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Abstract

Recently, a new way of avoiding crossings in straight-line drawings of non-
planar graphs has been introduced. The idea of partial edge drawings (PED)
is to drop the middle part of edges and rely on the remaining edge parts called
stubs. We focus on symmetric partial edge drawings (SPEDs) that require the
two stubs of an edge to be of equal length. In this way, the stub at the other
endpoint of an edge assures the viewer of the edge’s existence. We also consider
an additional homogeneity constraint that forces the stub lengths to be a given
fraction δ of the edge lengths (δ-SHPED). Given length and direction of a stub,
this model helps to infer the position of the opposite stub.

We show that, for a fixed stub–edge length ratio δ, not all graphs have a
δ-SHPED. Specifically, we show that K165 does not have a 1/4-SHPED, while

bandwidth-k graphs always have a Θ(1/
√
k)-SHPED. We also give bounds for

complete bipartite graphs. Further, we consider the problem MaxSPED where
the task is to compute the SPED of maximum total stub length that a given
straight-line drawing contains. We present an efficient solution for 2-planar
drawings and a 2-approximation algorithm for the dual problem of minimizing
the total amount of erased ink.
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1 Introduction

In the layout of graphs, diagrams, or maps, one of the central problems is to
avoid visual clutter, such as the interference of crossing edges in graph drawings
or overlapping labels on maps. Clutter avoidance is the objective of a large
body of work in graph drawing, information visualization, and cartography. In
this work, we treat a specific aspect of clutter avoidance; we focus on completely
removing edge crossings in straight-line drawings of non-planar graphs. Clearly,
this is not possible in any of the traditional graph drawing styles that insist on
connecting the geometric representations of two adjacent vertices (e.g., small
disks) by a closed Jordan curve (e.g., segments of straight lines). In such draw-
ings of non-planar graphs, some pairs of edge representations must cross (or
overlap), and this becomes even more problematic for dense graphs.

Previous Work. Becker et al. [2] have taken a rather radical approach to
escape from this dilemma. They wanted to visualize network overload between
the 110 switches of the AT&T long distance telephone network in the U.S. on
October 17, 1989, when the San Francisco Bay area was hit by an earthquake.
They used straight-line segments to connect pairs of switches struck by overload;
the width of the segments indicated the severeness of the overload. Due to the
sheer number of edges of a certain width, the underlying map of the U.S. was
barely visible. They solved this problem by drawing only a certain fraction
(roughly 10%) of each edge; the part(s) incident to the switch(es) experiencing
the overload. We call these parts the stubs of an edge. The resulting picture is
much clearer; it shows a distinct east–west trend among the edges with overload.

Peng et al. [21] used splines to bundle edges, e.g., in the dense graph of
all U.S. airline connections. In order to reduce clutter, they increase the trans-
parency of edges towards the middle. They compared their method to other edge
bundling techniques [18, 15], concluding that their method, by emphasizing the
stubs, is better in revealing directional trends.

Burch et al. [11] investigated the usefulness of partial edge drawings of di-
rected graphs. They used a single stub at the source vertex of each edge. They
did a user study (with 42 subjects) which showed that, for one of the three tasks
they investigated (identifying the vertex with highest out-degree), shorter stubs
resulted in shorter completion times and smaller error rates. For the two other
tasks (deciding whether a highlighted pair of vertices is connected by a path of
length one/two) the error rate went up with decreasing stub length; there was
just a small dip in the completion time for a stub–edge length ratio of 75%.
Recently, Burch et al. [10] presented an interactive graph layout system that
combines partial edge drawings with traditional straight-line drawings. Their
idea is that partial edges are necessary only in dense and cluttered parts of a
graph layout, which are specified by the user.

A similar, but less radical approach, is the use of edge casing. Eppstein
et al. [13] have investigated how to optimize several criteria that encode the
above–below behavior of edges in given graph drawings. They introduce three
models (i.e., legal above–below patterns) and several objective functions such as
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(a) with crossings (b) as a maxSPED (c) as a maxSHPED

Figure 1: Various drawings of a 13-vertex graph, all using the same vertex
positions.

minimizing the total number of above–below switches or the maximum number
of switches per edge. For some combinations of models and objectives, they give
efficient algorithms, for one they show NP-hardness; others are still open. Edge
casings were re-invented by Rusu et al. [23] with reference to Gestalt principles.

Dickerson et al. [12] proposed confluent drawings to avoid edge crossings. In
their approach, edges are drawn as locally monotone curves; edges may overlap
but not cross.

We build on and extend the work of Bruckdorfer and Kaufmann [6] who
formalized the problem of partial edge drawings (PEDs) and suggested several
variants. A PED is a straight-line drawing of a graph in which each edge is
divided into three segments: a middle part that is not drawn and the two seg-
ments incident to the vertices, called stubs, that remain in the drawing. In this
article, we require all PEDs to be crossing-free, i.e., that no two stubs intersect.
We consider stubs relatively open sets, i.e., to not contain their endpoints. In
the symmetric case (SPED), both stubs of an edge must be the same length; in
the homogeneous case (HPED), the ratio of stub length over edge length is the
same for all edges. A δ-SHPED is a symmetric homogeneous PED with stub-
edge length ratio δ. We note that 0 < δ < 1/2 since a stub can have at most
half the edge length. We remark that a pair of stubs of equal length pointing
towards each other at the opposite endpoints of an edge is, for the viewer of a
SPED, a valuable witness that the connection actually exists. If the drawing is
additionally homogeneous, finding the other endpoint of a stub is made easier
since its approximate distance can be estimated from the stub length.

Bruckdorfer and Kaufmann [6] showed that Kn (and thus, any n-vertex
graph) admits a 1/

√
4n/π-SHPED. They also proved that the j-th power of

any subgraph of a triangular tiling is a 1/(2j)-SHPED. They introduced the
optimization problem MaxSPED where the aim is to maximize the total stub
length (or ink) in order to turn a given geometric graph into a SPED. They pre-
sented an integer linear program for MaxSPED and conjectured that the prob-
lem is NP-hard. Indeed, there is a simple reduction from Planar3SAT [19].

On the practical side, there is a force-directed algorithm [7] that aims to
compute drawings that are 1/4-SHPEDs after removing few edges (whose stubs
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Graph Lower bound Upper bd. Reference

Kn (for δ = 1
4
) n ≥ 16 n ≤ 164 [6], Thm. 3

Kn n ≥
⌊

1
4πδ2

⌋
n ≤ 4

δ3 ln 1
δ [6, 16]

Kn,n n ≥
⌊
1
δ

⌋
·
⌊⌊

log 1/2
log(1−δ)

⌋⌋
∈ Θ( 1

δ2 ) – Thm. 4

K2k,n k ≥
⌊

log δ
log(1−δ)

⌋
∈ Θ( 1

δ ln 1
δ ) – Thm. 5

bandwidth k k ≥
⌊

1
8δ2

⌋
– Thm. 6

Table 1: Summary of known lower and upper bounds on the size of the largest
complete, bipartite complete, and bandwith-k graphs that are realizable as δ-
SHPED, for a fixed 0 < δ < 1/2. Dashes mean that no bound is known, and
bbxcc denotes the largest integer that is strictly less than x.

cross) and preliminary user studies [4, 8] that investigate the usefulness of PEDs.
In particular, in [4] it is shown that the SHPED model is more effective than
the SPED model, even if the absence of homogeneity allows for more ink and
fewer crossings on the computed drawings. The 1/4-SHPED model has also
been applied to orthogonal graph drawing [9].

We refer to Fig. 1 for some examples. Figure 1b depicts a maxSPED of the
straight-line drawing in Fig. 1a, i.e., a SPED that is a solution to MaxSPED.
We have slightly shrunken the stubs in the maxSPED so that they do not touch.
For comparison, Fig. 1c depicts a SHPED with maximum ratio δ ≈ 0.16.

Contribution. The contribution of this article is as follows, see also Table 1
where some of our results are reported.

• We show that not all graphs admit a 1/4-SHPED; see Sect. 2. Indeed, Kn

does not have a 1/4-SHPED for any n > 164. If we restrict vertices to be
mapped to points in one-sided convex position, the bound drops to n ≥ 16.
On the other hand, the complete graph K16 admits a 1/4-SHPED [6]. Our
proof technique carries over to other values of the stub–edge length ratio δ,
i.e., for every 0 < δ < 1/2 there is an integer Nδ such that Kn has no
δ-SHPED for any n ≥ Nδ.

• Recall that Bruckdorfer and Kaufmann [6] showed that Kn (and thus,
any n-vertex graph) has a 1/

√
4n/π-SHPED. We improve their result

for specific graph classes, namely for complete bipartite graphs and for
bandwidth-k graphs; see Sect. 3. The latter we show to have Θ(1/

√
k)-

SHPEDs independently of their sizes. We note that Granacher showed in
her diploma thesis [16] that for n > 96 the complete bipartite graph Kn,n

has no axis-symmetric 1/4-SHPED drawing such that all edges cross the
axis of symmetry. She also proved that any bandwidth-k graph admits a
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1/(4.7
√
k)-SHPED – even if k is not known. For given k, our drawings

have a slightly better stub–edge length ratio (of at least 1/(2.83
√
k)).

• Then we turn to the optimization problem MaxSPED; see Sect. 4. For
the class of 2-planar graphs (i.e., the graphs that admit a drawing with
at most two crossings per edge, see e.g. [20]), we can solve the problem
efficiently; given a 2-planar drawing of a 2-planar graph with n vertices,
our algorithm runs in O(n log n) time. For general graphs, we have a 2-
approximation algorithm with respect to the dual problem MinSPED:
minimize the amount of ink that has to be erased in order to turn a given
drawing into a SPED.

Notation. In this article, we always identify the vertices of the given graph
with the points in the plane to which we map the vertices. The graphs we
consider are undirected; we use uv as shorthand for the edge connecting u
and v. If we refer to the stub uv then we mean the piece of the edge uv incident
to u; the stub vu is incident to v.

2 Upper Bounds for Complete Graphs

In this section, we show that not every graph can be drawn as a 1/4-SHPED.
Note that 1/4 is an interesting value since it balances the drawn and the erased
parts of each edge. Yet, our proof techniques generalize to δ-SHPEDs for ar-
bitrary but fixed 0 < δ < 1/2. We start with a simple proof for the scenario
where we insist that vertices are mapped to specific point sets, namely point
sets in convex or one-sided convex position. We say that a convex point set is
one-sided if its convex hull contains an edge of a rectangle enclosing the point
set.

Theorem 1 There is no set of 16 points in one-sided convex position on which
the graph K16 can be embedded as 1/4-SHPED.

Proof: We assume, to the contrary of the above statement, that there is a set
P of 16 points in one-sided convex position that admits an embedding of K16 as
a 1/4-SHPED. Consider the edge e = uv that witnesses the one-sidedness of P .
We can choose our coordinate system such that u = (0, 0), v = (1, 0) and all
other points lie above e. We split the area above e into seven interior-disjoint
vertical strips of different widths, see Fig. 2. The two outer strips have width
1/4, their neighboring strips have width 1/12, and the three inner strips have
width 1/9. The width of each inner strip S is chosen in such a way that for
any point p in S the stub pu intersects the left boundary of S and the stub pv
intersects the right boundary of S. This holds because the distance of the left
(right) boundary of S to u (v) is at least three times the width of S.

We now show that there are is at most one point of P in any inner strip
S. Suppose, to the contrary, that there is a strip S that contains two distinct
points a, b ∈ P . Let a be the one closer to u. Since S is an inner strip, the
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u v

a
b

w

e

1/4
|uw|
4

3|uw|
16

|uw|/8

1/12
1/91/9

Sleft

Figure 2: Sketch of the argument why no 16 points in one-sided convex position
can be used to embed K16 as a 1/4-SHPED.

stub av intersects the right boundary of S (below the stub bv), and the stub bu
intersects the left boundary of S (below the stub au). Point a lies above stub
bu and point b lies above stub av. (Otherwise the points u, a, b, v would not be
in convex position.) Hence, stubs av and bu intersect.

So at least eleven points of P must lie in the union of the two outer strips.
We may assume that the left strip Sleft contains at least six points. Let w be
the rightmost point of P in Sleft. We subdivide the edge uw into five pieces
whose lengths are 1/4, 3/16, 1/8, 3/16, and 1/4 of the length of uw. Each
piece contains its endpoint that is closer to one of the endpoints of uw. The
innermost piece contains both of its endpoints. Now consider the cones with
apex v spanned by the five pieces of uw. We claim that no cone contains more
than one point.

Our main tool is the following. Let t be a point of P \ {u,w} in Sleft. Then
the stub tv intersects the right boundary of Sleft and, hence, also the edge uw
that separates P ∩ Sleft from P \ Sleft. It remains to note that, in each cone,
every point has a stub to u or w (whichever is further away from the cone) that
intersects the boundary of the cone. Hence no two points of P in Sleft can be
in the same cone without their stubs intersecting as shown in Fig. 2. �

The construction of vertical strips used in the proof of Theorem 1 can be
extended to δ-SHPEDs for any 0 < δ < 1/2 as follows.

The two outer strips have width δ. The remaining inner part of width 1−2δ
is divided into strips of increasing width towards the center such that the stubs
of any point inside one such strip to the points u and v must cross its strip
boundaries. More precisely, we start on both sides and create two strips of
width δ2/(1 − δ). In general, the two strips added in the i-th step, i ≥ 1 have
width δ2/(1− δ)i. By a similar argument as in the proof of Theorem 1 no strip
may contain more than one point, otherwise two of their stubs would intersect.
The total number of strips is bounded by 2k where k is the minimum integer
satisfying

2 ·
k∑
i=1

δ2

(1− δ)i ≥ 1− 2δ ⇔ k ≥
⌈

ln 2δ

ln(1− δ)

⌉
.
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A similar division pattern is used for defining the cones for the points in the
two outer strips. The edge uw is split into pieces of increasing length starting
on both endpoints. The length of the ith piece is δ(1 − δ)i times the length
of uw, until the midpoint of uw is reached. This division pattern again has
the property that each of the respective cones may contain at most one point,
otherwise two stubs would intersect. Likewise, the number ` of half of the cones
in one of the two outer strips is obtained from

`−1∑
i=0

δ(1− δ)i ≥ 1

2
⇔ ` ≥

⌈
ln 1

2

ln(1− δ)

⌉
.

From these bounds we obtain the following more general result.

Theorem 2 For n > 10 · 1δ ln 1
δ with 0 < δ < 1/2 the graph Kn cannot be drawn

as a δ-SHPED on a one-sided convex point set.

Proof: From the construction of vertical strips and cones described above it
follows that there can be at most one point in each strip or cone, otherwise two
stubs would cross. We have 2k vertical strips and 2` cones emanating from each
of u and v. Thus for n > 2k + 4` no δ-SHPED exists on a one-sided convex
point set.

Next we will show that f(δ) = 2
⌈

ln 2δ
ln(1−δ)

⌉
+4
⌈

ln 1
2

ln(1−δ)

⌉
= Θ( 1

δ ln 1
δ ) for δ → 0.

Let 0 < δ < 1/4. We first observe that ln δ
ln(1−δ) ≤ f(δ) ≤ 5 ln δ

ln(1−δ) . We can rewrite

ln δ
ln(1−δ) = ln(1/δ)

ln(1+δ/(1−δ)) . From the Taylor expansion ln(1 +x) =
∑∞
j=1(−1)j+1 xj

j

for 0 < x ≤ 1 we get the bounds x
2 < ln(1 + x) < x. This yields the desired

bounds 1
2 · 1δ ln 1

δ <
ln δ

ln(1−δ) < 2 · 1δ ln 1
δ and shows that for n > 10 · 1δ ln 1

δ and

0 < δ < 1/4 no δ-SHPED of Kn exists on the point set.
For 1/4 ≤ δ < 1/2 we first evaluate f(3/8) = 10. Since the bound 10· 1δ ln 1

δ is
increasing as δ decreases, we can set δ = 1/2 and obtain 10·2 ln 2 > 10 = f(3/8),
which shows the bound of the theorem for 3/8 ≤ δ < 1/2. Similarly we have
f(1/4) = 18 < 10 · 8/3 ln 8/3, which covers the case 1/4 ≤ δ < 3/8. �

Theorem 1 can be used to derive a first upper bound on general point sets
as follows.

Corollary 1 For any n >
(
28
14

)
≈ 4.01 · 107, the graph Kn does not admit a

1/4-SHPED.

Proof: By a result of Erdős and Szekeres [14], any set of more than
(
2k−4
k−2

)
points in general position contains a subset of k points that form a one-sided
convex set. Combining this with Theorem 1 and plugging in k = 16 yields the
claimed bound. �

With the same reasoning, Theorem 2 would yield a huge upper bound for
general point sets and δ < 1/4. Yet, for the rest of this section we stick to
δ = 1/4 and vastly improve upon the bound of Corollary 1. Let P be the point
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Figure 3: Partition of the enclosing rectangle At into cells. We have labeled each
cell or group of cells with the maximum number of points that it can contain.

set in the plane, and let l and r be two points on the convex hull that define the
diameter of P , which is the largest distance between any two points in P . We
rotate P such that the line lr is horizontal and l is on the left-hand side. Now
let A be the smallest enclosing axis-aligned rectangle that contains P , and let t
and b be the top- and bottommost points in A, respectively. Accordingly, let At
be the part of A above (and including) lr and let Ab = A \ At. We consider
the two rectangles separately and assume that the interior of At is not empty.
(In our proof we argue, for any interior point, using only its stubs towards the
three boundary points l, r, and t.)

We subdivide At into 26 cells such that, for any point in a cell, the three
stubs to l, r, and t intersect the boundary of that cell; see Fig. 3. For each cell,
we prove, in the remainder of this section, an upper bound on the maximum
number of points it can contain. Summing up these numbers (see again Fig. 3),
we get a bound of 83 points in total. Since we may have a symmetric subproblem
below lr, we double this number, subtract 2 because of double-counting l and r,
and finally get the following theorem.

Theorem 3 For any n > 164, the graph Kn does not admit a 1/4-SHPED.

We now prove Theorem 3 by bounding from above the number of points that
each cell in Fig. 3 contains.

Note that, by the choice of r and l, there are no other points on the left and
right boundary of At (otherwise lr would not be the diameter of P ). For ease
of presentation, we stretch At in the y-direction to make it a square. Clearly,
this operation does not change the crossing properties. We assume that the side
length of At is 1. We further assume that the coordinates of l, r, and t, are
(0, 0), (1, 0), and (tx, 1), respectively.

By symmetry, we may further assume that 0 < tx ≤ 1/2. For a point p, we
call stub pt the upper stub of p, pr its right stub, pl its left stub, and both pr
and pl its lower stubs.
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For p ∈ {l, r, t}, let Cp ⊂ At be the axis-parallel rectangle spanned by p and
the endpoints of the two stubs that go from p to the two other boundary points.
Note that Cl, Cr, and Ct (all shaded in Fig. 3) are squares of size 1/4× 1/4.

The middle strip. We first consider the middle strip S = [0, 1]× [1/4, 3/4].
The following proof also includes ideas from Granacher [16]. In order to bound
from above the number of points that S contains, we subdivide S into six
horizontal strips, S1, . . . , S6, from top to bottom. For i = 1, . . . , 6, let ai and bi
be the y-coordinates of the lower and upper boundaries of Si. We will fix ai
and bi such that, for any point p in Si, each of pl, pr, and pt intersects the
boundary of Si.

Observe that, for any point in Si, it holds that its lower stubs intersect the
line y = ai if

3bi
4
≤ ai, (1)

whereas its upper stubs intersect the line y = bi if ai+(1−ai)/4 = (3ai+1)/4 ≥
bi, that is, if

ai ≥
4bi − 1

3
. (2)

In addition to the conditions in (1) and (2), we want to determine the height
bi − ai of strip Si such that Si contains at most 5 points. Let

ci =
3

4
· bi

be the y-coordinate where the lower stubs of points on the line y = bi end. For
any point p in Si, let Ip be the part of the line y = ci delimited by the lower
stubs of p. Observe that, for p, q ∈ Si with q 6= p, it holds that Ip and Iq are
disjoint. This is due to the fact that the upper stubs of p and q both intersect
the line y = bi.

Let δp be the length of Ip. We say that p consumes δp. By the intercept
theorem, we obtain that δp/1 ≥ (ai− ci)/ai (which is what a point on the lower
boundary of Si would consume).

Assume now that there were six points q1, . . . , q6 in Si from left to right. We
may assume that there are at least three indices j ∈ {1, . . . , 5} such that the
y-coordinate of qj is less than or equal to that of qj+1 (otherwise consider the
points from right to left).

Consider now such a j. Consider the parallel g of the right stub of qj+1

through the endpoint of the left stub of qj+1. Since the right stub of qj+1 is
steeper than the right stub of qj it follows that g intersects the line y = ci to the
right of Iqj . Hence, we may assume that qj+1 consumes even the segment on the
line y = ci between the intersection point of g and y = ci and the intersection
point of the right stub with y = ci. This segment has the same length as the
distance between the end points of the two lower stubs of qj+1, i.e., 1/4. Hence,
the six points together consume at least

3 · 1

4
+ 3 · ai − ci

ai
=

3

4
+ 3 · ai − 3/4 · bi

ai
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which has to be less than one. Hence, if we choose ai such that

3

4
+ 3 · ai − 3/4 · bi

ai
≥ 1

then there cannot be 6 points in Si. Resolving this equation, we obtain

ai ≥
9

11
· bi (3)

Note that Equation 3 automatically implies Equation 1. Combining Equations 2
and 3 yields the following values:

3/4 = b1,
a1 = 2/3 = b2,
a2 = 5/9 = b3,
a3 = 5/11 = b4,
a4 = 45/121 = b5,
a5 = 405/1331 = b6, and
a6 = 1/4.

Hence, the middle part consists of six strips, each with at most 5 points. Sum-
marizing, we obtain the following lemma.

Lemma 1 The middle strip S contains at most 30 points.

The middle part of the bottom strip. We consider the rectangle B =
[1/4, 3/4] × [0, 1/4] of length 1/2 and height 1/4 between the cells Cl and Cr.
Similarly as for the middle strip, we construct five cells B1 to B5 such that all
stubs to the extreme points r, l and t cross the cell boundaries. We denote the
x-coordinates of the left and right boundaries of cell Bi by ai and bi and set
a1 = 1/4, b1 = a2 = 1/3, b2 = a3 = 4/9, b3 = a4 = 5/9, b4 = a5 = 2/3,
b5 = 3/4. Clearly, for every point p in any cell Bi, it holds that the stubs
pl and pr intersect the left and right boundaries of Bi, respectively. For the
upper stub pt, we only know that it crosses the horizontal line y = 1/4, but not
necessarily the upper boundary of Bi. We say that point p in cell Bi is medial
if its stub pt does intersect the upper boundary of Bi. We observe that no two
medial points can lie in the same cell Bi without causing stub intersections.
Thus, for another point q in Bi, the stub qt must intersect the vertical line
x = ai or x = bi. We call such a point a lateral point.

In the following, we show that there can be at most one lateral point in any
cell Bi. Without loss of generality, we can assume that the x-coordinate of t is
less than ai. We consider the two rays s0 and s1 from t through the two corners
(ai, 0) and (ai, 1/4) of Bi, see Fig. 4. These two rays define a wedge W . Let p
and q be two lateral points in Bi; then p and q must lie in Bi ∩W . Let p be
the point whose ray from t is left of the ray from t through q. Then the two
line segments ql and pt must intersect in a point z: (otherwise the stubs pr and
qt or the stubs q` and pr would cross). Let δq = |qz|/|zl|. To avoid a crossing
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l r
ai bi

s0 s1

ai − t

Bi

t

z

q′

p

q

W

Figure 4: A cell Bi with a medial point q′ and a lateral point p whose stubs do
not intersect. The two lateral points p and q cannot both exist since the stubs
pt and ql must intersect. (The vertical axis in this figure is scaled by 2/3.)

between the stubs pt and ql, we need that |qz| ≥ 1/4(|qz|+ |zl|), or equivalently,
that δq ≥ 1/3.

Using the intercept theorem, we observe that δq is maximized if p lies on s0,
q lies on s1, and they both lie on the x-axis. We apply the intercept theorem
once more for the line x = ai and the line supported by s1 to show that in this
case |qz| = (ai − tx)/3. Using |zl| = ai, we get δq = 1/3 · (1 − tx/ai) < 1/3.
Thus, δq ≥ 1/3 is not possible. Therefore, each cell Bi contains at most one
lateral and at most one medial point.

We summarize this paragraph as follows.

Lemma 2 The lower rectangle B contains at most 10 points.

The left and the right part of the upper strip. In the following, we
consider the rectangles L = [0, 3tx/4]× [3/4, 1] and R = [(3tx+1)/4, 1]× [3/4, 1],
separated by the upper central square Ct, which has size 1/4× 1/4, is adjacent
to t = (tx, 1), and is defined by the stubs tl and tr.

We subdivide R into five height-1/4 rectangles, which we label R1, . . . , R5

from left to right, and analyze how many points each rectangle can contain at
most. The analysis for L is symmetric.

Note that the two lower stubs of any point in R intersects the horizontal line
y = 3/4. To make sure that the upper stub of any point in cell Ri intersects
the left boundary with x-coordinate ai of Ri, the x-coordinate bi of the right
boundary of Ri has to fulfill (bi − tx)/4 ≥ bi − ai and, hence, bi ≤ (4ai − tx)/3.
(Note that we assume that the right boundary of Ri is not part of Ri.) This
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yields the following boundaries.

3/4 · tx + 1/4 = a1,
b1 = 2/3 · tx + 1/3 = a2,
b2 = 5/9 · tx + 4/9 = a3,
b3 = 11/27 · tx + 16/27 = a4,
b4 = 17/81 · tx + 64/81 = a5, and
b5 = 1.

We say that the lower stubs of two points p and q are nested if p is contained
in the triangle qlr or q is contained in the triangle plr.

Claim 1 The lower stubs of two points in the same cell are nested.

Proof: Let p be a point in a cell Ri and consider the line lp through l and
p and the line rp through r and p. Assume that there is a point q above p
such that the lower stubs of p and q are not nested. Then (1) q has to be to
the right of lp or (2) to the left of rp, respectively. Given the way the width
of Ri is constructed, however, the left stubs of q and p, respectively, intersect
the vertical line x = ai. So, in the first case the left stub of q intersects the right
stub of p and in the second case the right stub of q intersects the left stub of p.

�

Now we analyze how many points can be stacked on top of each other in
each subrectangle, depending on its width, its distance to t, and the l-shadow
of the stub tr, i.e., the set of all points p such that the stubs tr and pl intersect.
We first consider R1.

Claim 2 R1 contains at most one point.

Proof: Observe that the left stub of any point p in R1 must leave R1 through
its bottom edge, see Fig. 5. Otherwise p would lie in the l-shadow of tr. It
follows that there are no two points with nested lower stubs in R1: Otherwise
either the left or the right stub of the upper point would intersect the upper
stub of the lower point. There are also no two points side by side in R1, because
otherwise the right bottom stub of the left point crosses the left bottom stub of
the right point. �

We now consider R2, . . . , R5; see Fig. 6 for an illustration. Let

σt = t+ (r − t)/4

be the endpoint of the stub tr. We use the following two observations to bound
the number of points in Ri.

(O1) No point of Ri is above the line `σt; otherwise its left stub would intersect
the stub tr.

(O2) The y-coordinate of any point in Ri is between 3/4 and 1.
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Figure 5: The lines from point l to the endpoints of the stubs tr and pt give rise
to (gray) l-shadows where no point can be placed.

rpj `σt `sj

pj+1

s

sj

t

σt pj

R1 R2 R4 R5

Figure 6: The shaded polygon indicates the possible area for pj+1.

Depending on t, these two observations yield upper bounds on the number of
points in R2, . . . , R5 and, symmetrically, in L2, . . . , L5. In summary, we obtain
the following.

Lemma 3 Together, L and R contain at most 19 points.

Proof: Let i ∈ {2, 3, 4, 5} and, for j = 1, . . . ,m, let pj = (xj , yj) be the points
in Ri with ascending y-coordinates. For j = 1, . . . ,m− 1, let

sj = pj + (t− pj)/4

be the endpoint of the top stub pjt. To make sure that the left stub of pj+1 and
the upper stub of pj do not intersect, pj+1 has to be above the line lsj . If the x-
coordinate of t is large, we exploit observation (O1); otherwise, we exploit (O2).
Putting things together, we will obtain, for each region Ri, upper bounds on
the number of points that Ri can contain.
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Case I: The x-coordinate tx of t is large.

The condition that no point of Ri is above the line `σt means that

slope(`σt) ≥ slope(`pj) for j = 1, . . . ,m. (4)

Further, we know that

slope(`pj) < slope(`sj) ≤ slope(`pj+1) for j = 1, . . . ,m− 1. (5)

Observe that the slope of `sj increases with the slope of `pj . Now we claim the
following.

Claim 3 If the slope of `pj is fixed, then the slope of `sj increases when the
distance of pj from ` decreases.

Proof: We first show this claim. Let q1 and q2 be two points in R that are
co-linear with ` = (0, 0). Then, there is a 0 < c < 1/tx (actually, we even have
c < 3/(3tx + 1)) such that qi = (xi, cxi), i = 1, 2. Let the endpoint of stub qit
be

si := qi + (t− qi)/4 = (3xi + tx, 3cxi + 1)/4.

So the slope of lsi is (3cxi + 1)/(3xi + tx). Hence, the slope of ls1 exceeds the
slope of ls2 if and only if

3cx1 + 1

3x1 + tx
>

3cx2 + 1

3x2 + tx
⇔ 3x2 + 3cx1tx > 3x1 + 3cx2tx

⇔ ctx(x1 − x2) > (x1 − x2)

⇔ x1 < x2.

The last equivalence holds since ctx < 1 for any tx. This finishes the proof of
our claim. �

Now we continue the proof of Lemma 3. By Claim 3, the number of points
p1, . . . , pm in Ri with the properties in Equations 4 and 5 is maximized if p1 =
(bi, 3/4) and pj+1 is the intersection point of the line `sj with the vertical line
at x = bi; see Fig. 7. Then the x-coordinate of sj is a′i := bi − (bi − tx)/4 =
(3bi + tx)/4. For i = 1, . . . , 4, we have a′i = ai. We obtain the following y-
coordinates:

y(sj) = yj + (1− yj)/4 = (3yj + 1)/4

y(pj+1) =
yj + (1− yj)/4

a′i
· bi =

bi(3yj + 1)

3bi + tx

y(s1) = 3/4 +
1− 3/4

4
=

13

16
.

The slope of the line `σt is less than the slope of the line `pj+1 if the intersection
point

z =

(
a′i,

3

3tx + 1
a′i

)
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Figure 7: What is the smallest j for which the slope of `sj exceeds that of `σt?

of the line `σt with the vertical line at x = a′i is below sj . This means that, if z
is below sj , pj+1 cannot lie in Ri (due to observation (O1)). Hence, depending
on t, we obtain the following upper bounds on the number of points in Ri.

For i = 2, we plug in b2 = (5tx + 4)/9 and a′2 = a2 = (2tx + 1)/3 into the
equation above and obtain the following y-coordinates:

y(pj+1) =
1/9(5tx + 4)(3yj + 1)

1/3(5tx + 4) + tx
=

(5tx + 4)(3yj + 1)

24tx + 12

y(z) =
2tx + 1

3tx + 1

y(p2) =
5tx + 4

24tx + 12
· 13/4

y(s2) =
1

4

(
5tx + 4

24tx + 12
· 39

4
+ 1

)
=

1

4
· 97tx + 68

32tx + 16

Hence, R2 contains at most one point if 13/16 = y(s1) > y(z) = (2tx+1)/(3tx+
1), that is, if tx > 3/7, which holds if tx ≥ 0.43. There are at most two points
in R2 if y(s2) > y(z), that is, if

1

4
· 97tx + 68

32tx + 16
>

2tx + 1

3tx + 1
,

which turns out to be true for any tx > 0.
For i = 3, we get the following y-coordinates:

y(pj+1) =
1/27(11tx + 16)(3yj + 1)

1/9(11tx + 16) + tx
=

(11tx + 16)(3yj + 1)

60tx + 48

y(z) =
5tx + 4

9tx + 3

y(p2) =
11tx + 16

60tx + 48
· 13/4

y(s2) =
1

4

(
11tx + 16

60tx + 48
· 39/4 + 1

)
=

1

4
· 223tx + 272

80tx + 64
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Hence, there is at most one point in R3 if 13/16 = y(s1) > y(z) = (5tx +
4)/(9tx + 3), that is, if tx > 25/37, which holds if tx ≥ 0.68. There are at most
two points in R2 if

1

4
· 223tx + 272

80tx + 64
>

5tx + 4

9tx + 3
, that is, if tx > −

557

2 · 407
+

√(
557

2 · 407

)2

+
208

407
,

which holds if tx ≥ 0.31.
For i = 4, we analogously obtain that R4 contains at most one point if

13

16
>

11tx + 16

27tx + 9
, that is, if tx > 139/175,

which holds, for example, if tx ≥ 0.8. The cell R4 contains at most two points
if tx ≥ 0.55.

For i = 5, we have that R5 contains at most one point if 13/16 > (3tx +
9)/(12tx + 4), that is, if tx > 23/27, which holds, for example, if tx ≥ 0.86.
There are at most two points in R5 if tx ≥ 0.68.

We summarize our upper bounds in the following table.

tx ≥ 0 tx ≥ 0.31 tx ≥ 0.43 tx ≥ 0.55 tx ≥ 0.68 tx ≥ 0.8 tx ≥ 0.86
R2 2 2 1 1 1 1 1
R3 2 2 2 1 1 1
R4 2 2 1 1
R5 2 2 1

Case II: tx is small.

It remains to compute upper bounds on the number of points in R3, R4, and R5

for small values of tx. For this, we use (O2). To bound the y-coordinates of
the points in Ri, observe that since the lower stubs of any points in Ri have to
be nested, pj+1 has to lie above the line rpj . Hence, pj+1 has to be above the
intersection point s of rpj and lsj ; see Fig. 6.

Recall that a line through two points (X1, Y1) and (X2, Y2) can be expressed
by

y =
Y1 − Y2
X1 −X2

· x+
Y2X1 − Y1X2

X1 −X2

So we obtain the following equations for the lines rpj and lsj :

rpj : y = − yj
1− xj

x+
yj

1− xj
lsj : y =

3yj + 1

3xj + tx
x

Intersecting these two lines yields the intersection point

s =

(
(3xj + tx)yj

yj(tx + 3) + 1− xj
,

(3yj + 1)yj
yj(tx + 3) + 1− xj

)
.
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Given that pj+1 lies above s and given that xj ≥ ai, we obtain the recursion

yj+1 >
(3yj + 1)yj

yj(tx + 3) + 1− ai
(6)

for j ≥ 1. Recall now that ai = λitx + 1− λi with λi = 1− 4i−2/3i−1 < 3/4 for
i = 2, . . . , 5 also depends on t. Hence, the lower bound

(3yj + 1)yj
yj(tx + 3) + 1− ai

=
3yj + 1

tx + 3 + (1− tx)λi/yj
=

3yj + 1

tx(1− λi/yj) + 3 + λi/yj

for yj+1 decreases with increasing tx and decreasing yj . This means that the
number of points that fit into Ri such that Equation 6 is still fulfilled becomes
larger if we choose the y-coordinates of the points as small as possible.

Hence, starting with y1 = 3/4, we get lower bounds for y2, . . . , ym by assum-
ing equality in Equation 6. The largest i with yi ≤ 1 is an upper bound for the
number of points in Ri.

Depending on tx, observation (O2), that is, yj ≤ 1 for j = 1, . . . ,m, yields
the following upper bounds on the number of points in Ri.

tx ≤ 0.31 tx ≤ 0.54 tx ≤ 0.55 tx ≤ 0.68
R3 3
R4 2 3 3
R5 2 2 3 3

This finishes the analysis of case II.
Now we can put things together. The resulting upper bounds for the regions

of R and, symmetrically, for L are summarized in Table 2. Adding up the
bounds for each resulting subinterval of [0, 1] yields that L ∪ R contains at
most 19 points, namely if 0.32 < tx < 0.43, 0.45 < tx < 0.46, 0.54 < tx < 0.55,
or 0.57 < tx < 0.68. �

The (1/4× 1/4)-squares Cl, Cr, and Ct. Our approach for this part follows
a suggestion of Gašper Fijavž. We consider the square Cl; for the two other
squares Cr and Ct, we can argue analogously and get the same bound. Let
l, p1, . . . , pk be the set of points contained in Cl.

First, we observe that the stubs from p1, . . . , pk to t and r intersect the upper
and right boundary of Cl. Hence, the points p1, . . . , pk together with their stubs
to r and t form a nested structure. This means that we can order the points
such that, for i = 2, . . . , k, the point pi lies between the stubs of pi−1, the point
pk being innermost. Now we define α1, α2, . . . , αk to be the angles at point r
formed by the lines rl and rpi. Analogously, we have angles β1, . . . , βk at point
t. We consider only the angles of type αi. Analogous observations hold for the
angles of type βi, and the resulting bounds are the same.

From the nesting, we see that the sequence αi, i = 1, . . . , k is monotonically
increasing. Even stronger, we have the following claim.
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tx ≥ 0.00 0.14 0.20 0.31 0.32 0.43 0.45 0.46 0.54 0.55 0.57 0.68 0.69 0.80 0.86

R1 1
L1 1
R2 2 1
L2 1 2
R3 3 2 1
L3 1 2 3
R4 2 3 2 1
L4 1 2 3 2
R5 2 3 2 1
L5 1 2 3 2

total 15 16 17 17 19 18 19 18 19 18 19 17 17 16 15

Table 2: Upper bounds for the number of points in the cells of L and R; L ∪R
contains at most 19 points.

Claim 4 For 1 < i ≤ k it holds that αi ≥ 1.3 · αi−1.

Proof: Consider the segment from point l to pi. We subdivide it into four
segments of equal length; see Fig. 8. This defines the four angles γ1, . . . , γ4 by
the connecting lines from point r. We have αi = γ1 + · · · + γ4 and αi−1 ≤
γ1 + γ2 + γ3 =: γ. It remains to prove that αi ≥ 1.3γ.

The ratio of γ4 and γ and, hence, the ratio of αi and γ is smallest if the
segment lpi is vertical. Hence, we may assume that pi lies in the upper left
corner of Cl. Hence, αi/γ ≥ arctan(1/4)/ arctan(3/16) > 1.3. Note that in
general pi must be to the right of stub lt, so the ratio is even slightly better. �

Next, we restrict the range of the smallest and largest angle. Then we can
easily compute the number k of points.

Let s be the endpoint of the stub lpk. Consider the two lines ts and rs. The
point p1, which defines the angle α1 and β1 respectively, has to lie either above
rs or to the right of ts or both. We assume, without loss of generality, the first
case, so the angle formed by ∠l, r, s := ᾱ ≤ α1. We call the length of the base
line, which is the distance between l and r, to be d = 1.

We compute tan(ᾱ) = hs/(d− ls) = (hk/4)/(d− ls) and tan(αk) = hk/(d−
4ls); see Fig. 9, where hk and hs are the minimum distances of pk and s,
respectively, to the base line lr. This yields the ratio

tan ᾱ

tanαk
=

hk
4(d− ls)

d− 4ls
hk

= 1− 3d

4(d− ls)
= 1− 3

4(1− ls/d)
.

Using ls ≤ (1/4)2, this yields tan ᾱ/ tanαk ≥ 1/5. From the Taylor series
expansion of the tangent function we know that tanα > α, for all 0 < α < π/2,
in particular tanα = cαα with cα > 1 monotonically increasing with α.
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Figure 8: Angles increase by a factor
of at least 1.3.
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Figure 9: Ratio between the smallest
angle, ᾱ, and the largest angle, αk.

Hence, we conclude that

α1

αk
=
cαk

tanα1

cα1 tanαk
>

tan ᾱ

tanαk
≥ 1/5.

This yields αk ≥ (1.3)k−1 · α1 > (1.3)k−1 · 1/5 · αk, which in turn implies
k < log 5/ log 1.3 + 1 ≤ 6.2.

If p1 lies to the right of ts, we analogously obtain

β1
βk

> 1− 3

4(1− ls/d)

where d > 1 is the distance of l and t and ls ≤ 1/4 ·
√

2/4 is the length of the
projection of the segment ls to the line lt, hence β1 > 1/6 · βk.

Arguing along the lines of the first case, we get βk > (1.3)k−1 · 1/6 · βk, and
derive k < 7.9.

Lemma 4 The squares Cl, Ct, and Cr each contain at most eight points.

This finishes the proof of Theorem 3. We would like to mention that
Granacher showed in her diploma thesis [16] how the techniques used in the
proof of Theorem 2 can be generalized to obtain the following result for arbitrary
k ∈ Z>2: The complete graph with n vertices has no 1/k-SHPED representation
if n > 4k3 ln k.

Granacher [16] also showed that, for n > 96, the complete bipartite graph
Kn,n has no axis-symmetric 1/4-SHPED drawing such that all edges cross the
axis of symmetry. In the next section we will – among others – discuss drawings
of the bipartite graph Kn,n for smaller n.
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(a) 1/4-SHPED of K8,8 (b) 1/4-SHPED of K8,9

Figure 10: Two methods for drawing complete bipartite graphs as SHPEDs.

3 Improved Bounds for Specific Graph Classes

In this section, we improve, for specific graph classes, the result of Bruckdorfer
and Kaufmann [6] which says that Kn (and thus, any n-vertex graph) has a
1/
√

4n/π-SHPED. In other words, Kn has a δ-SHPED if n ≤ π/(4δ2). We give
two constructions for complete bipartite graphs and one for graphs of bounded
bandwidth.

Complete Bipartite Graphs. Our first construction is especially suitable if
both sides of the bipartition have about the same size. The drawing is illustrated
in Fig. 10a. Note that the figure scales x-axis and y-axis differently. In the
following two results, there are fractions where both numerator and denominator
are logarithmic expressions; therefore, we do not need to specify their bases.

Theorem 4 The complete bipartite graph Kn,n has a δ-SHPED if

n ≤
⌊

1

δ

⌋
·
⌊⌊

log 1/2

log(1− δ)

⌋⌋
∈ Θ

(
1

δ2

)
where bbxcc denotes the largest integer that is strictly less than x.

Proof: Let k =
⌊
1
δ

⌋
and ` =

⌊⌊
log 1/2
log(1−δ)

⌋⌋
. The latter implies that (1− δ)` > 1

2 .

Divide the plane at the vertical line x = 1/2 into two half planes, one for
each side of the bipartition, to which we will refer as the right-hand side and
the left-hand side. In each half plane, draw the n vertices on a (perturbed) k×`
grid. More precisely, for a horizontal line, let ε ≥ 0 such that (1− δ)` > 1

2 + ε.
For i = 0, . . . , `− 1, draw the vertices with x-coordinates

(1− δ)i − ε and 1− (1− δ)i + ε.

Draw the vertices on the left-hand side with y-coordinates 0, . . . , k − 1 and the
vertices on the right-hand side with y-coordinates 0 + σ, . . . , k − 1 + σ, where
0 < σ < 1 is chosen such that no two vertices on the right-hand side are collinear
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with a vertex on the left-hand side and vice versa. All edges are between a vertex
on the left-hand side and a vertex on the right-hand side.

Then for any two vertices the bounding boxes of their incident stubs are
disjoint up to their boundaries. Intersections of the stubs on the boundaries
can be avoided by a suitable choice of ε.

1. Let v be a vertex on the right-hand side with x-coordinate (1−δ)i−ε. Then
the projection to the x-axis of the longest edge incident to v has length
(1− δ)i− ε. Hence all stubs incident to v are in the vertical strip bounded
by x = (1−δ)i−ε and x = (1−δ)i−ε−δ((1−δ)i−ε) ≥ (1−δ)i+1−ε > 1/2.
The latter inequality follows since i+ 1 ≤ `.

2. Let vi be a vertex with y-coordinate σ + i, i = 0, . . . , k − 1. Then the
projection to the y-axis of the longest edge incident to vi and above v has
length k − 1− i− σ while the projection to the y-axis of the longest edge
incident to vi and below v has length i + σ. Hence the projection to the
y-axis of the stubs incident to vi and vi+1 do not intersect if δ(k− 1− i−
σ) + δ(i + 1 + σ) < 1 which is fulfilled if k < 1/δ. If k = 1/δ then draw
the vertices on the horizontal lines y = i and y = i + σ for even i with
ε = 0 and the vertices on the other horizontal lines with a slightly positive
ε such that the endpoints of the stubs do not intersect.

A symmetric argument holds for the vertices on the left-hand side.

For the asymptotic bound, recall from the proof of Theorem 2 that

ln 2 ·
(

1

δ
− 1

)
≤ log 1/2

log(1− δ) ≤ 2 ln 2 ·
(

1

δ
− 1

)
.

It follows that

1

5
· 1

δ2
≤
⌊

1

δ

⌋
·
⌊⌊

log 1/2

log(1− δ)

⌋⌋
≤ 2 ln 2

1

δ2

for 0 < δ < 1/2 (where the lower bound is obtained by distinguishing the cases
0 < δ ≤ 1/5, 1/5 < δ < 1− 1/

√
2, 1− 1/

√
2 ≤ δ ≤ 1/3, and 1/3 < δ < 1/2). �

Our second construction is especially suitable if one side of the bipartition
is much larger than the other. The drawing is illustrated in Fig. 10b.

Theorem 5 For any integers n > 0 and k < log δ/log(1− δ) ∈ θ( 1
δ log 1

δ ), the
complete bipartite graph K2k,n has a δ-SHPED.

Proof: Draw the n vertices on the x-axis with x-coordinate xi = 1/(1 −
δ)i−1, i = 1, . . . , n and the 2k vertices on the y-axis with y-coordinate yi =
1/(1 − δ)i−1, i = 1, . . . , k and −yi, i = 1, . . . , k. All edges are between a vertex
on the y-axis and a vertex on the x-axis. To show that no stubs intersect, we
establish the following two properties on the regions that contain the stubs.
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1. The stubs incident to (0,±yi), i = 2, . . . , k are in the horizontal strip
bounded by y = ±yi and y = ±yi−1:

The projection to the y-axis of any stub incident to (0, yi) has length δ ·yi,
hence it stops at y = (1− δ) ·

(
1

1−δ

)i−1
=
(

1
1−δ

)i−2
= yi−1.

2. The stubs incident to (0, xi), i = 2, . . . , n are in the rectangle bounded by
y = ±(1− δ), x = xi−1, and x = xi (where x0 = 1− δ):
As above, the projection of any stub incident to (0, xi) stops at x = xi−1.
The absolute value of the projection to the y-axis is bounded by δ · yk =

δ ·
(

1
1−δ

)k−1
which is less than 1− δ if k < log δ/log(1− δ).

Since the stubs incident to (0,±y1) lie in the horizontal strip bounded by y = ±1
and y = ±(1− δ), it follows that any two stubs are disjoint.

For the asymptotic bound, we obtain similarly as in the proof of Theorem 2
that

1

2
· 1

δ
ln

1

δ
≤
(

1

δ
− 1

)
· ln 1

δ
≤ log δ

log(1− δ) ≤ 2 ·
(

1

δ
− 1

)
· ln 1

δ
≤ 2

1

δ
ln

1

δ

for 0 < δ < 1/2. �

Graphs of Bounded Bandwidth. Recall that the k-circulant graph Ckn
with n vertices and 0 ≤ k < n is the undirected simple graph whose vertex set
is {v0, . . . , vn−1} and whose edge set is {vivj : |j − i| ≤ k}. When we specify
the index of a vertex, we implicitly assume calculation modulo n. Note that

C1
n = Cn and C

n/2
n = Kn. Recall that a graph has bandwidth k if its vertices

can be ordered v1, . . . , vn and for each edge vivj it holds that |j − i| ≤ k.
Granacher [16] used the Gosper curve in order to show that any bandwidth-k

graph admits a 1/(4.7
√
k)-SHPED even if k is not known. For the case that k

is known, we give drawings with a better stub–edge length ratio. In particular,
for any bandwidth-k graph, we guarantee that δ ≥ 1/(2.83

√
k). For ease of

presentation, we assume that
√
k and n

/√
k are integers.

First, let G be a graph of bandwidth k. We draw G as a δ-SHPED as follows.
We map the vertices of G to the vertices of an integer grid of

(
n
/√

k ×
√
k
)

points such that the sequence of vertices v1, . . . , vn traverses the grid column by
column in a snake-like fashion, see Fig. 11a.

The distance from any vertex to its k-th successor is at most

√(√
k − 1

)2
+ k

<
√

2k, see the two dashed line segments in Fig. 11a. Setting δ = 1/
(
2
√

2k
)

ensures that each stub is contained in the radius-1/2 disk centered at the vertex
to which it is incident; see Fig. 11a. Since the disks are pairwise disjoint, so are
the stubs.

For the k-circulant graph Ckn, we modify this approach such that the start
and the end of the snake coincide. In other words, we deform our rectangular
section of the integer grid into an annulus; see Fig. 11b. We additionally assume
that n/

√
k is even.
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√
k
−

1

n/
√
k − 1

v1 vk+1

v
k−
√
k+1

(a) path case

R

v1

vk

v
k−
√
k+1 vk+1

(b) circle case

Figure 11: SHPEDs for bandwidth-k and k-circulant graphs.

The inner circle circumscribes a regular
(
n/
√
k
)
-gon Π of edge length 1.

We place the vertices of Ckn on rays that go from the center of the annulus
through the vertices of Π. On each ray, we place

√
k vertices at distance 1 from

one another, starting from the inner circle and ending at the outer circle. The
sequence again traverses the stacks of vertices in a snake-like fashion.

For j < k, a vertex v can be reached from its j-th successor s, by traversing at
most 3

√
k−2 segments of length 1: at most

√
k−1 segments from s to the inner

circle, at most
√
k segments on the inner circle, and at most

√
k − 1 segments

from the inner circle to v. Hence, the maximum distance of two adjacent vertices
is less than 3

√
k, and we can choose δ = 1/(6

√
k).

Theorem 6 Let 2 ≤ k ≤ n and assume that
√
k and n

/√
k are integers. Then

any graph of bandwidth k has a 1
/(

2
√

2k
)
-SHPED. If additionally n

/√
k is

even, the k-circulant graph Ckn has a 1
/(

6
√
k
)
-SHPED.

4 Geometrically Embedded SPEDs

Bruckdorfer and Kaufmann [6] gave an integer-linear program for MaxSPED
and conjectured that the problem is NP-hard. Indeed, there is a simple reduc-
tion from Planar3SAT [19]. In this section, we first show that the problem
can be solved efficiently for the special case of 2-planar geometric graphs. Then
we turn to the dual problem MinSPED of minimizing the ink that has to be
erased in order to turn a given drawing into a SPED.

4.1 Maximizing Ink in Drawings of 2-Planar Graphs

In this section we prove that, given a 2-planar straight-line drawing Γ of a 2-
planar graph G with n vertices, we can compute a maxSPED, i.e., a SPED that
maximizes the total stub length, in O(n log n) time. Recall that a graph G is
2-planar if it admits a simple drawing on the plane where each edge is crossed
at most twice.

Given the graph G and its drawing Γ, we define a simple undirected graph
C as follows. For each crossed edge e of G, the graph C has a vertex ve. Two
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ej
ej+1

ej−1

x′j x′′jlj

Figure 12: Notation used in the DP.

vertices ve and ve′ of C are connected by an edge if and only if e and e′ form a
crossing in Γ. The maximum degree of C is 2; hence, a connected component
of C is either a path (possibly formed by only one edge) or a cycle.

Let Ci be a connected component of C. We define a total ordering on the
vertices of Ci. Namely, if Ci is a path such an ordering is directly defined by
the order of its vertices along the path (rooted at an arbitrary end vertex). If
Ci is a cycle, we simply delete an arbitrary edge of the cycle, obtaining again
a path and the related order. That means, if we consider the subdrawing Γi
of Γ induced by the vertices of Ci (edges of Gi), such a drawing is formed by
an ordered sequence of edges (according to the ordering of the vertices of Ci),
e1, . . . , eni

, such that ej crosses e(j+1) mod ni
for j = 1, . . . , ni − 1 in case of a

path, and j = 1, . . . , ni in case of a cycle.

We will use the following notation: lj is the total length of the edge ej ; x
′
j is

the length of the shortest stub of ej defined by the crossing between ej−1 and
ej , called the backward stub; x′′j is the length of the shortest stub of ej defined
by the crossing between ej and ej+1, called the forward stub. See also Fig. 12.

Consider now the subdrawing Γi, and assume that e1, . . . , eni form a path
in Ci. If ni = 2, the maximum total length of the stubs is kopt = max{l1 +
2x′2, l2 + 2x′′1}.

In the general case, we can process the path edge by edge, having at most
three choices for each edge: (i) we can draw it entirely, (ii) we can draw only
its backward stubs, or (iii) we can draw only its forward stubs. The number of
choices we have at any step is influenced only by the previous step, while the best
choice is determined only by the rest of the path. Following this approach, let γi
be a maxSPED for Γi and consider the choice made for the first edge e1 of the
path. The total length of the stubs in γi, minus the length of the stubs assigned
to e1, represents an optimal solution for Γi \ e1, under the initial condition
defined by the first step, otherwise, γi could be improved, a contradiction. That
is, the optimality principle holds for our problem. Thus, we can exploit the
following dynamic programming (DP) formulation, where Oin(ej) describes the
maximum total length of the stubs of ej , . . . , eni

under the choice (i) for ej ,
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e1

e2

e3
e4

l x′ x′′

e1 7 3.5 2
e2 7 1 2
e3 5 1 1
e4 4 1 2

(a)

e1

e2

e3
e4

Oin O′
out O′′

out

e4 4 2 4
e3 7 6 6
e2 13 9 11
e1 16 16 17

(b)

Figure 13: (a) A 2-planar drawing Γ and (b) a maxSPED of Γ computed by the
DP algorithm.

O′out(ej) describes the choice (ii) and O′′out(ej) describes the choice (iii).

Oin(ej) =

{
lj + max{O′out(ej+1), O′′out(ej+1)} if x′j+1 ≥ x′′j+1,

lj +O′out(ej+1) if x′j+1 < x′′j+1.
(7a)

O′out(ej) =


2x′j + max{O′out(ej+1), O′′out(ej+1)} if x′j > x′j ∧ x′j+1 ≥ x′′j+1,

2x′j +O′out(ej+1) if x′j > x′′j ∧ x′j+1 < x′′j+1,

2x′j + max{Oin(ej+1), O′out(ej+1), O′′out(ej+1)} if x′j ≤ x′′j .

(7b)

O′′out(ej) = 2x′′j + max{Oin(ej+1), O′out(ej+1), O′′out(ej+1)} (7c)

In case of a path, we store in a table the values of Oin(ej), O
′
out(ej) and O′′out(ej),

for j = 1, . . . , ni, through a bottom-up visit of the path (from eni
to e1). Since

e1 and eni
do not cross, we have x′1 = l1/2 and x′′ni

= lni
/2. Then, the maximal

value of ink is given by kopt = max{Oin(e1), O′out(e1), O′′out(e1)}. See Fig. 13 for
an example.

In case of a cycle, we have that e1 and eni
cross each other, thus, in order

to compute the table of values we must assume an initial condition for eni
.

Namely, we perform the bottom-up visit from eni
to e1 three times. The first

time we consider as initial condition that eni
is entirely drawn (choice Oin(eni

)),
the second time we consider only the backward stubs drawn (choice O′out(eni)),
and the third time we consider only the forward stubs drawn (choice O′′out(eni)).
Every initial condition will lead to a table where, in general, we do not have
all the three possible choices for e1 (i.e., some choices are forbidden due to the
initial condition). Performing the algorithm for every possible initial condition
and choosing the best value yields the optimal solution kopt. The algorithm
described above leads to the following result.

Theorem 7 Let G be a graph with n vertices, and let Γ be a 2-planar straight-
line drawing of G. A maxSPED of Γ can be computed in O(n log n) time.

Proof: Consider the above described algorithm, based on the DP formulation
defined by Equations 7a–7c. We already showed how this algorithm computes a
maxSPED of Γ. The construction of the graph C requires time O(m logm)
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with a standard sweep-line algorithm for computing the O(m) line-segment
intersections [3]. Once C has been constructed, ordering its vertices requires
O(nC) time, where nC ∈ O(m) is the number of vertices of C. Performing a
bottom-up visit and up to three top-down visits of every path or cycle takes
O(m) time. Thus, the overall time complexity is O(n log n), since for 2-planar
graphs m ∈ O(n) [20]. �

We finally observe that the restricted 0/1-MaxSPED problem for 2-planar
drawings, where each edge is either drawn or erased completely, may be solved
through a different approach. Indeed, we can exploit a maximum-weight SAT
formulation in the CNF+(≤2) model, where each variable can appear at most
twice and only with positive values [22]. Roughly speaking, we map each edge
to a variable, with the weight of the variable equal to the length of its edge, and
define a clause for each crossing. Applying an algorithm of Porschen and Speck-
enmeyer [22] for CNF+(≤2) solves 0/1-MaxSPED in O(n3) time. However,
our algorithm solves a more general problem faster.

4.2 Erasing Ink in Arbitrary Graph Drawings

In this section, we consider the problem MinSPED, which is dual to MaxSPED.
In MinSPED, we are given a graph with a straight-line drawing, and the task
is to erase as little of the edges as possible in order to make it a SPED.

We will exploit a connection between the NP-hard minimum-weight 2-SAT
problem (MinW2Sat) and MinSPED. Recall that MinW2Sat, given a 2-SAT
formula with real weights assigned to the variables, asks for a satisfying variable
assignment that minimizes the total weight of the true variables. There is a 2-
approximation algorithm for MinW2Sat that runs in O(vc) time and uses O(c)
space, where v is the number of variables and c is the number of clauses of the
given 2-SAT formula [1].

Theorem 8 MinSPED can be 2-approximated in time quadratic in the number
of crossings of the given straight-line drawing.

Proof: Given an instance G of MinSPED, we construct an instance ϕ of
MinW2Sat as follows. Let e be an edge of G with k crossings. Then e is split
into k+ 1 pairs of edge segments e0, . . . , ek as shown in Fig. 14. If we order the
edges that cross e in increasing order of the distance of their crossing point to
the closer endpoint of e, we can assign each segment pair ei for i ≥ 1 to the ith
edge f i crossing e, in this order. We also say that edge f i induces segment pair
ei. Any valid maximal (non-extensible) partial edge drawing of e is the union⋃j
i=0 ei of all pairs of edge segments up to some index j ≤ k.

We model all pairs of (induced) edge segments as Boolean variables ê1, . . . , êk
with the interpretation that the pair ei is not drawn if êi = true. The pair e0
is always drawn. For i = 1, . . . , k, we introduce the clause (¬êi+1 ⇒ ¬êi) ≡
(êi+1∨¬êi). This models that ei+1 can only be drawn if ei is drawn. Moreover,

for every crossing between two edges e and f , we introduce the clause (êi ∨ f̂j),
where ei is the segment pair of e induced by f and fj is the segment pair of f
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e0 e1
e2 e3

f2 f3 f1

e2 e1 e0

Figure 14: Edge e is split into four pairs of edge segments; pairs are labeled
equally.

induced by e. This simply means that at least one of the two induced segment
pairs is not drawn and thus the crossing is avoided.

Now we assign a weight we,i to each variable êi, which is either the absolute
length |ei| of ei if we are interested in ink, or the relative length |ei|/(2|e|)
if we are interested in relative stub lengths (δ). Then minimizing the value∑
êi∈Var(ϕ) we,iêi over all valid variable assignments minimizes the weight of the

erased parts of the edges in the given geometric graph.

The 2-approximation algorithm for MinW2Sat yields a 2-approximation
for the problem to erase the minimum ink from the given straight-line drawing
of G. It runs in O(vc) = O(I2) ⊆ O(m4) time since our 2-SAT formula has
O(I) ⊆ O(m2) variables and clauses, where m is the number of edges of G
and I is the number of intersections in the drawing of G. �

If we encode the primal problem (where we want to maximize ink) using
2SAT, we cannot hope for a similar positive result. The reason is that the tool
that we would need, namely an algorithm for the problem MaxW2Sat dual
to MinW2Sat would also solve maximum independent set (MIS). For MIS,
however, no (n1−ε)-approximation exists unless NP = ZPP [17].

To see that MaxW2Sat can be used to encode MIS, use a variable v̂ for
each vertex v of the given (graph) instance G of MIS and, for each edge {u, v}
of G, the clause (û ∨ v̂). Let ϕ be the conjunction of all such clauses. Then
finding a satisfying truth assignment for ϕ that maximizes the number of false
variables (i.e., all variable weights are 1) is equivalent to finding a maximum
independent set in G. Note that this does not mean that maximizing ink is as
hard to approximate as MIS.

5 Conclusions and Future Work

In this work, we have studied partial edge drawings. We have presented sev-
eral graph classes that admit SHPEDs with a stub–edge length ratio depend-
ing on parameters of the graph class. On the negative side, we have proved
that, for any n > 164, the complete graph Kn does not admit a 1/4-SHPED.
Finally, we have studied symmetric PEDs for geometrically embedded graphs
and proved for 2-planar geometric graphs that computing a MaxSPED takes
O(n log n) time using dynamic programming; the dual variant MinSPED can
be 2-approximated.

We conclude with a list of open problems that arise from our research.
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• Identify other classes of graphs that admit δ-SHPEDs for some δ > 0.

• Find a complete graph smaller than K165 such that it does not admit
1/4-SHPEDs.

• Study the complexity of MaxSPED for k-planar drawings with k > 2.

• Investigate the complexity of MaxSPED when the input is a topological
or an abstract graph (possibly a k-planar graph for k ≥ 2), rather than a
geometric graph. In this scenario the drawing is not given as part of the
input, and hence the problem may become NP-hard already for 2-planar
graphs.
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