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Universitat Politècnica de Catalunya
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Abstract

We prove that every triangle-free planar graph is the intersection graph
of a set of segments in the plane. Moreover, the segments can be chosen in
only three directions (horizontal, vertical and oblique) and in such a way
that no two segments cross, i.e., intersect in a common interior point. This
particular class of intersection graphs is also known as contact graphs.
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1 Introduction

Given a set S of segments in the plane, its intersection graph has a vertex
for every segment and two vertices are adjacent if the corresponding segments
intersect. Intersection graphs of segments and other geometrical objects have
been widely studied in the past. For instance, if the segments are contained
in a straight line then we have the interval graphs [5], a well-known family of
perfect graphs. If the segments are chords of a circle then the intersection graph
is called a circle graph, see for instance [8, 10].

An interesting result, due to de Fraysseix, Osona de Mendez and Pach [4],
and independently to Ben-Arroyo Hartman, Newman and Ziv [2], says that every
planar bipartite graph is the contact graph (a particular case of intersection
graph, where no two segments cross) of a set of horizontal and vertical segments
and, in a different formulation, Tamassia and Tollis proved in [11] almost the
same result. On the other hand, it is known that the recognition of such graphs
is an NP-complete problem (see [6], [7] and recently [3]).

This result provides a partial answer to a question of Scheinerman [9]: Is
every planar graph the intersection graph of a set of segments in the plane?

The main result in this paper, which is a significant extension of [4], is that
every triangle-free planar graph is the intersection graph of a family of segments.
Moreover, the segments can be drawn in only three directions and in such a way
that they do not cross, i.e. the segments do not have any interior point in
common. This particular class of intersection graphs is also known as contact
graphs. We call such a representation a segment representation of the graph.
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Figure 1: A segment representation of a planar graph.

Our technique is similar in spirit to the one used in [2] for bipartite planar
graphs with some transformations. A key point in our proof is Grötzsch’s The-
orem [12], which guarantees that every planar triangle-free graph is 3-colorable.
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The sketch of the proof is as follows. Fixing an embedding of a given triangle-free
planar graph G, adding new vertices and (induced) paths between the vertices of
the graph we can obtain a new triangle-free graph embedded in the plane which
is a subdivision of a 3-connected graph. Starting with a 3-coloring, a segment
representation in three directions is obtained for this new graph using several
technical lemmas. Finally, removing the dummy vertices and paths, we obtain
a segment representation of the graph G. The three directions considered are
horizontal, vertical and oblique (parallel to the bisector of the second quadrant
of the plane).

2 Pseudo-convex faces with three directions

In this section we present some preliminaries and we indicate the basic tech-
niques that are used.

Let G be a planar graph, and consider a fixed embedding of G in the plane.
The embedding divides the plane into a number of regions that we call faces of
the graph. Let IG be a segment representation of G. We assume throughout
the paper that no segment continues beyond its last intersection with a segment
in another direction. The segment representation also partitions the plane into
regions which we call faces of the representation, whose are simple n-polygons
(if n ≥ 4, there is no pair of non-consecutive edges sharing a point).

The proof of our main result is based on adapting the concept of “convex
polygon” for segments in three directions.

A segment path of length n is a sequence of horizontal, vertical and oblique
segments P = {s1, . . . , sn} such that segment si intersects si−1 and si+1, for
1 < i < n. A segment path P = {s1, . . . , sn} is said to be monotone with
respect to a straight line l if any line orthogonal to l intersects P in exactly one
point.

We consider monotone paths of the segment representation with respect
to the following two lines: the bisector of the second quadrant of the plane
(l1 = {x + y = 0}) and the line (l2 = {x − 2y = 0}).

Since we can draw a monotone path rightward or leftward, we distinguish
four different kinds of monotone paths:

• A path P is an increasing monotone path to the right (IMPR) if its hor-
izontal segments are drawn rightward, its vertical segments are drawn
upward, and its oblique segments are drawn rightward and downward.

• A path P is a decreasing monotone path to the right (DMPR) if its hor-
izontal segments are drawn rightward, its vertical segments are drawn
downward, and its oblique segments are drawn rightward and downward.

• A path P is a decreasing monotone path to the left (DMPL) if its horizontal
segments are drawn leftward, its vertical segments are drawn downward,
and its oblique segments are drawn leftward and upward.
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• A path P is an increasing monotone path to the left (IMPL) if its horizontal
segments are drawn leftward, its vertical segments are drawn upward, and
its oblique segments are drawn leftward and upward.
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Figure 2: Monotone paths.

Let IG be a segment representation of a plane triangle-free graph G. Recall
that the face boundaries of the representation correspond to closed walks in G.
A face F of a segment representation is pseudo-convex if its boundary can be
divided into an IMPR, a DMPR, a DMPL and an IMPL (clockwise). It can
be seen that the partition of a pseudo-convex face into monotone paths is not
unique, but there are only a few possibilities and this does not modify the proofs
of the theorems. From now on, we consider the boundary of a pseudo-convex
face clockwise.

F
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IMPR

Pseudo-convex Face Non Pseudo-convex Face

Figure 3: The four paths of a pseudo-convex face.

Given a pseudo-convex face, we define the upper subpath as the union of its
IMPR and its DMPR and, the lower subpath as the union of its DMPL and
IMPL subpath. Analogously, we define the right subpath as the union of the
DMPR and DMPL, and the left subpath as the union of the IMPL and IMPR.
In this way the boundary of a pseudo-convex face can be considered as the
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union of the upper and lower subpaths, and also as the union of the right and
left subpaths. We say that the upper and lower subpaths are opposite subpaths
to each other (analogously with the right and the left subpaths).

F

Right subpath
Left subpath

Upper subpath

Lower subpath

Figure 4: The upper, lower, right and left subpaths of a pseudo-convex face.

Note that if F is a pseudo-convex face, and P is a monotone path inside
F connecting two segments in its boundary, then P partitions F into two new
pseudo-convex faces. Moreover, if two segments on the boundary of F can be
extended inside F until they cross, those extended segments also would split F
into two new pseudo-convex faces.

In order to build a segment representation of a plane graph G, we proceed
by representing the boundary of the outerface of G by contact segments, using
a pseudo-convex representation. If two vertices of the outerface are joined in
G by a path, we represent this path as a monotone segment path inside the
representation of the outerface, obtaining two pseudo-convex faces. Recursively
we represent monotone paths of G until the representation of the graph is com-
pleted.

We see then that in order to represent a graph by contact segments it is
necessary to join segments by segment paths inside the faces of the represen-
tation. We need to extend segments of the boundary of the faces inside them
to contact the segments. However it is not always possible to extend segments
inside a pseudo-convex face. A segment of a pseudo-convex is extensible along
one of its ends if and only if its angle inside the face is concave. Thus, a segment
of a pseudo-convex face is extensible by one of its ends, or by both or by none,
depending on the adjacent segments (see Figure 5).
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Non-extensible Extensible by one end Extensible by both ends

Figure 5: Extensible segments.

It is obvious that in order to join two segments inside a pseudo-convex face,
one of them must be extended, but this is not sufficient in general as we can
see in Figure 6: segment r2 can be extended inside F , but we can not join it
with r1 because r2 intersects other segments of the face. The segment r3 can be
also extended inside the face, but we cannot join r1 with r3 because they never
contact.

r1 2

3

r

r

Figure 6: Extension of segments.

According to the above remark, we have two different problems when we
try to join segments inside a pseudo-convex face; when the segments can be
extended inside the face, but they find some “obstacle” before the intersection
(other segments of the face), and on the other hand when the segments cannot
be extended or they never contact.

To solve these problems we define two basic operations in the segment repre-
sentation. The first operation is enlarging a segment of the representation, and
the second one is changing the sense of drawing of some segments. Although we
are interested in some specific segments, these operations will transform other
segments of the representation.
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Enlarging a segment means to increase its length, and obviously we also
need to increase the length of other segments of the representation and make
a translation of other segments without modifying their length. With this op-
eration we can keep away the obstacles and to overlap parallel segments, if we
want to join them by a segment path. The other operation allows us to extend
a segment by one of its ends, if it was not possible before. It changes the sense
of drawing of its adjacent segment and the other segments of its monotone path,
to preserve the pseudo-convexity of the face.

Figure 7: Transforming the segment representation.

The following technical lemmas allow us to construct a topological equivalent
representation where we modify some segments, allowing to join the segments
by a path of any length.

Lemma 1 Let IG be a segment representation of a subdivision of a 3-connected
plane graph G such that all its faces are pseudo-convex, let k be a positive real
number and let s be a segment on the boundary of a face F of IG. Then IG can
be transformed into another segment representation IG satisfying:

1. IG is topologically equivalent to IG (that is, the faces of IG and IG have
the same facial walks), and the faces of IG are pseudo-convex;

2. it is possible to enlarge s (and at most two segments on the opposite subpath
of F ), such that the length of s in IG is k + l.
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Proof:
The proof is by induction on the number of faces of the graph G. Firstly,

we suppose that F is just the boundary of IG, and let s be the segment of F
that we want to enlarge.

We can distinguish three cases depending on the direction of s.

Case 1 Let s be a horizontal segment.
If s is a horizontal segment in the upper subpath of F (analogously if s
is in the lower subpath) we look for a horizontal segment s′ in the lower
subpath of F . If there exists such segment we enlarge s and s′ by the same
amount and we make a translation of all the segments between s and s′,
transforming F into another pseudo-convex face (see Figure 8 (a)).

If there does not exist a horizontal segment s′ in the lower subpath of F ,
there must exist a vertical segment s′ and an oblique segment s′′ which
are adjacent in the lower subpath of F , because the boundary of F is a
closed path. In this case, we increase the length of s, s′ and s′′ and we
make a translation of the rest of the segments (see Figure 8 (b)).
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Figure 8: How to enlarge a segment of a pseudo-convex face by any amount,
using parallel segments (a), using three segments (b).

Case 2 If s is a vertical segment, the proof is as Case 1, considering the bound-
ary of F as the union of the right and left subpaths.

Case 3 If s is an oblique segment, the proof is similar to the other cases, con-
sidering the boundary of F as the union of the upper and lower subpaths.
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Suppose that G has two bounded faces and let us denote by u1, . . . , un the
vertices of G which are in both faces. Let {s1, . . . , sn} be the segments of IG

corresponding to u1, . . . , un, respectively, and let us denote by F1 and F2 the
boundary of the bounded faces in IG.
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Figure 9: The adjacent segments are s1, . . . , s4.

Let s be the segment of F1 we want to enlarge. By considerations given
above, this transformation will enlarge other segments of F1, but if none of these
segments belong to F2, we can reduce to Case 1 because the transformations
does not modify F2.

If we have selected two (or three) segments in F1 to enlarge them, they
will modify F2 if and only if F1 and F2 share more than one point of those
segments. Thus, we can suppose that F1 ∩ F2 ∩ s1 is not just one point, and
neither is F1∩F2∩sn. Otherwise, we do not consider the segments s1 and sn in
the subpath {s1, . . . , sn}. According to that, the path {s1, . . . , sn} is monotone
because the faces of IG are pseudo-convex.

Suppose that s is in F1. As in the case where G had only one bounded face,
in the opposite subpath of F1 we look for a parallel segment or two contiguous
segments non-parallel to s. If these segments are not in F2 we only modify F1

according to the first case.
Let us suppose that s belongs to F1 and we have found a parallel segment s′

in the opposite part of F1. Since F1 ∩ F2 is a monotone path and the segments
are in opposite parts of F1, just one of them belongs to F2. Now, the task is
to find a parallel segment in the opposite part of F2, and we are sure that this
new segment does not belongs to F1, so enlarging all selected segments, a new
representation IG′ equivalent to IG is obtained.

The same proof remains valid if we choose two contiguous segments s′ and
s′′ in F1 and they belong also to F2.

Suppose now that IG has n bounded pseudo-convex faces with boundaries
F1, . . . , Fn, and let s be a segment in the boundary of a face F . Since G is a
subdivision of a 3-connected graph, there exists a face (for example Fn) adjacent
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to the unbounded face (i.e., the boundary of the face in G corresponding to Fn

has an edge in the unbounded face H of G) and such that s is not in Fn ∩ H .
Thus, if we construct the graph G1 as the graph obtained from G by deleting
all the edges of the face of G corresponding to Fn which are contained in the
outerface, then we can assure that s belongs to G1.
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Figure 10: Induction.

Let v1, . . . , vk be the vertices of G, corresponding to the segments s1, . . . , sk

of Fn, which are also on the outerface, where v2, . . . , vk−1 are of degree two.
By removing the segments of IG corresponding to the vertices v2, . . . , vk−1, we
obtain a segment representation IG1 of G1.

Since IG1 has n − 1 faces, enlarging in any amount some of the segments,
we can transform its segment representation into another one which has the
same convex faces. To obtain this new representation, we have to enlarge other
segments in IG1 besides s, but we have preserved the structure of the segments
in the representation. So, we are able to represent again the segments corre-
sponding to v2, . . . , vk−1 enlarging the length of one (or two) of them, if it is
necessary, to obtain a segment representation of G. 2

We can see, using Lemma 1, that by enlarging some segments, a segment
representation with pseudo-convex faces can be transformed into another one
preserving the topology of the embedding. But this is not sufficient to join
segments inside a face, so we need another kind of transformation.
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Changing the sense of drawing of the segments of a monotone path of a
pseudo-convex face F (for instance, the segments which were drawn to the left
are drawn to the right) it is possible to draw a new pseudo-convex face F where
these segments belong now to another monotone path. The remaining paths of
F only change in the length of some of the segments (see Figure 11).
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Figure 11: How to restructure a face through a path.

In the segment representation, the change of the face F to F produces some
changes in the faces adjacent to F along the monotone path, and we obtain
another segment representation with pseudo-convex faces as in the proof of
Lemma 1 (see Figure 12). When we change the drawing in the manner described
above, we say that the face F is restructured through the monotone path.

Lemma 2 Let IG be a segment representation of a subdivision of a 3-connected
plane graph G such that all its faces are pseudo-convex. Let F be a face of IG.
Then, IG can be transformed into another segment representation IG satisfying:

1. IG is topologically equivalent to IG (that is to say, the faces of IG and IG

have the same facial walks), and the faces of IG are pseudo-convex;

2. the face F corresponding to F has been restructured through a monotone
path.

Proof: We first suppose that F is just the boundary of IG. It is easily seen that
we can change the drawing of the segments so that they belong to the previous
or the following monotone path.

Suppose now that IG has n bounded pseudo-convex faces. Let F be the face
that we want to restructure through the monotone path s1, . . . , sn. It is neces-
sary to change the sense of drawing of all the segments of the restructured path,
thus the other faces that contain in their boundaries the segments s1, . . . , sn

will be also restructured, but they will preserve their pseudo-convexity.
The main idea is that no other face of the representation will be modified,

except for the length of some segments, but by Lemma 1 it is possible to increase
the length of the segments of the representation preserving the pseudo-convexity.
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In fact, we can consider the faces adjacent to F . The union of these faces
determines a region of the plane, R, whose boundary is also a pseudo-convex
face. Since restructuring F only modifies the segments in the interior of R but
never in its boundary, the faces of the representation that are not adjacent to
F will keep their structure.

For instance, in Figure 12, we have restructured the face F and this trans-
formation forces restructuring the shaded face. Other faces of the segment
representation have been transformed in the length of some segments of their
boundaries, but by Lemma 1 they preserve their pseudo-convexity.

F

F

Figure 12: How to restructure the faces adjacent to the restructured face F .

2

3 Triangle-free graphs

We need the following result proved by Barnette [1]:

Theorem 1 If G is a subdivision of a 3-connected graph, there exists a family
Q1, . . . , Qn−1 of paths in G such that the family of subgraphs defined as G1 = G,
G2 = G1 − Q1, . . . , Gn = Gn−1 − Qn−1 satisfies the properties

1. Each Gk is a subdivision of a 3-connected graph.

2. Gn is a subdivision of K4.

Moreover, if we fix a subgraph of G which is a subdivision of K4, G can be
reduced, by deleting edges and paths, to this subgraph.

An easy consequence is that every planar triangle-free graph which is a sub-
division of a 3-connected graph can be reduced, by deleting edges and paths with
internal vertices of degree two, to a subdivision of a fixed complete subgraph K4

in such a way that in each step we have a subdivision of a 3-connected graph.
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This result will allow us to build a segment representation in three directions of
subdivisions of 3-connected graphs as follows. Firstly we build a segment rep-
resentation of a subdivision of K4 and then insert, in reverse order, the edges
and paths that were removed to obtain from G the subdivision of K4.

In order to do this, we need two basic operations: (1) insert a segment path
between two segments of the same face and (2) join two segments of the same
face. The second operation is, at least, as difficult as the first one, so we will
concentrate only in the second operation.

As we see in Figure 6, we can find some problems in the segment repre-
sentation to join two segments inside a face. Most of the cases can be solved
by changing the drawing of the segments of the representation with the basic
operations “enlarge segments” and “restructure faces”, but there are four rare
cases that need an special operation.

We need at this point some new definitions. Given a 3-colored plane graph
G with colors {h, o, v}, a path P = {u1, . . . , un} of G is rare if it verifies one of
the following conditions:

Case 1. u1 is colored as h, u2 as o, and un as v.

Case 2. u1 is colored as v, un−1 as h, and un as o.

Case 3. u1 is colored as h, u2 as o, un−1 as h, and un as o.

Case 4. u1 is colored as o, u2 as v, un−1 as v, and un as h.
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w
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w
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w
n
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sn

w
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Figure 13: Rare face (four rare paths).

A face of a graph is called rare if there exists a monotone path containing a
rare subpath (see Figure 13). We say that a rare face is repaired if we subdivide
its rare path with a new vertex colored as v between u1 and u2 in the first and
the third case, and between un−1 and un in the second case, or a new vertex
colored as h between u1 and u2 in the fourth case.
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In the following lemma, when we say that two segments s and t can be joined
by a segment path of length k, we mean a path {s, s1, s2, . . . , sk, t}.
Lemma 3 Let IG be a segment representation of a plane graph G and let s1 and
s2 be two distinct non adjacent segments in a pseudo-convex non-rare face F .
Then IG can be transformed into another segment representation IG satisfying

1. IG and IG have the same faces and face boundaries as G, and the faces of
IG are pseudo-convex;

2. s1 can be joined to s2 by a segment path of length k, for all k > 0, or
directly if s1 and s2 have not the same direction inside the pseudo-convex
face F , corresponding to F .

Proof: The proof falls naturally into two cases: the segments have the same
direction, or they do not.
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(c)

Figure 14: Joining segments

Case 1: s1 and s2 do not have the same direction.
Suppose the segments cannot be joined inside F directly. The lines containing
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s1 and s2 indicate us which end has to be extended for the segments to intersect.
Let us mark these ends.

1. At least one of the segments is extensible by the marked end but it in-
tersects other segments of F (Figure 14 (b)). Then we can enlarge some
segments of F using Lemma 1 and save the obstacle.

2. No segment is extensible by the marked end (Figure 14 (c)). Then we have
to restructure the face through the path containing s1 (or s2) to make it
extensible. Note that there exists exactly four configurations where the
segments are not extensible and restructuring the face does not solve the
problem, but these are the rare paths which are excluded.

S

S
1

2

Non pseudo-convex
face

Non pseudo-convex
face

Figure 15: Segments s1 and s2 cannot be adjacent.

We need that s1 and s2 are non adjacent segments because we cannot join
them by a segment path inside F if their angle inside F is concave. Note
that in this case F will split into two faces, but one of them will not be
pseudo-convex (see Figure 15).

Case 2: s1 and s2 have the same direction.
In this case, it suffices to join the segments by a segment path of length one,
because this path can be substituted by any path of length greater than one.

Again there are two subcases:

1. If the segments belong to opposite subpaths (they are drawn in opposite
sense). By Lemma 1, we can enlarge s1 and s2 until there exists a perpen-
dicular line that crosses both segments, and a segment path of any length
can be drawn inside the face.
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Figure 16: Joining segments.

2. If the segments are drawn in the same sense and they cannot be extended,
we have to restructure the face through the path containing s1 (or s2) to
make it extensible.

2

The interest of these Lemmas is that they allow us to proof the following.

Lemma 4 Any triangle-free plane graph which is a subdivision of a 3-connected
graph can be represented by segments in three directions.

Proof:
As G is a triangle-free plane graph, in virtue of Grötzsch’s Theorem [12], G

admits a 3-coloring with the colors h, v and o (horizontal, vertical and oblique,
respectively). Since G is a subdivision of a 3-connected graph, we can find a
vertex, not in the outerface of G, connected by three disjoint paths to three
vertices in the outerface. These paths and the outerface determine a graph K,
which is a subdivision of K4.

Using Theorem 1 [1] it is possible to build a sequence of graphs G1, . . . , Gn

and a sequence of paths Q1, . . . , Qn−1 such that G1 = G, Gi is a subdivision of
a 3-connected plane graph, Gi is obtained from Gi−1 by deleting the path Qi−1,
and the graph obtained from Gn−1 deleting Qn−1 is K.

When the path Qi is deleted, a new face F appears in Gi+1 as the union of
two faces in Gi. The boundary of F can be divided into two paths; on the one
hand the path beginning in the first vertex of Qi and ending in the last one and,
on the other hand, the rest of the boundary. If one of them is rare, we must
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repair F by subdividing an edge with a new vertex (that we label as a repaired
vertex), to make the face F non-rare. So, we can construct another sequence
G′

1, . . . , G
′
n where G′

i is Gi with a new repaired vertex, if necessary.

u u

u
u

Rare face (four rare paths) Repaired face

s
s

v
v1

2

n

n-1

v1

w
1

r1

w2

r2

w
n

rn

sn

w
n-1

Figure 17: Repairing rare paths.

It is easy to give a segment representation of K ′ with all its faces pseudo-
convex. It suffices to represent pseudo-convexly the outerface of K ′ and proceed
according to the above remark. Using Lemma 3 it is possible to add the path
Qi to the segment representation of G′

i+1 to obtain a pseudo-convex face repre-
sentation of G′

i. Since every subgraph is a subdivision of a 3-connected graph,
the path Qi cannot join adjacent vertices and so we can apply Lemma 3.

In order to obtain a segment representation of the graph G, we must remove
the repaired vertices. These segments cannot be removed directly, because we
must change the drawing of one of the segments adjacent to the repaired vertex,
so it is necessary to modify the representation. Since this is the last operation of
the representation, and the repaired vertex is not adjacent to any other segment,
it is possible to remove it, as illustrated in Figure 18.

Notice that we could not remove the repaired vertices if the rare path would
have exactly three segments u1, u2 and u3, but this case is not possible because
joining u1 with u3 it will be form a triangle, and G was a triangle-free graph. 2

We can now formulate our main result as follows.

Theorem 2 Every triangle-free planar graph is the contact graph of a set of
segments in three directions.

Proof: Let G be a triangle-free plane graph. Since G has no triangles, we
can obtain a 3-coloring of G using Grötzsch’s Theorem [12]. The colors will be
labeled as h, v and o (horizontal, vertical and oblique, respectively). We can
build a new triangle-free plane graph G1, subdivision of a 3-connected graph,
which contains G as a subgraph, by adding new vertices and edges joining the
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Figure 18: How to remove the repaired vertex u in the four cases.

blocks of G. If this is the case, these vertices are labeled as dummy vertices.
When an added edge produces a triangle, we subdivide it, and when a new edge
joins two vertices with the same color, we subdivide it too. We call these new
vertices and edges virtual. All the new vertices (dummy and virtual) can be
colored so that the 3-coloring is preserved.

By Lemma 4, G1 admits a segment representation. Out of this segment
representation we must remove all the vertices and edges added.

A virtual edge (or a path built with virtual edges and vertices) in the segment
representation of G1 is an adjacency between two segments (or a virtual path
joining two segments). It suffices to break this adjacency and to shorten these
segments (note that the segments do not cross, they only contact). The dummy
vertices are removed as the repaired vertices in Lemma 4 (see Figure 18). 2

4 Concluding remarks

The hypothesis that the graph has no triangles can be relaxed in some cases.
No doubt there exist planar graphs with triangles that admit segment rep-
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resentations (see Figure 1). The problem lies in the fact that we have followed a
constructive proof to obtain a segment representation using the pseudo-convex
faces representation of a subdivision of a 3-connected graph. This construction
would not be possible in general if the graph contains triangles, because if we fix
the three directions of the segments we can observe that the graph in Figure 19
cannot be represented by non-crossing segments.

h

h

v

vo

o

1
o1

1

v1

1

h
1

2

2

2

o
2

v2h2

Figure 19: Two segments must cross.

In this example we see the intersection graph of a family of segments, but this
representation by segments of the graph contains regions that do not correspond
to faces of the embedding of the graph. So, the topology of the embedding of
the plane graph cannot be preserved and inductive arguments are no longer
possible. This problem admits a partial solution as follows. A 3-coloring of a
plane graph G with colors {h, v, o} is good if all the triangles of G are colored
(clockwise), as h − v − o.

The proof of Theorem 2 can be adapted yielding the following result:

Theorem 3 Let G be a 3-colored plane graph. The coloring is good if and
only if there exists a segment representation IG verifying that the faces of G
correspond to faces of IG, and the boundaries of the faces are preserved.
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