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Abstract

This is the first of two chapters of a work in which we consider the
unrestricted, minimal, and bounded representation problems for unit in-
terval (UIG) and unit circular-arc (UCA) graphs. In the unrestricted
version, a proper circular-arc (PCA) modelM is given and the goal is to
obtain an equivalent UCA model U . In the bounded version,M is given
together with some lower and upper bounds that the beginning points of
U must satisfy. In the minimal version, we have to find a minimal model
equivalent to M, in which the circumference of the circle and length of
the arcs must be simultaneously as small as possible. In this chapter we
motivate these problems from an historical perspective, and we develop
the theoretical framework required for the algorithms in Chapter II. We
present new characterizations of those PCA models that have equivalent
UCA models, and of those UCA models with a circle of circumference c
and the arcs of length `. We also prove that every UCA model is equiva-
lent to a minimal one. We remark that all our results are of an algorithmic
nature and can be readily employed to solve the problems at hand, even
though these algorithms are not as efficient as those in Chapter II.

Submitted:
February 2016

Reviewed:
October 2016

Revised:
October 2016

Accepted:
February 2017

Final:
February 2017

Published:
April 2017

Article type:
Regular paper

Communicated by:
S. Whitesides

Supported by PICT ANPCyT grants 2013-2205 and 2015-2419, and by PUNQ Grant 1451/15.
E-mail address: francisco.soulignac@unq.edu.ar (Francisco J. Soulignac)

http://dx.doi.org/10.7155/jgaa.00425
mailto:francisco.soulignac@unq.edu.ar


456 Soulignac Representations of UIG and UCA graphs. Theory.

1 Introduction

In this work we are concerned with some recognition and representation prob-
lems for unit interval and unit circular-arc graphs. A proper circular-arc (PCA)
model is a pairM = (C,A) where C is a circle and A is a family of inclusion-
free arcs of C in which no pair of arcs in A cover C. If some point of C is
crossed by no arcs, thenM is a proper interval (PIG) model. Unit circular-arc
(UCA) and unit interval (UIG) models correspond to the PCA and PIG models
in which all the arcs have the same length, respectively. Every PCA modelM
is associated with a graph G(M) that contains a vertex for each of its arcs,
where two vertices are adjacent if and only if their corresponding arcs have a
nonempty intersection. A graph G is a proper circular-arc (PCA) graph when it
is isomorphic to G(M) for some PCA modelM. In such a case, G is said to ad-
mit the modelM, whileM is said to represent G. Proper interval (PIG), unit
circular-arc (UCA), and unit interval (UIG) graphs are defined analogously.

The recognition problem is well solved for UIG graphs. Indeed, Roberts’
PIG=UIG Theorem states that every PIG graph admits a UIG model [41].
Hence, it suffices to determine if G is a PIG graph, a task that can be accom-
plished in linear time (e.g. [21]) or logspace [30]. Moreover, there are certifying
algorithms that exhibit either a PIG model or a forbidden induced subgraph
according to whether the input graph is PIG or not.

Knowing that G is a UIG graph and has a PIG model tells us nothing about
its UIG models. There are numerous applications in which a UIG model is to
be found (e.g. [8, 9, 15, 16, 18, 20, 45] and [40, Chapter 2]), and others that
benefit from having a UIG model as input [40, Chapter 2]. Usually, the problem
is to transform an input PIG modelM into an equivalent UIG model U , where
equivalent means that the extremes of U must appear in the same order as inM.
We refer to this problem as the (unrestricted) representation (Rep) problem.

Rep is a classical problem whose research is even older than the notion of
PIG graphs. Indeed, Rep is one of the motivations in the pioneering philosoph-
ical work by Goodman [20], which dates back to the 1940’s. Moreover, Fine
and Harrop [14] developed, in 1957, an effective method to transform a weak
mapping of an array (i.e., a PIG model) into a uniform mapping of the same
array (i.e., a UIG model of a power of a path); this algorithm is actually the first
proof of Robert’s PIG=UIG theorem, as far as our knowledge extends. Linear-
time algorithms for Rep are known since more than two decades [7, 33, 37] and,
recently, a logspace implementation has been devised [30].

Rep can be generalized to the partial representation extension (RepExt)
problem in which some arcs ofM are pre-drawn, and U must contain these arcs.
RepExt is in turn a special case of the more general bounded representation
(BoundRep) problem in which a length ` ∈ Q is given together with lower
and upper bounds d`(A), dr(A) ∈ Q for each arc A of M, and the goal is to
produce an equivalent UIG model U in which all the arcs have length ` in such
a way that d`(A) ≤ s(A) ≤ dr(A) for every arc A. Here s(A) ∈ Q represents the
beginning point of A. In this work we consider a variant of BoundRep in which
`, d`(A), dr(A) are integers, and each beginning point s(A) of U is required to
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be an integer as well. We refer to this problem as the IntBoundRep; as far as
we know, IntBoundRep has not been considered before.

The research on RepExt and BoundRep did not begin until recently and,
consequently, they are not as studied as Rep. Even though RepExt and
BoundRep are natural generalizations of Rep, these problems are not mo-
tivated by real-world applications. The reason for studying them resides in the
increasing interest for partial and bounded representation problems, that were
studied for several graph classes (e.g. [1, 3, 4, 5, 26, 28, 29]). Concerning PIG
graphs, Balko et al. [1] show that the bounded representation problem is solvable
in O(n2) time. Regarding UIG graphs, Klavík et al. [28] designed an O(n2+nD)
time algorithm for BoundRep, where D is the cost of multiplying large num-
bers (requiring r bits, where r is the total space consumed by the bounds). As
the main open problem, the authors inquire if there exists an algorithm running
in less than O(n2 + nD) time. In [28], a generalization of BoundRep in which
the output UIG model U need not be equivalent to the input PIG modelM is
also considered; what the authors ask is for G(U) to be isomorphic to G(M).
Whereas BoundRep is polynomial, this generalization is NP-complete [28].

While introducing their research on RepExt, in the preprint version of the
article [27, p. 2], Klavík et al. state that “specific properties of unit interval
representations were never investigated since it is easier to work with combi-
natorially equivalent proper interval representations”.1 This strong assertion
reflects a state of affairs within the graph theory community about the research
on UIG graphs, but it is not true in a literal sense. In 1990, Pirlot proved that
every PIG graph admits a minimal UIG model [38]. Tough Pirlot’s work is not
of an algorithmic nature, the main tool he uses is a space efficient representa-
tion of PIG models called the synthetic graph. With the aid of an appropriate
weighing, this graph reflects the separation constraints that all the equivalent
UIG models must satisfy. As part of his work, Pirlot solves the `-Rep problem
of determining if a PIG graph admits a UIG model in which all the arcs have
integer endpoints and a given length `. Clearly, this is a specific property of UIG
models. Moreover, Pirlot introduces synthetic graphs to solve the linear pro-
gram in [28, Proposition 4.4] (except for the bound constraints) and, vice versa,
the graph used in [28, Proposition 4.4] is a synthetic graph (plus two vertices
for modeling the bounds). Isaak [23, 24] considers the representation problem
for intervals of bounded length, obtaining similar results for unit intervals, and
Balof et al. [2] study the polyhedron defined by Pirlot’s linear program.

UIG models with integer endpoints where considered at least three times af-
ter Pirlot’s publication. In 2004, Czyzowicz et al. [9, Problem 3.2] ask whether
`-Rep is NP-complete, while, in a recent poster2, Durán et al. present a charac-
terization of those UIG graphs for which `-Rep is solvable. Interestingly, both

1N.B.: this assertion was replaced with “specific properties of unit interval representations
were not much investigated” in [28]

2Durán, G., Grippo, L., Oliveira, F., Slezak, F., Szwarcfiter, J.: Characterizations of
(k)-interval graphs (2014). Poster session presented at Foundations of Computational Math-
ematics 2014 (http://focm2014.dm.uba.ar/session/sessionAllSchedule.pdf, accessed De-
cember 2014).

http://focm2014.dm.uba.ar/session/sessionAllSchedule.pdf
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problems where settled by Pirlot in 1990 [38], as he shows that `-Rep can be
solved in O(n2) time, providing a forbidden induced subgraph in case of failure.
In a conference paper of the aforementioned poster by Durán et al. [10], the au-
thors write that “those semiorders representable with intervals of length k were
characterized [by Pirlot] by forbidden suborders for every integer k”. Instead,
they “generate the family” of forbidden subgraphs “without dealing with subor-
ders as the other articles did”, referring to the work by Pirlot and a preprint
version of the present manuscript. Actually, Pirlot [38], and the treatment of his
work that we present, describes the forbidden configurations in terms of cycles
in the synthetic graph (see Theorem 1). Thus, taking into account that the ver-
tices of a PIG graph are in a one-to-one correspondence with the vertices of (any
of) its synthetic graphs, the characterization by forbidden induced subgraphs
follows easily. (We remark that the forbidden subgraphs as described in [10] cor-
respond to cycles of the synthetic graph as well, where the Left-Choice options
correspond to noses and the Right-Choice options correspond to hollows; see
Section 3.)

Similarly as above, Gardi [19, p. 2908] claims that, up to 2007, the algorithm
by Corneil et al. [7] was the only one able to solve Rep in linear time. Again,
by Pirlot’s theorem, it makes sense to consider the minimal UIG representation
(MinUIG) problem, in which an input PIG model has to be transformed into
an equivalent minimal UIG model. By taking a deeper look to synthetic graphs,
Mitas [37] devised a linear-time algorithm to solve MinUIG and, thus, Rep.
In the present work we show that Mitas’ algorithm sometimes fails to find the
minimal model. Yet, her algorithm correctly solves Rep in linear time. We
remark that Mitas’ (1994) algorithm is contemporary to the one by Corneil et
al. (1995).

The problem of finding a minimal model is as old as Rep [20]. However,
there has been some controversy about what a minimal model is, and which
properties should it hold, as many researchers expect the minimal model to be
unique [14, 15, 16, 18]. In this work we follow the definition given by Pirlot [38].
In short, a PIG model is minimal when both the length and the beginning
point of every interval are as small as possible (see Section 6). The advantage of
Pirlot’s definition is that the minimal model is unique; the disadvantage is that
proving the existence of minimal models is not a trivial task. Thus, the first
algorithm that solves MinUIG with this definition of minimality is the one given
by Pirlot [38]. As mentioned before, Mitas’ algorithm fails to solve MinUIG,
and in this work we fix it at the expense of increasing its complexity to O(n2)
time and linear space. In a recent conference, Durán et al. [10] presented an
O(n3) time algorithm that, given a UIG modelM, finds a solution U to `-Rep
such that ` and the rightmost interval of U are as small as possible. Of course,
any solution to MinUIG serves as a solution to the problem studied by Durán
et al. (the converse is not true). Although Durán et al. acknowledge that our
patch to Mitas’ algorithm finds a solution to `-Rep for the minimum value of `,
they omit to mention that it also solves their problem as well (see Section 6).

MinUIG is implicitly solved in a recent article by Costa et al. [8], where the
authors devise an O(n2) time and space algorithm to solve the MinPkq problem.
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In the MinPkq problem we are given a PIG model M and the goal is to find
a UIG model U representing a power of a path P kq in such a way that M is
equivalent to some induced submodel U ′ of U and q, k are as small as possible.
As proven in [14, 32], MinPkq is always solvable. Moreover, U need not be
explicitly constructed, as it is implied by U ′. In fact, it suffices to take U ′ to be
the solution to MinUIG, as it follows from [32] (see Section II.6). Soulignac [42,
Chapter 9] mentions that Mitas’ algorithm can be used to find U ′ in linear time.
Yet, Costa et al. omit this fact although they reference [42] to explain the strong
relation between Rep and MinPkq .

In this work we consider the unrestricted, bounded, and minimal represen-
tation problems for the broader class of unit circular-arc graphs. As far as our
knowledge extends, only the unrestricted version has been considered, while Lin
and Szwarcfiter [34] leave some open problems related to the minimal represen-
tation problem as we conceive it.

As for PIG graphs, the recognition problem for PCA graphs is solvable
in linear time [25, 43] or logspace [31]. Again, a PCA model or a forbidden
induced subgraph is obtained according to whether the input graph is PCA or
not. As before, knowing that a UCA graph has a PCA model tells us nothing
about its UCA models. Thus, there is a motivation for finding UCA models for
applications that require them as input (e.g. [12, 17]). Goodman [20] already
considers the representation problem for UCA graphs, when he deals with the
adjustment of polygonal weak arrays (i.e., PCA models). Goodman [20, p. 215]
gives a good reason for dealing with more complex structures: “We can by no
means take it for granted that all the categories of qualia are linear arrays;
indeed, it is clear that the order of colors, for example, is much more complex.”
(Luce [35] contains more examples of circular quantities.) Consequently, the
same motivations for studying MinUIG on UIG graphs hold for UCA graphs.
The problem is that, as far as our knowledge extends, there is no satisfactory
definition of what a minimal UCA model is.

About the representation problems, Goodman [20, p. 239] declares: “for
linear and polygonal arrays do we have anything even approaching adequate
rules for adjustment”. These rules, however, will fail when applied to certain
PCA models because not every PCA graph is UCA. In 1974, Tucker showed a
characterization by forbidden subgraphs of those PCA graphs that are UCA [46].
His proof yields an effective method to transform a PCA model M into an
equivalent UCA model U . Unfortunately, the extremes of U are not guaranteed
to be of a polynomial size and, thus, the corresponding representation algorithm
cannot be regarded as polynomial. More than three decades later, in 2006,
Durán et al. [11] described how to obtain a forbidden subgraph in O(n2) time,
thus solving the recognition problem. The representation problem remained
unsolved until Lin and Szwarcfiter showed how to transform any PCA model
into an equivalent UCA model in linear time [34]. Their algorithm, however,
does not output a negative witness when the input graph is not UCA. The
problem of finding a forbidden subgraph in linear time was solved by Kaplan
and Nussbaum [25]. Yet, up to this date, there is no unified algorithm for solving

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.6


460 Soulignac Representations of UIG and UCA graphs. Theory.

the transformation problem while providing a negative witness when the input
model has no equivalent UCA models. Regarding the space complexity, Köbler
et al. [31] mention that the representation problem in logspace is still open.

1.1 Contributions and outline

Synthetic graphs appeared more than two decades ago, and they are covered in
detail in a book by Pirlot and Vincke [40, Chapter 4]. Pirlot and Mitas’ articles
are written in terms of semiorders; their emphasis is on preference modeling and
order theory. This could be, perhaps, the reason why synthetic graphs have gone
unnoticed by many researchers in the field of algorithmic graph theory. Similar
considerations hold for many results on this subject; for instance, some recent
ideas in [32, 33] were already present in [13, 14]. In this work we generalize
synthetic graphs to PCA models and we apply them to show improved algo-
rithms for Rep, (Int)BoundRep, MinUIG (and its restricted generalization
IntMinUCA), and MinPkq (and its generalization MinCk

q ) for UCA graphs.
Our main meta-contribution is to show that synthetic graphs provide a simpler
theoretical ground for understanding PCA models with separation constraints.
For this reason, we re-prove some known theorems and rewrite some known
algorithms in terms of synthetic graphs.

Because of its length, this work has been divided in two chapters during the
reviewing process. In Chapter I, i.e. the present manuscript, we provide a thor-
ough motivation to study the problems at hand, and we prepare the theoretical
ground that is required for Chapter II. Even though the work as a whole is of an
algorithm nature, Chapter I provides different characterizations of UCA graphs
that can be of interest in non-algorithmic applications. In Chapter II [44], in-
stead, we provide efficient algorithms for the different problems. Both chapters
are self-contained and each could be read independently of the other. Yet, we
feel that our meta-contribution applies only when the work is seen as a unit. The
next paragraphs describe our main contributions; each reference here provided
is prefixed with the number of the corresponding chapter. Also, the number of
each theorem here presented corresponds to the number of a theorem in one of
the chapters.

Characterization of u-CA models. A u-CA model is a constrained UCA
model that satisfies several restrictions imposed by a descriptor u. These restric-
tions have to do with the circumference of the circle, the length of the arcs, and
the position and distance between the endpoints. In Section I.3, we characterize
those PCA models that are equivalent to some u-CA model. The characteriza-
tion is in terms of forbidden cycles of the synthetic graph. Specifically, we prove
a theorem of the following form.

Theorem I.1 A PCA model is equivalent to a u-CA model if and only if every
cycle of its synthetic graph has a nonnegative weight.
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The bounded representation problem. In Section II.3 we develop algo-
rithms to solve BoundRep and IntBoundRep for UCA graphs. Both algo-
rithms require O(n2) time and O(n) space, improving over the algorithm in [28]
even when restricted to UIG graphs.

Theorem II.1 BoundRep and IntBoundRep are solvable in O(n2) time
and O(n) space.

Certified recognition of UCA graphs. The advantage of certifying algo-
rithms [36] over their non-certifying counterparts is that they provide a witness
guaranteeing the validity of the YES-NO answer. The end user can authenticate
the witness to be confident that the answer is correct, even in the presence of
an incorrect implementation. Regarding the representation problem of UCA
graphs, the algorithm LS by Lin and Szwarcfiter [34] outputs a UCA model
for any YES instances, while the algorithm KN by Kaplan and Nussbaum [25]
outputs a forbidden subgraph for NO instances. The pair (LS, KN) can be
regarded as a certifying algorithm. However, an erroneous implementation of
LS could claim that a UCA graph G admits no UCA models, while a correct
implementation of KN claims that G is UCA. In such a case, no witness is ob-
tained at all, defeating the purpose of a certifying algorithm. Is for this reason
that Kaplan and Nussbaum [25] leave open the problem of finding a unified
certification algorithm. In Section II.4.3, we provide this unified algorithm.

Theorem II.2 There is a unified certifying algorithm that solves Rep in linear
time.

New proof of Tucker’s theorem, and a revision of the algorithm by
Kaplan and Nussbaum. The correctness of our recognition algorithm de-
pends on a new proof of Tucker’s theorem. In short, Tucker [46] proved that
M is equivalent to some UCA model if and only if a/b < x/y for every (a, b)-
independent and every (x, y)-circuit of M. The negative witness provided by
the algorithm by Kaplan and Nussbaum [25] is an (a, b)-independent plus an
(x, y)-circuit with a/b ≥ x/y. In Section I.4 we provide a new proof of Tucker’s
theorem that contains more equivalent statements, including one to construct a
UCA model of polynomial size (see Theorem I.2). In Section II.4.2 we provide
a new implementation of the algorithm by Kaplan and Nussbaum, by taking
advantage of synthetic graphs. Even though we claim that our new implemen-
tation is equivalent to the one provided by Kaplan and Nussbaum, this fact
is not obvious. The forbidden structure that we employ to characterize UCA
graphs is a cycle of the synthetic graph which, a priori, is unrelated to the
(a, b)-independents and (x, y)-circuits employed by Tucker. In Section I.5 we
show that, in fact, these structures are strongly related as follows.

Theorem I.4 A PCA model M contains an (a, b)-independent (resp. (x, y)-
circuit) if and only if the synthetic graph of M contains a nose (resp. hollow)
circuit with ratio a/b− h (resp. x/y − h), where h is the height ofM.

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.3
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#subsection.4.3
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#theorem.2
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#subsection.4.2
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Logspace recognition of UCA graphs. Köbler et al. [31] solve the recog-
nition of PCA graphs in logspace. They leave open the problem of recognizing
UCA graphs in logspace. We solve this problem in Section II.4.4; the correctness
of our algorithm depends on our new proof of Tucker’s theorem.

Theorem II.5 There is an algorithm that solves Rep in logspace.

Minimal UCA models. In Section I.6 we introduce the concept of minimal
models for UCA graphs, following the one proposed by Pirlot for UIG graphs.
We prove that every UCA model is equivalent to some minimal model, and we
provide a polynomial algorithm to find it. In Section I.7 we discuss some open
problems regarding minimal UCA models.

Theorem I.5 Every UCA graph admits a minimal UCA model.

Minimal UIG models. In Section II.5, we consider the MinUIG problem.
We show that, even though Mitas’ algorithm correctly solves Rep, it sometimes
fails to provide a minimal model. We propose a patch but, unfortunately, the
new algorithm runs in O(n2) time. The minimal representation problem in
linear time remains, thus, an open problem.

Theorem II.7 MinUIG can be solved in O(n2) time and linear space.

Powers of paths and cycles. In Section II.6 we show how MinUIG and
its generalization IntMinUCA can be used so as to solve MinPkq and MinCk

q ,
respectively. The obtained algorithm for MinPkq runs in O(n2) and linear space,
thus improving the results obtained by Costa et al. [8].

2 Preliminaries
In this article we consider (simple) graphs, (simple) digraphs, and q-digraphs.
A q-digraph, for q ∈ N, is a (q + 1)-tuple G = (V,E1, . . . , Eq) such that (V,Ei)
is a digraph, for 1 ≤ i ≤ q. Clearly, every digraph is a 1-digraph. For the sake
of simplicity, we refer to the directed edges in Ei as being edges of G, unless
otherwise stated. For a (q-di)graph G, we write V (G) and E(G) to denote the
sets of vertices and (bag of) edges of G, respectively, while we use n and m to
denote |V (G)| and |E(G)|, respectively. For any pair u, v ∈ V (G), we write uv
to denote the pair (u, v); note that uv is an unordered pair when G is a graph,
while it is an ordered pair when G is a q-digraph. To avoid confusion, we write
u → v as an equivalent of uv when G is a q-digraph. Sometimes we may refer
to the pair uv as being the (directed) edge between u and v (from or starting
at u to or ending at v), regardless of whether uv ∈ E(G).

A walk W of a (q-di)graph G is a sequence of edges v1v2, v2v3 . . . , vk−1vk of
G. Walk W goes from (or starts at) v1 to (or ends at) vk. We say that W is a
circuit when vk = v1, that W is a path when vi 6= vj for every 1 ≤ i < j ≤ k,

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#subsection.4.4
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#theorem.5
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.5
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#theorem.7
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.6
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and that W is a cycle when it is a circuit and v1v2, . . . , vk−2vk−1 is a path. If G
contains no cycles, then G is an acyclic (q-di)graph. For the sake of notation,
we could say that W is a circuit when v1 6= vk; this means that W, vkv1 is a
circuit. Moreover, we may write that a sequence of vertices v1, . . . , vk is a walk
of G to express that some sequence of edges v1v2, . . . , vk−1vk is a walk of G.
Both conventions are ambiguous when G is a q-digraph for q > 1, as there could
be q edges from vi to vi+1 (or from vk to v1 in the former case). In general, the
edge represented by vivi+1 is clear by context.

An edge weighing, or simply a weighing, of a (q-di)graph G is a function
w : E(G) → R. The value w(uv) is referred to as the weight of uv (with re-
spect to w). For any bag of edges E, the weight of E (with respect to an edge
weighing w) is w(E) =

∑
uv∈E w(uv). We use two distance measures on a (q-

di)graph G with a weighing w. For u, v ∈ V (G), we denote by d∗w(G, u, v)
the maximum w(W ) among the walks W from u to v, while dw(G, u, v) de-
notes the maximum w(W ) among the paths W starting at u and ending at
v. Note that dw(G, u, v) < ∞ for every u, v, while d∗w(G, u, v) = dw(G, u, v)
when G contains no cycle of positive weight [6]. For a weighing w′, we write
(dw ◦ dw′)(G, u, v) = max{w(W ) | W is a path from u to v with w′(W ) =
dw′(G, u, v)}. In other words, dw ◦ dw′ measures the “w-distance” from u
to v when only those walks that impose the maximum “w′-distance” from u to v
are considered. For the sake of notation, we omit the parameter G when there
are no ambiguities.

A proper circular-arc (PCA) modelM is a pair (C,A), where C is a circle
and A is a collection of open arcs of C such that no arc contains another arc and
no pair of arcs in A cover C. When traversing the circle C, we always choose
the clockwise direction. If s, t are points of C, we write (s, t) to mean the arc
of C defined by traversing the circle from s to t, and |s, t| to mean the length
of (s, t). Sometimes we refer to |s, t| as being the separation from s to t. Points
s and t are the extremes of (s, t), while s is its beginning point and t its ending
point. For A ∈ A, we write A = (s(A), t(A)). The extremes of A are those of
all arcs in A. In this article we assume that no pair of extremes of A coincide.
An ordered pair of extremes s1s2 ofM is consecutive when there is no extreme
s ∈ (s1, s2) (note that s2s1 is not consecutive in this case, unless |A| = 1).
We assume C has a special point 0 with the property that s(Ai) = |0, s(Ai)|
and t(Ai) = |0, t(Ai)|, for every 1 ≤ i ≤ n. For every pair of points p1, p2, we
write p1 < p2 to indicate that p1 appears before p2 in a traversal of C from 0.
Similarly, we write A1 < A2 to mean that s(A1) < s(A2) for any pair of arcs
A1, A2 on C.

A unit circular-arc (UCA) model is a PCA model M in which all the arcs
have the same length. Let A1 < . . . < An be the arcs ofM = (C,A), c, ` ∈ Q>0,
d, ds ∈ Q≥0, and d`, dr : A → Q≥0. We say that M is a (c, `, d, ds, d`, dr)-CA
model when:

(unit1) C has circumference c,

(unit2) all the arcs of A have length `,
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(unit3) |p1, p2| ≥ d for every pair of consecutive extremes p1p2,

(unit4) |s1, s2| ≥ d+ ds for any pair of beginning points s1, s2, and

(unit5) d`(Ai) ≤ s(Ai) ≤ c− dr(Ai) for every 1 ≤ i ≤ n.

Intuitively, M is a UCA model in which consecutive extremes are separated
by at least d space, the beginning points are separated by d + ds space, and
d`(Ai) and dr(Ai) are lower bounds of the separation from 0 to s(Ai) and from
s(Ai) to 0, respectively. We simply write thatM is a (c, `, d, ds)-CA model to
indicate that d` = dr = 0, and thatM is a (c, `)-CA model to mean thatM is
a (c, `, 1, 0)-CA model. To further simplify the notation, we refer to the tuple
u = (c, `, d, ds, d`, dr) as a UCA descriptor, and we say that u is integer when
c, `, d, ds, d`, and dr are integers. Similarly, a u-CA modelM is integer when
c, ` and all the extremes ofM are integers.

A proper interval (PIG) model is a PCA modelM in which no arc crosses
0; ifM is also UCA, thenM is a unit interval (UIG) model. Any UIG model
M is a u-CA model for some large enough c; for simplicity, we just write c =∞
in this case. Moreover, we write thatM is an (`, d, ds)-IG model to mean that
M is a (∞, `, d, ds)-CA model.

Each PCA modelM defines a graph G(M) that contains a vertex for each
arc ofM where two vertices are adjacent if and only if their corresponding arcs
have a nonempty intersection. We say thatM represents a graph G, and that
G admits M, when G is isomorphic to G(M). A graph is a proper circular-arc
(PCA), unit circular-arc (UCA), proper interval (PIG), or unit interval (UIG)
graph when it admits a PCA, UCA, PIG, or UIG model, respectively.

Clearly, two PCA models M1 = (C1,A1) and M2 = (C2,A2) are equal
when C1 = C2 and A1 = A2. We say that M1 is equivalent to M2 when the
extremes ofM1 appear in the same order as inM2 in the traversals of C1 and
C2 from their respective 0 points. Formally,M1 andM2 are equivalent if there
exists f : A1 → A2 such that e(f(A)) < e′(f(B)) if and only if e(A) < e′(B),
for e, e′ ∈ {s, t}. By definition, M1 and M2 are equivalent whenever they are
equal.

In this work we consider several recognition problems. In the representation
(Rep) problem a UCA model equivalent to an input PCA model M must be
generated. Of course, Rep is unsolvable when M is equivalent to no UCA
model, a negative witness is desired in such a case. In the u-Rep problem, a
(an integer) UCA descriptor u is given together withM, and the goal is to build
a (an integer) u-CA model U . We remark that an integer U equivalent to M
exists whenever u is integer and u-Rep is solvable. The bounded representation
(BoundRep) problem is a slight variation of u-Rep in which a feasible d > 0
must be found by the algorithm, as it is not given as input. That is, we are
given a PCA model M = (C,A) together with c, ` ∈ Q>0, ds ∈ Q≥0 and
d`, dr : A → Q≥0, and we ought to find a u-CA model equivalent to M for
some UCA descriptor u = (c, `, d, ds, d`, dr) with d ∈ Q>0. The integer bounded
representation (IntBoundRep) problem is a variant of BoundRep in which
all the input values are integers and the output model must be integer as well.
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We also study the MinUIG and IntMinUCA problems that are related to
minimal models. We postpone their definitions to Section 6.

By its generic nature, the same specification of u-Rep can describe different
problems; all we have to do is change the (meaning of the) parameters in the
input UCA descriptor. Similarly, the algorithm for u-Rep is a building block
that we applied to solve the remaining problems. The six parameters included
in UCA descriptors have to do with the problems that we consider in this work.
Yet, not all the parameters are equally important for all the problems: some
are required for the problem to make sense, while the remaining are accessory
and their inclusion makes no harm. For instance, in Rep the goal is to find a
(c, `, d, ds)-CA model, regardless of the values of d and ds. Yet, we know that
Rep is solvable if and only if it is solvable for d = 1 and ds = 0, thus defining
Rep as the problem of finding a (c, `, 1, 0)-CA model is not a serious restriction.
Similarly, ds is not required for defining BoundRep, yet it makes no harm to
solve the generalization in which ds is given as input. As it turns out, ds only
plays a fundamental role in the solution of the MinPkq and MinCk

q problems
that are defined in Chapter II. Yet, we include them in this chapter so that we
can focus in a unique solution for u-Rep.

2.1 Restrictions on the input models

As it is customary in the literature, in this work we assume that all the arcs of a
PCA modelM are open and no two extremes ofM coincide. The reason behind
these assumptions is thatM can always be transformed into an equivalent model
M′ that satisfies these properties. A word of caution is required, though, as
in this work we deal with the lengths of the arcs. If we allow coincidences in
the extremes of M, for instance, it is possible to shrink the length of the arcs
or the circle of some UCA models. We emphasize, nevertheless, that all the
arguments in this work, with the obvious adjustments, are equally true when
these assumptions are drop. In particular, note that the articles by Klavík et
al., Mitas, and Pirlot allow coincident extremes [28, 37, 38, 39].

By our definition, PCA models cannot have two arcs covering the circle. This
is a somehow artificial restriction that we impose for the sake of simplicity. In
general, this class of models is said to be normal. However, it is well known that
every non-normal PCA model can be transformed into a normal PCA model
in linear time or logspace (see e.g. [25]). Moreover, note that if two arcs in a
UIG model cover the circle, then such a model represents a complete graph.
The complete graph on n vertices admits the integer (1, 0)-minimal UIG model
{(i, i + n + 1) | 1 ≤ i ≤ n}, thus we do not lose much by excluding these non-
normal models when dealing with Rep, IntMinUCA, and MinUIG. In turn,
the fact thatM is normal is not used in Theorem 1, thus (Int)BoundRep is
also solvable for non-normal models.

Finally, we require two additional restrictions on the input PCA models for
technical reasons. We say that a PCA model M with arcs A1 < . . . < An is
trivial when either



466 Soulignac Representations of UIG and UCA graphs. Theory.

1. s(An) < t(A1), or

2. s(Ai)t(Ai) are consecutive for some 1 ≤ i ≤ n.

If 1. holds, then we cannot claim that h(M) ≥ 1 in Section 3.3. However, in
this caseM represents a complete graph and {(i, i+ n+ 1) | 1 ≤ i ≤ n} is the
unique integer (1, 0)-minimal model equivalent to M. Thus all the considered
problems are trivial in this case. If 2. is true, then Ai → Ai is a loop of the
digraph B(M) defined in Section 3. We can certainly allow the existence of
such a loop in B. However, this edge plays no role in the considered problems
as sep(Ai → Ai) < 0 by (sep 3). Hence, we assume from now on that no PCA
model is trivial.

3 The synthetic graph of a model
Pirlot [38, 39] introduced the synthetic graph of a PIG model to represent
the separation constraints of its beginning points in any equivalent (`, d, 0)-IG
representation. Recently, Klavík et al. [28] rediscovered and extended synthetic
graphs to represent the separations constraints of the bounded representation
problem. In this section we further extend synthetic graphs to PCA models, and
we show that they correctly reflect the separation constraints in an equivalent
u-CA model, for any UCA descriptor u. Before doing so, however, we informally
present a simple algorithm to solve u-Rep to motivate the definition of synthetic
graphs. Readers familiar with one of [28, 38, 40] can safely skip Section 3.1.

3.1 A simple algorithm for u-Rep

Recall that the input of u-Rep is a PCA modelM with arcs A1 < . . . < An and
a UCA descriptor u, and the output is a u-CA model U equivalent toM with
arcs U1 < . . . < Un. All we have to do to solve u-Rep is to find an appropriate
position for s(Ui), for every 1 ≤ i ≤ n; such a position can be described using a
family of “separation constraints”. A separation constraint is an inequality that
dictates how far or close must s(Ui) be from either 0 or another beginning point
of U . For instance, it could specify that s(Ui) ≥ 3 or s(Ui) ≥ s(Uj) − 7. If
we regard 0 as the beginning point of a fictitious arc U0, then each separation
constraint is an inequality of the form s(Uj) ≥ s(Ui) + δ.

To provide the family of separation constraints for u-Rep, let Ai < Aj be
arcs ofM and suppose, for the time being, thatM is equivalent to some u-CA
model U ; as usual u = (c, `, d, ds, d`, dr). Since U is equivalent toM, it follows
that Ui < Uj , thus s(Uj) satisfies the separation constraint s(Uj) ≥ s(Ui)+d+ds.
Similarly, asM and U are circular structures, s(Ui) satisfies the corresponding
separation constraint s(Ui) ≥ s(Uj) + d+ ds − c. Analogously, Ai crosses Aj if
and only if Ui crosses Uj . Again, we have two possibilities according to whether
Ai crosses 0 or not. In the latter case, s(Uj) + d ≤ t(Ui) = s(Ui) + `, thus s(Ui)
satisfies the constraint s(Ui) ≥ s(Uj) + d − `. In the former case, and by the
circular nature of M and U , it follows that s(Uj) + d ≤ t(Ui) + c = s(Ui) + `,
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thus s(Ui) satisfies s(Ui) ≥ s(Uj)+d+c−`. The complete family of separations
constraints for u-Rep is given below; here Ai and Aj represent any pair of arcs,
whereas q ∈ {0, 1} equals to 0 when Ai < Aj .

step constraints: s(Uj) ≥ s(Ui) + d+ ds − cq.

nose constraints: s(Uj) ≥ s(Ui) + `+ d− cq when t(Ai) < s(Aj).

hollow constraints: s(Ui) ≥ s(Uj) + d− `+ cq when t(Ai) > s(Aj).

bound constraints: s(Ui) ≥ s(U0) + d`(Ai) and s(U0) ≥ s(Ui) + dr(Ai)− c.

This set S of separation constraints forms a system of inequalities such that
U is a solution to u-Rep if and only if its beginning points are a solution to S.
Let the separation graph of M be the 4-digraph G that has one vertex vi for
each arc Ui and one edge vi → vj for each constraint s(Uj) ≥ s(Ui) + δ of S,
and let sep be a weighing that assigns δ to the corresponding edge vi → vj . The
solutions to S are commonly referred to as potential function of G; it is well
known that S has a solution if and only if G has no cycles of positive weight
(c.f. [40]). Moreover, {s(Ui) = dsep(G, v0, vi) | 0 ≤ i ≤ n} is a solution to S.

The above discussion yields a simple algorithm to solve u-Rep: just invoke
Bellman-Ford’s shortest path algorithm on G and v0. We can improve this
algorithm by observing that most of the separation constraints are implied (in
the sense that they can be derived from other separation constraints), and thus
their corresponding edges can be removed from G. This is obvious if we observe
that we are interested only in a spanning tree of G defined by the longest paths
from v0. However, the idea is to remove some of the implied edges before solving
the longest path problem. For instance, the step constraint s(Ui) ≥ s(Uj) + d
is implied by the constraints s(Ui) ≥ s(Ui+1) + d and s(Ui+1) ≥ s(Uj) + d,
for every j > i + 1. Thus, only O(n) of the step constraints should be kept
before invoking Bellman-Ford. Summing up, the idea is to keep a minimal set
of non-implied constraints plus some other “small” set of implied constraints.

The set S′ of kept constraints is what we call a synthesis of S. Formally,
S′ ⊆ S is a u-synthesis of S when all the separation constraints in S, defined
using the values in u, are implied by those in S′. On the other hand, S′ ⊆ S is a
synthesis of S when S′ is a u-synthesis of S for every UCA descriptor u. Clearly,
S′ yields a subgraph G′ of G that is a (u-)synthesis of G. A key observation
by Pirlot [38] for PIG models is that there exists a synthesis S of G with O(n)
edges. Pirlot’s synthesis is what we call the synthetic graph of the PIG model
M. Besides being a synthesis, S has the particularity that it representsM, i.e.,
there is a one-to-one correspondence between PIG models and synthetic graphs.
In the next section we extend Pirlot’s synthetic graphs to represent general PCA
models.

3.2 The synthetic graph of a PCA model
Let M = (C,A) be a PCA model with arcs A1 < . . . < An. The bounded
synthetic graph of M is the 4-digraph B(M) (see Figure 1) that has a vertex
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v(Ai) for each Ai ∈ A and a vertex A0, and whose edge set is Eσ∪Eν ∪Eη∪Eβ ,
where:

• Eσ = {v(Ai)→ v(Ai+1) | 1 ≤ i ≤ n, An+1 = A1},

• Eν = {v(Ai)→ v(Aj) | t(Ai)s(Aj) are consecutive inM},

• Eη = {v(Ai)→ v(Aj) | s(Ai)t(Aj) are consecutive inM}, and

• Eβ = {A0 → v(Ai), v(Ai)→ A0 | 1 ≤ i ≤ n}.

The edges in Eσ, Eν , Eη, and Eβ are said to be the steps, noses, hollows,
and bounds of B(M), respectively.3 (Note that Eσ, Eν and Eη could have a
nonempty intersection, even if this is not the common case. However, B(M)
has no loops as M is not trivial.) For the sake of simplicity, we usually drop
the parameterM from B(M) when no ambiguities are possible. Moreover, we
regard the arcs ofM as being the vertices of B, thus we may say that Ai → Aj
is a nose instead of writing that v(Ai)→ v(Aj) is a nose.

A1

A2

A3

A4

0

b

b

b

b

b

A1

A2

A3

A4

bb

b

b

b

b
A0

(a) (b)

Figure 1. (a) A PCA model M and the graph G(M) it represents. (b) The
synthetic graph of M where thick solid, dashed, dotted, and thin solid lines
represent noses, hollows, steps, and bounds, respectively. Internal edges are
black, whereas external edges are gray.

We classify the edges of B in two classes according to the positions of their
arcs. We say a step (resp. nose) Ai → Aj is internal when i < j, while a
hollow is internal when i > j. Non-internal edges are referred to as external ;
in particular, all the bounds are external. Observe that every step is internal
except An → A1. Similarly, a nose Ai → Aj is internal if and only if the arc

3Pirlot [38] explains that the terms “nose” and “hollow ” are employed because the matrix
representation of a semiorder looks like a “staircase”. We follow Pirlot’s terminology because
it has been applied in many subsequent articles. We emphasize that the intersection matrix
of PIG and PCA models (i.e., the augmented adjacency matrix of the corresponding PIG and
PCA graphs) have the so-called consecutive-ones and circular-ones properties, respectively,
which can also be interpreted as “staircases” as well.
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(s(Ai), s(Aj)) does not cross 0, while a hollow Ai → Aj is internal if and only if
(s(Aj), s(Ai)) does not cross 0. Since the purpose of A0 is to represent the point
0 ofM, we can say, in short, that Ai → Aj is internal when 0 is not crossed in
the traversal of the extremes involved in the definition of Ai → Aj .

We now define the special edge weighing sepu of B that models the separation
constraints that any u-CA model equivalent to M must satisfy. For a UCA
descriptor u, the edge weighing sepu is such that, for every 1 ≤ i, j ≤ n
(sep1) sepu(Ai → Aj) = d+ ds − cq if Ai → Aj is a step,

(sep2) sepu(Ai → Aj) = d+ `− cq if Ai → Aj is a nose,

(sep3) sepu(Ai → Aj) = d+ cq − ` if Ai → Aj is a hollow, and

(sep4) sepu(A0 → Ai) = d`(Ai) and sep(Ai → A0) = dr(Ai)− c,
where q ∈ {0, 1} equals 0 if and only if Ai → Aj is internal. For the sake of
notation, we omit the subscript u from sep when no ambiguities are possible.
Note that (sep 1), (sep 2), (sep 3), and (sep 4) model step, nose, hollow, and
bound constraints as defined in Section 3.1, respectively, assuming that A0

represents 0 inM.
As we shall see in Theorem 1, a u-CA model equivalent to M exists when

the longest path problem with weight sep has a feasible solution on B. In such
case, a u-CA model can be generated by observing the distances from A0. With
this in mind, we define U(M, u) to be the u-CA model with arcs U1, . . . , Un such
that s(Ui) = dsep(A0, Ai), for every 1 ≤ i ≤ n (we assume arithmetic modulo
c). For simplicity, we omitM and u from U as usual.

Theorem 1 The following statements are equivalent for a PCA modelM with
arcs A1 < . . . < An and a (an integer) UCA descriptor u:

(i) M is equivalent to a u-CA model.

(ii) sep(W) ≤ 0 for every cycle W of B.

(iii) U is a (an integer) u-CA model equivalent toM.

Proof: (i) ⇒ (ii). Suppose M is equivalent to a u-CA model M′ with arcs
A′1 < . . . < A′n. Write s(A′0) to mean the point 0 of M′. It is not hard to see
(see Section 3.1) that s(A′j) ≥ s(A′i) + sep(Ai → Aj) for every edge Ai → Aj of
B. Hence, by induction, s(A′i) ≥ s(A′i) + sep(W) for every cycle W of B that
contains Ai.

(ii) ⇒ (iii). Let U1 < . . . < Un be the arcs of U , Un+1 = U1, An+1 = A1,
and note that d∗sep(Ai, Aj) = dsep(Ai, Aj) for every 0 ≤ i, j ≤ n as B has
no cycles of positive length. Thus, by (sep 4), U satisfies (unit5) as s(Ui) =
dsep(A0, Ai) ≥ d`(Ai) and s(Ui) + dr(Ai) − c = dsep(A0, Ai) + dr(Ai) − c ≤
dsep(A0, A0) = 0. Since U satisfies (unit1)–(unit2) by definition, it follows that
U is a (c, `, d′, d′s, d`, dr)-CA model for some d′, d′s. To prove that U is a u-CA
model equivalent toM, it suffices to see that (a) s(Ui) + d + ds ≤ s(Ui+1) for
every 1 ≤ i ≤ n, (b) s(Ui) + d ≤ t(Uj) when s(Ai)t(Aj) are consecutive inM,
and (c) t(Ui) + d ≤ s(Uj) when t(Ai)s(Aj) are consecutive inM.
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(a) Ai → Ai+1 is a step, thus s(Ui) + d + ds = dsep(A0, Ai) + d + ds ≤
dsep(A0, Ai+1) = s(Ui+1).

(b) Ai → Aj is a hollow of B; let q ∈ {0, 1} be 1 if and only if (s(Aj), s(Ai))
crosses 0. Note that, equivalently, q = 1 if and only if Ai → Aj is external.
Thus, t(Uj) = s(Uj) + `− cq = d∗sep(A0, Aj) + `− cq ≥ d∗sep(A0, Ai) +
sep(Ai → Aj) + `− cq = s(Ui) + d.

(c) Ai → Aj is a nose of B; if q ∈ {0, 1} equals 1 when (s(Ai), s(Aj)) crosses 0,
then s(Uj) ≥ d∗sep(A0, Ai) + 1 + `− cq ≥ t(Ui) + d.

(iii) ⇒ (i). Trivial. �

When restricted to PIG models, Theorem 1 is a somehow alternative formu-
lation of Proposition 2.5 in [38]; see also Proposition 4.4 in [28].

Though simple enough, Theorem 1 allows us to solve u-Rep as follows. First,
we build the digraph B in which every edge Ai → Aj is weighed with sij =
sepu(Ai, Aj). Then, we invoke the Bellman-Ford shortest path algorithm [6]
on B to obtain si = d∗sep(A0, Ai) for every 0 ≤ i ≤ n. If Bellman-Ford ends
in success, then we output U(M, u); otherwise, we output the cycle of positive
weight found as the negative witness. This algorithm costs O(n2) time and O(n)
space when u is integer. In Chapter II we generalize this algorithm for the case
in which u is not integer, and we show how Theorem 1 can be used to solve
BoundRep and IntBoundRep as well.

Theorem II.1 (Int)BoundRep and u-Rep can be solved in O(n2) time and
O(n) space.

3.3 The separation of a boundless walk
The cycles of B with maximum sep-values play a fundamental role when deciding
ifM admits an equivalent u-CA model, as shown in Theorem 1. The purpose
of this section is to analyze these separations in the boundless synthetic graph.
The (boundless) synthetic graph ofM is just S(M) = B(M) \A0; for the sake
of simplicity, we drop the parameterM as usual. The main tool that we apply
is a pictorial description of S, that generalizes the work of Mitas [37] on PIG
models (see Figure 2 and Section II.5). Roughly speaking, Mitas arranges the
vertices of S into a matrix, where the row and column of Ai correspond to its
height (cf. below) and the number of internal hollows of some paths from A1,
respectively.

Let M = (C,A) be a PCA model with arcs A1 < . . . < An. The height
h(Ai) of Ai (1 ≤ i ≤ n) is recursively defined as follows:

h(Ai) =

{
0 if s(Ai) < t(A1)

1 + h(Aj) otherwise, where Aj = max{Aj | t(Aj) < s(Ai)}.

The height ofM is defined as h(M) = h(An); note that h(M) ≥ 1 (becauseM
is not trivial). For the sake of notation, we drop the parameterM as usual. In
Figure 2, the vertices are drawn in levels according to their height.

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#theorem.1
http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.5
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(b) The synthetic graph S(M).

Figure 2. (Boundless) synthetic graph S of a PCA model M. Each gray
vertex corresponds to a black vertex (we separate them for the sake of expo-
sition) and each edge is drawn only once. The edges are solid, dashed, and
dotted, according to whether they are noses, hollows, and steps, respectively.
The height of M is h = 3 and each vertex is drawn in a row that corresponds
to its height; the height is indicated to the left. Note that there are 1-, (−h)-,
and (1−h)-noses, 0-, (−1)-, h-, and (h−1)-hollows, and 0-, 1-, and (−h)-steps.

It is important to note that internal noses and steps “jump” to higher or
equal levels, while external noses and steps “jump” to lower levels. Similarly,
internal hollows “jump” to equal or lower levels while external hollows “jump”
to higher levels. We need a more explicit description of how does the height
change when an edge is traversed. In general, we say that Ai → Aj has δ jump
for δ = h(Aj)− h(Ai). For the sake of notation, we refer to noses (resp. steps,
hollows) with δ jump simply as δ-noses (resp. δ-steps, δ-hollows).

It is not hard to see (check Figure 2) that S has three kinds of noses, namely
1-, (−h)-, and (1− h)-noses. Moreover, if Ai → Aj is either a (−h)- or (1− h)-
nose, then h(Aj) = 0. Similarly, there are three kinds of steps, namely 0-, 1-,
and (−h)-steps, and four kinds of hollows, namely 0-, (−1)-, h-, and external
(h − 1)-hollows. Note that we need to differentiate between internal 0-hollows
and external (h − 1)-hollows when h = 1. For the sake of simplicity, we will
refer to Ai → Aj as an (h − 1)-hollow to mean that Ai → Aj is an external
(h−1)-hollow. We emphasize that no confusions are possible becauseM has no
external 0-hollows; otherwise Ai and Aj would cover the circle ofM. Observe
that, as it happens with noses, h(Ai) = 0 for every h- or (h−1)-hollow Ai → Aj ,
while h(A1) = 0 for the unique (−h)-step An → A1. Obviously, the jump of a
walk W depends exclusively on the number of different kinds of noses, hollows
and steps that it contains. We write νδ(W), ηδ(W), and σδ(W) to indicate
the number of δ-noses, δ-hollows, and δ-steps of W, respectively. As usual, we
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do not write the parameter W when it is clear from context. The following
observation describes the jump of W.

Lemma 1 If W is a walk from Ai to Aj in S, then

h(Aj)− h(Ai) = ν1 + σ1 − η−1 + h(ηh − ν−h − σ−h) +
(h− 1)(ηh−1 − ν1−h) (1)

We now define two kinds of walks that are of particular interest for us. These
walks correspond to what Tucker calls by the names of (a, b)-independent and
(x, y)-circuits of a PCA model (see [46] and Section 5). We say that a walk of
S is a nose walk when it contains no hollows, while it is a hollow walk when
it contains no noses and ηh + ηh−1 ≥ σ−h. Note that a walk is both a nose
and a hollow walk only if all its edges are steps; in general, walks that contain
only steps are referred to as step walks. Nose and hollow walks are important
because they impose lower and upper bounds for the circumference of the circle
in a UCA model.

By Theorem 1, ifM is equivalent to a u-CA model, then sep(WN ) ≤ 0 for
every nose cycle WN . By definition,

sep(WN ) = ν1(`+d)+(ν−h+ν1−h)(`+d−c)+(d+ds)(σ0+σ1)+(d+ds−c)σ−h

while by (1)
ν1 = −σ1 + h(ν−h + σ−h) + (h− 1)ν1−h

thus
c ≥ (`+ d)

(
h+

ν−h − σ1
ν1−h + ν−h + σ−h

)
. (2)

For any nose walk WN , the value r(WN ) = ν−h−σ1

ν1−h+ν−h+σ−h
is referred to as the

ratio of WN , while the nose ratio ofM is r(M) = max{r(WN ) | WN is a nose
cycle ofM}.

A similar analysis is enough to conclude (assuming x/0 =∞) that

c ≤ (`− d)
(
h+

η0 + ηh + σ1
ηh + ηh−1 − σ−h

)
(3)

for any hollow cycleWH .4 This time, the value R(WH) = η0+ηh+σ1

ηh+ηh−1−σ−h
is said to

be the ratio of WH , while R(M) = min{R(WH) | WH is a hollow cycle ofM}
is the hollow ratio ofM. The following observation sums up (2) and (3); note
that, as usual, we omit the parameterM from r and R.

Lemma 2 For every u-CA model,

(`+ d)(h+ r) ≤ c ≤ (`− d)(h+R) (4)
4This is the reason why hollow walks are restricted to ηh + ηh−1 ≥ σ−h by definition.

Of course, there is no impediment to define hollow walks in which ηh + ηh−1 < σ−h. Note,
however, that only one of such walks is a cycle: the step path that joins A0 with itself. This
cycle imposes a lower bound on c as described in (2). Thus, we prefer to restrict the global
definition of hollow cycles instead of excluding this case from all the other definitions.
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By (4), M is equivalent to a u-CA model only if c = (` + d)(h + r) + e
for some e ≥ 0. The factor (` + d)(h + r) is required for each nose cycle to
fit in the model when considered in isolation, while the extra space e serves to
accommodate the interactions between all the arcs. Note that, in general, M
need not be equivalent to a u-CA model. This is not important, though, as we
can always write c as (` + d)(h + r) + e; just observe that e could be negative
in some cases.

Theorem 1 gives us a method to determine if M is equivalent to a given
u-CA model U . When u is not given, we have two variables that we can adjust
to find a suitable model U : ` and e (or c). Once these variables are fixed,
the existence of U is fully determined by S and the weighing sepu so obtained.
So, in a nutshell, we would like to find the appropriate values of ` and e to
guarantee that sep(W) ≤ 0 for every cycle W of S. The advantage of using `
and e, instead of ` and c, is that we can express sep(W) as a linear polynomial.
That is, we can write sep(W) = len `+ ext e+ const, where len, ext, and const
are values that do not depend on ` and e. Doing so provides a convenient way
to manipulate the values of ` and e, as changing one of them has no effects on
the other. (Note however that any change in either ` or e impacts on c because
c depends on both ` and e.) With this idea in mind, let W be any walk of S
and observe that, by definition

sep(W) = ν1(`+ d) + (ν−h + ν1−h)(`+ d− c) +
(η0 + η−1)(d− `) + (ηh + ηh−1)(c+ d− `) +
(d+ ds)(σ0 + σ1) + (d+ ds − c)σ−h.

Applying Equation (1) and some algebraic manipulation, we conclude that

sep(W) = (`+ d)(h(Aj)− h(Ai) + len(W)) + e ext(W) + const(W) (5)

where:

len(W) = ν−h − ηh − σ1 − η0 + r ext(W) (6)
ext(W) = ηh + ηh−1 − ν−h − ν1−h − σ−h (7)

const(W, d, ds) = 2d(η−1 + η0 + ηh + ηh−1) + (d+ ds)(σ1 + σ0 + σ−h) (8)

The values len(W), ext(W), and const(W, d, ds) are the length, extra, and
constant factors of W, and W, d, and ds are omitted as usual. We remark
that len, ext and const are technical values with no special meaning; there sole
purpose is to express sep as a linear polynomial on ` and e. Nevertheless, we
can think of the triplet (len, ext, const) as being some sort of generalization of
what Mitas takes as the column in his pictorial representation (see [37] and
Section II.5). The main difference is that the external edges can be disregarded
from S when M is a PIG model. Mitas also discards the 0-hollows and the
steps to define the column, thus (len, ext, const) gets reduced to (0, 0, 2η−1).

We can already envision two advantages of expressing sep as a linear poly-
nomial with indeterminate ` and e and coefficients len, ext, and const. First,

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.5
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by Theorem 1, we can see at first sight that M is equivalent to a (c, `)-CA
model whenever either len(W) < 0 or len(W) = 0 and ext(W) < 0 for every
cycle W. Just take large enough values for ` and e. In particular, observe that
len(W) < 0 for every cycle whenM is a PIG model; thus, this is just one more
proof of the fact that every PIG model is equivalent to an UIG model. The
second advantage is that the factors depend only on the structure of S and not
on the weighing function sep. Thus, we can compute ext(W) by means of the
edge weighing ext (the overloaded notation is intentional) of S such that

ext(Ai → Aj) =


1 if Ai → Aj is an external hollow
−1 if Ai → Aj is an external nose or step
0 otherwise

We can compute len(W) and const(W, d, ds) in a similar fashion with the cor-
responding edge weighings len and constd,ds .

4 Efficient Tucker’s characterization

In this section we give an alternative proof of Tucker’s characterization, taking
advantage of the framework of synthetic graphs. In short, Tucker’s theorem
states thatM is equivalent to some UCAmodel if and only if a/b < x/y for every
(a, b)-independent and every (x, y)-circuit of M [46]. As already mentioned
(and proven in Section 5) the nose and hollow cycles of S are the equivalents
of the (a, b)-independents and (x, y)-circuits ofM. Moreover, the maximal and
minimal values of a/b and x/y are somehow related to r and R, respectively.
Thus, intuition tells us that we should be able to prove thatM is equivalent to
a UCA model if and only if r < R. This is equivalence (i) ⇔ (ii) of Theorem 2
below.

Though equivalence (i) ⇔ (ii) is not completely new, our proof of this fact
is new and somehow simple. One of the main features about Theorem 2 is that
it exhibits other characterizations that can be used for positive and negative
certification. In particular, it shows how to obtain an integer (c, `)-CA model
equivalent to M with c and ` polynomial in n. The existence of such models
was questioned by Durán et al. [11] and proved by Lin and Szwarcfiter [34] by
means of feasible circulations.

Before stating Theorem 2, we study the relation between sep and the ratios
of M. Recall that the sep-values of nose and hollow cycles impose the lower
and upper bounds described by (4), respectively. The reason to consider only
nose and hollow cycles is that they have the largest sep-values when c and ` are
large, as it follows from (5) and the next lemma.

Lemma 3 For any walk W of S there exists either a nose or hollow walk W ′
of S starting and ending at the same vertices as W such that len(W) ≤ len(W ′)
and ext(W) ≤ ext(W ′).
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Proof: The proof is by induction on ν(W) · η(W) and σ(W) + 1, the base case
of which is trivial. Suppose, then, that W has at least one nose and one hollow.
So, W must have a subwalk W1i = B1, . . . , Bi such that B1 → B2 is a nose,
B2, . . . , Bi−1 is a step walk, and Bi−1 → Bi is a hollow. Observe that i ≥ 3,
because t(B1)s(B2) are consecutive and thus B2 → B1 is not a hollow.

Consider first the case in whichW1i is not a path, thus it contains a cycleWjk

= Bj , . . ., Bk = Bj (j < k) that must have at least one 1-step or 0-hollow. Note
that Wjk 6= W1i because otherwise B2, . . . , Bi−1 would pass through B1 = Bi
contradicting the fact that Wjk is a cycle. Hence, Wjk does not contain both
a nose and a hollow and len(Wjk) ≤ 0; recall (6). Moreover, if Wjk has an
external hollow (which must be Bi−1 → Bi), then it must contain the unique
external step of S. Therefore, ext(Wji) ≤ 0 by (7), and the proof follows by
induction on W \Wji.

Consider now the case in which W1i is a path and let W ′1i be the step path
from B1 to Bi. We claim that len(W1i) = len(W ′1i) and ext(W1i) = ext(W ′1i),
in which case the proof follows by induction on (W \W1i)∪W ′1i. Since W1i is a
path, it follows that either B2 > Bi or Bi > B1, which leaves us with only five
possible combinations for the heights of B1, B2, Bi−1, and Bi, all of which are
analyzed in the table below. The claim is therefore true.

h

B1 B2 Bi−1 Bi

x y y x
h 0 0 or 1 0

h− 1 0 0 or 1 0
h− 1 h or 0 0 h
h− 1 h 0 h− 1

len

W1i W ′1i
0 0
−r −r
−1− r −1− r
−1 −1
0 0

ext

W1i W ′1i
0 0
−1 −1
−1 −1
0 0
0 0

�

The above lemma brings us closer to Tucker’s characterization, as it shows
that any cycle with sep > 0 can be transformed into a hollow or nose cycle; thus,
the existence of a UCA model equivalent toM is reduced to how its ratios look.
One of the salient features of our proof is that it builds an efficient UCA model
U equivalent to M. The idea is to take U = U(M, c, `) as in Theorem 1 for
some appropriate values of c and `. Observe that d` = dr = 0 in this case, hence
we can replace B and A0 with S and A1 in the definition of U .

If we rely on Bellman-Ford, then we will inevitably pay O(n2) time to com-
pute dsep(A1, Ai). As discussed in Section 3.1, we can speed up the computation
of dsep if we removing some, but perhaps not all, of the implied edges. Say that
Ai → Aj is implied when dsep(A1, Ai) + sep(Ai → Aj) < dsep(A1, Aj), i.e.,
Ai → Aj is implied when it can be safely removed from S before solving the
longest path problem. As discussed in Section 3.1, some edges could be implied
for whichever values of c and ` are taken, while others edges are implied only for
certain values of c and `. Since this time we get to chose the appropriate values
for c and `, we can build a particular subgraph R of S (i.e., a (c, `)-synthesis in
the terms of Section 3.1). The idea, then, is to remove as many implied edges
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as needed to make R acyclic. If we succeed, then we will only pay O(n) time
for computing dsep. With this in mind, we say that an edge Ai → Aj of S is
redundant when either

(red1) dlen(A1, Aj) > dlen(A1, Ai) + len(Ai → Aj), or

(red2) dlen(A1, Aj) = dlen(A1, Ai) + len(Ai → Aj) and
(dext ◦ dlen)(A1, Aj) > (dext ◦ dlen)(A1, Ai) + len(Ai → Aj).

Roughly speaking, Ai → Aj is redundant only if it is implied for large values
of ` and not-so-large values of e; the converse need not be true. (Recall that
(dext ◦ dlen) is the ext-distance restricted only to those paths with maximum
len-distance.) The reduction of S(M) is the digraph R(M) obtained after
removing all the redundant edges of S(M); as usual, we omit the parameter
M. Theorem 2 includes Tucker’s characterization as equivalence (i) ⇔ (ii).

Theorem 2 Let M be a PCA model with arcs A1 < . . . < An, and r1, r2 ∈ N
be such that r(M) = r1/r2. Then, the following statements are equivalent:

(i) M is equivalent to a UCA model.

(ii) r < R.

(iii) len(WH) < 0 for every hollow cycle WH of S.

(iv) either len(W) < 0 or len(W) = 0 and ext(W) < 0, for each cycle W of S.

(v) R is acyclic.

(vi) d∗sep(c,`)(S, A1, Ai) = dsep(c,`)(R, A1, Ai) for every 1 ≤ i ≤ n, where
c = (`+ 1)(h+ r) + e, (`+ 1) = r2e

2, and e = 4n.

(vii) U(M, c, `) is an integer (c, `)-CA model equivalent to M for c and ` as
in (vi).

Proof: (i) ⇒ (ii). This is direct consequence of (4).
(ii) ⇒ (iii). If len(WH) ≥ 0, then

0 ≤ −σ1 − η0 − ηh + r(ηh + ηh−1 − σ−h)

implying (recall (3) observing that ηh + ηh−1 ≥ σ−h)

r ≥ ηh + η0 + σ1
ηh + ηh−1 − σ−h

= R(WH) ≥ R.

(iii) ⇒ (iv). Suppose either len(W) > 0 or len(W) = 0 and ext(W) ≥ 0
for some cycle W of S. By Lemma 3, S has a nose or hollow circuit W ′ with
f(W ′) ≥ f(W) for f ∈ {len, ext}. Then, since f(W ′) =

∑k
i=1 f(Wi) for the

family of cycles {W1, . . . ,Wk} that partitions the edges of W ′, we obtain that
either len(Wi) > 0 or len(Wi) = 0 and ext(Wi) ≥ 0 for some 1 ≤ i ≤ k.
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By construction, Wi is either a nose or a hollow cycle. In the latter case the
statement is true, while the former case is impossible as it implies

0 < ν−h − σ1 − r(ν−h + ν1−h + σr)

from which we obtain that (recall (2))

r <
ν−h − σ1

ν−h + ν1−h + σ−h
= r(W) ≤ r.

(iv) ⇒ (v). Suppose R has some cycle W = B1, . . . , Bk with B1 = Bk. By
(red1),

dlen(A1, Bi+1) ≤ dlen(A1, Bi) + len(Bi → Bi+1). (a)

Then, by induction,

dlen(A1, B1) = dlen(A1, Bk) ≤ dlen(A1, B1) + len(W),

which implies that len(W) ≥ 0. Moreover, len(W) = 0 only if (a) holds by
equality for every 1 ≤ i ≤ k, thus

(dext ◦ dlen)(A1, Bi+1) ≤ (dext ◦ dlen)(A1, Bi) + ext(Bi → Bi+1)

by (red2), implying ext(W) ≥ 0 by induction.
(v) ⇒ (vi). Taking into account that R is acyclic and every walk of R is

also a walk of S, it follows that d∗sep(S, A1, Ai) ≥ dsep(R, A1, Ai) for every
1 ≤ i ≤ n.

For the remaining inequality note that, by induction, it suffices to prove
that sep(W) ≤ dsep(R, A1, Ai) for every walk W whose length is at most n.
We prove this fact by induction on the length k of W. The base case k = 0 is
trivial. For the inductive step, consider any walk W = B1, . . . , Bk+1 of length
k ≤ n that goes from B1 = A1 to Bk+1 = Ai, and let, for 1 ≤ j ≤ k + 1,

• WRj be a walk of R from B1 to Bj with sep(WRj ) = dsep(R, B1, Bj), and

• WSk+1 be the walk obtained by traversing Bk → Bk+1 after WRk .

By inductive hypothesis, sep(W) ≤ sep(WRk ) + sep(Bk → Bk+1) = sep(WSk+1),
thus sep(W) ≤ sep(WRk+1) when Bk → Bk+1 is an edge of R. Suppose, then,
that Bk → Bk+1 is redundant in S, and consider the two possibilities according
to (red1) and (red2).

Case 1: (red1) is true. Note that since no edge ofWRk+1 is redundant, it follows
by induction that len(WRj ) = dlen(A1, Bj) for every 1 ≤ j ≤ k+1. Hence,

len(WRk+1) = dlen(A1, Bk+1)

> dlen(A1, Bk) + len(Bk → Bk+1) = len(WSk+1).
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Now, taking into account that every term of the length factor is a multiple
of either 1 or r = r1/r2 in (6), we obtain that

(`+ 1)(len(WRk+1)− len(WSk+1)) = r2e
2(len(WRk+1)− len(WSk+1)) ≥ e2.

By (5), we obtain that

sep(WRk+1) ≥(`+ 1)(h(Bk+1) + len(WRk+1))− en
sep(WSk+1) ≤(`+ 1)(h(Bk+1) + len(WSk+1)) + ek + 2k,

thus,

sep(WRk+1)− sep(WSk+1) ≥ e2 − e(k + n)− 2k ≥ 8n− 2k ≥ 2.

Case 2: (red1) is false, thus (red2) holds. As before, we observe by induction
that len(WRj ) = dlen(A1, Bj) and, thus, ext(WRj ) = (dext◦dlen)(A1, Bj).
Consequently, by (red2),

ext(WRk+1) > (dext ◦ dlen)(A1, Bk) + ext(Bk → Bk+1) = ext(WSk+1).

Since (red1) is true, it follows that len(WSk+1) = dlen(A1, Bk+1). Then,
by (5),

sep(WRk+1)− sep(WSk+1) ≥ e(ext(WRk+1)− ext(WSk+1))− const(WSk+1)

≥ 4n− 2k ≥ 2.

Whichever the case, sep(W) ≤ sep(WRk+1) = dsep(R, A1, Ak+1) as desired.
(vi) ⇒ (vii) Since d∗sep(S, A1, Ai) = dsep(R, A1, Ai) for every 1 ≤ i ≤ n

and S is strongly connected, it follows that d∗sep(S, Ai, Aj) = dsep(S, Ai, Aj)
for every 1 ≤ i, j ≤ n. Hence sep(W) ≤ 0 for every cycle W of S and the
implication follows by Theorem 1 (note that c and ` are integer values).

(vii) ⇒ (i). Trivial. �

Theorem 2 has some nice algorithmic consequences on Rep when combined
with Theorem 1. For any input PCA model M we solve u-Rep for the UCA
descriptor u implied by statement (vi). As a byproduct, we either obtain a UCA
model U equivalent toM or a cycle of S that can be used for negative certifi-
cation. The algorithm costs O(n2) time, plus the time and space required so as
to compute r(M). It turns out that r can be computed in linear time with the
algorithm by Kaplan and Nussbaum [25], or directly from the synthetic graph
(see Section II.4.2), while U can be obtained in O(n) time by taking advantage
of the reduction of S as discussed above (see Section II.4.3). Furthermore, a
slight variation of this algorithm can be used to solve the problem in logspace
as well (see Section II.4.4)

Theorem II.2 There is a unified certifying algorithm that solves Rep in O(n)
time.

Theorem II.5 There is an algorithm that solves Rep in logspace.

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#subsection.4.2
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5 (a, b)-independents and (x, y)-circuits

The unified certifying algorithm that we describe in Section II.4.3 outputs two
cycles whenM is not equivalent to a UCA model: a nose cycle WN of S with
ratio r(M) and a cycle WH of R. As in the proofs of implications (iii) ⇔ (iv)
⇔ (v), WH is a hollow cycle with a nonnegative length factor. Moreover, as in
implication (ii) ⇔ (iii), R(WH) ≤ r(WN ).

Viewing each vertex of S as the arc of M it represents, the preceding ar-
gument is enough to conclude that WN ∪ WH induces a forbidden submodel
of M. By Tucker’s characterization, this means that WN ∪ WH contains an
(a, b)-independent AI and an (x, y)-circuit AC with a/b ≥ x/y. We stated be-
fore that WN and WH are equivalent to AI and AC , respectively. We remark
that this equivalence does not imply equality; WN ∪ WH could contain more
arcs than AI ∪ AC . These added arcs are, nevertheless, redundant and can be
eliminated from WN ∪WH to obtain a minimal forbidden induced submodel as
the negative witness. The purpose of this section is to describe the equivalence
between nose (resp. hollow) cycles and (a, b)-independents (resp. (x, y)-circuits)
and how to transform one into the other and vice versa. We begin describing
what are (a, b)-independents and (x, y)-circuits.

For two arcs Ai, Aj of a PCA model M, we define the ss arc of Ai, Aj
to be the arc (s(Ai), s(Aj)). For a sequence of arcs A = B1, . . . , Bk, the ss
traversal of A is the family of arcs T that contains the ss arc of Bi, Bi+1 for
every 1 ≤ i ≤ k (where B1 = Bk+1). The number of turns of T is the number of
its arcs that contain the point 0 of C(M). In simple terms, the ss traversal of
A is obtained by traversing C(M) from s(B1) to s(B2) to . . . to s(Bk) to s(B1),
while its number of turns is the number of complete loops to the circle in such
a traversal.

An (a, b)-independent of a PCA model M is a sequence of arcs A = B1,
. . . , Ba such that s(Bi+1) 6∈ Bi for every 1 ≤ i ≤ a and whose ss traversal
takes b turns. Similarly, an (x, y)-circuit is a sequence of arcs B1, . . . , Bx such
that s(Bi+1) ∈ Bi for every 1 ≤ i ≤ x and whose ss traversal takes y turns.
Note that x > 2y as no pair of arcs ofM cover the circle, while a/b < c < x/y
when M is a (c, `)-CA model. An (a, b)-independent is maximal when a/b is
maximum and a, b are relative primes, while an (x, y)-circuit is minimal when
x/y is minimum and x, y are relative primes. As we shall shortly see, statement
(i) ⇔ (ii) of Theorem 2 is equivalent to the following theorem by Tucker.

Theorem 3 ([46]) A PCA modelM is equivalent to an UCA model if and only
if a/b < x/y for every maximal (a, b)-independent and every minimal (x, y)-
circuit.

Say that an (a, b)-independent A = B1, . . . , Ba is standard when s(Bi) is
immediately preceded by an ending point inM, for every 1 ≤ i ≤ a. Note that
if s(Bi) is preceded by the beginning point of an arc A, then B1, . . . , Bi−1,
A, Bi+1, . . . , Ba is also an (a, b)-independent of M. Consequently, M has an
(a, b)-independent if and only if it has a standard (a, b)-independent.

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#subsection.4.3
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There is a one-to-one correspondence between the standard (a, b)-indepen-
dents of M and the nose circuits of S, as follows. Let A = B1, . . . , Ba be a
standard (a, b)-independent and Wi be the step path of S that goes from Bi
to B′i, where B′i is the arc whose ending point immediately precedes s(Bi+1).
Clearly, B′i → Bi+1 is a nose of S, thus W(A) = W1,W2, . . . ,Wa is a nose
circuit of S. Conversely, if W is a nose circuit, and B′1 → B1, . . . , B

′
a → Ba are

its noses, then A(W) = B1, . . . , Ba is a standard (a, b)-independent for some
b. It is not hard to see that A(W(A)) = A and W(A(W)) = W, thus the
correspondence is one-to-one.

Observe that the number of turns b in the ss traversal of A is precisely the
number of external noses and steps of W =W(A). In other words,

b = ν−h + ν1−h + σ−h.

Similarly, the number a of arcs of A equals the number of noses of W; by (1),

a = h(ν−h + ν1−h + σ−h) + ν−h − σ1 = hb+ ν−h − σ1.

Hence, a/b = h+ r(W).
A similar analysis holds for (x, y)-circuits. Say that an (x, y)-circuit A =

B1, . . . , Ax is standard when s(Bi) immediately precedes an ending point t(B′i)
in M. Note that M contains an (x, y)-circuit if and only if it contains an
standard (x, y)-circuit; in such circuit, Bi → B′i is a hollow of S. Then, A is
in a one-to-one correspondence with the hollow circuit W = W(A) that goes
throughW1,W2, . . . ,Wx where eachWi is the step path going from B′i to Bi+1.
As before, the number of turns in the ss traversal of A is the number of external
hollows minus the number of external steps, i.e.,

y = ηh + ηh−1 − σ−h,

while the number x of arcs in A is its number of hollows; by (1)

x = h(ηh + ηh−1 − σ−h) + ηh + η0 + σ1.

Hence, x/y = h+R(W).
Clearly, we can obtain W(A) in O(n) time for any standard (a, b)-indepen-

dent (resp. (x, y)-circuit) A, and vice versa. Moreover, note that, as stated,
a/b ≥ x/y if and only if r ≥ R. We summarize this section in the next theorem.

Theorem 4 A PCA model M has an (a, b)-independent (resp. (x, y)-circuit)
A if and only if S contains a nose (resp. hollow) circuit W with ratio a/b − h
(resp. x/y− h). Moreover, such a circuit W of S can be obtained in O(n) time
when A is given as input. Conversely, A can be obtained in O(n) time when W
is given as input.

To end this section we recall that the witness provided by our unified certify-
ing algorithm is composed by a nose cycleWN with ratio r(M) and a cycleWH

of R. By Theorem 4, A(WN ) is a maximal (a, b)-independent. Unfortunately,
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A(WH) need not be a minimal (x, y)-circuit, because we have no guarantees
that R(WH) = R(M). This is not a problem, though, as in Section II.4.2
we show how to obtain a hollow cycle with minimum ratio. In fact, the al-
gorithm in Section II.4.2 is just a translation of the algorithm by Kaplan and
Nussbaum [25].

6 Minimal UCA and UIG models
Theorem 1 gives us a procedure to check if M is equivalent to a u-CA model,
when u is given as input. However, not much is known about the sets of feasible
values c and `. In this aspect, unit circular-arc models are much less studied than
unit interval models. In this section we prove that every UCA model admits an
equivalent minimal UCA model. Minimal UCA models are a generalization of
minimal UIG models, as defined by Pirlot [38]. An (`, d, ds)-IG model with arcs
A1 < . . . < An is (∞, d, ds)-minimal when

(min-uig1) ` ≤ `′, and

(min-uig2) s(Ai) ≤ s(A′i) for every 1 ≤ i ≤ n,

for every equivalent (`′, d, ds)-IG model.
Condition (min-uig2) as expressed above does not make much sense for gen-

eral UCA models, as there is not a natural left-to-right order of the arcs; when
c < ∞, the 0 point of the circle is just a denotational tool. However, we can
translate condition s(An) < s(A′n) by asking the circumference of the circle to
be minimized. With this in mind, we say that a (c, `, d, ds)-CA model M is
(d, ds)-minimal when

(min-uca1) ` ≤ `′, and

(min-uca2) c ≤ c′,

for every equivalent (c′, `′, d, ds)-CA model. The fact that every UCA model is
equivalent to a minimal UCA model follows from the next lemma.

Lemma 4 If M is equivalent to a (c, ` + y, d, ds)- and a (c + x, `, d, ds)-CA
models for x, y ≥ 0, thenM is also equivalent to a (c+a, `+b, d, ds)-CA model,
for every 0 ≤ a ≤ x and 0 ≤ b ≤ y.

Proof: For the sake of notation, write 〈a′, b′〉 to denote the UCA descriptor
(c+ a′, `+ b′, d, ds), for every 0 ≤ a′ ≤ x and 0 ≤ b′ ≤ y. Suppose, to obtain a
contradiction, thatM is equivalent to no 〈a, b〉-CA model for some 0 ≤ a ≤ x
and 0 ≤ b ≤ y. Then, by Theorem 1, sep〈a,b〉(W) > 0, sep〈x,0〉(W) ≤ 0, and
sep〈0,y〉(W) ≤ 0 for some cycle W of S. By (4), there exists e ≥ 0 such that

c+ a′ = (`+ y + d)(h+ r) + e+ a′

= (`+ b′ + d)(h+ r) + (y − b′)(h+ r) + e+ a′ (i)

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#subsection.4.2
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for every 0 ≤ a′ ≤ x and 0 ≤ b′ ≤ y. Thus, by (5),

sep〈a,b〉 = (`+ b+ d) len+((y − b)(h+ r) + e+ a) ext+ const > 0 (ii)

sep〈0,y〉 = (`+ y + d) len+e ext+ const ≤ 0 (iii)

sep〈x,0〉 = (`+ d) len+(y(h+ r) + e+ x) ext+ const ≤ 0. (iv)

Recall that len ≤ 0 by Theorem 2. Then, as 0 < (ii)− (iv), we obtain that (v)
ext ≤ −1 (recall ext ∈ Z), while (vi) (h+ r) ext > len follows by 0 < (ii)− (iii)
and (v). Then,

0 <(`+ b+ d) len+((y − b)(h+ r) + e+ a) ext+ const (by (ii))
<(`+ b+ d)(h+ r) ext+((y − b)(h+ r) + e+ a) ext+ const (by (vi))
=(c+ a) ext+ const (by (i))
≤− c− a+ const (by (v))

This is impossible, because c ≥ max{2d, d+ds}n as all the extremes of the 〈0, y〉-
CA model equivalent toM are separated by d and each of its n beginning points
is separated from the next by d+ ds, while a ≥ 0 and const ≤ max{2d, d+ ds}n
by definition (8). �

Theorem 5 Every UCA graph admits a (d, ds)-minimal UCA model for every
d, ds ∈ Q.

Proof: Let (c, `) be the minimum pair (in a lexicographic ordering) such that
a UCA modelM is equivalent to a (c, `, d, ds)-CA model. By construction and
Lemma 4, c ≤ c′ and ` ≤ `′ for every (c′, `′, d, ds)-CA model equivalent to M.

�

For the rest of this section, we restrict ourselves to the case in which d and
ds are integers. By (2), r = 0 for every UIG modelM, thus, by (5), sep(W) ∈ N
if and only if ` and c are integers. We obtain, therefore, the following corollary
that was first proved by Pirlot [38].

Corollary 1 Every (∞, d, ds)-minimal UIG model is integer for all d, ds ∈ N.

We were not able to prove or disprove the above corollary for the gen-
eral case. For this reason, we say that an integer (c, `, d, ds)-CA model M is
(N, d, ds)-minimal when if satisfies (min-uca1) and (min-uca2) for every integer
(c′, `′, d, ds)-CA model.

A natural algorithmic problem is IntMinUCA in which we ought to find
a (N, d, ds)-minimal UCA model equivalent to an input (c, `, d, ds)-CA model
M. A simple solution is to apply Theorem 1 for every 1 ≤ `∗ ≤ ` and every
1 ≤ c∗ ≤ c with a total cost of O(`∗c∗n2) time. We can easily improve this
algorithm by replacing the linear search of c∗ with a binary search.

Corollary 2 LetM be a PCA model. If sep(c,`,d,ds)(W) > 0 for some cycle W
of S, then M is not equivalent to a (c + x sg, ` − y, d, ds)-CA model, for every
x, y ≥ 0, where sg is the sign of ext(W).



JGAA, 21(4) 455–489 (2017) 483

Proof: Let e be such that c = (` + d)(h + r) + e; note that e need not be
positive. By (5),

sep(c+x sg,`,d,ds) = (`+ d) len+(e+x sg) ext+ const = x sg ext+ sep(c,`,d,ds) > 0.

Then, by Theorem 1,M cannot be equivalent to a (c+x sg, `, d, ds)-CA model.
�

Corollary 2 provides us with a somehow efficient algorithm to binary search
the minimum c∗ ∈ N such that M is equivalent to a (c∗, `, d, ds)-CA model,
when `, d, ds ∈ N are given as input. By definition d < `, while we assume
ds+d < ` as otherwise G(M) has no edges and the problem is trivial. The idea
of the algorithm is simply to assume that such a value c∗ exists and belongs
to some range [a, c]; initially a = 0 and c = n(` + 1). Then, we query if M
is equivalent to some (b, `, d, ds)-CA model, where b ∈ N is the middle of [a, c].
If affirmative, then c∗ ∈ [a, b] by definition. Otherwise, we search some cycle
W with sep(b,`,d,ds) > 0. By Corollary 2, c∗ ∈ [0, b) if ext(W) ≥ 0, while
c∗ ∈ (b, c] otherwise. Regardless of whether c∗ exists or not, this algorithm
requires O(log(n`)) queries.

Every time we need to query ifM is equivalent to a (b, `, d, ds)-CA model, we
solve u-Rep as in Section 3 (note that u is integer). Since `∗ = O((d+ds)n

2) [34],
we conclude the following.

Theorem 6 IntMinUCA is can be solved in O((d+ds)n
4 log(n(d+ds))) time,

for every d, ds ∈ N.

As mentioned above, Pirlot [38] proved that every UIG modelM is equiva-
lent to a (∞, d, ds)-minimal UIG model. However, it was Mitas [37] who showed
that such a model can be found in linear time by transformingM into an equiva-
lent UIG model. Thus, Mitas’ algorithm solves the minimal UIG representation
(MinUIG) problem in which M and d, ds ∈ Q≥0 are given and a (∞, d, ds)-
minimal UIG modelM∗ equivalent toMmust be generated. Unfortunately, her
proof has a flaw that invalidates the minimality arguments (see Section II.5).
Though M∗ is equivalent to M, it need not be (∞, d, ds)-minimal. On the
other hand, the algorithm for IntMinUCA above can be implemented to solve
MinUIG in O(n2 log n) time (the idea is to apply a binary search on `). Luckily,
we can patch Mitas’ algorithm to solve MinUIG in O(n2) time; the algorithm
is postponed to Section II.5.

Theorem II.7 MinUIG can be solved in O(n2) time and linear space, for any
d, ds ∈ Q.

7 Further remarks
Synthetic graphs proved to be an important tool for studying what the UIG rep-
resentations of PIG graphs look like. The generalization to PCA models is di-
rect; the fact that some arcs wrap around the circle is not important for defining

http://jgaa.info/accepted/2017/Soulignac.II.2017.21.4.pdf#section.5
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the synthetic graph. To represent the separation constraints that an equivalent
UCA model must satisfy, all we had to include to Pirlot’s original formulation
was the variable c representing the circumference of the circle. Generalizations
of simple ideas from PIG to PCA graphs are not always as easy to obtain. Un-
fortunately, Pirlot’s ideas were introduced in the context of semiorders and were
not exploited in the context of PCA graphs; the recognition problem of UCA
graphs in polynomial time could have been solved more than a decade earlier.
To close the chapter we provide some further remarks and open problems.

Our definition of UCA descriptors states that every pair of beginning points
should be separated by d+ds distance. An obvious generalization to u-Rep and
(Int)BoundRep is to replace ds with a function ds : A → Q≥0 that indicates,
for each arc Ai, the separation between s(Ai) and the next beginning point
s(Ai+1). The reader can check that Theorem 1 holds for this generalization
as well. All we need to do is to replace the value ds with ds(Ai) for each
step Ai → Ai+1. Moreover, we can use similar functions to further separate
t(Ai) from s(Aj) for every nose Ai → Aj , and s(Ai) from t(Aj) for any hollow
Ai → Aj . We did not consider these generalizations for the sake of simplicity
and notation.

In Section 6 we gave a simple pseudo-polynomial algorithm to transform
a UCA model M into a (N, d, ds)-minimal (c∗, `∗)-CA model. The algorithm
works by performing a linear search on `∗ and a binary search on c∗. An obvious
idea to improve its running time is to replace the linear search on `∗ with a binary
search. Unfortunately, this idea is not feasible at first sight because we cannot
claim

L = {` ∈ N | M is equivalent to a (c, `, d, ds)-CA model for some c ∈ N}

to be a range. For instance, C4
11 admits a (22, 9)-CA model, but it admits no

(c, 10)-CA model, whatever the value of c is. This is just one more example of
a property that is lost when the linear structure of PIG models is replaced by
the circular structure of PCA graphs as L = [`∗,∞) whenM is PIG.

As calculated in Section 6, the running time of the minimization algorithm
is O((d+ ds)n

4 log(n(d+ ds))). This bound is not tight, as the actual running
time is O(`∗n2 log(n`∗)), and `∗ could be much lower than (d + ds)n

2. As a
matter of fact, we developed a simple program for testing if a UCA model is
equivalent to some (c, 2n)-CA model. We tested it on many input UCA models
and, in all cases, the program was successful.

Finally, it should be noted that a UCA graph may admit many non-equiv-
alent (d, ds)-minimal UCA models. Indeed, a UCA graph may admit an ex-
ponential number of non-equivalent models, each of which is equivalent to a
(d, ds)-minimal UCA model. It makes sense, then, to say that a model M is
(d, ds)-minimum when it satisfies (min-uca1) and (min-uca2) for every model
M′ such that G(M) is isomorphic to G(M′). As it was noted by Huang [22],
every connected and co-connected PCA graph admits a unique PCA model,
up to equivalence and full reversal. Thus, any (d, ds)-minimal model of a con-
nected and co-connected PCA graph is (d, ds)-minimum. Similarly, every dis-
connected PCA graph is PIG, and all its models can be obtained from a model
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Figure 3. Two (1, 0)-minimal UCA models representing the same graph.

M by exchanging the order in which their components appear from 0, and re-
versing some of the components. Thus, again, any (d, ds)-minimal model of
G(M) is (d, ds)-minimum (note that we are not taking (min-uig2) into account,
as (d, ds)-minimal models are not a strict generalization of (∞, d, ds)-minimal
models for non-connected graphs). Co-disconnected PCA graphs share a simi-
lar property: all their PCA models can be obtained from a PCA modelM by
exchanging the order in which its co-components appear, plus reversing some
co-components [22]. Thus, one is tempted to think that all the (d, ds)-minimal
PCA models are (d, ds)-minimum, yet this is not the case. Figure 3 shows two
(1, 0)-minimal (18, 7)-CA and (20, 8)-CA models that represent the graph whose
co-components are P3 and P4. We leave as open the problem of computing the
(d, ds)-minimum UCA model.

Note. Soulignac and Terlisky5 recently claimed to have proved that c and `
are integer when M is a (d, ds)-minimal (c, `)-CA model and d, ds ∈ N. They
also show that MinUCA can be solved in O(n3) time and O(n2) space.
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