, t, t, n)

)
for algorithm reduce to components. 2

4.2 Reducing a Component to Its Blocks

The second part of reducing T -planarity of a graph G consists of reducing its
components H with induced topological constraints TH and overlap constraints
LH to its blocks. Again, this reduction step leads to a new sort of constraints
between blocks which are similar, but not entirely equivalent with overlap con-
straints. Consider two blocks B and B′ of H having a cutvertex v in common
and suppose we have constraints in TH meaning that B′ must be embedded
inside cycles C1 and C2, but outside cycle C3 of B. A corresponding embedding

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 42

B̃ of B must clearly satisfy the overlap constraint 〈{C1, C2}, C3〉. However, due
to the way these blocks are connected to each other, the topological constraints
imply additional requirements: first, the boundary of the face in B̃ inside C1

and C2, but outside C3 must contain the cutvertex v, and second, v must belong
to the boundary of the outer face of the embedding B̃′ of B′ in order to merge B̃
and B̃′ to an embedding of B ∪B′ satisfying the constraints given above. Since
these constraints are an extention of overlap constraints, we call them extended
overlap constraints.

Definition 3 Let G be a graph and X be a set of triples Xi = 〈C-Ini,C-Outi, v〉
such that C-Ini and C-Outi are sets of cycles of G and v is a vertex of G. These
triples are called extended overlap constraints for G.
An embedding G̃ of G satisfies X if for each constraint Xi ∈ X there is a face of
G̃ in the interior of all cycles of C-Ini and in the exterior of all cycles of C-Outi
and whose boundary contains v; such an embedding is called an X -embedding.
Moreover, G is X -planar if G has an X -embedding.

We are again only interested in those extended overlap constraints that are
derived in the reduction step. It can easily be seen that the requirement for B̃′

to have v at the boundary of the outer face can be expressed by the extended
overlap constraint 〈∅, C-Out, v〉 where C-Out denotes the set of all cycles oc-
curring in the constraints for B′. This is because taking the face corresponding
to this extended overlap constraint as the outer face results in the required em-
bedding where v is on the outer face boundary and all other constraints are
preserved.

The reduction of THLH -planarity of H to its blocks works much like the
first reduction step of G to its components. This is due to the fact that any
embedding of H induces again an ordering < on the set B of blocks of H with
the same properties as defined in the previous section. Thus we can adopt the
key idea of constructing an appropriate ordering of the blocks. However, some
minor modifications are necessary to cope with both the overlap constraints LH

and the extended overlap constraints derived during the reduction process. We
use the block graph Hb of H , as defined in Sect. 1, to represent the complete
decomposition of H into its blocks and cutvertices. Note that Hb is a tree
because H is connected.

Analogously to the previous section, we represent the constraints between
distinct blocks B, B′ ∈ B by the sets C-InB,B′ and C-OutB,B′ . By defining them
in terms of C-components, many constraints between B and further blocks are
inferred. For the sake of a uniform representation, we transform the overlap
constraints Li ∈ LH into the sets C-InB,Li and C-OutB,Li .

C-InB,B′ = {C ⊂ B | 〈C, InC , OutC〉 ∈ TH with InC ∩ E(Z) 6= ∅
for some C-component Z containing B′},

C-OutB,B′ = {C ⊂ B | 〈C, InC , OutC〉 ∈ TH with OutC ∩ E(Z) 6= ∅
for some C-component Z containing B′},

C-InB,Li = {C ⊂ B | Li = 〈C-Ini, C-Outi〉 ∈ LH with C ∈ C-Ini},
C-OutB,Li = {C ⊂ B | Li = 〈C-Ini, C-Outi〉 ∈ LH with C ∈ C-Outi}.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 43

The sets C-InB,B′ and C-InB,Li define again a relation ≺ on B ∪LH by B′ ≺ B
iff C-InB,B′ 6= ∅ and Li ≺ B iff C-InB,Li 6= ∅. The reason for including the
constraints of LH is that this ensures all blocks B with Li ≺ B to be embedded
in a linear order of < as must be the case in any embedding of H satisfying LH

(see for example Fig. 12).
The algorithm reduce to blocks providing the second reduction step is pre-

sented in Fig. 10. Again, the resulting embedding of H is obtained from a
labelled tree that is generated by the procedure order blocks given in Fig. 11.
This procedure assumes that some block B0 is selected from those blocks that
are maximal in ≺ to serve as a maximal block in the relation < induced by
the THLH -embedding of H to be generated. Thus, contrary to the reduction
algorithm in the previous section, finding a THLH -embedding of H possibly re-
quires several complete reduction processes if necessary until a proper B0 leads
to the required embedding. This is due to the fact that the generated extended
overlap constraints for the blocks are partially depending on the choice of B0;
for instance, all other blocks B with cutvertex q in the path B0, . . . , q, B of
Hb are to be embedded with q at the outer face boundary. Instead of relation
≺, procedure order blocks uses for technical reasons an extention ≺′ of ≺ by
adding B′ ≺′ B iff B0, . . . , B, q, B′ is a path in Hb. This enforces the search
of which block to consider next in step 2 of order blocks to take those blocks
that are nearest to B0 in the tree Hb. Note that in general, however, ≺′ is no
longer a subrelation of < induced by some THLH -embedding of H . Algorithm
order blocks works similarly to its corresponding procedure order components
except for those parts where the block graph must be taken into account.

Algorithm reduce to blocks
Input : component H with constraints TH and LH

Output : THLH -embedding of H

1. Determine the set B of blocks of H and the blockgraph Hb of H .
2. Determine the sets C-InB,B′ , C-OutB,B′ , C-InB,Li and C-OutB,Li ,

the constraints TB := TH |B and the relation ≺. If ≺ is cyclic, stop.
3. Find a block B0 maximal in ≺ such that order blocks(B ∪ LH) results

in a labelled tree R using the extention ≺′ of ≺ by B′ ≺′ B iff
B0, . . . , B, q, B′ is a path in Hb. If this fails, stop.

4. Construct the embedding of H as described by R, i.e. for any edge
from B̃ to B̃′ labelled with F and for the cutvertex p with path
B, p, B′ in Hb embed B̃′ into face F at p of B̃. Additionally, return
the faces corresponding to the overlap constraints Li ∈ LH ,
i.e. the labels of the edges to Li in R.

Figure 10: Reduction of THLH -planarity of a connected graph to its blocks

Figure 12 illustrates this reduction step with a simple connected graph H
whose blocks B1, . . . , B4 are cycles C1, . . . , C4, respectively, and B5 is a bridge.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 44

Algorithm order blocks
Input : B′ ⊂ B ∪ LH such that ≺′ |B′ is connected
Output : labelled tree of embedded components of B′

1. Determine the set M of components maximal in ≺′ |B′ .
2. Use algorithm A′ to find some B ∈ M such that:

(i) for any component Ki of ≺′ |B′\{B} there is at most one cutvertex
pi ∈ B in Hb separating B from Ki,

(ii) B has a TBLBXB-embedding B̃ where
LB is the set of overlap constraints L′

i = 〈C-InB,Ki, C-OutB,Ki〉
for all Ki ∈ LH ,
XB is the set of extended overlap constraints
Xi = 〈

⋃
B′∈Ki

C-InB,B′ ,
⋃

B′∈Ki
C-OutB,B′ , pi〉 for all Ki 6∈ LH .

If B 6= B0, XB contains the additional constraint that q satisfying
the path B0, . . . , q, B in Hb must be at the outer face boundary.

If this succeeds, let Fi be the faces of B̃ corresponding to L′
i and Xi,

respectively, else stop.
3. For all Ki 6∈ LH compute order blocks(Ki) resulting in labelled trees Ri.

For any Ki ∈ LH define Ri to be Ki.
4. Merge the Ri to a new tree with root B̃ by adding edges from B̃

to the roots of Ri labelled with Fi. Finally, return this new tree.

Figure 11: Algorithm for ordering blocks

The topological constraints and the overlap constraint L for H are directly
encoded in the relation ≺. As can easily be seen, the only correct choice for
B0 among the candidates B1 and B3 is B0 = B1. This is because B0 = B3 is
separated in Hb by two cutvertices from B2 = C2 and B4 = C4 which inhibits
embedding one of these cycles into the other and thus contradicts the overlap
constraint L.

To establish in Theorem 5 correctness and time complexity of algorithm
reduce to blocks, we assume an algorithm A′ to be available for embedding
a block B with topological constraints TB, overlap constraints LB and ex-
tended overlap constraints XB . The time complexity of A′ is assumed to be
O(p′(nB, kB, tB, lB, xB)) for some polynomial p′ with parameters nB = |B|,
tB = |TB|, lB = |LB|, xB = |XB| and the number kB of all cycles occurring in
the constraints of TB , LB and XB. Consequently, each overlap constraint and
each extended overlap constraint consists of at most kB cycles.

Theorem 5 Let H be a connected planar graph and TH be a set of topological
constraints and LH be a set of overlap constraints for H. Then, algorithm
reduce to blocks generates a THLH-embedding of H iff H is THLH-planar.
Moreover, it takes O

(
n5 + n4l + n3k + n2kl + nt + n2 · p′(n, k, t, l, n + l)

)
time

provided that the time complexity of A′ is given by p′ and n = |H |, t = |TH |,

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 45

C2

C3

p1

B3

H

C1

B5

B1

B2

B4 B5

Hb

B1

B2 B4

B3

B2 B3

B1

B4

L

≺

p2

B5

B̃1

B̃2

B̃3

〈{C1}, ∅, p1〉
〈∅, {C2}, p1〉

B̃4

L

B̃5

〈{C2}, ∅, p1〉
〈∅, {C3}, p1〉

〈∅, ∅, p2〉

≺′

(b)

〈{C3}, ∅, p2〉

(a)

R

〈∅, {C3}, p2〉 〈∅, ∅, p2〉
〈{C4}, ∅〉

H̃

C2

C3

C4

C4

C1

L

p2

p1

Figure 12: (a) A connected graph H with its block graph Hb and the relation
≺ determined by C-InB1,B2 = {C1}, C-InB3,B4 = {C3}, C-InB2,L = {C2} and
C-InB4,L = {C4}. (b) The relation ≺′, the labelled tree R and its corresponding
embedding H̃ when B1 is chosen as B0.

l = |LH | and k is the number of all cycles occurring in the constraints of TH

and LH .

Proof: (⇒) Suppose H̃ is an embedding of H generated by the algorithm and
< is the induced relation on B. We have to show that H̃ is indeed a THLH -
embedding. Analogously to the proof of Theorem 4, it can easily be seen that
the induced topological constraints TB and the extended overlap constraints Xi

produced in step 2 of algorithm order blocks guarantee that H̃ satisfies TH .
To show that H̃ also satisfies LH , we consider an overlap constraint L =

〈C-In, C-Out〉 ∈ LH . Suppose F is the face in H̃ corresponding to L and BF is
the block with an edge to L labelled with F in the tree R resulting from step 3
of reduce to blocks. That is, BF appears as the minimal block in < containing
cycles from C-In. When choosing BF for embedding in step 2 of order blocks, the
generated overlap constraint L′

i = 〈C-InBF ,Ki , C-OutBF ,Ki〉 for Ki = L clearly
ensures that F is a face inside all cycles of C-In in BF and outside all cycles
of C-Out in BF . Let C ∈ C-In belong to some block B 6= BF . Since L and

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 46

BF belong to the same component Ki determined in step 2 of order blocks, the
face of B̃ corresponding to the extended overlap constraint Xi is guaranteed to
be inside C. Thus, BF is embedded inside C. Next, consider some C ∈ C-Out
belonging to a block B 6= BF . If BF < B holds in H̃, BF must be in a
component Ki. Then, the constraint Xi ensures again its corresponding face in
B̃ to be outside C. Otherwise, BF is obviously outside C in H̃ .

(⇐) Conversely, we show that the algorithm never stops irregularly if H is
THLH -planar. Suppose H̃ is an embedding of H satisfying the constraints TH

and LH and < is the induced relation on B. Clearly, the restriction of ≺ to B
is a subrelation of <; thus ≺ must be acyclic. Since in step 3 of reduce to blocks
possibly all maximal blocks in ≺ are considered, it is sufficient to show that the
choice of a block B0 which is maximal in < succeeds. So let ≺′ be the extention
of ≺ defined in step 3 which is also acyclic. In analogy to the proof of Theorem
4 we define a THLH -embedding H̃B′ for each call order blocks(B′) such that the
maximal component of H̃B′ |B′ is a possible choice in step 2.

First we define H̃B∪LH := H̃ such that for the call order blocks(B ∪ LH) B0

is an appropriate choice in step 2; moreover, B0 is the only candidate because
it is the unique maximal block in ≺′. Consider now some call order blocks(B′)
and let H̃B′ be already defined. By assumption, the search in step 2 for some
B ∈ B′ succeeds; however, B is not necessarily identical with the maximal block
of H̃B′ |B′ . Let Ki be the components of ≺′ |B′\{B} and Fi be the corresponding
faces of the generated embedding B̃ in which the blocks in Ki must be embedded.
Moreover, let pi ∈ B be the cutvertex in Hb separating B from Ki. Then
transform H̃B′ into a new embedding H̃ ′ of H by replacing H̃B′ |B with B̃ and
placing each H̃B′ |Ki into face Fi of B̃ at cutvertex pi. Again, H̃ ′ satisfies TH

and LH . When each H̃Ki is defined to be H̃ ′, we assure that for each call
order blocks(Ki) the maximal block of H̃Ki |Ki is a possible choice in step 2.
This completes the proof that this algorithm never stops irregularly if H is
THLH -planar.

Finally, we derive the time complexity of reduce to blocks from algorithm A′.
As can be easily seen, step 1 and 4 of reduce to blocks takes O(n) and O(n + l)
time, respectively. The construction of the sets C-InB,B′ and C-OutB,B′ in step
2 depends on the C-components which can be determined in O(nt) time. Then
the four sets can be determined in O(nt) + O(kl) time. Moreover, defining the
sets TB can be done in O(nt) time and the relation ≺ can be computed and
checked in O(n2 + nl) time.

We consider next the call order blocks(B′) for some B′ ⊂ B ∪ LH . The set
M of maximal components in ≺′ |B′ can be determined in O(n) time. For some
Bj ∈ M let be nj = |Bj |, tj = |TBj |, lj = |LBj |, xj = |XBj | and kj be the
number of all cycles occurring in TBj , LBj and XBj , i.e. the number of all cycles
in Bj occurring in TH and LH . Then, determining the lj + xj components Ki

of ≺′ |B′\{Bj} needs O(n2 + nl) time and determining the cutvertices pi needs
O(n) time. Moreover, the constraints XBj can be found in O((n + l)kj) time
whereas the constraints LBj consists of sets already generated. By assumption,
a TBjLBjXBj -embedding, if any, can be found in O(p′(nj , kj , tj , lj, xj)) time.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 47

In the worst case, however, all the Bj ∈ M must be checked. It is clear that∑
nj ≤ 2n,

∑
kj = k,

∑
tj ≤ t and

∑
lj = l. By the argument given in

the proof of Theorem 4, we additionally get
∑

xj ≤ 2(n + l). Thus step 2 of
order blocks can be done in∑

(O(n2 + nl) + O((n + l)kj) + O(p′(nj , kj , tj , lj, xj)))

= O
(∑

(n2 + nl) +
∑

(n + l)kj + p′
(∑

nj ,
∑

kj ,
∑

tj ,
∑

lj ,
∑

xj

))
= O

(
n3 + n2l + nk + kl + p′(n, k, t, l, n + l)

)
.

Since for a fixed B0 the number of calls is bounded by n, the time needed
by the call order blocks(B ∪ LH) in step 3 of algorithm reduce to blocks can
be estimated by n

(
O(n) + O

(
n3 + n2l + nk + kl + p′(n, k, t, l, n + l)

))
, that is

O
(
n4 + n3l + n2k + nkl + n · p′(n, k, t, l, n + l)

)
. In the worst case, however, all

maximal blocks B0 in ≺ must be checked. Thus we finally obtain the overall
complexity

O
(
nt + kl + n2 + nl

)
+ n

(
O

(
n4 + n3l + n2k + nkl + n · p′(n, k, t, l, n + l)

))
= O

(
n5 + n4l + n3k + n2kl + nt + n2 · p′(n, k, t, l, n + l)

)
.

2

As an immediate consequence, we get the complexity of this algorithm when
only topological constraints TH are given. In this case we have l = 0 and
k = t = |TH |. Moreover, the reduction to blocks leads only to extended overlap
constraints, but not to overlap constraints.

Corollary 1 For a connected planar graph H with n = |H | and a set TH of
topological constraints for H with t = |TH |, the algorithm reduce to blocks takes
O

(
n5 + n3t + n2 · p′(n, t, t, 0, n)

)
time.

The combination of the algorithms developed in this and the previous section
leads to the complete reduction method of T -planarity of a graph G to its blocks.
When replacing algorithm A with algorithm reduce to blocks in Theorem 4 (and
matching the corresponding parameters), the following time complexity of the
complete reduction can easily be verified.

Corollary 2 Suppose G is a planar graph with n = |G| and T is a set of topolog-
ical constraints for G with t = |T |. Then, algorithm reduce to components com-
bined with algorithm reduce to blocks takes O

(
n6 + n4t + n3 · p′(n, t, t, n, 2n)

)
time provided that the time complexity of A′ is given by p′.

We finally note that extended overlap constraints can often be simplified
in the following way. Consider some constraint Xi = 〈C-Ini, C-Outi, v〉 and a
cycle C ∈ C-Ini. In case of v 6∈ C we can remove C from C-Ini and create the
topological constraint meaning that v is to be embedded inside C instead. If
this constraint is satisfied, any face with v at its boundary is certainly in the
interior of C. The cycles of C-Outi containing v can be treated analogously.
Thus, this simplification results in extended overlap constraints whose vertex is
contained in all cycles involved.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 48

5 Restricted Topological Constraints

The NP-completeness result of planarity with topological constraints opens the
search for interesting tractable subproblems. Such subproblems can be defined
in terms of various restrictions on graphs or constraints. For instance, one can
study the effect of restricting the degree of graphs to the time complexity of
T -planarity. Instead of graph parameters, we are concerned in this section with
a particular parameter inherent to topological constraints which we call cycle
intersection order.

Definition 4 Given a graph G and a set C of cycles in G, the maximum number
of vertices two distinct cycles of C have in common is called the cycle intersection
order of C.
For a set T of topological constraints for G we denote the set of cycles occurring
in T by CT . The cycle intersection order of T is the cycle intersection order of
CT . If d is the cycle intersection order of T , we also write Td for T .

In other words, the cycle intersection order of T is the maximum order of all
graphs Ci ∩ Cj for distinct Ci, Cj ∈ CT . We consider it a natural parameter of
topological constraints since it captures an important aspect of the relationships
between cycles of CT which is worth studying. In particular, we are interested
in finding the exact boundary between P and NP w.r.t. this parameter.

Recalling the proof of Theorem 3, we can immediately conclude that Td-
planarity remains NP-hard for all d ≥ 3. This is because any two distinct cycles
involved in the defined constraints share either 2 or 3 vertices. By a minor
modification of encoding a BETWEENNESS instance, we obtain NP-hardness
even for d ≥ 2.

Theorem 6 The problem of Td-planarity is NP-complete for all d ≥ 2.

Proof: It is sufficient to show NP-hardness of Td-planarity for d = 2. Consider
an instance of BETWEENNESS, i.e. a set A = {a1, . . . , an} and a set S =
{s1, . . . , sr} of ordered triples sj = (aj1 , aj2 , aj3) of distinct elements of A. We
transform the graph GA defined in the proof of Theorem 3 into a graph G′

A

by replacing each vertex ai by the path ai,1, . . . , ai,r (with an edge from each
of these vertices to x and y) and adding some cycle C which meets all these
vertices involved exactly in x and y. This construction is illustrated in Fig. 13.

For any sj = (aj1 , aj2 , aj3) let Cj
j1,j3

denote the cycle (x, aj1,j, y, aj3,j, x).
We define T ′

S to contain the constraints 〈Cj
j1,j3

, {xaj2,j}, ∅〉 for all triples sj

and, additionally, the constraint 〈C, {xai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ r}, ∅〉. This last
constraint ensures any embedding of G′

A to induce some linear order of the paths
ai,1, . . . , ai,r. Obviously, all these cycles have exactly x and y in common such
that the cycle intersection order of T ′

S is 2. Then it can be proved analogously
to Theorem 3 that G′

A is T ′
S-planar iff 〈A, S〉 is a positive instance; however, we

omit the details. 2

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 49

a1,r

C

an,1

C1
1,n

a1,1

y

x

an,r

Figure 13: Graph G′
A defined in the proof of Theorem 6

Interestingly, the remaining problem of T1-planarity turns out to have a
positive solution. The next sections are devoted to the development of a poly-
nomial time algorithm for generating a T1-embedding. Thus, the boundary of
Td-planarity between P and NP will be proved to be d = 1. Due to the polyno-
mial time reduction method presented in the previous section, it is sufficient to
find a polynomial time embedding algorithm for 2-connected graphs and con-
straints that are derived from topological constraints with cycle intersection
order 1. Expectedly, such an algorithm depends primarily on certain structural
properties of sets of cycles in a 2-connected graph with cycle intersection order
1. The next section explores these properties as far as required for developing
the T1-embedding algorithm.

5.1 Decomposition of Biconnected Graphs by Cycles of
Intersection Order 1

Suppose we are given a nonempty set C of cycles in a planar 2-connected graph
G such that C has cycle intersection order 1. Moreover, let n denote |G| and k
denote |C|. Since any edge of G belongs to at most one cycle of C and each cycle
consists of at least three edges, we immediately get that |C| ≤ 3n−6

3 = n − 2.
This also holds obviously for planar graphs with a smaller connectivity number
than 2. Nevertheless, we continue to use parameter k when analyzing time
complexity.

The main purpose of this section is to present a method of decomposing
G into subgraphs with respect to C having certain desirable properties which
support the construction of an embedding of G satisfying given constraints. This
decomposition is described in terms of C-components of G for cycles C ∈ C. The
fact that G admits such a decomposition is mainly due to the cycle intersection
order 1 of C; in particular, nonplanar graphs admit the same decomposition.

We denote the set of C-components in G for all C ∈ C with HC and of-
ten write HC for C-components H of G. As a simple consequence of cycle

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 50

intersection order 1 of C, we have that C′ must be entirely contained in some
C-component of G for any distinct C, C′ ∈ C; this C-component is denoted by
HC,C′ . The following lemma describes a frequently used relationship between
C-components for different cycles of C.

Lemma 1 Let G be a 2-connected graph, C be a set of cycles in G with cycle
intersection order 1 and C1, C2, C3 ∈ C. Then, if C2 and C3 belong to different
C1-components, C1 and C3 belong to the same C2-component.

Proof: We show that there is a path p in G from some vertex a ∈ V (C1)\V (C2)
to some vertex b ∈ V (C3) \ V (C2) such that p does not meet C2. Then, since p
is entirely contained in some C2-component, both C1 and C3 necessarily belong
to that C2-component, too.

The C1-component H of G containing C3 has at least 2 vertices of attach-
ment, but by assumption |C1 ∩C2| ≤ 1, at most one of them belongs to C2. So
let a ∈ V (C1)\V (C2) be the other attachment vertex. Since C2 is not contained
in H , C2 can only meet H at its attachment points. Then let H ′ ⊂ H be the
component of G − C1 which contains vertices of C3 and let b be such a vertex.
Thus we have H ′ ∩C2 = ∅ and b ∈ V (C3) \ V (C2). Finally, if a already belongs
to C3, we define p to be the trivial path a. Otherwise, if e is an edge joining a
to some z ∈ H ′ and p′ is a path in H ′ from z to b, then p = e∪p′ is the required
path from a to b without meeting C2. 2

Any cycle C ∈ C with more than one C-component divides G into just these
C-components. It is more appropriate for our purpose, however, to take the
union of these C-components with C as the subgraphs into which C divides
G. Having in mind the way how cutvertices divide a connected graph into
blocks, one can ask whether there is a similar decomposition of G into maximal
subgraphs that cannot be further divided by cycles of C. This motivates the
following definition of parts.

Definition 5 A subset C′ of C with |C′| ≥ 2 is called separable if there is some
C ∈ C with at least two C-components in G each of which containing cycles
from C′. Otherwise, C′ is called inseparable.
An inseparable C′ defines the subgraph PC′ =

⋂
C∈C′ C ∪ HC of G where HC is

the C-component containing all cycles from C′ \ {C}.
We call the subgraphs PC′ defined by some maximal inseparable C′ and the sub-
graphs C ∪HC for a C-component HC not containing cycles from C parts of G
w.r.t. C. The set of all parts is denoted by P.
The decomposition graph D is defined on C ∪P by the edges CP iff C ⊂ P for
C ∈ C and P ∈ P.

To illustrate these definitions, consider the graph G and its decomposition
graph D shown in Fig. 14. For instance, {C5, C8} is separable since C5 and C8

belong to different C1-components. {C1, C8} is inseparable, but not maximal
inseparable since {C1, C8, C7} is also inseparable. This set, however, is maximal
inseparable, thus defining a part. As we will see, the decomposition graph is
always a tree.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 51

C1

C2

C3

C4

C5

C6

C7

C8

C7

C8

C1

C6

C3

C4

C2

C5

G D

Figure 14: A 2-connected graph G (drawn nonplanar) and its decomposition
graph. The cycles of C with intersection order 1 are drawn as circles and the
parts are marked by dashed outlines and square nodes, respectively.

The definition of maximal inseparable subsets and parts, however, is non-
constructive. Thus we develop next an effective method for finding all maximal
inseparable subsets of C which then can be transformed into a procedure for
computing the parts of G. For this purpose we define in Proposition 1 the re-
lation � on C depending on some fixed root cycle Cr . It is called weakly linear
if C � C′ and C � C′′ imply C′ � C′′ or C′ = C′′ or C′′ � C′.

Proposition 1 Let be Cr ∈ C and the relation � be defined on C by C � Cr

and C′ � C iff C′ 6⊂ HC,Cr for all distinct C, C′ ∈ C \ {Cr}. Then, � is a
weakly linear, strict partial order.

Proof: It is sufficient to consider only cycles distinct from Cr . Obviously, � is
asymmetric since C′ � C implies by Lemma 1 that Cr and C are in the same
C′-component, i.e. C 6� C′.

To show transitivity, assume that C′′ � C′ and C′ � C holds and suppose
that C′′ 6� C. Since C′′ and Cr are in the same C-component, but not C′ and
Cr, we conclude that C and C′′ are in the same C′-component. In connection
with C′′ � C′ we then get C � C′ in contradiction to asymmetry. Thus
C′′ � C must hold.

To prove that � is weakly linear, assume that C � C′ and C � C′′ and
further suppose that C′ 6= C′′ and C′ 6� C′′. The latter means that C′ and
Cr are in the same C′′-component, thus from C � C′′ follows that C and C′

are in different C′′-components. Then, by Lemma 1, C′′ and C are in the same
C′-component. In connection with C � C′ this means that C′′ and Cr are in
different C′-components, thus C′′ � C′. 2

In other words, the transitive reduction of � is a rooted tree with root Cr.
For the example graph of Fig. 14 with C1 chosen for Cr , � is shown in Fig. 15.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 52

C5 C6 C7 C8

C3 C4

C2

C1

Figure 15: Relation � for the graph given in Fig. 14 and root cycle Cr = C1.

Using the relation �, we are able to determine the maximal inseparable
subsets C′ of C, no matter which cycle is the root cycle. We show in Theorem
7 that we get all maximal inseparable sets C′ by choosing some cycle C and all
direct successors C′ of C in � belonging to the same C-component of G. The
cycle C′ is a successor of C if C′ � C holds, and a direct successor if there is no
C′′ with C′ � C′′ � C. The proof of this theorem makes use of the following
lemma on maximal inseparable sets.

Lemma 2 Let C′ ⊂ C be maximal inseparable and B ∈ C be a cycle not belong-
ing to C′. Then, there is some C′ ∈ C′ dividing B from C′ \ {C′}.

Proof: Since C′ ∪{B} is separable, there is a B1 ∈ C, B1 6= B, dividing B from
all cycles of C′ \ {B1}. If B1 ∈ C′, we are finished. Otherwise, since C′ ∪ {B1} is
also separable, there is some B2 ∈ C, B2 6= B1, dividing B1 from C′ \ {B2}. We
show that B2 also divides B from C′\{B2}. By Lemma 1, B2 and all cycles of C′

are in the same B1-component, thus B and B2 are in different B1-components.
Again by Lemma 1, B and B1 are in the same B2-component. Then we get that
B2 also divides B from C′ \ {B2}.

If B2 ∈ C′, we are finished. Otherwise, one can find again a B3 ∈ C dividing
B2, and thus B, from C′ \ {B3}, and so forth. This process results in some Bi

belonging to C′ that divides B from C′ \ {Bi}. 2

Theorem 7 Let C′ be a subset of C with |C′| ≥ 2. Then, C′ is maximal insep-
arable iff there is a C ∈ C′ such that C′ \ {C} is a set of all direct successors
C′ � C belonging to the same C-component in G.

Proof: (⇒) Suppose C′ is maximal inseparable. By Proposition 1, there is a
cycle C ∈ C′ that is maximal in � |C′ . Let H be the C-component containing
all the other cycles of C′. We first prove that all C′ ∈ C′ \ {C} are successors of
C. If Cr ∈ C′, we have C = Cr and, by definition, C′ � C for all C′ ∈ C′ \ {C}.
Otherwise we have Cr 6∈ C′. We show that Cr is not contained in H ; then
all C′ ∈ C′ \ {C} are in a different C-component than Cr, thus it follows that
C′ � C. So suppose that Cr ⊂ H . Since C′ is maximal inseparable, from
Lemma 2 follows that there is some C∗ ∈ C′, C∗ 6= Cr, dividing Cr from
C′ \ {C∗}. C∗ must be identical with C: otherwise the maximality of C implies
C 6� C∗, i.e. C∗ does not divide Cr from C′ \ {C∗}. However, C = C∗ means

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 53

that Cr is in a different C-component than all C′ ∈ C′ \ {C}, contrary to the
assumption that Cr ⊂ H .

Next we show that all C′ ∈ C′\{C} are direct successors of C in �. Suppose
that there is some C∗ with C′ � C∗ � C. From C∗ � C follows by Lemma
1 that C and Cr are in the same C∗-component. In connection with C′ � C∗

we get that C′ and C are in different C∗-components. Then, however, C′ would
not be inseparable.

Finally, we have to show that any direct successor C′ of C belonging to H
is already contained in C′. Suppose that C′ 6∈ C′. By Lemma 2, there is some
C∗ ∈ C′, C∗ 6= C′, dividing C′ from C′ \ {C∗}. From C∗ � C follows that Cr

and C are in the same C∗-component, and C′ 6� C∗ means that Cr and C′ are
in the same C∗-component. Then, C∗ does not divide C′ from C and, thus,
from C′ \ {C∗}. This shows that C′ must belong to C′.

(⇐) Suppose C′ satisfies the requirements where C is the maximal cycle. Let
H be the C-component containing all other cycles of C′. We first show that C′

is inseparable. So let C∗ be some cycle of C. If C∗ 6⊂ H , C∗ is in a different
C-component than all C′ ∈ C′ \ {C}. By Lemma 1, all C′ ∈ C′ are in the same
C∗-component. Suppose C∗ ⊂ H , thus in particular C∗ 6= C and C∗ 6= Cr. If
C∗ ∈ C′, we have C∗ � C, i.e. Cr and C are in the same C∗-component. Since
for all C′ ∈ C′ \ {C} we have C′ � C, and in particular C′ 6� C∗, Cr and
C ′ are in the same C∗-component. Thus, all C′ ∈ C′ belong to the same C∗-
component. Otherwise, if C∗ 6∈ C′, C∗ must be a successor of some C′ ∈ C′\{C}
according to the assumption. From C∗ � C′ � C follows that Cr, C′ and C
are in the same C∗-component. Since for all other C′′ ∈ C′ \ {C, C′} we have
C′′ 6� C∗, it follows that Cr and C′′ are in the same C∗-component. Thus, all
C′ ∈ C′ again belong to the same C∗-component.

Next we prove that C′ is maximal inseparable. Suppose that for some C∗ 6∈ C′

C′∪{C∗} is also inseparable. Then C∗ must be contained in H . By assumption,
C∗ must be a successor of some C′ ∈ C′ \ {C}, i.e. C∗ and Cr are in different
C′-components. From C′ � C follows that C and Cr are in the same C′-
component. Thus, C∗ and C are in different C′-components such that C′∪{C∗}
is separable. 2

From the results shown above we get some immediate consequences charac-
terizing parts and decomposition graphs in more detail. We summarize them in
Corollary 3 and 4.

Corollary 3 Let P be the set of parts of G w.r.t. C. Then the following propo-
sitions hold:

(i) Any part PC′ ∈ P contains exactly the cycles C′ from C.

(ii) Any cycle C ∈ C in some part P ∈ P has exactly one C-component in P .

(iii) For any part P ∈ P and cycle C ∈ C we have P ⊂ C ∪ HC for some
C-component HC of G.

(iv) Two distinct parts P, P ′ ∈ P have at most one cycle of C in common.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 54

(v) Any part P ∈ P is 2-connected.

(vi)
⋃

P∈P P = G.

Corollary 4 Let P be the set of parts and D be the decomposition graph of G
w.r.t. C. Then the following propositions hold:

(i) D is a tree with |D| < n.

(ii) If HC is a C-component of G for C ∈ C and P is the part of G with
C ⊂ P ⊂ C ∪ HC , then C ∪ HC is the union of all parts belonging to the
component of D − C which contains P .

(iii) G has less than n C-components, i.e. |HC | < n.

The usefulness of decomposing G into its parts for the embedding algorithm
to be developed comes in particular from proposition (ii) of Corollary 3: it
guarantees that any cycle of C in some part P is a facial cycle of any embedding
of P . As we will see in Sect. 5.2, this allows controlling the satisfaction of
constraints during the embedding process. By proposition (ii) of Corollary 4, we
have a one-to-one correspondence ε between C-components of G and edges of D:
each edge CP ∈ E(D) represents the C-component HC with C ⊂ P ⊂ C ∪HC ,
thus we define ε(HC) = CP . This correspondence ensures the decomposition
graph D to be a complete representation of the structure of G w.r.t. C.

The method for finding the maximal inseparable subsets of C provided by
Theorem 7 leads directly to an efficient procedure for computing the parts of
G. The order in which the cycles are processed plays a crucial role in this
procedure. Suppose � is defined by some fixed cycle Cr and the cycles of C are
in the reverse order C1, . . . , Ck of some topological sorting, i.e. Cj � Ci implies
j < i. Thus, we always have Ck = Cr. Define G0 = G and Pi, Gi and Ei for
1 ≤ i ≤ k as follows:

Pi = {Ci ∪ H | H is a Ci-component of Gi−1 with Cr 6⊂ H},
Gi = Ci ∪ Hr, for the Ci-component Hr of Gi−1 with Cr ⊂ Hr,
Ei = {C′P | C′ ∈ C and C′ ⊂ P ∈ Pi}.

Defining PCr =
⋃
Pi and the graph DCr on C ∪ PCr by the edge set

⋃
Ei, it

can easily be seen in Proposition 2 that PCr is in fact the set of all parts of G
and DCr is its decomposition graph.

Proposition 2 For any Cr ∈ C PCr is the set P of parts and DCr is the
decomposition graph D of G w.r.t. C. Moreover, P and D can be computed by
an O(nk) procedure.

Proof: By the definition of the Ei, DCr = D follows from PCr = P . Due to
the particular order of the cycles Ci, the successors Cj of Ci contained in Gi−1

are exactly the direct successors of Ci. Moreover, each Cj has only one Cj-
component in Gi−1, namely that one which contains Ci and Cr. By Theorem 7,
Pi contains exactly the parts built by Ci and its direct successors Cj belonging

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 55

to the same Ci-component and also the parts built by Ci and a Ci-component
not containing any other cycle of C.

Finally, it can easily be seen that a procedure can be implemented for gener-
ating P and D which takes O(nk) time. The relation � can be determined for
some fixed Cr by computing all C-components in HC which needs O(nk) time.
The topological sorting can be done in O(k2) = O(nk) time. And in each step
i the determination of all Ci-components of Gi−1 takes O(n) time. Thus the
overall complexity is O(nk). 2

Figure 16 illustrates the stepwise construction of the parts of graph G given
in Fig. 14. The sequence of cycles is C3, C4, C2, C5, C6, C7, C8, C1 which is the
reverse order of some topological sorting of the relation � shown in Fig. 15.

i = 5

C3

C4

C7

C2

C8

C5

i = 6

i = 3i = 1 i = 2

i = 7

i = 4

i = 8

C6

C1

Figure 16: Construction of parts of the graph given in Fig. 14 using the ordering
C3, C4, C2, C5, C6, C7, C8, C1. For each step i Gi is colored black and the parts
in Pi are the grey-colored subgraphs in connection with the cycle of step i.

5.1.1 Representing Embeddings by Labelled Decomposition Graphs

Decomposition graphs are particularly interesting for the planarity problem with
topological constraints. We show in this section that labelled decomposition
graphs can represent, in a sense, embeddings of 2-connected planar graphs up to
topological constraints, i.e. all embeddings corresponding to the same labelled
decomposition graph satisfy the same topological constraints involving cycles
from C.

Consider an embedding G̃ of G. Due to the correspondence between edges
of D and C-components of G, we can label each edge CP with the binary
information on which side of C the C-component HC corresponding to CP is

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 56

embedded in G̃. If P̃ ⊂ Int C̃ holds in G̃, we label CP with 1 and otherwise,
if P̃ ⊂ Ext C̃, we label CP with 0. Obviously, edges representing overlapping
C-components have complementary labels. Since G̃ defines a weakly linear,
strict partial order < on C by C′ < C iff C̃′ ⊂ Int C̃, there is at least one
maximal Cr ∈ C w.r.t. < contained in the exterior of any other cycle of C. As
a consequence, for any path Cr , . . . , P, C in D the edge PC is labelled with 0.
Thus G̃ induces a labelling of D according to the following definition.

Definition 6 Let D be the decomposition graph of G w.r.t. C. A labelling λ of
D is a function λ : E(D) −→ {0, 1} satisfying the following conditions:

(1) λ(ε(HC)) + λ(ε(H ′
C)) = 1 for overlapping C-components HC and H ′

C .

(2) There is a Cr ∈ C such that for all paths Cr, . . . P, C in D: λ(PC) = 0.

A labelling of D together with D is called a labelled decomposition graph.

Suppose G̃ and G̃′ are embeddings of G inducing the same labelling of D.
Then any C-component HC is inside C in G̃ iff it is inside C in G̃′, i.e. G̃ and
G̃′ satisfy the same topological constraints involving cycles from C. However, G̃
and G̃′ need not necessarily be topologically equivalent, they can differ in the
particular embeddings of the C-components. Conversely, if two embeddings of
G induce different labellings of D, they must be distinguished by at least one
topological constraint. For this reason labelled decomposition graphs represent
embeddings up to topological constraints. For the example graph G of Fig. 14
an embedding of G together with its labelled decomposition graph is shown in
Fig. 17.

C8

C4
C2

C5

C7

C1

C6

C3

1

0 0 0 0

1 1 1

0

1 0

0

0

(a)

0

C2 C8

P1

P5 P6 P7

P2 P3 P4

C5 C6 C7

C1

C3

(b)

C4

Figure 17: (a) An embedding of the graph G given in Fig. 14. (b) The decom-
position graph D of G with a labelling induced by this embedding.

Given a labelling λ of D, one can easily construct an embedding of G which
induces exactly λ: one has only to embed Cr and then attach in a depth-first

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 57

manner all parts P to the already embedded cycle C for edges CP ∈ E(D)
according to the label of CP . Algorithm embedding shown in Fig. 18 describes
this embedding procedure more precisely. Depending on the labelling λ, it
generates a set F of pairs 〈F, SF 〉 where F is a cycle in G and SF ⊆ C; the cycles
F are called cycles of F and SF are called their labels. If we choose some 〈F0, ∅〉
from F , which is guaranteed to exist, F0 is the outer facial cycle and the cycles
of F are the facial cycles of some embedding of G that induces λ. In this case
the inner facial cycles of any C ∈ C are exactly those cycles F of F with C ∈ SF .
The procedure must be called with C = Cr and F = {〈Cr, ∅〉, 〈Cr, {Cr}〉}; the
cycles of F represent the two facial cycles of the embedded Cr.

Algorithm embedding
Input : labelling λ, C ∈ C, F ⊂ C(G) × 2C

Output : F

For each edge CP ∈ E(D) do:
1. Let H be the (unique) C-component in P . Find some pair 〈F, SF 〉 ∈ F

such that F contains all vertices of attachment of H and
C ∈ SF iff λ(CP) = 1.

2. Determine the set F ′ of facial cycles of some embedding of H ∪ F .
3. Remove 〈F, SF 〉 from F and add 〈F ′, SF 〉 to F for all F ′ ∈ F ′ \ {F}.
4. For any edge PC′ ∈ E(D) set SC′ := SC′ ∪ {C′} for cycle C′ of F

and compute embedding(λ, C′, F).
Return F .

Figure 18: Algorithm for generating an embedding corresponding to a labelled
decomposition graph

To illustrate the construction of an embedding, Fig. 19 shows the sequence
of partial embeddings of the example graph according to the labelling given in
Fig. 17 (b). This sequence corresponds to the sequence of the sets F of facial
cycles generated by some depth-first search of D. For each visited edge CP
H is the grey-colored subgraph and F is the face cycle it is attached to. The
correctness of this algorithm is proved in Proposition 3.

Proposition 3 Let λ be a labelling of the decomposition graph of G w.r.t.
C. Then algorithm embedding generates a set F of pairs 〈F, SF 〉 with cycle
F ⊆ G and SF ⊆ C. F satisfies the following conditions (where F(C) denotes
{F | 〈F, SF 〉 ∈ F with C ∈ SF }):

(i) {F | 〈F, SF 〉 ∈ F} is the set of facial cycles of some embedding of G.

(ii) There is some 〈F0, ∅〉 ∈ F .

(iii) C =
⊕

F∈F(C) F for all C ∈ C.

(iv) P ⊂
⋃

F∈F(C) F iff λ(CP) = 1 for CP ∈ E(D).

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 58

C1 C1P1 C2P5 C1P2

C1P3 C6P6 C1P4 C7P7

Figure 19: Illustration of algorithm embedding for the labelled decomposition
graph D of Fig. 17 (b). For each edge CP H is the grey-colored subgraph and
F the face cycle it is attached to.

Moreover, the algorithm takes O(n2) time.

Proof: Define F0 = {〈Cr, ∅〉, 〈Cr, {Cr}〉} and for i = 1, . . . , |P| Fi to be the sets
F generated by the depth-first search of the algorithm. Note that the number
of visited edges CP ∈ E(D) is identical with the number of parts of G. Let
Fi(C) denote {F | 〈F, SF 〉 ∈ Fi with C ∈ SF }. We show by induction that the
following propositions hold for all i ≥ 0; then, since G is the union of all of its
parts, F|P| satisfies the claim.

(i) {F | 〈F, SF 〉 ∈ Fi} is the set of facial cycles of some embedding of⋃
F ′∈Fi

F ′.

(ii) There is some 〈F0, ∅〉 ∈ Fi.

(iii) C =
⊕

F ′∈Fi(C) F ′ if Fi(C) 6= ∅.

(iv) If for CP ∈ E(D) P ⊂
⋃

F ′∈Fi
F ′, then P ⊂

⋃
F ′∈Fi(C) F ′ iff λ(CP) = 1.

Clearly, F0 satisfies all these conditions. We assume them to hold for all j ≤
i for some i. Let CP be the currently visited edge of D and H be the C-
component of P . Due to condition (1) of Definition 6 and (i), there is some pair
〈F, SF 〉 ∈ Fi such that F contains the vertices of attachment of H and C ∈ SF

iff λ(CP) = 1. Let F ′ be the generated set of facial cycles of some embedding
of H ∪ F . By Corollary 3 (ii), F and all C′ ∈ C with PC′ ∈ E(D) are facial
cycles of this embedding and, thus, are contained in F ′. Moreover, we have
F =

⊕
F ′∈F ′\{F} F ′.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 59

By the definition of Fi+1 := Fi \ {〈F, SF 〉} ∪ {〈F ′, SF 〉 | F ′ ∈ F ′, F ′ 6= F}
and SC′ := SC′ ∪ {C′}, the conditions (i)–(iv) can be easily verified. Condition
(i) holds since F ′ \ {F} is a refinement of F and (ii) holds because of cycle
intersection order 1 of C. Condition (iii) is shown for C′ with PC′ 6∈ E(D) by

⊕
F ′∈Fi+1(C′)

F ′ =
⊕

F ′∈Fi(C′)\{F}
F ′ ⊕

⊕
F ′∈F ′\{F}

F ′ =
⊕

F ′∈Fi(C′)

F ′ = C′

and for C′ with PC′ ∈ E(D) by Fi+1(C′) = {C′}. The last condition (iv)
follows immediately from the choice of F depending on λ(CP) and condition
(2) of Definition 6.

Finally, we note that this algorithm can be implemented as an O(n2) proce-
dure since G has less than n parts and steps 1 to 4 can be done in O(n) time.

2

5.2 A Polynomial Time T1-Embedding Algorithm

Provided with the analysis of the previous sections, we are now able to present
a polynomial time algorithm for generating T1-embeddings of planar graphs.
This algorithm is a combination of the reduction algorithms given in Sect. 4 and
the procedure for generating T LX -embeddings of 2-connected graphs which
we develop next. So let G denote a 2-connected planar graph and T , L and X
denote a set of topological constraints, overlap constraints and extended overlap
constraints for G, respectively, such that the set C of all cycles involved in these
constraints is of cycle intersection order 1. Moreover, we denote n = |G|, t = |T |,
l = |L|, x = |X | and k = |C|.

The main idea for generating a T LX -embedding of G is finding an appropri-
ate labelling of the decomposition graph D of G w.r.t. C depending on T , L and
X that can be transformed by algorithm embedding into a T LX -embedding.
For this purpose, we determine edges of D whose labels can be deduced from
the constraints and, thus, necessarily belong to this labelling. To find labels
according to condition (1) of Definition 6, we make use of overlap graphs GC of
cycles C ∈ C. Consider a component Z of GC with at least two C-components.
Since GC is bipartite, Z has a unique partition Z = Z1∪̇Z2 such that both Z1

and Z2 contain no overlapping C-components. Then, a label for CP ∈ E(D)
with CP = ε(HC) for some C-component HC ∈ Z clearly determines the labels
of edges representing all the other C-components in Z. We denote with [CP]
the set of edges representing all the C-components belonging to the same part
of the partition as CP and denote with [CP]− the set of edges representing
all the C-components belonging to the other part. Thus, two edges of [CP]
and [CP]−, respectively, must have complementary labels. We call [CP] the
equivalence class of CP and [CP]− its complement.

With the following definitions we determine equivalence classes of edges of
D whose labels can be easily deduced from the constraints. E1(T) and E0(T)
are the sets of equivalence classes whose edges must have label 1 and 0, re-
spectively, due to the topological constraints in T . The sets E1(L), E0(L) and

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 60

E1(X), E0(X) are to be interpreted analogously. Note, however, that these sets
are not meant to cover all labels that can be deduced.

E′
1(T) = {[ε(HC)] | HC ∩ InC 6= ∅ for HC ∈ HC , 〈C, InC , OutC〉 ∈ T }

E′
0(T) = {[ε(HC)] | HC ∩ OutC 6= ∅ for HC ∈ HC , 〈C, InC , OutC〉 ∈ T }

E1(T) = E′
1(T) ∪ {[CP]− | [CP] ∈ E′

0(T)}
E0(T) = E′

0(T) ∪ {[CP]− | [CP] ∈ E′
1(T)}

E0(L) = {[ε(HC,C′)] | C ∈ C-Outi, C′ ∈ C-Ini for 〈C-Ini, C-Outi〉 ∈ L}
E1(L) = {[CP]− | [CP] ∈ E0(L)}

E′
0(X) = {[ε(HC,C′)] | C ∈ C-Outi, C′ ∈ C-Ini, 〈C-Ini, C-Outi, v〉 ∈ X}

E′′
0 (X) = {[ε(HC)] | v 6∈ C ∈ C-Outi, v ∈ HC ∈ HC , 〈C-Ini, C-Outi, v〉 ∈ X}

E′
1(X) = {[ε(HC)] | v 6∈ C ∈ C-Ini, v ∈ HC ∈ HC , 〈C-Ini, C-Outi, v〉 ∈ X}

E1(X) = E′
1(X) ∪ {[CP]− | [CP] ∈ E′

0(X) ∪ E′′
0 (X)}

E0(X) = E′
0(X) ∪ E′′

0 (X) ∪ {[CP]− | [CP] ∈ E′
1(X)}

As a result, we define E1 = E1(T) ∪ E1(L) ∪ E1(X) and E0 = E0(T) ∪
E0(L) ∪ E0(X). Next we consider overlap constraints and extended overlap
constraints in more detail. By their semantics and cycle intersection order 1 of
C, the cycles of C-Ini belonging to some Li ∈ L or Xi ∈ X are embedded in
any T LX -embedding of G in a linear order w.r.t. the induced relation < on C.
Thus, they must necessarily belong to a path of D if G is T LX -planar. If this
holds for Li = 〈C-Ini, C-Outi〉, we denote w(Li) the smallest path containing all
cycles of C-Ini and say that Li induces w(Li); the constraints of X are treated
analogously. Suppose such a path is of the form C1, P1, . . . Pj , Cj , P

′
j , . . . , Ps, Cs

with C1, Cj and Cs belonging to a set C-Ini. Then in a T LX -embedding either
C1 < . . . < Cj < . . . < Cs or Cs < . . . < Cj < . . . < C1 holds. We define the set
E∗ of equivalence classes whose edges potentially get label 1, due to these two
cases, during the search for an appropriate labelling:

E∗ = {[CP] | CP ∈ E(w(Li)), C ∈ C-Ini if Li ∈ L induces w(Li)} ∪
{[CP] | CP ∈ E(w(Xi)), C ∈ C-Ini if Xi ∈ X induces w(Xi)}.

To construct an appropriate labelling, we have to find in particular a Cr ∈ C
satisfying condition (2) of Definition 6. For each edge CP ∈ E(D) let RCP be
the set {C′ ∈ C | C′ 6⊂ ε−1(CP)}, i.e. the set of cycles not contained in the
C-component represented by CP . We can restrict the set of candidates for Cr

with the help of RCP : suppose CP has label 1, then no cycle in C \ RCP can
satisfy condition (2). Moreover, consider a path w(Li) whose first and last edges
are CP and C′P ′, respectively. Then we can restrict the set of candidates to
RLi := RCP ∪ RC′P ′ ; RXi is defined analogously. From what is considered so
far, we have the following set of candidates:

R =
⋂

[CP]∈E1

RCP ∩
⋂

Li∈L
RLi ∩

⋂
Xi∈L

RXi .

In Definition 7 we establish the criterion of being an appropriate labelling
that respects the constraints T , L and X , thus we call it T LX -labelling.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 61

Definition 7 A T LX -labelling λ of D is a labelling satisfying the following
additional conditions:

(1) λ(CP) = 1 if [CP] ∈ E1.

(2) λ(CP) = 0 if [CP] ∈ E0.

(3) Cr ∈ R; each Li ∈ L and Xi ∈ X induces in particular a path in D.

(4) For all paths Cr, . . . , C, P with [CP] ∈ E∗: λ(CP) = 1.

Clearly, any T LX -embedding of G induces a T LX -labelling on D. It can
also easily be verified by Proposition 3 that the converse holds as well: given
a T LX -labelling of D, algorithm embedding generates some 〈F , SF 〉 such that
each F0 with 〈F0, ∅〉 is the outer facial cycle and the cycles of F are the facial
cycles of some T LX -embedding of G.

The algorithm find labelling in Fig. 20 generates a T LX -labelling of D iff
G is T LX -planar. Its main part is a depth-first search of D beginning at a
candidate Cr ∈ R that labels the visited edges. We consider D a directed tree
with root Cr such that each edge is uniquely denoted by CP or PC depending
on whether Cr, . . . , C, P or Cr, . . . , P, C is a path in D. When attaching labels
to edges, labelling an edge with 0 or 1 fails if this edge already has the comple-
mentary label 1 or 0, respectively. Proposition 4 establishes the correctness of
the algorithm.

Algorithm find labelling
Input : decomposition graph D of G, constraints T , L, X
Output : T LX -labelling λ with the particular Cr ∈ C

1. Determine E1 and E0. If E1 ∩ E0 6= ∅, stop.
Check if each Li ∈ L and Xi ∈ X induces a path in D; if not so, stop.
Determine E∗ and R. If R = ∅, stop.

2. Label any edge CP of D with 1 if [CP] ∈ E1, and with 0 if [CP] ∈ E0.
Then label any edge CP not labelled so far with ∗ if [CP] ∈ E∗.

3. Find a Cr ∈ R such that the following operations executed during a
depth-first search of D beginning at Cr are successful:

3.1 If edge PC is visited, label all edges in [PC] with 0 and all edges
in [PC]− with 1.

3.2 If edge CP with label ∗ is visited, label all edges in [CP] with 1 and
all edges in [CP]− with 0.

3.3 If edge CP without any label is visited, label all edges in [CP]
with 0 and all edges in [CP]− with 1, or vice versa.

4. If this succeeds, return Cr and labelling λ defined by the labels of D.

Figure 20: Algorithm for generating a T LX -labelling of the decomposition
graph

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 62

Proposition 4 Given constraints T , L and X for G, algorithm find labelling
generates a T LX -labelling iff G is T LX -planar. Moreover, the algorithm takes
O

(
n2k + kl + kx

)
time.

Proof: (⇒) It can easily be seen that the set of labels generated by the algo-
rithm defines in fact a T LX -labelling λ of D. Since for any edge CP ∈ E(D)
the edges in [CP] and in [CP]− have complementary labels and, moreover, each
edge has a unique label 0 or 1, condition (1) of Definition 6 is satisfied. Condi-
tion (2) is guaranteed by step 3.1, thus λ is a labelling. Conditions (1) and (2)
of Definition 7 are ensured by step 2 and (3) is checked in step 1 and 3. The
last condition (4) holds because of step 3.2. Thus λ is a T LX -labelling and G
is T LX -planar.

(⇐) Suppose G has a T LX -embedding. Then there is a T LX -labelling λ′

induced by this embedding. In particular, we have that E1 ∩ E0 = ∅, each
Li ∈ L and Xi ∈ X induces a path in D and R 6= ∅. Since for any edge CP
of D labelled in step 2 with 0 or 1 it necessarily holds that λ′(CP) = 0 or
λ′(CP) = 1, respectively, and the cycle Cr is searched exhaustively in R, it is
guaranteed that the algorithm finds a complete set of labels for D which defines
a T LX -labelling as shown above.

Finally, we estimate the time complexity of this algorithm. To determine the
sets in step 1, it is necessary to find the overlap graphs of cycles of C which can
be done in O(kn2) time. Then, determining the sets E1(T), E0(T) and E1(L),
E0(L) and E1(X), E0(X) needs O(nt), O(kl) and O(kx) time, respectively.
Finding the paths induced by the constraints in L and X and determining E∗
can be done in O(nl + nx) time. Moreover, the set R can be computed in
O(nk + lk +xk) time. Next, labelling edges in step 2 and during the depth-first
search of D needs O(n) time, thus step 3 takes O(kn) time. The resulting time
complexity is therefore O(n2k + kl + kx). 2

Consider again the example graph of Fig. 14 and suppose we have a topo-
logical constraint meaning that cycle C6 should be embedded inside cycle C1

and an overlap constraint meaning that C1 and C3 should include a common
face. The first constraint determines the set E1(T) = {[C1P3]} and, thus,
E0(T) = {[C1P2] = [C1P4]}. The other sets for L and X are empty. Because
of the second constraint we get E∗ = {[C1P1], [C2P1], [C2P5], [C3P5]} indicating
that C1, C2 and C3 are to be embedded in some linear inclusion order. The
set of candidates is R = {C1, C3, C5, C7, C8}. Algorithm find labelling encodes
these sets by the partial labelling shown in Fig. 21 (a). In figure (b) we see some
complete labelling that can result from this partial labelling when C1 is chosen
for Cr; it corresponds to the embedding shown in Fig. 17.

The complete T LX -embedding algorithm is shown in Fig. 22. Its correctness
and complexity can be easily obtained from what is developed so far.

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 63

(b)

1

0 0 0 0

1 1 1

0

1 0

0

C2 C8

P1

P5 P6 P7

P2 P3 P4

C5 C6 C7

C1

C3

0

(a)

0C6

C5

C7

C8

C2C3

C4

C1

P3

P6

P7

P1

∗

∗

P5

∗
∗

P4

010P2

C4

Figure 21: Illustration of algorithm find labelling: (a) A partial labelling encod-
ing a topological constraint and an overlap constraint. (b) A complete labelling
produced by the algorithm.

Algorithm embedding with constraints
Input : G, constraints T , L, X
Output : T LX -embedding of G

1. Determine the decomposition graph D of G.
2. Compute find labelling(D, T ,L,X) resulting in a labelling λ

and cycle Cr if G is T LX -planar; otherwise stop.
3. Compute embedding(λ, Cr{〈Cr, ∅〉, 〈Cr, {Cr}〉}) resulting in 〈F , SF 〉.
4. Embed G such that the cycles of F are the facial cycles and

F0 is the outer facial cycle for some 〈F0, ∅〉 ∈ F .

Figure 22: Algorithm for generating a T LX -embedding

Proposition 5 Given T , L, X for G, algorithm embedding with constraints
generates a T LX -embedding iff G is T LX -planar. Moreover, it takes O(n2k +
kl + kx) time.

The combination of algorithm embedding with constraints with algorithm
reduce to blocks and algorithm reduce to components leads to the complete T1-
embedding procedure for planar graphs. Using Corollary 1 and 2 of Theorem 5,
we get the complexity of this procedure depending on whether G is disconnected,
connected or 2-connected.

Theorem 8 Suppose G is a planar graph with n = |G| and T is a set of topo-
logical constraints for G of cycle intersection order 1 with t = |T |. Then the
following propositions hold:

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 64

(i) If G is disconnected, a T -embedding can be found in O(n6) time.

(ii) If G is connected, a T -embedding can be found in O(n5) time.

(iii) If G is 2-connected, a T -embedding can be found in O(n2t) time.

6 Conclusions

This paper contributes to the relatively new research direction on planar graph
embedding with user-defined constraints. We introduced a special sort of con-
straints, called topological constraints, and studied the problem of finding an
embedding satisfying a given set of topological constraints. As this problem
turned out to be NP-complete, we developed a polynomial time procedure for
reducing the problem for arbitrary planar graphs to a problem for biconnected
graphs which allows to focus on biconnected graphs when searching for heuris-
tics or tractable subproblems. This reduction, however, results in another two
types of constraints one has to cope with in developing embedding algorithms.
We then used this reduction for studying a particular subproblem defined by a
parameter called cycle intersection order. With respect to this parameter, we
proved the exact boundary between P and NP by showing that this subproblem
remains NP-complete if the cycle intersection order exceeds 1 and by presenting
a polynomial time embedding algorithm for cycle intersection order 0 or 1.

Acknowledgments

The author wish to thank the referees for several useful suggestions.

References

[1] J.A. Bondy, U.S.R. Murty. Graph Theory with Applications, MacMillan,
1976

[2] K. Booth, G. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci., 13: 335–379, 1976

[3] N. Chiba, T. Nishizeki, S. Abe, T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees. J. Comput. Syst. Sci., 30: 54–76, 1985

[4] G. Demoucron, Y. Malgrange, R. Pertuiset. Graphes planaires: recon-
naissance et construction de représentations planaires topologiques. Revue
Française de Recherche Opérationelle, 8: 33–47, 1964

[5] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis. Algorithms for drawing
graphs: An annotated bibliography. Comp. Geom., 4(5): 235–282, 1994

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 65

[6] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis. Graph Drawing: Algo-
rithms for the Visualization of Graphs, Prentice Hall, 1999

[7] R. Diestel. Graph Theory, Springer, 1997

[8] C. Dornheim. Graph embedding with topological cycle-constraints. In J.
Kratochvil (ed.), Graph Drawing, Proc. 7th Int. Symp. GD’99, LNCS 1731,
155–164, 1999

[9] P. Eades, Q.W. Feng. Multilevel visualization of clustered graphs. In S.
North (ed.), Graph Drawing, Proc. 4th Int. Symp. GD’96, LNCS 1190,
101–112, 1997

[10] P. Eades, Q.W. Feng, H. Nagamochi. Drawing clustered graphs on an or-
thogonal grid. J. Graph Algorithms Appl., 3(4): 3–29, 1999

[11] P. Eades, P. Mutzel. Graph drawing algorithms. In M.J. Atallah (ed.),
Algorithms and Theory of Computation Handbook, CRC Press, 1999

[12] Q.W. Feng, R.F. Cohen, P. Eades. Planarity for clustered graphs. In P.G.
Spirakis (ed.), Algorithms – ESA’95, Proc. 3rd European Symp., LNCS
979, 213–226, 1995

[13] M.R. Garey, D.S. Johnson. Computers and Intractability – A Guide to the
Theory of NP-Completeness, Freeman, 1979

[14] D. Harel. On visual formalisms. Communications of the ACM, 31(5): 514–
530, 1988

[15] W. He, K. Marriott. Constrained graph layout. In S. North (ed.), Graph
Drawing, Proc. 4th Int. Symp. GD’96, LNCS 1190, 217–232, 1997

[16] J. Hopcroft, R.E. Tarjan. Efficient planarity testing. J. Assoc. Comput.
Mach., 21:549–568, 1974

[17] S. MacLane. A combinatorial condition for planar graphs. Fundam. Math.,
28: 22–32, 1937

[18] K. Mehlhorn, P. Mutzel. On the embedding phase of the Hopcroft and
Tarjan planarity testing algorithm. Algorithmica, 16: 233–242, 1996

[19] P. Mutzel, R. Weiskircher. Optimizing over all combinatorial embeddings
of a planar graph. In G. Cornuejols, R.E. Burkard, G.J. Woeginger (eds.),
Integer Programming and Combinatorial Optimization, Proc. 7th Int. IPCO
Conf., LNCS 1610, 361–376, 1999

[20] T. Nishizeki, N. Chiba. Planar Graphs: Theory and Algorithms. Annals of
Discrete Mathematics (32), North-Holland Mathematics Studies, 1988

[21] K. Sugiyama, K. Misue. Visualization of structured information: Auto-
matic drawing of compound digraphs. IEEE Trans. Syst., Man and Cyber-
netics, 21(4): 876–892, 1991

C. Dornheim, Planar Graphs with Constraints , JGAA, 6(1) 27–66 (2002) 66

[22] R. Tamassia. Constraints in graph drawing algorithms. Constraints, 3(1):
87–120, 1998

[23] R. Tamassia. Advances in the theory and practice of graph drawing. Theor.
Comp. Sci., 217(2): 235–254, 1999

[24] C. Thomassen. Planarity and duality of finite and infinite graphs. J. Comb.
Theory, Ser. B, 29: 244–271, 1980

[25] W.T. Tutte. Matroids and graphs. Trans. Am. Math. Soc., 90: 527–552,
1959

[26] W.T. Tutte. How to draw a graph. Proc. Lond. Math. Soc., III. Ser. 13:
743–768, 1963

[27] C. Williams, J. Rasure, C. Hansen. The state of the art of visual languages
for visualization. Visualization ’92, Proc., IEEE Computer Society Press,
202–209, 1992

