
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 4, pp. 527–546 (2017)
DOI: 10.7155/jgaa.00427

Faster Algorithms for the Minimum
Red-Blue-Purple Spanning Graph Problem

Ahmad Biniaz 1 Prosenjit Bose 1 Ingo van Duijn 2 Anil

Maheshwari 1 Michiel Smid 1

1School of Computer Science, Carleton University, Ottawa, Canada
2MADALGO, department of Computer Science, Aarhus University, Denmark

Abstract

Consider a set of n points in the plane, each one of which is colored
either red, blue, or purple. A red-blue-purple spanning graph (RBP span-
ning graph) is a graph whose vertices are the points and whose edges
connect the points such that the subgraph induced by the red and purple
points is connected, and the subgraph induced by the blue and purple
points is connected. The minimum RBP spanning graph problem is to
find an RBP spanning graph with minimum total edge length. First we
consider this problem for the case when the points are located on a circle.
We present an algorithm that solves this problem in O(n2) time, improv-
ing upon the previous algorithm by a factor of Θ(n). Also, for the general
case we present an algorithm that runs in O(n5) time, improving upon
the previous algorithm by a factor of Θ(n).
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1 Introduction

Let S be a set of n points in the plane that is partitioned into three subsets
{R,B, P}. The points of R are colored red, the points of B are colored blue,
and the points of P are colored purple. A red-blue-purple spanning graph (RBP
spanning graph) on S is a graph whose vertices are the points of S and whose
edges connect the points such that each of the subgraphs induced by R ∪ P
and by B ∪ P are connected. In other words, if we remove the red points then
the resulting subgraph is connected, and if we remove the blue points then the
resulting subgraph is connected. One may think of the purple points belonging
to both the red set and the blue set. The minimum RBP spanning graph problem
is to compute an RBP spanning graph that has minimum weight (total edge
length).

The study of the RBP spanning graph problem is motivated by set visual-
ization methods that attempt to reduce the amount of ink necessary to connect
all elements of a set by Tuftes rule [19]. In our case, we have a finite number
of points in the plane, where each point belongs to one or two sets, namely the
red set and the blue set. Since these two sets share points, one can reduce the
amount of ink that is necessary to connect all elements of each set by computing
the minimum RBP spanning graph of the whole point set. See the state-of-the-
art report by Alsallakh et al. [4] for more information on visualizing sets and
their elements. Euler diagrams are an alternative way to depict sets and their
relationships. The problem of drawing Euler diagrams has been studied recently
for both cases when the locations of the elements can be freely chosen (see e.g.
[17, 18]) and when the elements have to be drawn at fixed positions (see e.g.
[3, 8, 9, 10, 15]). Drawings of sets that are defined over points in the plane have
also been studied extensively (see e.g. [6, 7, 13]).

In this paper we study the minimum RBP spanning graph problem. When
the points of S are located on a line and given in sorted order, this problem
can be solved in O(n) time (see [11, 12]). If the points of S are located on a
circle and given in circularly sorted order this problem can be solved in O(n3)
time; specifically, it can be solved in O(k3 + n) time, where k is the number of
purple points (see [11, 12]). For points on a circle, in Sections 3 and 4, we show
how to improve the running time to O(k2 + n). In [11] it is claimed that the
general case of this problem is NP-hard; this claim is based on a reduction from
planar 3-SAT. They also presented an O(n log n)-time (1 + ρ

2 )-approximation
algorithm for this problem, where ρ is the Steiner ratio. However, in [12] it is
claimed that the NP-hardness reduction of [11] is incorrect, and an O(n6)-time
exact algorithm for this problem is presented. This algorithm uses weighted
matroid intersection. In Section 5 we show how to modify this algorithm to run
in O(n5) time. Conclusions and open problems are presented in Section 6.

The input to the RBP spanning graph problem can be interpreted as a set
of points in the plane and two primary color classes (red and blue in our case)
such that each point belongs to one or more color classes (in our case the purple
points belong to two classes). Recently, Akitaya et al. [2] considered this problem
with more than two primary color classes; they showed that this version of the
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problem is NP-hard. For the case where the number of color classes is three,
they presented a polynomial-time (2− 1

3+2ρ )-approximation algorithm.

2 Properties of Minimum RBP Spanning Graphs

In this section we review some properties of minimum RBP spanning graphs.
Given a graph G with vertex set S, and a set S′ ⊆ S, we denote by G[S′] the
subgraph of G that is induced by S′.

For three sets R, B, and P of red, blue, and purple points, respectively,
we denote by G∗(R,B, P ) a minimum RBP spanning graph on R ∪ B ∪ P ;
this is denoted by G∗ when the triple (R,B, P ) is clear from the context. As
in [11, 12] we classify the edges of G∗ into red, blue, and purple. An edge is red
if it connects two red points, or a red point and a purple point. An edge is blue
if it connects two blue points, or a blue point and a purple point. An edge is
purple if it connects two purple points. Note that G∗ does not contain any edge
between a red point and a blue point. The subgraph G∗[P ] that is induced by
the purple points is acyclic, because otherwise we could remove a purple edge
from a cycle and reduce the weight of G∗ without destroying the connectivity
of G∗[R ∪ P ] and G∗[B ∪ P ]. The subgraph G∗[R ∪ P ] (resp. G∗[B ∪ P ]) is a
spanning tree because otherwise we could remove a red edge (resp. blue edge)
from a cycle without affecting the connectivity of G∗[B ∪ P ] (resp. G∗[R ∪ P ]).
We refer to G∗[R ∪ P ] as the red tree and to G∗[B ∪ P ] as the blue tree.

Every red edge in G∗ is also an edge of a minimum spanning tree of R ∪ P ,
because otherwise we could replace it by another red or purple edge of smaller
weight. The corresponding statement holds for the blue edges. Thus, the red
edges of G∗ do not cross each other, and the blue edges of G∗ do not cross each
other. The corresponding statements do not hold for purple edges. There can
be purple edges in G∗ that are not present in any minimum spanning tree of
the purple points. Moreover, a purple edge in G∗ can cross Θ(|P |) other purple
edges [11, 12]. In [11, 12] it is shown that the maximum degree of a purple
point in G∗ is at most 18 and the maximum degree of a red point or a blue
point is at most 6. Moreover, any optimal graph can be transformed to another
optimal graph in which the degree of every purple point is at most 15 and the
degree of every red point or blue point is at most 5. The proofs for these degree
constraints inherited from the proofs of degree constraints of minimum spanning
trees of a point set in the plane.

3 The Algorithm for Points on a Circle

Let S be a set of n points on a circle C that are colored red, blue, or purple. Let
R, B, and P denote the set of red, blue, and purple points of S, respectively. Let
k denote the number of purple points, i.e., k = |P |. The problem is to compute
a minimum RBP spanning graph for S. Although for points in the plane, and
even for points in convex position, a purple edge can be crossed by other purple
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edges, for points on a circle, purple edges cannot be crossed by other purple
edges. Based on this, Hurtado et al. [11, 12] presented a dynamic programming
algorithm that solves this problem in O(k3 +n) time. We use a similar dynamic
programming approach and improve the running time to O(k2 + n). First we
review some crucial results from [11, 12].

Lemma 1 (see [11, 12]) Let S be a set of points on a circle, each one of which
is colored either red, blue, or purple. Let G∗ be a minimum RBP spanning graph
for S. Then the following statements hold.

1. No purple edge of G∗ can cross any other edge of G∗.

2. No red or blue edge of G∗ can cross any segment between two purple points
(which are not necessarily connected by an edge in G∗).

3. For any purple point p in S, let p′ be the point on the circle diametrically
opposite to p, and let SC be any of the two closed semicircles containing
both p and p′. Then in G∗, p has at most one purple neighbor in SC, and
thus at most two purple neighbors in total.

3.1 The Dynamic Programming Algorithm

In this section we give an overview of the dynamic programming algorithm
presented in [11, 12]. Assume that the points of S are circularly sorted. Let
p1, . . . , pk be the purple points in clockwise order. For any 1 6 i 6 k, let Si be
the set of red and blue points between pi and pi+1. Assume that all indices are
taken modulo k.

Let G∗ be a minimum RBP spanning graph for S. By Lemma 1 no edge
of G∗ that is incident to a point in Si can cross segment pipi+1 (pipi+1 is not
necessarily an edge of G∗). Thus, a solution for each set Si can be computed
independently. Moreover, this is analogous to the case when the points are on
a line, and thus, it can be solved in linear time for all sets Si.

For any two purple points pi and pj , Lemma 1 guarantees that if pipj is an
edge in G∗ then it cannot be crossed by any other edge of G∗. This introduces
two independent subproblems, one to the left of the oriented segment pipj , and
one to the right. Each subproblem has four different types PC, RC, BC, and
NC. In the PC-type, pi and pj are connected in both red and blue subgraphs.
In the RC-type, pi and pj are connected in the red subgraph but disconnected
in the blue subgraph; any solution for this type must connect pi and pj in its
blue subgraph. In the BC-type, pi and pj are disconnected in the red subgraph
but connected in the blue subgraph. In the NC-type, pi and pj are neither
connected in the red subgraph nor in the blue subgraph. The algorithm main-
tains four tables, PC, RC, BC, and NC, each of size O(k2), that are indexed
by pairs of purple points. Each entry [i, j] of each table, stores the length of
a minimum RBP spanning graph of the corresponding type for the point set
{pi, pi+1, . . . , pj}. Based on this, the length of an optimal solution can be found
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as

min
26j6k

{PC[1, j] +NC[j, 1], NC[1, j] + PC[j, 1],

RC[1, j] +BC[j, 1], BC[1, j] +RC[j, 1]}.
Let Λ ∈ {P,R,B,N}. The entries of each table are filled in order, so that

when it is time to compute the value of an entry ΛC[i, j], all the entries corre-
sponding to smaller problems, i.e., subproblems introduced by purple pairs to
the left of the oriented segment pipj , have already been computed. In order to
fill entry ΛC[i, j], where 1 6 i < j 6 k, the following two cases are considered,
and the one with minimum cost will be stored in ΛC[i, j]. See [11, 12] for more
details.

pjpi

ph

pjpi

pi+1

(a) (b)

Figure 1: Solving subproblem (i, j): (a) pi is connected to a purple point ph,
and (b) pi is not connected to any purple point.

1. pi is connected to some purple point(s) in an optimal solution of the
subproblem (i, j); recall that by Lemma 1, pi can be connected to at
most two purple points. Let ph be the one in the sequence pi+1, . . . , pj
that is closer to pj , see Figure 1(a). Note that pi and ph are connected
in both red and blue subgraphs. Therefore, ph and pj must be connected
in the same way as pi and pj . Since we do not know ph, we try all
possible candidates and keep the one minimizing the cost, i.e., ΛC[i, j] =

min
i+16h6j

{PC[i, h] + ΛC[h, j] + |piph|}. This case takes O(j − i) time.

2. pi is not connected to other purple points in any optimal solution of the
subproblem (i, j). Now Consider pi+1. By Lemma 1, in an optimal solu-
tion no edge can cross the segment pipi+1. Since no purple edge is inci-
dent to pi, the segment pi+1pj cannot be crossed either; see Figure 1(b).
Therefore, an optimal solution for the subproblem (i, j) can be computed
by combining the solutions associated to the subproblems (i, i + 1) and
(i+ 1, j). See [11, 12] for more details. This case takes O(1) time.

Based on the description above, the total running time of the algorithm is
O(k3 + n).

3.2 Improving the Running Time

In this section we show how to improve the running time of the algorithm
presented in Section 3.1 to O(k2 + n). First we prove Lemma 2 which plays an
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important role in this regard.
A chord of a circle is a straight line segment whose endpoints lie on the circle.

For any two points p and q on C let Ùpq denote the smaller arc of C that has
endpoints p and q.

Lemma 2 Let S be a set of red, blue, and purple points located on a circle. Let

P be the set of purple points. Let a and b be any two points of P such that Ùab
contains at least two points of P \ {a, b}. Let a∗, b∗ ∈ P be the purple neighbors

of a and b on Ùab, respectively.

1. If |aa∗| + |bb∗| < |ab|, then ab does not belong to any minimum RBP
spanning graph for S.

2. If |aa∗| + |bb∗| = |ab|, then there exists a minimum RBP spanning graph
of S that does not contain ab.

Proof: First we prove statement 1 of the lemma. The proof is by contradiction.
Assume there exists a minimum RBP spanning graph G∗ for S that contains
ab. Recall that G∗ consists of a red tree and a blue tree; moreover, the purple
edges of G∗ belong to both trees. Let Ra and Rb be the two red trees obtained
by removing ab from G∗, such that a ∈ Ra and b ∈ Rb. Let Ba and Bb be the
two blue trees obtained in a similar way.

Claim 1: It is not possible to have a∗ ∈ Rb and b∗ ∈ Ra, or a∗ ∈ Bb and
b∗ ∈ Ba.

We prove this claim for the case where a∗ ∈ Rb and b∗ ∈ Ra; the proof for
the other case is similar. By Lemma 1 (item 2) no red edge or blue edge can
“jump” over a∗ or b∗. Thus, in order to have a∗ ∈ Rb and b∗ ∈ Ra there must
be two purple edges in G∗ that cross; this contradicts Lemma 1 (item 1). This
proves the claim.

By Claim 1, a∗ ∈ Ra or b∗ ∈ Rb. Without loss of generality assume that
a∗ ∈ Ra. If a∗ ∈ Ba, then by replacing the edge ab in G∗ with the purple edge
a∗b we obtain a valid RBP spanning graph that is smaller than G∗ (note that
a∗b is shorter than ab); see Figure 2(a). This contradicts the minimality of G∗.
Assume that a∗ ∈ Bb; see Figure 2(b). Then by Claim 1, we have b∗ ∈ Bb.
If b∗ ∈ Rb, then by replacing the edge ab with the purple edge ab∗ we obtain
a valid RBP spanning graph that is smaller than G∗; see Figure 2(b). This
contradicts the minimality of G∗. Assume that b∗ ∈ Ra; see Figure 2(c). Then,
by replacing ab with aa∗ and bb∗ we obtain a valid RBP spanning graph that is
smaller than G∗. This contradicts the minimality of G∗.

Now we prove statement 2 of the lemma. As we have seen in the proof of
statement 1, if |aa∗|+ |bb∗| = |ab|, in all cases we obtain an RBP spanning graph
that is smaller than G∗, except for the case when we replace ab with aa∗ and
bb∗. Let G′ be the graph that is obtained after replacing all such kind of edges.
Since |aa∗|+ |bb∗| = |ab|, G′ has a weight equal to the weight of G∗. Moreover,
G′ does not contain ab. Thus, G′ is a spanning graph that satisfies statement 2
of the lemma. �
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a

b

b∗

o

a∗

Ra, Ba

Rb, Bb

a

b

b∗

o

a∗

Ra, Ba

Rb, Bb

a

b

b∗

o

a∗

Ra, Ba

Rb, Bb

(a) (b) (c)

Figure 2: Proof of Lemma 2: (a) a∗ ∈ Ra and a∗ ∈ Ba. (b) a∗ ∈ Ra and
a∗ ∈ Bb. (c) a∗ ∈ Bb and b∗ ∈ Ra.

We prove the following theorem in Section 4.

Theorem 1 Let V be a set of points on a circle C. Let E be the set of edges
that contain an edge ab if and only if a, b ∈ V and |aa∗|+ |bb∗| > |ab|, where a∗

and b∗ are the two points of V that are neighbors of a and b on the smaller arc
of C that is determined by the chord ab, respectively. Then, no three edges of E
can pairwise cross.

Theorem 2 Let S be a set of n points located on a circle that are angularly
sorted, and each one of which is colored either red, blue, or purple. Let k be the
number of purple points. Then, a minimum red-blue-purple spanning graph on
S can be computed in O(k2 + n) time.

Proof: Let P be the set of purple points in S. We define three sets of edges

on P , as follows: Let E0 be the set of all purple edges ab for which the arc Ùab
does not contain any point of P \ {a, b}. Let E1 be the set of all purple edges

ab for which the arc Ùab contains exactly one point of P \ {a, b}. Let E2 be the

set of all purple edges ab for which the arc Ùab contains at least two points of
P \{a, b} and |aa∗|+ |bb∗| > |ab|, where a∗ and b∗ are the two points of P \{a, b}
that are neighbors of a and b on Ùab, respectively. Let EP = E0 ∪E1 ∪E2. As a
consequence of Lemma 2 there exists an optimal solution in which all the purple
edges belong to EP . Thus, in case 1 of the dynamic programming algorithm,
instead of looking at all pairs (pi, ph) it is enough to only consider the pairs
(pi, ph) that are connected by an edge in EP . Each pair (pi, ph) is considered
only for the subproblems that have pi or ph as an endpoint; the number of such
subproblems is O(k). Thus, the total time we spend for case 1 is O(k|EP |).
Therefore the total running time of the algorithm is O(k|EP |+ n).

Note that EP can be computed in O(k2) time in the preprocessing phase. We
are going to show that |EP | = O(k); this will complete the proof of the theorem.
Each of E0 and E1 contains at most k edges. By Theorem 1 (where P and E2

play the role of V and E), no three edges of E2 pairwise cross. Agarwal et al. [1]
have shown that any graph with n vertices that can be drawn in the plane such



534 Biniaz et al. Minimum Red-Blue-Purple Spanning Graphs

that no three edges pairwise cross, has O(n) edges. Thus, E2 has O(k) edges.
Therefore, |EP | = O(k). �

4 Proof of Theorem 1

In this section we prove Theorem 1. First we prove some lemmas that will be
used in the proof of the theorem.

4.1 Preliminary Results

a

a′
b

b′

α
α′

o

a

a′b

b′

α

α′
o β

a′′

b′′

(a) (b)

Figure 3: Proof of Lemma 3: (a) o does not lie in convex quadrilateral a, b, a′, b′,
and (b) o lies in convex quadrilateral a, b, a′, b′.

Lemma 3 Let aa′ and bb′ be two intersecting chords of a circle C such that
the center of C is to the left of the oriented segment aa′ and to the right of the
oriented segment bb′. Then, |ab| < |a′b′|.

Proof: Let o be the center of C. Let α = ∠aob and α′ = ∠a′ob′. The triangles
4abo and 4a′b′o are isosceles. Based on this and assuming that the radius of

C is 1, we have |ab| = 2 sin
(
α
2

)
and |a′b′| = 2 sin

Ä
α′

2

ä
. See Figure 3. Let Q be

the convex quadrilateral with vertices a, b, a′, and b′. If o does not lie in Q (see
Figure 3(a)), then we have α < α′. This implies that |ab| < |a′b′|. Assume o
lies in Q; see Figure 3(b). Let a′′ and b′′ be two points on C such that aa′′ and
bb′′ are two diameters of C. Let β = ∠a′′ob′′. Note that β = α. Moreover, we
have β < α′. This implies that that α < α′, and consequently |ab| < |a′b′|. �

Lemma 4 Let b, a, and p be three points on a circle C, in clockwise order,
such that the center of C is to the right side of the oriented segment bp. Let b′′

be the point such that bb′′ is a diameter of C. Let p′ be a point on p̂b′′. Then
|ap′| − |ap| > |bp′| − |bp|.

Proof: Refer to Figure 4. Let C(a, |ap|) be the circle of radius |ap| that is
centered at a, and let C(b, |bp|) be the circle of radius |bp| that is centered at b.
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a

p

b

b′′

o

p′

b′
a′

C(a, |ap|)

C(b, |bp|)

`

Figure 4: Proof of Lemma 4.

Since a, p, and p′ are on the same side of the line through bb′′, we have |ap′| > |ap|
and |bp′| > |bp|. Let a′ be the intersection point of ap′ with C(a, |ap|), and let b′

be the intersection point of bp′ with C(b, |bp|). Then |aa′| = |ap| and |bb′| = |bp|.
Thus, |ap′|−|ap| = |a′p′| and |bp′|−|bp| = |b′p′|. In order to prove the statement
of the lemma it suffices to show that |a′p′| > |b′p′|. Let ` be the line that is
tangent to C(b, |bp|) at b′. Observe that a′ and p′ are on different sides of `.
Thus, in triangle 4a′b′p′, the angle ∠a′b′p′ is at least π

2 . This implies that a′p′

is the longest side of 4a′b′p′. Therefore, |a′p′| > |b′p′|; this completes the proof
of the lemma. �

Lemma 4 can be restated as follows. If we fix the position of a and b, then
by moving p towards b′′, the length of ap increases more than the length of bp.

a

c

b

o
d

αβ
a

cb

o

d

b′ c′

C

C ′

(a) (b)

Figure 5: (a) Proof of Lemma 5 and Lemma 6. (b) Proof of Lemma 6.

Lemma 5 Let 0 < α 6 π be fixed, and let C be a circle that is centered at o.
Let a, b, and c be three points on C, in clockwise order, such that ∠aoc = α.
Then, |ab|+ |bc| is maximum when ∠aob = ∠boc = α

2 .
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Proof: Let f = |ab| + |bc|, and let β = ∠aob. See Figure 5(a). Since the

triangles 4aob and 4boc are isosceles, we have f = 2 sin
Ä
β
2

ä
+ 2 sin

Ä
α−β
2

ä
. By

taking the derivative of f with respect to β, we can see that f is maximum
when β = α

2 , and thus, ∠aob = ∠boc = α
2 . �

The following is a corollary of Lemma 5.

Corollary 1 Let C be a circle that is centered at o. Let a, b, and c be three
points on C, in clockwise order, such that ∠aoc 6 2π

3 . Then |ab| + |bc| 6
|ao|+ |co|.

Proof: By Lemma 5, |ab|+ |bc| is maximum when ∠aob = ∠boc, and thus, both
these angles are at most π

3 . This implies that |ab| 6 |ao| and |bc| 6 |co|, which
proves the claim. �

The following theorem is a restatement of Theorem 7.11 in [5].

Theorem 3 (See [5]) If C1 and C2 are convex polygonal regions with C1 ⊆ C2,
then the length of the boundary of C1 is at most the length of the boundary of
C2.

Lemma 6 Let a, b, c, and d be four points on a circle C, in clockwise order,
such that the center of C is on or to the right side of the oriented segment ad.
Then |ab|+ |bc|+ |cd| 6 3

2 · |ad|.

Proof: Without loss of generality assume C is centered at o and has radius
1. We consider two cases: (i) o is on ad, and (ii) o is not on ad. First, we
prove case (i). Then, we show how to reduce case (ii) to case (i). Assume o is
on ad, that is, ad is a diameter of C, and thus, |ad| = 2. See Figure 5(a). If
we fix the position of c on C, then by Lemma 5, |ab| + |bc| is maximum when
∠aob = ∠boc. If we fix the position of b on C, then by Lemma 5, |bc| + |cd| is
maximum when ∠boc = ∠cod. Therefore, |ab| + |bc| + |cd| is maximum when
∠aob = ∠boc = ∠cod = π

3 , and thus, |ab| = |bc| = |cd| = |ao| = |od|. This
implies the statement of the lemma for case (i).

Now we show how to handle case (ii). Assume o is not on ad, and thus, ad
is not a diameter of C. We show how to reduce this case to case (i). Follow
Figure 5(b). Let C ′ be the circle with diameter ad. Since C and C ′ intersect
only at the two points a and d, we argue that b and c are in the interior of C ′.
Extend ab and dc to intersect C ′ at b′ and c′, respectively. Now we consider
two cases depending on whether bb′ and cc′ intersect or not. In the former
case, let o′ be the intersection point of bb′ and cc′. By Theorem 3 we have
|ab|+ |bc|+ |cd| 6 |ao′|+ |o′d|. Since o′ is in the interior of C ′, then |ao′|+ |o′d| 6√

2 · |ad|; and we are done with this case. In the latter case, by Theorem 3
we have |ab| + |bc| + |cd| 6 |ab′| + |b′c′| + |c′d|. As we have seen in case (i),
|ab′|+ |b′c′|+ |c′d| 6 3

2 · |ad|; which completes the proof of the lemma. �
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4.2 Proof of Theorem

Recall that V is a set of points on a circle C. The edge set E contains an edge
ab if and only if a, b ∈ V and |aa∗| + |bb∗| > |ab|, where a∗ and b∗ are the
two points of V that are neighbors of a and b on the smaller arc of C that is
determined by the chord ab, respectively. Without loss of generality assume C
is centered at o and has radius 1. Based on the definition of E, the following
observation is valid.

Observation 1 For any edge ab ∈ E, we have |aa∗| > 1
2 · |ab| or |bb∗| > 1

2 · |ab|.
Corollary 2 For any edge ab ∈ E, we have |a∗b∗| < 1

2 · |ab|.
Proof: Since ab ∈ E, we have |aa∗| + |bb∗| > |ab|. By Lemma 6 we have
|aa∗|+ |a∗b∗|+ |b∗b| 6 3

2 · |ab| where a, a∗, b∗, and b play the role of a, b, c, and
d, respectively. This implies that |a∗b∗| < 1

2 · |ab|. �

Now we have all the tools that we need to prove Theorem 1. For the sake
of contradiction assume that three edges aa′, bb′, and cc′ of E are pairwise
crossing. Observe that if we remove all points of V except a, b, c, a′, b′, c′, and
then recompute E, the edges aa′, bb′, and cc′ will remain in E. Thus, without
loss of generality we assume that V = {a, b, c, a′, b′, c′}. Moreover, assume
a, b, c, a′, b′, c′ appear in clockwise order on C. Let 4 be the triangle whose
vertices are the intersection points of aa′, bb′, and cc′. We differentiate between
the following two cases: (i) o is in the interior of 4, and (ii) o is not in the
interior of 4. We will get contradictions in both cases.

a

c

b o
b′

a′

c′

Figure 6: Proof of case (i) in Theorem 1.

First we handle case (i). Refer to Figure 6. Since aa′, bb′, and cc′ are edges
of E, we have |ab|+ |a′c| > |aa′|, |ab|+ |b′c′| > |bb′|, and |b′c′|+ |a′c| > |cc′|. By
adding up these three inequalities, we get

|ab|+ |a′c|+ |b′c′| > |aa
′|+ |bb′|+ |cc′|

2
. (1)

By Lemma 3 we have |ab| < |a′b′|, |a′c| < |ac′|, and |b′c′| < |bc|. Adding up
these three inequalities implies

|ab|+ |a′c|+ |b′c′| < |a′b′|+ |ac′|+ |bc|. (2)
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In view of Corollary 2, we have |bc| < 1
2 ·|aa′|, |ac′| < 1

2 ·|bb′|, and |a′b′| < 1
2 ·|cc′|.

This implies

|bc|+ |ac′|+ |a′b′| < |aa
′|+ |bb′|+ |cc′|

2
.

This and Inequality (2) imply

|ab|+ |a′c|+ |b′c′| < |aa
′|+ |bb′|+ |cc′|

2
,

which contradicts Inequality (1); this is a contradiction for case (i).

a

a′

c′

b′

b

c

o

c′′

a′′ a

a′

c′

b′

b

c

o

α

(a) (b)

Figure 7: Proof of case (ii) in Theorem 1.

Now we are going to handle case (ii) where o is not in the interior of the
triangle formed by the intersection of aa′, bb′, and cc′. Without loss of generality
assume that o is on or to the right side of all the oriented segments aa′, bb′, and
cc′; see Figure 7(a). Since aa′, bb′, and cc′ are edges of E, we have |ab|+ |a′c| >
|aa′|, |bc| + |a′b′| > |bb′|, and |a′c| + |b′c′| > |cc′|. By adding up these three
inequalities, we get

|ab|+ |bc|+ |a′b′|+ |b′c′|+ 2|a′c| > |aa′|+ |bb′|+ |cc′|. (3)

Let a′′ and c′′ be the two points on C such that a′a′′ and cc′′ are diameters of
C. By Lemma 4, |a′′b| − |ab| > |a′′a′| − |aa′| and |b′c′′| − |b′c′| > |cc′′| − |cc′|.
By adding these two inequalities to Inequality (3) we get

|a′′b|+ |bc|+ |a′b′|+ |b′c′′|+ 2|a′c| > |a′′a′|+ |bb′|+ |cc′′|. (4)

Thus, if o is on or to the right side of all the oriented segments aa′, bb′, and cc′,
then Inequality (4) is valid. In fact, Inequality (4) is the same as Inequality (3)
where a′′ and c′′ play the role of a and c′, respectively. Therefore, without loss
of generality, from now on we assume that a is on a′′ and c′ is on c′′, that is,
aa′ and cc′ are two diameters of C.

Let α = ∠aoc′ = ∠coa′. We claim that α 6 π
3 . Assume α > π

3 . This implies
that ∠aoc 6 2π

3 and ∠a′oc′ 6 2π
3 . By Corollary 1 we have |ab|+ |bc| 6 |ao|+ |oc|
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and |a′b′| + |b′c′| 6 |a′o| + |oc′|. As a consequence of Corollary 2, for edge bb′

we have 2|a′c| < |bb′|. By adding these three inequalities we get

|ab|+|bc|+|a′b′|+|b′c′|+2|a′c| < |ao|+|oc|+|a′o|+|oc′|+|bb′| = |aa′|+|bb′|+|cc′|,

which contradicts Inequality (3). Therefore, α 6 π
3 .

a′c

o

α

b
b′

c′a

qp

C2

C ′
1

C1

C ′
2

2-|a′c|2-|a′c|

a′c

o

α

b b′

c′a

x

2-x2-x

ββ

(a) (b)

Figure 8: Proof of case (ii) in Theorem 1.

Recall that C has radius 1, and thus, |aa′| = |cc′| = 2. Consider two circles
C1 = C(a′, |a′c|) and C2 = C(c, |a′c|). Let C ′1 be the circle that is centered at
a and touches C1, i.e., C ′1 has radius 2 − |a′c|. Similarly, let C ′2 be the circle
that is centered at c′ and touches C2. See Figure 8(a). Let p be the intersection
point of C ′1 and Ùac. Let ıap and Ùpc be the two sub-arcs of Ùac. Similarly, let q be

the intersection point of C ′2 and ã′c′, and let â′q and ıqc′ be the two sub-arcs of

ã′c′.
If b is in the interior of ıap then |ab| + |a′c| < 2 = |aa′|, which contradicts

the existence of aa′ in E. Thus b ∈ Ùpc, and similarly, b′ ∈ â′q. We are going to
show that |bc|+ |a′b′| 6 |bb′|; this will contradict the existence of bb′ in E.

Since bb′ ∈ E we have |bc|+|a′b′| > |bb′|. By Lemma 4 if we move b towards p,
then |bc| increases more than |bb′|. Similarly, if we move b′ towards q, then |a′b′|
increases more than |bb′|. Therefore, |bc|+|a′b′| > |bb′| holds after moving b to p,
and b′ to q. Thus, from now we assume b = p and b′ = q. See Figure 8(b). Note
that all the triangles4aob,4boc,4coa′,4a′ob′,4b′oc′, and4bob′ are isosceles.
Let x = |a′c|, and thus, |ab| = |b′c′| = 2−|a′c| = 2−x. Note that x = 2 sin

(
α
2

)
.

Let β = ∠aob = ∠b′oc′. Then, β = 2 arcsin
(
2−x
2

)
= 2 arcsin

(
1− sin

(
α
2

))
.

Note that ∠bob′ = 2π − α− 2β. Thus,

|bb′| = 2 sin
(
π − α

2
− β

)
= 2 sin

(α
2

+ β
)
.
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Moreover, ∠boc = ∠a′ob′ = π − α− β. Thus,

|bc| = |a′b′| = 2 sin

Å
π − α− β

2

ã
= 2 cos

Å
α+ β

2

ã
.

Now we show that |bc| + |a′b′| 6 |bb′|, which contradicts the existence of bb′ in
E. In order to show this, it suffices to prove that

4 cos

Å
α+ β

2

ã
6 2 sin

(α
2

+ β
)
, (5)

where β = 2 arcsin
(
1− sin

(
α
2

))
, for all 0 < α 6 π

3 . Inequality (5) simplifies to

2

…
1− sin2

(α
2

)…
1−

(
1− sin

(α
2

))2
+ 2

(
1− sin

(α
2

))2
+ sin

(α
2

)
6 3, (6)

where 0 < α 6 π
3 . Let u = sin

(
α
2

)
. Then, Inequality (6) simplifies to

4u2 − 4u+ 1 > 0, (7)

where 0 6 u 6 1
2 ; it is easy to verify that Inequality (7) is valid in this range

of u. This contradicts the fact that |bc|+ |a′b′| > |bb′|, and hence the existence
of bb′ in E; this is a contradiction for case (ii). This completes the proof of
Theorem 1.

5 The Algorithm for the General Case

In this section we consider the general case of the problem, where the input
points are not necessarily on a circle. An O(n6)-time algorithm for this problem
is presented in [12], where n is the total number of points. This algorithm is
greedy and based on matroid theory. In fact it is based on the existence of an
efficient algorithm for the weighted matroid intersection problem. In Section 5.1
we give an overview of this algorithm. We also add more details on the weighted
matroid intersection algorithm. In Section 5.2 we show how to improve the
running time to O(k5 + k3n+ kn2), where k is the number of purple points.

5.1 Overview of the Previous Algorithm

Let S = R ∪B ∪ P . Let E be the set of edges of the complete geometric graph
on S except the edges that connect a red point to a blue point. Let m = |E|
and n = |S|. Note that m = Θ(n2). Let G = (S,E) be the edge-weighted graph
with vertex set S and edge set E, where the weight w(e) of an edge e ∈ E is its
Euclidean length. Let G∗ = (S,X∗) be any minimum RBP spanning graph on
S. Note that X∗ is a subset of E.

Let Ir be the collection of all subsets of E that form a forest on R ∪ P .
Similarly, let Ib be the collection of all subsets of E that form a forest on B∪P .
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The pairs (E, Ir) and (E, Ib) are matroids (and known as graphic matroids).
See [16, Chapter 39] for the basic concepts of matriod theory. The elements
of Ir are called independent sets. The independents sets of Ir that have the
maximum number of elements are called bases. Thus, the bases of Ir are the
spanning trees for R ∪ P . Let Br be the set of bases of Ir. Similarly let Bb be
the set of bases of Ib. We define supersets of Br and Bb as follows:

Qr = {X ⊆ E : X contains some B ∈ Br},
Qb = {X ⊆ E : X contains some B ∈ Bb}.

Note that Qr (resp. Qb) is the set of all spanning graphs of R∪P (resp. B∪P ).
Then, the minimum RBP spanning graph problem is formulated as follows:

(P0) Minimize
∑
e∈X

w(e) subject to X ∈ Qr ∩Qb.

Let Ir = {E \ Y : Y ∈ Qr} and Ib = {E \ Y : Y ∈ Qb}. Then, (E, Ir) and
(E, Ib) are matroids that are dual of (E, Ir) and (E, Ib), respectively. Consider
the following maximization problem

(P1) Maximize
∑
e∈Y

w(e) subject to Y ∈ Ir ∩ Ib.

Note that the complement of any element Y in Ir ∩Ib is a valid RBP spanning
graph that belongs to Qr ∩ Qb and spans both R ∪ P and B ∪ P . On the
other hand, any element X in Qr ∩ Qb is a valid RBP spanning graph whose
complement belongs to Ir ∩ Ib. Thus, the complement of a solution for (P0) is
a solution for (P1) and vice versa, that is, both problems are equivalent. The
problem (P1) is an instance of the weighted matroid intersection problem in
which we are looking for a common element of Ir and Ib that has maximum-
weight; for this problem a polynomial-time algorithm exists. In the following
paragraph we give a brief description of an algorithm that finds a maximum-
weight independent set Y ∗ in Ir ∩Ib. Then, X∗ = E \Y ∗ will be a solution for
(P0).

The general idea of the (maximum) weight matroid intersection algorithm
is as follows (see [16, Chapter 41] for more details). Let I be a common inde-
pendent set that has the maximum weight among all the common independents
sets of size |I|. The algorithm computes a common independent set I ′, with
|I ′| = |I|+1, that has the maximum weight among all the common independent
sets with |I| + 1 elements. Let M be the maximum-size of a common inde-
pendent set of the two matroids. Since I0 = ∅ is a maximum-weight common
independent set of size zero, the algorithm iteratively finds common independent
sets I0, I1, . . . , IM , such that Ii is a maximum-weight common independent set
of size i, i.e. |Ii| = i. Note that IM is a maximum-weight common independent
set of maximum-size. Taking one among I0, . . . , IM of maximum weight, we
have a maximum-weight common independent set.

Since the minimum-size of an element in Qr ∩ Qb is n − 1, the maximum-
size M of a common independent set of Ir and Ib is |E| − (n − 1) = m −
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n + 1. Therefore by computing I0, . . . , Im−n+1 one can obtain a maximum-
weight element of Ir ∩ Ib; the algorithm presented in [12] runs this way. This
algorithm solves m−n+ 1 = O(n2) instances of weighted matriod intersection,
where each instance can be solved in O(m2 +m logm) = O(n4) time. Thus, the
total running time of their algorithm is O(n6). See [12] for more details on the
time complexity analysis and for an interpretation of this algorithm in terms of
the original problem (P0).

5.2 Improving the Running Time

In this section we show how to improve the running time of the algorithm
described in Section 5.1 to O(k5 + k3n + kn2). This improvement is obtained
by modifying the algorithm in two ways: (i) by decreasing the total number of
edges that have to be considered, and (ii) by reducing the number of instances
of the weighted matroid intersection problem. The Gabriel graph on a given set
of points in the plane is defined to have an edge between any two input points
p and q if the closed disk with diameter pq does not contain any other input
point. The following lemma is a direct consequence of a classic result by Matula
and Sokal [14] that every minimum spanning tree of a point set in the plane is
a subgraph of the Gabriel graph on that point set.

Lemma 7 Every red edge (resp. blue edge) of any minimum RBP spanning
graph on (R,B, P ) belongs to the Gabriel graph with vertex set R ∪ P (resp.
B ∪ P ).

Let ER (resp. EB) be the set of edges of the Gabriel graph with vertex set R∪P
(resp. B ∪ P ). Let EP be the set of purple edges between any pair of purple
points. Note that |ER| = O(|R|+|P |), |EB | = O(|B|+|P |), and |EP | = O(|P |2).
Let E′ = ER ∪ EB ∪ EP , and m′ = |E′|. Note that m′ = O(k2 + n). Let
G∗ = (S,X∗) be any minimum RBP spanning graph for S. As a consequence
of Lemma 7, X∗ is a subset of E′. Thus, in the algorithm of Section 5.1 it
suffices to look at the matriods defined on E′. This improves the running time
to O(m′ · ((m′)2 + m′ logm′)) = O(k6 + k4n + k2n2 + n3). In the rest of this
section we describe how to improve the running time further.

Lemma 8 Let R, B, and P be pairwise disjoint sets of points in the plane
that are colored red, blue, and purple, respectively. Then every minimum RBP
spanning graph for R ∪B ∪ P has at most |R|+ |B|+ 2|P | − 2 edges.

Proof: Let G∗ be a minimum RBP spanning graph for R∪B∪P . The induced
subgraphs G∗[R ∪ P ] and G∗[B ∪ P ] are trees and have |R| + |P | − 1 and
|B| + |P | − 1 edges, respectively. Since the edge set of G∗ is the union of the
edge set of G∗[R ∪ P ] and the edge set of G∗[B ∪ P ], we conclude that G∗ has
at most |R|+ |B|+ 2|P | − 2 edges. �

Lemma 9 Let S be a set of n points in the plane that are colored either red,
blue, or purple. Then,



JGAA, 21(4) 527–546 (2017) 543

1. every RBP spanning graph for S has at least n− 1 edges.

2. there exists an RBP spanning graph for S that has n− 1 edges.

3. in any RBP spanning graph of S with n − 1 edges, the subgraph induced
by the purple points is a tree.

Proof: Since any RBP spanning graph is connected, it has at least n−1 edges.
This proves the first statement.

To prove the second statement we construct an RBP spanning graph with
n − 1 edges. First we compute a spanning tree on the purple points, then we
connect every other point (red or blue) to a purple point. The resulting graph
is a valid RBP spanning graph that is a tree and and has n− 1 edges.

In order to prove the third statement, let G be an RBP spanning graph of
S, having n − 1 edges. Since G is connected and has n − 1 edges, it is a tree.
Let P be the set of purple points of S. For the sake of contradiction assume
there are two points p and q in P such that there is no path between them in
G[P ], i.e., there is no purple path between p and q. Since G is an RBP spanning
graph, there is a path between p and q in the red tree, and there is another path
between p and q in the blue tree. This creates a cycle in G, which contradicts
the fact that G is a tree. Thus, G[P ] is connected; moreover it is a tree. �

Let X∗i denote the set of edges of a minimum RBP spanning graph with
exactly i edges. As a consequence of Lemma 9 there exists a minimum RBP
spanning graph with |R| + |B| + |P | − 1 = n − 1 edges; note that this is the
smallest possible number of edges for any RBP spanning graph. By Lemma 8
any minimum RBP spanning graph has at most |R|+ |B|+ 2|P |− 2 = n+k− 2
edges. Thus, the weight of X∗ is equal to the smallest weight among the weights
of X∗i for all n − 1 6 i 6 n + k − 2. Since the addition of edges maintains the
RBP spanning property, we conclude that for every i ∈ {n − 1, . . . , n + k − 2}
there exists an RBP spanning graph with exactly i edges. Based on Lemma 9,
X∗n−1 can simply be computed by first computing the minimum spanning tree of
the purple points, and then adding the red points, and then the blue points, in
an optimal manner in a similar way as Prim’s algorithm for minimum spanning
trees.

One can easily modify the weighted matroid intersection algorithm as fol-
lows: having a maximum-weight common independent set I with |I| elements,
we can compute a maximum-weight common independent set I ′ with |I ′| =
|I| − 1 elements. Let M ′ be the maximum-size of a common independent set of
the two matroids. Therefore, if we have IM ′ , the algorithm can be modified to
first compute IM ′ , IM ′−1, . . . , I0 and then take the one with maximum weight.

Since the minimum-size of an element in Qr ∩ Qb is n − 1, the maximum-
size M ′ of a common independent set of Ir and Ib is |E′| − (n − 1) = m′ −
n + 1. As described above, we can compute a minimum-weight element X∗n−1
in Qr ∩ Qb that has n − 1 edges. The complement of X∗n−1 is a maximum-

weight common independent set Im′−n+1 of Ir and Ib. Therefore by com-
puting Im′−n+1, . . . , Im′−n−k+2 and taking the one with maximum weight, we
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obtain a maximum-weight element of Ir ∩ Ib. Note that in (P0) we com-
pute X∗n−1, . . . , X

∗
n+k−2 and take the one with the smallest weight as X∗. We

solve O(k) instances of the weighted matriod intersection problem, each of
which can be solved in O((m′)2 + m′ logm′) = O(k4 + k2n + n2) time (re-
call that m′ = O(k2 + n)). Thus, the total running time of the algorithm is
O(k5 + k3n + kn2). Since k is at most n, the running time of the algorithm is
O(n5).

Recently, Akitaya et al. [2] showed that it is possible to solve this problem
by computing a subset of red edges and a subset of blue edges of a minimum
RBP spanning graph in advance in O(n log n) time, and then run the matroid
intersection algorithm on a set m′ of size O(k2). This, in turn, improves the
running time of the algorithm to O(k5+n log n), however, the worst case running
time of the algorithm is still O(n5). We summarize the result of the discussion
of this section in the following theorem.

Theorem 4 Let S be a set of n points in the plane, each one of which is colored
either red, blue, or purple. Let k be the number of purple points. Then, a min-
imum red-blue-purple spanning graph on S can be computed in O(k5 + n log n)
time.

6 Conclusions

In this paper we considered the minimum red-blue-purple spanning graph prob-
lem on a point set in the plane. The difficulty of this problem is coming from the
fact that the purple edges can be used for both the red and the blue trees. By
considering a smaller number of potential purple edges we improved the running
time of the previous algorithms by a linear factor. In fact, we showed that this
problem can be solved in O(n5) time, where n is the number of input points.
Moreover, for points that are on a circle we showed how to solve this problem in
O(n2) time. A natural open problem is to improve any of these running times.

The extended version of this problem where each point can belong to more
than two color classes is NP-complete [2]. Hurtado et al. [12] presented an
approximation algorithm for the case where the number of color classes is three,
however, the approximation ratio is improved by Akitaya et al. [2]. Several other
special cases are still open, such as points on a circle with three color classes or
points in convex position with two color classes.
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