
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 4, pp. 631–648 (2017)
DOI: 10.7155/jgaa.00432

Ideal Drawings of Rooted Trees With
Approximately Optimal Width

Therese Biedl 1

1David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 1A2, Canada.

Abstract

For rooted trees, an ideal drawing is one that is planar, straight-line,
strictly-upward, and order-preserving. This paper considers ideal draw-
ings of rooted trees with the objective of keeping the width of such draw-
ings small. It is not known whether finding the minimum width is NP-
hard or polynomial. This paper gives a 2-approximation for this problem,
and a 2∆-approximation (for ∆-ary trees) where additionally the height
is O(n). For trees with ∆ ≤ 3, the former algorithm finds ideal drawings
with minimum width.

Submitted:
August 2016

Reviewed:
January 2017

Revised:
February 2017

Accepted:
April 2017

Final:
April 2017

Published:
April 2017

Article type:
Regular paper

Communicated by:
G. Liotta

Research supported by NSERC.

E-mail address: biedl@uwaterloo.ca (Therese Biedl)

http://dx.doi.org/10.7155/jgaa.00432
mailto:biedl@uwaterloo.ca

632 T. Biedl Ideal Tree-Drawings

1 Introduction

Let T be a rooted tree. An upward drawing of T is one in which the curves from
parents to children are y-monotone. It is called strictly-upward if the curves are
strictly y-monotone. In this paper, all drawings must be planar (no edges cross),
and order-preserving (the drawing respects a given order of children around a
node). Usually drawings should be straight-line (edges are drawn as straight-
line segments). A tree-drawing is called an ideal drawing [5] if it is planar,
strictly-upward, straight-line, and order-preserving.

To keep drawings legible, nodes are required to be placed at grid-points (i.e.,
have integer coordinates), and the main objective is to minimize the width and
height of the required grid. In a strictly-upward drawing of a rooted tree, the
height can never be smaller than the (graph-theoretic) height of the tree, and so
may well be required to be Ω(n). Hence for such drawings the main objective
is to minimize the width.

Previous Results: Any n-node tree has a planar straight-line strictly-upward
drawing of area O(n log n) [6], but these drawings are not order-preserving. The
best bounds for ideal drawings are by Chan [5]; he gives ideal drawing of area

O(n4
√

2 log n) whose width is O(2
3
2

√
2 log n). He mentions that the width can be

reduced to O(log n) at the cost of super-polynomial height. For binary trees,
Garg and Rusu showed that O(log n) width and O(n) height can be achieved
[10]. This is optimal (within the class of binary trees with n nodes) since there
are binary trees that require width Ω(log n) and height Ω(n) for any upward
drawing [6]. See the recent overview paper by Frati and Di Battista [7] for many
other related results.

It is not known whether O(n log n) area can be achieved for ideal drawings
of rooted trees. If the condition on straight-line drawings is relaxed to allow
poly-line drawings (i.e., edges may have bends, as long as the bends are on
grid-points), then a minor modification of the construction of Chan achieves
order-preserving planar strictly-upward drawings with O(n log n) area [5].

This paper focuses on algorithms to find ideal drawings with small width.
It is not known whether finding ideal drawings that have the optimal width
(for the given tree) is NP-hard or polynomial. In a recent paper [4], I showed
that finding minimum-width drawings is feasible if either the “order-preserving”
or the “straight-line” condition is dropped from the conditions on ideal draw-
ings, but neither of these two algorithms seems to generalize to minimum-width
ideal drawings. If “upward” is dropped, then one can minimize the smaller di-
mension (then usually chosen to be the height) for unordered drawings [1] and
approximate it for order-preserving drawings [2].

Results of this paper: This paper gives two approximation-algorithms for the
width of ideal tree-drawings. The first one is a 2-approximation, which is quite
similar to Chan’s approach [5], but uses the so-called rooted pathwidth rpw(T)
(the width of a minimum-width unordered upward drawing [4]) to find a path
along which to split the tree and recurse.

However, the method to construct these drawings relies on first construct-

JGAA, 21(4) 631–648 (2017) 633

ing an x-monotone poly-line drawing and then stretching it into a straight-line
drawing. This generally results in extremely large height, and in fact, one can
argue that for some trees exponential height is required for drawings of optimal
width. It hence makes sense to allow more width if this reduces the height
drastically. This motivates the second algorithm of this paper, which creates
drawings whose width may be a factor of 2∆ away from the optimum, but
where the height is O(n). Here, ∆ is an upper bound on the number of children
that a node has. In particular, this gives ideal drawings of area O(∆n log n);
the existence of such drawings was previously shown only for binary trees by
Garg and Rusu [10]. With a minor modification, the algorithm achieves width
2rpw(T)−1 ≤ 2 log(n+1)−1 for binary trees, while the one by Garg and Rusu
used width up to 3 log n.

2 Preliminaries

A rooted tree T consists of n nodes V , of which one has been selected to be the
root, and all non-root nodes have a unique parent in such a way that the root
is the ancestor of all other nodes. We say that T has arity ∆ if all nodes have
at most ∆ children. A binary (ternary) tree is a tree with arity 2 (3). A node
without children is called a leaf. A root-to-leaf path is a path from the root to
some leaf.

For any node v, we use Tv to denote the subtree of T consisting of all
descendants of v (including v itself). We assume that for each node a specific
order of the children has been fixed. We usually use c1, . . . , cd for the children
of the root, enumerated from left to right.

A drawing of T maps each node v to a grid-point with integer coordinates.
The width (height) of such a drawing is the smallest integer W (H) such that
(after possible translation) all used grid-points have x-coordinate (y-coordinate)
in {1, . . . ,W} ({1, . . . ,H}). The grid-line with x-coordinate (y-coordinate) i is
called column i (row i). All drawings are required to be planar (i.e., no two
edges cross), upward (i.e., parents have no smaller y-coordinate than their chil-
dren, and edges are drawn y-monotonically) and order-preserving (i.e., at every
node the edges to the children appear in the prescribed left-to-right order at
the node). The drawings we construct are in fact strictly upward, i.e., parents
have strictly larger y-coordinate than their children and edges are drawn strictly
y-monotone. We usually consider straight-line drawings where edges are repre-
sented by straight-line segments between their endpoints, but occasionally relax
this to poly-line drawings, where edges may have bends, as long as these bends
are also at grid-points and the curve of the edge remains y-monotone. An ideal
drawing is planar, strictly-upward, order-preserving and straight-line. We often
identify the graph-theoretic concept (node, edge, subtree) with the geometric
feature (point, poly-line, drawing) that represents it.

Crucial for our construction is the so-called rooted pathwidth rpw(T) of a
tree T [4]. We set rpw(T) := 1 if T is a path from the root to a (unique) leaf.

634 T. Biedl Ideal Tree-Drawings

Else, we set

rpw(T) := min
P⊂T

max
T ′⊂T−P

{1 + rpw(T ′)} , (1)

where the minimum is taken over all root-to-leaf paths P in T and the maximum
is taken over all subtrees that remain after removing the nodes of P from T .
Figure 1 illustrates this concept.

1

1

1 1 1

1

1

1

1

1

11

1 2

2

2

2

P

Figure 1: A rooted tree with rpw(Tv) indicated for all subtrees Tv. The rpw-
main path is bold. Example taken from [4].

A root-to-leaf path P is called an rpw-main-path if the minimum in (1) is
achieved when using P . If the root has a child c with rpw(Tc) = rpw(T), then
any rpw-main-path must contain child c for (1) to hold. Therefore there can
exist at most one child c of the root with rpw(Tc) = rpw(T). If such a child
exists, then we call it the rpw-heavy child of the root.

It follows from the lower-bound argument in [6] (and was shown explicitly
in [4]) that any planar upward drawing of a tree T has width at least rpw(T),
even if the drawing is neither straight-line nor order-preserving.

3 A 2-approximation

This section details an algorithm to create ideal drawings of width 2rpw(T)−1,
hence a 2-approximation for the width. This algorithm is very similar to the
one hinted at by Chan in his remarks [5]; the only difference is that we choose
the “heavy” child to be the rpw-heavy-child, rather than the one whose subtree
is biggest.

We first construct a poly-line drawing with the additional requirements that
edges are drawn x-monotonically. Then we “straighten out” such a drawing to
become a straight-line drawing, at the cost of increasing the height.

Theorem 1 Any tree T has an order-preserving planar strictly-upward drawing
of width at most 2rpw(T)−1. Furthermore, every edge is drawn x-monotonically,
and the height is at most 2n− `(T), where `(T) denotes the number of leaves of
T .

JGAA, 21(4) 631–648 (2017) 635

Proof: We prove a slightly stronger statement, namely, we can create such a
drawing such that the root is in the top-left corner. (A symmetric construction
gives a drawing where the root is in the top-right corner.) Clearly the claim
holds for a single node, so assume that the root has children. We know that
there can be at most one rpw-heavy child ch with rpw(Tch) = rpw(T). Set
W := 2rpw(T)− 1; we aim to create a drawing within columns 1, . . . ,W .

Case 1: There is no rpw-heavy child, or ch = c1: Recursively draw the subtree
at each child with the root at the top-left corner. Recall that rpw(Tci) ≤
rpw(T)−1 for i > 1 and hence the drawings have width at most 2rpw(Tci)−1 ≤
2rpw(T)− 3 = W − 2. We may assume, after padding with empty columns on
the right, that the drawing of Tci has width exactly W − 2 for i > 1. The
drawing of Tc1 has width at most W ; for ease of description we pad it with
empty columns on the right so that it has width exactly W .

Combine these drawings with the “standard” construction of drawing trees
already used in [5, 6]. Thus, place the root in the top-left corner. Place the
drawings of Tcd , . . . , Tc2 , in this order from top to bottom, within columns
2, . . . ,W − 1. Since the root is in column 1 and each ci (for i > 1) is in
column 2, the edge to ci can be drawn straight-line. Place the drawing of Tc1

below all the other drawings, in columns 1, . . . ,W . We can connect the edge
from the root to c1 going vertically down. See Figure 2(a).

root

rpw(Tc1) = rpw(T)

Tcd

Tc2

column W

(a)

root

rpw(Tch) = rpw(T)

column W

Tcd

Tc1

(b)

Figure 2: A 2-approximation algorithm for the width.

636 T. Biedl Ideal Tree-Drawings

Case 2: ch 6= c1: Draw Tch recursively with the root in the top-right corner,
and draw Tci for i 6= h recursively with the root in the top-left corner. Pad the
drawings of Tch with columns on the left so that it has width exactly W , and
pad the drawing of Tci for i 6= h with columns on the right so that it has width
W − 2.

Place the root in the top-left corner. Place the drawings of Tcd , . . . , Tc1 , in
this order from top to bottom, in columns 2, . . . ,W−1, except omit the drawing
of Tch and leave one row empty in its place. As before one argues that these
drawings fit and that we can connect the root to each ci for i 6= h. Place the
drawing of Tch below all the other drawings. We can connect the edge from
the root to ch (while maintaining the order of the children) with two bends, by
using the empty row between Tch−1

and Tch+1
and column W . See Figure 2(b).

In both cases the height of the drawing is the sum of the heights of the
subtrees, plus one row for the root and (possibly) one row for the first bend.

Hence it is at most 1+
∑d

i=1(2n(Tci)−`(Tci))+1 = 2(n−1)−`(T)+2 = 2n−`(T)
as desired. �

Corollary 1 Every tree T has an ideal drawing of width at most 2rpw(T)− 1.

Proof: By the previous theorem T has a planar strictly-upward order-preser-
ving poly-line drawing of this width such that edges are drawn x-monotonically.
It is known [8, 9, 11] that such a drawing can be turned into a straight-line
drawing without increasing the width. Neither of these references discusses
whether strictly-upward drawings remain strictly-upward, but it is not hard to
show that this can be done for the construction of Theorem 1: essentially each
subtree needs to “slide down” far enough to allow bends to be straightened out.

�

Since T requires width at least rpw(T) in any upward planar drawing [4],
this gives the desired 2-approximation algorithm. Since rpw(T) ≤ log(n + 1)
[4], this also re-proves the remark by Chan [5] that trees have order-preserving
strictly-upward planar drawings of area O(n log n) and ideal drawings of width
O(log n). Unfortunately the height of these ideal drawings may be very large,

and so the area is no improvement on the area of O(4
√

log nn) achieved by Chan
[5] for straight-line order-preserving upward drawings. It remains open to find
ideal drawings of area O(n log n) for trees with arbitrary arity. (For bounded
arity, such drawings will be constructed below.)

3.1 Ternary trees

For ternary trees, a minor change to the construction yields optimum width.

Theorem 2 Every ternary tree T has an order-preserving strictly-upward draw-
ing of optimal width rpw(T) and height 4

3n −
1
3 such that every edge is drawn

x-monotonically.

JGAA, 21(4) 631–648 (2017) 637

Proof: We show something slightly stronger: T has such a drawing, and the
root is either placed at the top-left or at the top-right corner. The choice between
these two corners depends on the structure of the tree (i.e., it can not be chosen
by the user). Clearly the claim holds for a single-node tree T , so assume that
T consists of a root vr with children c1, . . . , cd, in order from left to right. Set
W := rpw(T).

Recursively draw each sub-tree Tci with width rpw(Tci). We know that
there can be at most one rpw-heavy child ch with rpw(Tch) = rpw(T) = W ; for
all other children ci we have rpw(Tci) ≤ rpw(T) − 1 = W − 1. If there is no
rpw-heavy child, then define h := 1. Pad all the drawings with empty columns
so that the drawing of Tci has width W − 1 if i 6= h and width W if i = h. The
empty columns are added on the opposite side (left or right) from the root, so
that the root continues to be in the top-left or top-right corner.

As before we distinguish by h, but in contrast to before we use the location
of ch in the drawing of Tch to determine where to put the root of T .

Case 1: ch = c1: In this case the construction is almost exactly as for Theo-
rem 1 (Case 1): the root is in the top-left corner and the subtrees are placed in
columns 2, . . . ,W , except for subtree Tc1 , which occupies all columns. However,
it may now be that for i = 1, 2, 3 tree Tci has its root ci in the top-right corner.
If needed, we hence use one bend (and, for i = 2, an extra row) to connect from
the root to ci; this gives an x-monotone drawing. See Figure 3(a).

Case 2: ch = cd: In this case the construction is symmetric: the root is in the
top-right corner. See Figure 3(b).

Case 3: All remaining cases: We know that d ≤ 3 since the tree is ternary. If
d ≤ 2 then one of the previous two cases applies, so we have d = 3. Also, we
have h = 2, else one of the previous cases would apply. We know that in the
drawing of Tc2 node c2 is placed in one of the top corners.

Case 3a: c2 is in the top-right corner: In this case the construction is similar to
the one for Case 2 of Theorem 1: Place the root vr in the top-left corner, place
Tc3 in columns 2, . . . ,W , place bends for edge (vr, c2), place Tc1 in columns
1, . . . ,W − 1, and finally place Tc2 and connect the edge (vr, c2). Two bends
suffice for (vr, c2) since c2 is in the top-right corner, and so the edge is x-
monotone. See Figure 3(c).

Case 3b: c2 is in the top-left corner: In this case the construction is symmetric:
the root is in the top-right corner. See Figure 3(d).

Clearly the height is at most 4n−1
3 = 1 if n = 1. If n > 1 and we needed no

extra row for bends, then the height is at most 1+
∑d

i=1

(
4
3n(Tci)− 1

3

)
≤ 4

3n−
1
3

since
∑d

i=1 n(Tci) = n − 1. If n > 1 and we did need an extra row for bends,
then d = 3 and therefore the height is at most

2 +

3∑
i=1

(
4

3
n(Tci)−

1

3

)
= 2 +

4

3
(n− 1)− 1 =

4

3
n− 1

3

as desired. �

638 T. Biedl Ideal Tree-Drawings

root

T1

T2

T3

(a) Case 1.

root

T1

T2

T3

(b) Case 2.

root

T1

T2

T3

(c) Case 3a.

root

T1

T2

T3

(d) Case 3b.

Figure 3: The construction of optimum-width drawings for ternary trees.

As before, bends in x-monotone curves can be “straightened out” by sliding
down, and so we have:

Corollary 2 Every ternary tree T has an ideal drawing of optimum width
rpw(T).

It is worth mentioning that the corollary cannot be generalized to higher
arity: There exists a 4-ary tree T with rpw(T) = 2 that has no ideal drawing
of width 2 [4].

3.2 Super-polynomial height

Corollary 2 makes no claim on the height. Indeed, the transformations to
straight-line drawings might increase the height exponentially in general (see
[3]), and as we show now, also for ideal drawings of trees.

These lower bounds actually hold in under slightly weaker assumptions; we
can replace “strictly-upward” by “upward”, i.e., horizontal edges are allowed.
For lack of a better name, we say that a tree drawing is weakly-ideal if it is
order-preserving, planar, straight-line and upward (but not necessarily strictly-
upward).

Theorem 3 For any i ≥ 1, there exists a ternary tree Ti that has an ideal
drawing of width i, any weakly-ideal drawing requires width at least i, and any
weakly-ideal drawing of width i has height at least (i− 1)! ∈ nΩ(log log n).

Proof: The proof is by induction on i. We define two such trees, TR
i and

TL
i , that in addition to the claim satisfy the following: In any weakly-ideal

drawing of TL
i of width i, the root is in the top-left corner and some point in

the rightmost column has vertical distance (i.e., difference in y-coordinate) at
least (i− 1)! from the root. TR

i is symmetric to TL
i , and hence in any weakly-

ideal drawing of width i the root is at the top-right corner and some point in
the leftmost column has vertical distance at least (i− 1)! from the root.

JGAA, 21(4) 631–648 (2017) 639

For i = 1, let trees TR
1 and TL

1 consist of a root with one child, which
obviously requires width at least 1. Fix some weakly-ideal drawing of width 1.
Clearly the root is in the desired corner. The child cannot be in the same row
as the root (even if horizontal edges are allowed) because the drawing has width
1. Therefore the vertical distance of the child from the root is at least 1 = 0!,
and the child is in the leftmost and rightmost column as desired.

For i ≥ 2, we only give the construction for TL
i ; the one for TR

i is symmetric.
Tree TL

i consists of the root vr with three children c1, c2, c3, see also Figure 4(a).
Subtree Tc1 is a complete binary tree of height i with 2i−1 nodes, while Tc2 and
Tc3 are two copies of TR

i−1. The idea of the proof is as follows. Tc1 requires width
i, and therefore “blocks” the other subtrees from using column 1. Therefore
subtrees Tc2 and Tc3 are drawn with width i − 1, so the inductive hypothesis
applies to them. This forces some of their vertices to be drawn in such a way
that the height must increase by a factor of i when combining them.

We first argue that T i
L requires width at least i. This holds because (as one

shows easily by induction) the complete binary tree with 2i−1 nodes has rooted
pathwidth i. Therefore rpw(Tc1) = i and already Tc1 requires width i.

Next, we argue that T i
L can be drawn with width i. To this end, find a

straight-line drawing of Tc1 with width i. This exists, because any tree T has
a (not necessarily order-preserving) planar strictly-upward drawing of width
rpw(T) [4]. Since Tc1 is symmetric, this drawing is in fact order-preserving for
Tc1 , so it has an ideal drawing of width i. Combining this drawing of Tc1 with
the (recursively obtained) drawings of TR

i−1 for Tc2 and Tc3 , one can easily create
an ideal drawing of TL

i of width i. See also the poly-line drawing in Figure 4(a),
which can be stretched to remove the bend without adding width.

Now fix an arbitrary weakly-ideal drawing of TL
i that uses exactly i columns.

Since Tc1 requires width i, its drawing contains a point p1 in the rightmost
column. The path from root vr to p1 must be below the drawings of Tc2 and
Tc3 by the order-property, and hence blocks both Tc2 and Tc3 from using the
leftmost column.

Hence for k = 2, 3, tree Tck is drawn with width at most i − 1. Since
Tck = TR

i−1, therefore induction applies. So ck is drawn in the rightmost column
(i.e., in column i), and the drawing of Tck contains a point pk that is in the
leftmost column of the induced drawing of Tc1 (i.e., in column 2) and has vertical
distance at least (i− 2)! from ck.

Now we can prove the bound on the height. Consider the edge from the root
vr to c2, which is drawn as a straight-line segment vrc2. By order-property, edge
(vr, c3) must leave vr to the right of edge (vr, c2). Since c2 and c3 are both in the
rightmost column, therefore c3 must be above c2. By upwardness c3 is no higher
than vr, therefore c3 is to the right of vrc2. By planarity and upwardness, and
because c2 is in the rightmost column, hence all of Tc3 (and in particular node
p3) must be to the right of vrc2. Since p3 is in column 2 and c2 is in column i,
this forces vr to be in column 1 as desired. Furthermore, c2 must be low enough
for vrc2 to be to the left of p3. For ease of calculation, translate so that the root
has y-coordinate 0. We hence must have 0 ≥ y(c3) ≥ y(p3) + (i− 2)!, and hence
vrc2 has slope less than −(i− 2)!. Since it covers a horizontal distance of i− 1,

640 T. Biedl Ideal Tree-Drawings

vr

TR
i−1

c3

p3

TR
i−1

c2

tree
requiring
width i p1

c1

i− 1

(i− 2)!

(a)

c1

cd

cd−1

T ′

c2

(n
−

9)
/
6
co
p
ie
s

(b)

Figure 4: (a) Tree T i
L for Theorem 3. (b) Tree T for Theorem 4. For the lower

bound for strictly-upward drawings, delete cd.
In both drawings, we add bends to some edges for ease of drawing, but the edges
are x-monotone and hence a straight-line drawing of the same width exists.

hence the vertical distance of c2 to the root is at least (i− 1)! as desired.
This finishes the construction for TL

i , and the argument that it requires
height at least (i − 1)!. It remains to analyze the size of the tree and hence
obtain the asymptotic bound. The number N(i) of nodes of TL

i is the same as
the number of nodes of TR

i and satisfies the recursive formula N(1) = 2 and
N(i) = 1 + 2i − 1 + 2N(i − 1) = i 2i. To express i in terms of the number of
nodes n := N(i), observe that

(log(n)− log log(n)) 2log(n)−log log(n) < log(n)
n

log(n)
= n = N(i) = i2i,

so i > log(n)− log log(n). For sufficiently large n the required height is at least

(i− 1)! > (log n− log log n− 1)! ≥ (
log n

4
)

log n
4 = (2log log n−2)

log n
4 = n

log log n−2
4

as desired. �

This proof requires arity at least 3, because we needed one subtree to force
the width and two recursively constructed subtrees to increase the height-bound.
We suspect that some super-linear bound holds even for binary trees, but this
remains open.

Conjecture 1 There exists a binary tree such that any optimum-width order-
preserving upward drawing has height ω(n).

JGAA, 21(4) 631–648 (2017) 641

While the lower bound in Theorem 3 is asymptotically larger than any poly-
nomial, it grows less than exponential. We now show that for trees higher arity,
exponential height is sometimes required. Whether such exponential height is
required also for some trees of constant maximum degree remains open.

Theorem 4 For any d ≥ 4, there exists a d-ary tree T with n = 6d − 3 nodes
that has an ideal drawing of width 3, but any weakly-ideal drawing of width 3 is
required to have height at least 3 · 2d−2 − 1 = 3 · 2(n−9)/6 − 1.

Proof: We construct tree T as follows (see also Figure 4(b)): The leftmost
child c1 is the root of a complete binary tree with 7 nodes which needs 3 units
of width. The rightmost child cd is a single node.1 All other children c2, . . . , cd−1

are the root of a subtree T ′ that satisfies the following: T ′ has an ideal drawing
of width 2, but any weakly-ideal drawing of T ′ has the root in the right column,
and there exists a node p in the left column and at least two rows below the
root. One can easily show that the 6-node tree T ′ in Figure 4(b) satisfies this
with the gray node as p.

Fix an arbitrary weakly-ideal drawing of width 3 of tree T . Since Tc1 requires
width 3, there exists a point p1 of Tc1 in column 3. The path from the root to p1

blocks the leftmost column for all other subtrees, so Tci for i > 1 is drawn with
width at most 2. For 1 < i < d, therefore Tci is drawn with width 2, implying
that ci is in column 3 and there is a point pi of Tci in column 2 that is at least
two units below ci. The goal is to show that the vertical distance of pi from the
root increases exponentially with d− i.

After possible translation, assume that the root vr has y-coordinate 0. We
also know that vr is in column 1, because the line-segment vrc3 must bypass
point p2, which is in column 2. We show that for 1 < i < d node pd−i must
be placed with y-coordinate at most −(3 · 2i − 3). Observe that cd−1 is strictly
below the root since it is neither the leftmost nor the rightmost child. By
assumption pd−1 is at least two units below cd−1, hence has y-coordinate at
most −3 = −(3 · 21 − 3).

For the induction step, assume i ≥ 2 and that pd−i+1 is placed with y-
coordinate at most −(3 · 2i−1 − 3). The straight-line segment vrcd−i connects
column 1 and 3 and by planarity and order-property must intersect column 2
at a point below pd−i+1. Let Y be the y-coordinate of this intersection, then
Y < −(3 · 2i−1 − 3) and the y-coordinate of cd−i is 2Y < −(3 · 2i − 6). Since
cd−i has integral y-coordinate, therefore its y-coordinate is at most −(3 ·2i−5).
Since pd−i is two units below, it has y-coordinate at most −(3 · 2i − 3) and the
induction holds.

For p2 = pd−(d−2), we hence have y-coordinate at most −(3 · 2d−2 − 3). The
path from the root to point p1 in Tc1 must pass below p2, and so uses at least
one more row. Since the root was at y-coordinate 0 and the height counts the
number of rows, the height of the drawing therefore is at least 3 · 2d−2− 1. The

1For strictly-upward drawings, this node can be omitted and the height lower-bound then
becomes 3 · 2d−1 − 1 with d = n−2

6
.

642 T. Biedl Ideal Tree-Drawings

number of nodes in T is n = 1 + 7 + (d− 2)6 + 1 = 6d− 3, so d− 2 = (n− 9)/6
which proves the claim. �

4 A 2∆-approximation with linear height

In 2003, Garg and Rusu [10] showed that every binary tree has an ideal drawing
of width O(log n) and height at most n. However, their construction does not
generalize to higher arity (unless one drops “upward”). We now give a different
construction that achieves these bounds for any tree that has constant arity.

Theorem 5 Every ∆-ary tree T has an ideal drawing of width at most (2∆−1)
· (rpw(T)−1)+1 and height at most n.

In particular any rooted tree has an ideal drawing of area O(∆n log n); this

is an improvement over the area-bound of O(4
√

log nn) by Chan [5] for small
(but bigger than constant) values of ∆.

Proof: For ease of description, define shortcuts r := rpw(T) and W (i) :=
(2∆−1)(i−1)+1; we aim to create drawings of width at most W (r). As before
we create drawings where the root is in the top-left corner, and a symmetric
construction places the root in the top-right corner.

If r = 1 then W (1) = 1 and T is a path from the root to a single leaf. We
can draw T in a single column as desired. So assume r > 1, which means that
∆ ≥ 2 and that the root has children c1, . . . , cd, 1 ≤ d ≤ ∆. We know that there
can be at most one child rpw-heavy child ch with rpw(Tch) = rpw(T) =: W .

Case 1: There is no rpw-heavy child, or ch = c1: In this case, draw the tree
as in the “standard” construction, i.e., recursively obtain drawings of each Tcj ,
j = 1, . . . , d, with cj in the top-left corner and combine as in Figure 2(a). The
drawing of Tc1 has width at most W (r) and the drawing of each Tcj for j > 1
has width at most W (r−1) ≤ W (r) − 1, to which we add at most one unit
width. Clearly all conditions are satisfied.

Case 2: ch 6= c1: The construction in this case is much more complicated
(and quite different from Garg and Rusu’s). We use W (r) = W (r−1) + 2∆− 1
columns for our drawing, and split them into 3 groups as follows:

• The leftmost ∆−1 columns are called left-detour columns. The rightmost
of the left-detour columns is called the left-overhang column.

• The next W (r−1) + 1 columns are the middle columns; the leftmost and
rightmost of the middle columns are called the left-path and right-path
column, respectively.

• The rightmost ∆ − 1 columns are called the right-detour column. The
leftmost of the right-detour columns is called the right-overhang column.

JGAA, 21(4) 631–648 (2017) 643

Figure 5(a) sketches the construction. The main tool is to use a rpw-heavy path
P = v0, v1, v2, . . . Note that v1 must be child ch, and so in particular v1 is not
the leftmost child of v0 by case assumption.

We first outline the idea. To place path P , we split it into many sub-paths
of length at least 2. These sub-paths are alternatingly placed “on the left” (in
the left-path column or the left-overhang column) and “on the right” (in the
right-path column or the right-overhang column). Whenever possible, subtrees
are placed in the middle columns. However, this is not always possible for the
top-most and bottom-most node of a sub-path. For these, we use the detour-
columns, either for placing the node or for placing its children. However, the
subtrees at these nodes or children cannot be placed here; instead we put them
“much farther down”, namely, at such a time when path P has veered to the
other side and therefore the middle columns are accessible.

The precise split into sub-paths is determined at the same time as we place
the path v0, v1, v2, We maintain a counter i and running indices `i and
ri. The ith left path consists of vertices vri−1+1, . . . , v`i while the ith right path
consists of vertices v`i+1, . . . , vri . In other words, `i and ri are the indices of
the last vertex of the corresponding path.

Place the root v0 in the top-left corner. Initialize i = 1 and set `1 = 0. The
first left path hence consists of just v0; the first right path starts at v1 (it ends
at vr1 , where r1 will be determined below). We hence know that all nodes in
v0, . . . , v`i have been placed already. Now repeat:

• v`i+1 is placed in the right-overhang column, one row below v`i .

• v`i+2 is placed in the right-path column, some rows below.2

• While vj is the rightmost child of vj−1 (for j = `i + 3, `i + 4, . . .), place it
in the right-path column, some rows below.

• Let ri ≥ `i + 2 be the maximal index for which vri was placed in the
right-path column in the previous two steps. So vri+1 is not the rightmost
child of vri .

• Place vri+1 in the left-overhang column, one row below vri .

• Place vri+2 in the left-path column, some rows below.

• While vj is the leftmost child of vj−1 (for j = ri + 3, ri + 4, . . .), place it
in the left-path column, some rows below.

• Let `i+1 ≥ ri + 2 be the maximal index for which v`i+1
was placed in the

left-path column in the previous two steps.

• Update i := i + 1, and repeat until we reach the end of path P .

2“Some rows below” means “so that this node is below all the subtrees that need to be
inserted above it by later steps”. For this particular situation here, this is the height of the
drawings of the subtrees at left children of v`i and v`i+1

and (for i > 1) also of the subtrees
at children of the left children of vri−1 .

644 T. Biedl Ideal Tree-Drawings

v0 = v`1

vr1

le
ft
-o
v
er
h
a
n
g

ri
g
h
t-
ov
er
h
a
n
g

le
ft
-p
a
th

ri
g
h
t-
p
a
th

middle columnsleft-detour right-detour

v`2 right children of v`2

left children of vr1

vr2

left children of vr2

vr2+1

right children of vr1

right children of v`1+1

right children of v`1

right children of vr1+1

right children of vr1+2

grandchildren of v`1

1.

4.

6a.

6b.

6c.

7.

(a)

v0 = v`1

vr1

le
ft
-o
v
er
h
a
n
g

ri
g
h
t-
ov
er
h
a
n
g

le
ft
-p
a
th

ri
g
h
t-
p
a
th

middle columns

v`2

vr2vr2+1

right child of vr1

right child (if any) of v`1+1

right child (if any) of vr1+1

right child of vr1+2

left child (if any)
of v`1+1

v`2+1

(b)

Figure 5: The construction for order-preserving straight-line drawings if the rpw-
heavy child of the root is not the leftmost child. Path P is purple and dashed.
(a) The construction for arbitrary ∆. The numbers on the right indicate the
step during which these children/subtrees were placed. (b) The modified version
for ∆ = 2. Some subtrees now use an overhang column.

For any non-leaf node v on P , let the left (right) children of v be all those

JGAA, 21(4) 631–648 (2017) 645

children of v that are strictly left (right) of the child of v on P . We now
explain how to place all the subtrees at right children of nodes v`i , . . . , v`i+1−1,
for i = 1, 2, The subtrees at left children are placed symmetrically.

1. We start at v`i . The right children of v`i are placed, in order, in the row
below v`i and in distinct right-detour columns. By choice of `i (or, for
i = 1, by case assumption) node v`i+1 is not the leftmost child of v`i . So
v`i has at least one left child, therefore at most ∆−2 right children, which
means that there are sufficiently many right-detour columns for placing
the right children as well as v`i+1. Since these children are one row below
v`i , we can connect them to v`i with a straight-line segment (drawn curved
in Figure 5(a) for increased visibility). The subtrees at these children are
not being placed yet; this will happen in Step 6.

2. The next node is v`i+1, which is in the right-overhang column one row
below v`i . The subtrees at its right children will be placed in Step 6.

3. The next nodes are v`i+2, . . . , vri−1 (this set may be empty). By choice
of ri these nodes do not have right children. The rows for these nodes (as
well as vri) are determined by the symmetric version of Step 7 that places
subtrees at left children.

4. The next node is vri , placed in the right-path column. We place the
subtrees at its right children with the symmetric version of the standard
construction of Figure 2(a). Thus, recursively obtain for each such subtree
a drawing of width at most W (r−1) with the child in the top-right corner.
Place these, in order, in the rows below vri and in the columns to its left
(except for the last child, which shares the column with vri). This fits
within the middle columns since there are W (r−1) + 1 middle columns
and vri is in the rightmost of these.

5. Next comes node vri+1, in the row below vri and the left-overhang column.
This node might share a row with some right child of vri but uses a different
column. The subtrees at vri+1’s right children will be will be placed later
(in Step 6).

6. Now we place the three sets of subtrees that were deferred earlier.

(a) First, draw the subtrees at right children of v`i+1 recursively with
their roots in the top-right corner. Place these drawings, flush right
with the right-path column, below all the trees of right children of v`i .
Recall that v`i+1 was placed in the right-overhang column while its
children are now in the right-path column, which is adjacent. Hence
the edges can be drawn with straight-line segments (shown again
with curves in Figure 5(a)).

(b) Next, we parse the right children of v`i in left-to-right order. If c
is such a child, then c was placed much higher up already in one of
the right-detour columns. Let g1, . . . , gd be the children of c (hence

646 T. Biedl Ideal Tree-Drawings

grand-children of v`i). For k = 1, . . . , d, create a drawing of Tgk

with gk in the top-right corner. Place these drawings in the middle
columns as well as the right-detour columns so that g1, . . . , gd are one
column to the left of c. Then c can be connected with straight lines
(shown again with curves).

(c) Finally place the subtrees at right children of vri+1. Recursively draw
each such subtree with the root in the top-left corner. Place these,
in order, flush left with the left-path column, and draw the edges to
vri+1 as straight-line segments.

7. Next come nodes vj for j = ri + 2, ri + 3, . . . , `i+1 − 1. For each j, place
vj in the next row (i.e., the first row below what was drawn so far) and
in the left-path column. Recursively draw the subtree at each right child
of vj with the root in the top-left corner. Place these, in order, flush left
with the column that is one right of the left-path column.

8. Finally put v`i+1
in the next row; and go to Step 1 with the next i.

This ends the description of the construction, which has width W (r) as
desired. All rows contain nodes, so the height is at most n. �

4.1 The special case of binary trees

We note that for binary trees, our construction gives a width of at most 3rpw(T),
hence a 3-approximation. This can be turned into a 2-approximation by decreas-
ing the number of middle columns.

Corollary 3 Every binary tree T has an ideal drawing of width 2rpw(T)− 1 ≤
2 log(n + 1)− 1 and height at most n.

Proof: Define W ′(r) recursively to be W ′(1) = 1 and W ′(r) = W ′(r−1) + 2
(which resolves to W ′(r) = 2r − 1). Apply exactly the same construction as
before, using ∆− 1 = 1 overhang columns on each side, but use only W ′(r− 1)
middle columns. See also Figure 5(b).

It remains to argue that we can do the construction using one less middle
column per recursion. We show here only that the subtrees at right children
“fit”; the argument is symmetric for the left children. This can be seen (for
i = 1, 2, . . .) as follows:

• Node v`i has no right child since the tree is binary and by choice of `i it
has a left child.

• The subtree at the right child of v`i+1 (if any) has width at most W ′(r−1)
by induction. This fits into the middle columns. We can connect the child
to v`i+1 since the latter is in the right-overhang column, i.e., in an adjacent
column.

• Node vj with `i + 2 ≤ j ≤ ri − 1 has no right child by choice of ri.

JGAA, 21(4) 631–648 (2017) 647

• Node vri has at most one right child since the tree is binary. This child
is placed vertically below ri, and hence its subtree can use all middle
columns.

• The subtree at the right child of vri+1 (if any) has width at most W ′(r−1)
by induction. This fits into the middle columns. We can connect the child
to vri+1 since the latter is in the left-overhang column, i.e., in an adjacent
column.

• Consider node vj for j with ri + 2 ≤ j ≤ `i+1 − 1, which is placed in
the left-path column. The subtree at its right child may use W ′(r − 1)
columns, but only W ′(r − 1) − 1 of the middle columns are available for
it, since the left-path column is used by vj and edge (vj , vj+1). However,
at this y-range no node or edge uses the right-overhang column, so we can
use the right-overhang column to place the subtree at the right child.

Hence the construction works, for binary trees, with only W ′(rpw(T)) middle
columns, and the width is hence at most W ′(rpw(T)) ≤ 2rpw(T)− 1. �

5 Concluding remarks

This paper gave approximation algorithms for the width of ideal drawings of
trees, i.e., grid-drawings that are planar, strictly-upward, order-preserving and
straight-line. It was shown that one can approximate the width within a factor
of 2 (and even find the optimum width for ternary trees), albeit at the cost of
a very large height. A second construction gave drawings with linear height for
which the width is within a factor of 2∆ of the optimum. In particular this
implies ideal drawings of area O(n log n) for all trees with constant arity.

The algorithms implicit in the proofs clearly take polynomial time. With
suitable data structures (storing drawings of subtrees as a black-box that only
stores the size of the bounding box and the offset relative to some references
point), the time to combine the d subtrees of the root is O(d), resulting in linear
run-time overall. This assumes that arbitrarily large coordinates can be handled
in constant time (a non-trivial assumption for those straight-line drawings where
the height may be exponential).

Among the most interesting open problems is whether it is possible to find
the minimum width of ideal tree-drawings in polynomial time. Secondly, what
can be said if the height should be small? Does every rooted tree have a strictly-
upward straight-line order-preserving drawing of area O(n log n), or is it possible
to prove a lower bound of ω(log n) width if (say) at most n rows may be used?

648 T. Biedl Ideal Tree-Drawings

References

[1] M. J. Alam, M. A. Samee, M. Rabbi, and M. S. Rahman. Minimum-layer
upward drawings of trees. J. Graph Algorithms Appl., 14(2):245–267, 2010.
doi:10.7155/jgaa.00206.

[2] J. Batzill and T. Biedl. Order-preserving drawings of trees with approxi-
mately optimal height (and small width), 2016. CoRR 1606.02233 [cs.CG].
In submission.

[3] T. Biedl. Height-preserving transformations of planar graph drawings. In
Graph Drawing (GD’14), volume 8871 of LNCS, pages 380–391. Springer,
2014. doi:10.1007/978-3-662-45803-7_32.

[4] T. Biedl. Optimum-width upward drawings of trees, 2015. CoRR report
1506.02096 [cs.CG]. In submission.

[5] T. M. Chan. A near-linear area bound for drawing binary trees. Algorith-
mica, 34(1):1–13, 2002. doi:10.1007/s00453-002-0937-x.

[6] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area
algorithms for upward drawings of binary trees. Comput. Geom., 2:187–
200, 1992. doi:10.1016/0925-7721(92)90021-J.

[7] G. Di Battista and F. Frati. A survey on small-area planar graph drawing,
2014. CoRR report 1410.1006.

[8] P. Eades, Q. Feng, and X. Lin. Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. In Graph Drawing (GD’96),
volume 1190 of LNCS, pages 113–128. Springer, 1997. doi:10.1007/

3-540-62495-3_42.

[9] P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-line drawing algo-
rithms for hierarchical graphs and clustered graphs. Algorithmica, 44(1):1–
32, 2006. doi:10.1007/s00453-004-1144-8.

[10] A. Garg and A. Rusu. Area-efficient order-preserving planar straight-line
drawings of ordered trees. Int. J. Comput. Geometry Appl., 13(6):487–505,
2003. doi:10.1142/S021819590300130X.

[11] J. Pach and G. Tóth. Monotone drawings of planar graphs. Journal of
Graph Theory, 46(1):39–47, 2004. doi:10.1002/jgt.10168.

http://dx.doi.org/10.7155/jgaa.00206
http://dx.doi.org/10.1007/978-3-662-45803-7_32
http://dx.doi.org/10.1007/s00453-002-0937-x
http://dx.doi.org/10.1016/0925-7721(92)90021-J
http://dx.doi.org/10.1007/3-540-62495-3_42
http://dx.doi.org/10.1007/3-540-62495-3_42
http://dx.doi.org/10.1007/s00453-004-1144-8
http://dx.doi.org/10.1142/S021819590300130X
http://dx.doi.org/10.1002/jgt.10168

	Introduction
	Preliminaries
	A 2-approximation
	Ternary trees
	Super-polynomial height

	A 2-approximation with linear height
	The special case of binary trees

	Concluding remarks

