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Drawing Planar Graphs with Reduced Height
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Abstract

A polyline (resp., straight-line) drawing Γ of a planar graph G on a
set Lk of k parallel lines is a planar drawing that maps each vertex of
G to a distinct point on Lk and each edge of G to a polygonal chain
(resp., straight line segment) between its corresponding endpoints, where
the bends lie on Lk. The height of Γ is k, i.e., the number of lines used in
the drawing. In this paper we establish new upper bounds on the height
of polyline drawings of planar graphs using planar separators. Specifi-
cally, we show that every n-vertex planar graph with maximum degree ∆,
having an edge separator of size λ, admits a polyline drawing with height
4n/9 + O(λ), where the previously best known bound was 2n/3. Since
λ ∈ O(

√
n∆), this implies the existence of a drawing of height at most

4n/9 +o(n) for any planar triangulation with ∆ ∈ o(n). For n-vertex pla-
nar 3-trees, we compute straight-line drawings, with height 4n/9 +O(1),
which improves the previously best known upper bound of n/2. All these
results can be viewed as an initial step towards compact drawings of pla-
nar triangulations via choosing a suitable embedding of the graph.
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1 Introduction

A polyline drawing of a planar graph G is a planar drawing of G such that each
vertex of G is mapped to a distinct point in the Euclidean plane, and each edge
is mapped to a polygonal chain between its endpoints. Let Lk = {l1, l2, . . . , lk}
be a set of k horizontal lines such that for each i ≤ k, line li passes through the
point (0, i). A polyline drawing of G is called a polyline drawing on Lk if the
vertices and bends of the drawing lie on the lines of Lk. The height of such a
drawing is k, i.e., the number of parallel horizontal lines used by the drawing.
Such a drawing is also referred to as a k-layer drawing in the literature [21, 25].
Let Γ be a polyline drawing of G. We call Γ a t-bend polyline drawing if each of
its edges has at most t bends. Thus a 0-bend polyline drawing is also known as
a straight-line drawing. G is called a planar triangulation if every face of G is
bounded by a cycle of three vertices. Figure 1(a) shows a planar graph G, and
Figure 1(b) illustrates a 1-bend polyline drawing of G on L8.

(a) (b)

v1
v1

v2
v2v3

v4v5
v6 v3v4v6

v7 v7v8

v8
v9 v9

v10v10

v11

v12
v14

v14
v12

v13

v13

l1
l2
l3

l8

v5

v11

Figure 1: (a) A triangulation G. (b) A polyline drawing of G with height 8.

Drawing planar graphs on a small integer grid is an active research area in
graph drawing [3, 8, 17, 24, 15], which is motivated by the need of compact
layout of VLSI circuits and visualization of software architecture. In visualiza-
tion applications, the constraint on area is imposed naturally by the size of the
display screen. For VLSI circuit layout, compact drawings reduce the microchip
area. Minimizing area often requires the edges to have bends. Since simul-
taneously optimizing the width and height of the drawing is very challenging,
researchers have also focused their attention on optimizing one dimension of the
drawing [6, 18, 21, 25], while the other dimension is unbounded.

In this paper we develop new techniques that can produce drawings with
small height. We distinguish between the terms ‘plane’ and ‘planar’. A plane
graph is a planar graph with a fixed combinatorial embedding and a specified
outer face. While drawing a planar graph, we allow the output to represent
any planar embedding of the graph. On the other hand, while drawing a plane
graph, the output is further constrained to respect the input embedding.
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Related Work: State-of-the-art algorithms that compute straight-line draw-
ings of n-vertex plane graphs on an (O(n) × 2n/3)-size grid imply an upper
bound of 2n/3 on the height of straight-line drawings [5, 6]. This bound is tight
for plane graphs, i.e., there exist n-vertex plane graphs such as plane nested
triangles graphs and some plane 3-trees that require a height of 2n/3 in any
of their straight-line drawings [12, 22]. Recall that an n-vertex nested trian-
gles graph is a plane graph formed by a sequence of n/3 vertex disjoint cycles,
C1, C2, . . . , Cn/3, where for each i ∈ {2, . . . , n/3}, cycle Ci contains the cycles
C1, . . . , Ci−1 in its interior, and a set of edges that connect each vertex of Ci to
a distinct vertex in Ci−1. Besides, a plane 3-tree is a triangulated plane graph
that can be constructed by starting with a triangle, and then repeatedly adding
a vertex to some inner face of the current graph and triangulating that face.

The 2n/3 upper bound on the height is also the currently best known bound
for polyline drawings, even for planar graphs, i.e., when we are allowed to choose
a suitable embedding for the output drawing. In the variable embedding setting,
Frati and Patrignani [17] showed that every n-vertex nested triangles graph can
be drawn with height at most n/3 + O(1), which is significantly smaller than
the lower bound of 2n/3 in the fixed embedding setting. Zhou et al. [28] showed
that series-parallel graphs can be drawn with 0.3941n2 area, and hence with
height 0.628n < 2n/3. Similarly, Hossain et al. [18] showed that an universal
set of n/2 horizontal lines can support all n-vertex planar 3-trees, i.e., every
planar 3-tree admits a drawing with height at most n/2. They also showed that
4n/9 lines suffice for some subclasses of planar 3-trees, and asked whether 4n/9
is indeed an upper bound for planar 3-trees.

In the context of optimization, Dujmović et al. [13] gave fixed-parameter-
tractable (FPT) algorithms, parameterized by pathwidth, to decide whether a
planar graph admits a straight-line drawing on k horizontal lines. Drawings with
minimum number of parallel lines have been achieved for trees [21]. Recently,
Biedl [2] gave an algorithm to approximate the height of straight-line drawings
of 2-connected outer planar graphs within a factor of 4. Several researchers
have attempted to characterize planar graphs that can be drawn on few parallel
lines [7, 16, 26].

Contributions: In this paper we show that every n-vertex planar graph with
maximum degree ∆, having an edge separator of size λ, admits a drawing with
height 4n/9 + O(λ), which is better than the previously best known bound of
2n/3 for any λ ∈ o(n). This result is an outcome of a new application of the
planar separator theorem [10]. The resulting drawing is not a grid drawing, i.e.,
the vertices and bends are not restricted to lie on integer grid points, and it is
not obvious whether our technique can be immediately adapted to improve the
current best 8

9n
2-area upper bound [5] on the grid drawings of planar graphs.

However, the techniques developed in this paper have the potential to provide
powerful tools for computing compact drawings for planar triangulations in the
variable embedding setting.

If the input graphs are restricted to planar 3-trees, then we can improve the
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upper bound to 4n/9 + O(1), which settles the question of Hossain et al. [18]
affirmatively. Furthermore, the drawing we construct in this case is a straight-
line drawing.

2 Preliminary Definitions and Results

Let G be an n-vertex plane graph. G is called connected if there exists a path
between every pair of vertices in G. We call G a k-connected graph, where
k > 1, if the removal of fewer than k vertices does not disconnect the graph. A
plane graph delimits the plane into topologically connected regions called faces.
The bounded regions are called the inner faces and the unbounded region is
called the outer face of G. The vertices on the boundary of the outer face are
called the outer vertices, and the remaining vertices are called the inner vertices
of G. If every face of G (including the outer face) is a cycle of length three, then
we call G a triangulation, or a maximal planar graph. G is called an internally
triangulated graph if every face except the outer face is a cycle of length three.

Let G = (V,E) be an n-vertex triangulated plane graph. A simple cycle C in
G is called a cycle separator if the interior and the exterior of C each contains
at most 2n/3 vertices. An edge separator of G is a subset of edges M of G
such that the graph G′ = (V,E \M) consists of two induced subgraphs, each
containing at most 2n/3 vertices. Every planar graph with maximum degree ∆
admits an edge separator of size 2

√
2∆n, where the corresponding edges in the

dual graph form a simple cycle [10].
Let v1, vn and v2 be the outer vertices of G in clockwise order on the outer

face. Let σ = (v1, v2, ..., vn) be an ordering of all vertices of G. By Gk, 2 ≤
k ≤ n, we denote the subgraph of G induced by v1, v2, . . . , vk. For each Gk,
the notation Pk denotes the path (while walking clockwise) on the outer face
of Gk that starts at v1 and ends at v2. We call σ a canonical ordering of G
with respect to the outer edge (v1, v2) if for each k, 3 ≤ k ≤ n, the following
conditions are satisfied [8]:

(a) Gk is 2-connected and internally triangulated.

(b) If k ≤ n, then vk is an outer vertex of Gk and the neighbors of vk in Gk−1
are consecutive on Pk−1.

Let Pk, for some k ∈ {3, 4, . . . , n}, be the path w1(= v1), . . . , wl, vk(= wl+1),
wr, . . . , wt(= v2). The edges (wl, vk) and (vk, wr) are the l-edge and r-edge of
vk, respectively. The other edges incident to vk in Gk are called the m-edges.
For example, in Figure 2(c), the edges (v6, v1), (v6, v4), and (v5, v6) are the l-, r-
and m-edges of v6, respectively. Let Em be the set of all m-edges in G. Then the
graph Tvn induced by the edges in Em is a tree with root vn. Similarly, the graph
Tv1 induced by all l-edges except (v1, vn) is a tree rooted at v1 (Figure 2(b)),
and the graph Tv2 induced by all r-edges except (v2, vn) is a tree rooted at v2.
These three trees form the Schnyder realizer [24] of G, e.g., see Figure 2(a).
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Figure 2: (a) A plane triangulation G with a canonical ordering. The associated
realizer, where the l-, r- and m- edges are shown in dashed, bold-solid, and thin-
solid lines, respectively. (b) Tv1 . (c) Neighbors of v6 in G6. (d)–(g) Illustrating
Lemma 3.

Lemma 1 (Bonichon et al. [4]) The total number of leaves in all the trees
in any Schnyder realizer of an n-vertex triangulation is at most 2n− 5.

Let G be a planar graph and let Γ be a straight-line drawing on k parallel
lines. By l(v), where v is a vertex of G, we denote the horizontal line in Γ that
passes through v. We now have the following lemma that bounds the height
of a straight-line drawing in terms of the number of leaves in a Schnyder tree.
Although the lemma can be derived from known straight-line [5] and polyline
drawing algorithms [3], we include a proof for completeness.

Lemma 2 Let G be an n-vertex plane triangulation and let v1, vn, v2 be the
outer vertices of G in clockwise order on the outer face. Assume that Tvn has
at most p leaves. Then for any placement of vn on line l1 or lp+2, there exists a
straight-line drawing Γ of G on Lp+2 such that v2 and v1 lie on lines lp+2 and
l1, respectively. Symmetrically, there exists a straight-line drawing Γ of G on
Lp+2 such that v1 and v2 lie on lines lp+2 and l1, respectively.

Proof: We construct Γ by a variant of the shift algorithm [8]. The case when
G has n = 3 vertices is straightforward, and hence we assume that n > 3. The
construction of Γ is incremental. We start with the drawing of G3 and then
add the other vertices in the canonical order corresponding to Tvn . Let Γ3 be
the drawing of G3 on L3, where v1 and v2 are placed on l1 and l3, respectively,
along a vertical line, and v3 is placed on l2 to the left of edge (v1, v2), e.g., see
Figure 3(b). We now add the vertices vi, where 3 < i < n, maintaining the
following invariants:

(a) Pi is drawn as a strictly y-monotone polygonal chain.
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Figure 3: (a) A plane triangulation G with a canonical ordering of its vertices.
(b)–(f) Illustration for drawing Γi.

(b) Γi is a drawing on Lk+2, where k is the number of vertices in v3, . . . , vi
that are leaves of Tvn .

(c) The vertices v2 and v1 lie on the topmost and bottommost lines of Lk+2,
respectively.

Observe that Γ3 maintains all the above invariants. We now assume that i > 3
and for all j < i, Γj maintains the above invariants, and consider the insertion
of vi. Let wp, . . . , wq be the neighbors of vi on Pi−1. If q − p ≥ 2, then vi is a
non-leaf vertex in Tvn . In this case we place vi on l(wq−1) and add the edges
(vi, w), where w ∈ {wp, . . . , wq}. Since Pi−1 is strictly y-monotone, we can
place vi sufficiently far from wq−1 to the left such that the edges (vi, w) do not
create any edge crossing, and Pi is strictly y-monotone in Γi. Figures 3(d)–(e)
illustrate such a scenario. Since the number of leaves in v3, . . . , vi is same as the
number of leaves in v3, . . . , vi−1, Invariants (a)–(c) hold in Γi.

In the remaining case, q − p = 1, i.e., vi is a leaf in Tvn . Here we shift
the vertices wq, . . . , wt(= v2) and their descendants in Tvn above by one unit
from their current positions. Such a shift does not create edge crossings [8].
Figures 3(b)–(c),(f) illustrate such a scenario. We then place vi on l(wq) − 1
sufficiently far to the left such that the edges (vi, wp) and (vi, wq) do not create
any edge crossing, and Pi is strictly y-monotone in Γi. Since the number of leaves
in v3, . . . , vi is one more than the number of leaves in v3, . . . , vi−1, Invariants
(a)–(c) hold in Γi.

Since Pn−1 is strictly y-monotone in Γn−1, there exists a point c on l1 (sim-
ilarly, on lp+2) which is visible to all the vertices on Pn−1. We place vn at c,
and draw the edges incident to it, which completes the drawing of G. �

Chrobak and Nakano [6] showed that every planar graph admits a straight-
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line drawing with height 2n/3. We now observe some properties of Chrobak and
Nakano’s algorithm [6]. Let G be a plane triangulation with n vertices and let
x, y be two prescribed outer vertices of G in clockwise order on the outer face
of G. Let Γ be the drawing of G produced by the Algorithm of Chrobak and
Nakano [6]. Then Γ has the following properties:

(CN1) Γ is a drawing on Lq, where q ≤ 2n/3.

(CN2) For the vertices x and y, we have l(x) = l1 and l(y) = lq in Γ. The
remaining outer vertex z lies on either l1 or lq.

Note that the placement of z cannot be prescribed to the algorithm, i.e., the
algorithm may produce a drawing where l(x) = l1, l(y) = lq and l(z) = l1,
however, this does not imply that there exists another drawing where l(x) =
l1, l(y) = lq and l(z) = lq. We end this section with the following lemma.

Lemma 3 Let G be a plane graph and let Γ be a straight-line drawing of G on
a set Lk of k horizontal lines, where the lines are not necessarily equally spaced.
Then there exists a straight-line drawing Γ′ of G on a set of k horizontal lines
that are equally spaced. Furthermore, for every i ∈ {1, 2, . . . , k}, the left to right
order of the vertices on the ith line in Γ coincides with that of Γ′.

Proof: A flat visibility drawing of G on Lk maps each vertex of G to a distinct
horizontal interval on some horizontal line of Lk, and each edge of G to a
horizontal or vertical line segment between the corresponding intervals. Given
a straight-line drawing Γ of G on Lk, it is straightforward to transform Γ into
a flat visibility drawing D on Lk such that for every i ∈ {1, 2, . . . , k}, the left
to right order of the vertices on the ith line in Γ coincides with that of D, and
for every vertex v in D, the clockwise ordering of the edges around v coincides
with the ordering in Γ. One way to construct such a drawing D is to direct the
edges of Γ from bottom to top, and then draw the directed paths in a depth-first
search order from left to right. Figures 2(d)–(g) illustrate such a construction.
In fact, this construction is inspired by the technique for computing visibility
representation of planar graphs, as described in [27, 9].

We now adjust the length of the vertical edges so that the layers in D become
equally spaced. Biedl [1] showed that such a drawing D can be transformed to
the required straight-line drawing Γ′, where for every i ∈ {1, 2, . . . , k}, the left
to right order of the vertices on the ith line in D coincides with that of Γ′. �

In the following sections we describe our drawing algorithms. For simplicity
we often omit the floor and ceiling functions while defining different parameters
of the algorithms. One can describe a more careful computation using proper
floor and ceiling functions, but that does not affect the asymptotic results dis-
cussed in this paper.

3 Drawing Triangulations with Small Height

Every planar triangulation has a simple cycle separator of size O(
√
n) [11]. In

the preliminary version of this paper [14], we used this result to prove that
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every n-vertex planar graph with maximum degree ∆ ∈ o(√n) admits a 4-bend
polyline drawing with height at most 4n/9 + o(n). In this section we use edge
separator, and prove that every planar graph with ∆ ∈ o(n) can be drawn with
3 bends per edge and height at most 4n/9 + o(n).

We first present an overview of our algorithm, and then describe the algo-
rithmic details.

3.1 Algorithm Overview

Let G = (V,E) be an n-vertex planar graph, where n ≥ 9, and let Γ be a planar
drawing of G on the Euclidean plane. Without loss of generality assume that G
is a planar triangulation. Let M ⊆ E be an edge separator of G such that the
corresponding edges in the dual graph G∗ form a simple cycle C∗. Let Vo ⊆ V
(respectively, Vi ⊆ V ) be the vertices that lie outside (respectively, inside) of
C∗. Diks et al. [10] proved that there always exists such an edge separator
M ⊂ E such that |M | ≤ 2

√
2∆n and max{|Vi|, |Vo|} ≤ 2n/3. Figures 4(a)–(b)

illustrate a planar triangulation G and an edge separator of G. Let Gi = (Vi, Ei)
and Go = (Vo, Eo) be the subgraphs of G induced by the vertices of Vi and Vo,
respectively. Since n ≥ 9, each of Gi and Go contains at least 3 vertices.

Since G is a planar triangulation, there must be an outer vertex q on Gi or
Go such that q is incident to two or more edges of M . Without loss of generality
assume that q lies on Gi, e.g., see vertex v5 in Figure 4(c). Let a, b, c be three
consecutive neighbors of q in G in counter clockwise order such that a ∈ Vi and
{b, c} ⊆ Vo. We take an embedding G′ of G with q, b, c as the outer face, as
shown in Figure 4(d) with q = v5, a = v3, b = v2, and c = v11. Consequently,
Go and Gi lie on the outer face of each other, as illustrated in Figures 4(d)–(e).

We first draw Go and Gi separately with small height, and then merge these
drawings to compute the final output. The drawings of Go and Gi are placed
side by side. Consequently, the height of the final output can be expressed in
terms of the maximum height of the drawings of Go and Gi, and hence the area
of the final drawing becomes small.

3.2 Algorithm Details

Let G′ be the embedding obtained from G by choosing q, b, c as the outer face.
We first construct a graph G′o from Go by adding a vertex wo on the outer face
of Go, and making wo adjacent to all the outer vertices of Go such that the
edge (b, c) remains as an outer edge. We remove any resulting multi-edges by
subdividing each corresponding inner edge with a dummy vertex, and then by
triangulating the resulting graph. Note that we do not need to add dummy
vertices on the outer edges. Figure 5(a) illustrates an example of G′o, where the
dummy vertex d removes the multi-edges between v7 and wo. Since there are
O(
√

∆n) edges in M , the number of vertices in G′o is at most 2n/3 +O(
√

∆n).

We now use the algorithm of Chrobak and Nakano [6] to compute a straight-
line drawing Γo of G′o with height x = 4n/9 + O(

√
∆n), where b, c lie on l1, lx
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Figure 4: (a) A planar triangulation. (b) An edge separator M of G, and the
corresponding simple cycle in the dual graph. The edges of M and C∗ are shown
in thin and thick gray, respectively. (c) Go and Gi are shaded in light-gray and
dark-gray, respectively. (d)–(e) Choosing a suitable embedding G′.

and wo lies on either l1 or lx. Assume without loss of generality that wo is in
the right half-plane of the line determined by b, c.

We now construct a graph G′i from Gi, as follows. Observe that the vertex
a is an outer vertex of Gi, which appears immediately after q while walking on
the outer face of Gi. We add a vertex wd on the outer face of Gi, and make it
adjacent to q and a. We now add another vertex wi on the outer face, and make
it adjacent to wd and q such that the cycle wi, q, wd becomes the boundary of
the outer face, e.g., see Figure 5(b).

If wo lies in lx in Γo, then we make wi adjacent to all the outer vertices of
Gi. Otherwise, we make wd adjacent to all the outer vertices of Gi. We remove
any resulting multi-edges by subdividing each corresponding inner edge with
a dummy vertex, and then by triangulating the resulting graph. Figure 5(b)
illustrates an example of G′i, where d′ is a dummy vertex. Since there are
O(
√

∆n) edges in M , the number of vertices in G′i is at most 2n/3 +O(
√

∆n).

We now use the algorithm of Chrobak and Nakano [6] to compute a straight-
line drawing Γi of G′i with height y = 4n/9 + O(

√
∆n) such that wd, wi lie

on l1, ly, respectively, and the segment wdwi is vertical. Assume without loss
of generality that all the vertices of G′i are in the right half-plane of the line
determined by wd, wi.

To construct a drawing of G′, we merge the drawings of G′o and G′i.
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Figure 6: Merging Γo and Γi.

Merging the drawings of G′i and G′o: Without loss of generality assume
that l(wo) = lx in Γo, and recall that in this case wo and wi are adjacent to all
the outer vertices of Go and Gi, respectively. Let `i be a vertical line to the right
of segment wdwi in Γi such that all the other vertices of Γi are in the right half-
plane of `i. Furthermore, `i must be close enough such that all the intersection
points with the edges incident to wi lie in between the horizontal line l(wi)
and the horizontal line immediately below l(wi). For each intersection point,
we insert a division vertex at that point and create a horizontal line through
that vertex. We then delete vertex wi from Γi, but not the division vertices.
Figures 6(c)–(d) illustrate this scenario. By Lemma 3, we can modify Γi such
that the horizontal lines are equally spaced. Since |M | ∈ O(

√
∆n), Γi is a

drawing on at most y + O(
√

∆n) horizontal lines. Similarly, we modify Γo, as
follows.
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Let `o be a vertical line to the left of wo in Γo such that all the other vertices
of Γo are in the left half-plane of `o. Furthermore, `o must be close enough
such that all the intersection points with the edges incident to wo lie in between
l(wo) and l(wo)− 1. For each intersection point, we insert a division vertex at
that point and create a horizontal line through that vertex. Delete vertex wo,
but not the division vertices. Finally, by Lemma 3, we can modify Γo such that
the horizontal lines are equally spaced. Note that Γo is a drawing on at most
x+O(

√
∆n) horizontal lines. Figures 6(a)–(b) illustrate this scenario.

Since the division vertices in Γi and Γo take a set of consecutive horizontal
lines from their respective topmost lines, it is straightforward to merge these two
drawings on a set of max{x, y}+ O(

√
∆n) = 4n/9 + O(

√
∆n) horizontal lines.

Let the resulting drawing be D. Figure 6(e) shows a schematic representation of
D. Since the division vertices correspond to the bends, each edge may contain at
most four bends (one bend inside Γo, one bend inside Γi, and two bends to merge
the drawings Γi and Γo). Since there are at most O(

√
∆n) edges that may have

bends, the number of bends is at most O(
√

∆n) in total. Note that for every
edge containing four bends, two of the bends correspond to wo and wi, and they
are adjacent one the same horizontal line in the final drawing. Therefore, we can
now transform D into a flat-visibility drawing, where the adjacent pair of bends
correspond to a single vertex, and then transform the flat-visibility drawing back
into a polyline drawing (similar to the proof of Lemma 3), where the bends that
correspond to wo and wi are merged to a single bend. Consequently, the number
of bends per edge reduces to 3. The following theorem summarizes the result of
this section.

Theorem 1 Let G be an n-vertex planar graph. If G contains a simple cycle
separator of size λ, then G admits a 3-bend polyline drawing with height 4n/9 +
O(λ) and at most O(λ) bends in total.

Since every planar triangulation with maximum degree ∆ has an edge separator
of size O(

√
∆n) [10], we obtain the following corollary.

Corollary 1 Every n-vertex planar triangulation with maximum degree o(n)
admits a polyline drawing with height at most 4n/9 + o(n).

Pach and Tóth [23] showed that polyline drawings can be transformed into
straight-line drawings while preserving the height if the polyline drawing is
monotone, i.e., if every edge in the polyline drawing is drawn as a y-monotone
curve. Unfortunately, our algorithm does not necessarily produce monotone
drawings.

4 Drawing Planar 3-Trees with Small Height

In this section we examine straight-line drawings of planar 3-trees. We first
introduce a few more definitions and recall some known results. Afterwards, we
describe the algorithm details.
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Figure 7: (a)–(b) Illustrating Reshape. (c) Illustrating Stretch.

4.1 Technical Background

Let G be an n-vertex planar 3-tree and let Γ be a straight-line drawing of G.
Then Γ can be constructed by starting with a triangle, which corresponds to the
outer face of Γ, and then iteratively inserting the other vertices into the inner
faces and triangulating the resulting graph. Let a, b, c be the outer vertices of
Γ in clockwise order. If n > 3, then Γ has a unique vertex p that is incident to
all the outer vertices. This vertex p is called the representative vertex of G.

For any cycle i, j, k in G, let Gijk be the subgraph induced by the vertices
i, j, k and the vertices lying inside the cycle. Let G∗ijk be the number of vertices
in Gijk. The following two lemmas describe some known results.

Lemma 4 (Mondal et al. [22]) Let G be a plane 3-tree and let i, j, k be a
cycle of three vertices in G. Then Gijk is a plane 3-tree.

Lemma 5 (Hossain et al. [18]) Let G be an n-vertex plane 3-tree with the
outer vertices a, b, c in clockwise order. Let D be a drawing of the outer cy-
cle a, b, c on Ln, where the vertices lie on l1, lk and li with k ≤ n and i ∈
{l1, l2, ln, ln−1}. Then G admits a straight-line drawing Γ on Lk, where the
outer cycle of Γ coincides with D.

Let G be a plane 3-tree and let a, b, c be the outer vertices of G. Assume
that G has a drawing Γ on Lk, where a, b lie on lines l1, lk, respectively, and c
lies on line li, where 1 ≤ i ≤ k. Then the following properties hold for Γ [18].

Reshape. Let p, q and r be three distinct non-collinear points on lines l1, lk
and li, respectively. Then G has a drawing Γ′ on Lk such that the outer
face of Γ′ coincides with triangle pqr (e.g., Figures 7(a)–(b)).

Stretch. For any integer t ≥ k, G admits a drawing Γ′ on Lt such that a, b, c
lie on l1, lt, li, respectively (e.g., Figure 7(c)).

For any triangulation H with the outer vertices a, b, c, let Ta,H , Tb,H , Tc,H
be the Schnyder trees rooted at a, b, c, respectively. By leaf(T ) we denote the
number of leaves in T . The following lemma establishes a sufficient condition for
a plane 3-treeG to have a straight-line drawing with height at most 4(n+3)/9+4.
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Figure 8: Illustration for Lemma 6, where the graph Gabp is in shaded region.

Lemma 6 Let G be an n-vertex plane 3-tree with outer vertices a, b, c in clock-
wise order. Let w1, . . . , wk(= p), wk+1(= q), . . . , wt(= c) be the maximal path P
such that each vertex on P is adjacent to both a and b (e.g., see Figure 8). As-
sume that n′ = n+ 3, and x = 4n′/9. If G∗apq ≤ (n′+ 2)/3, G∗bpq ≤ G∗abp ≤ n′/2
and max∀i>k+1{G∗awiwi−1

, G∗bwiwi−1
} ≤ 4n′/9, then G admits a drawing with

height at most 4n′/9 + 4.

Proof: To construct the required drawing of G, we distinguish two cases de-
pending on whether leaf(Tp,Gabp

) ≤ x or not. Let H be the subgraph of G
induced by the vertices {a, b} ∪ {wk, . . . , wt}. In each case, we first construct
a drawing of H on Lx+4, and then extend it to compute the required drawing
using Lemmas 2–5.

Case 1 (leaf(Tp,Gabp) ≤ x). Since G∗bqp≤n′/2, by Lemma 1, one of the trees
in the Schnyder realizer of Gbqp has at most n′/3 ≤ x leaves. We now draw
Gabq considering the following scenarios.

Case 1A (leaf(Tp,Gbqp) ≤ x). We refer the reader to Figures 9(a)–(b).
By Lemma 2 and the Stretch condition, Gabp admits a drawing Γabp on
Lx+2 such that the vertices a, b, p lie on l1, lx+2, lx+2, respectively. Sim-
ilarly, since leaf(Tp,Gbqp

) ≤ x, by Lemma 2 Gbqp admits a drawing Γbpq

on Lx+2 such that the vertices q, b, p lie on l1, lx+2, lx+2, respectively, as
shown in Figure 9(a). By the Stretch property, Γabp can be extended to a
drawing Γ′abp on Lx+3, where a, b, p lie on l1, lx+3, lx+2, respectively. Sim-
ilarly, Γbqp can be extended to a drawing Γ′bqp on Lx+3, where q, b, p lie
on l1, lx+3, lx+2, respectively. Since G∗apq ≤ (n′ + 2)/3, by Lemma 5 and
the Stretch condition, Gapq admits a drawing Γapq on L(n′+2)/3. Finally,
by the Stretch property Γapq can be extended to a drawing Γ′apq on Lx+2

such that a, p, q lie on l1, lx+2, l1, respectively, and by the Reshape prop-
erty we can merge these drawings to obtain a drawing of Gabq on Lx+3.
Figure 9(b) depicts an illustration.

Case 1B (leaf(Tq,Gbqp) ≤ x). We refer the reader to Figures 9(a)–(b).
By Lemma 2 and the Stretch condition, Gabp admits a drawing Γabp on
Lx+2 such that the vertices a, b, p lie on l1, lx+2, l1, respectively. Similarly,



446 Durocher and Mondal Drawing Planar Graphs with Reduced Height

a

lx+2

li
l1

pb p b

qa q

p

(a)

a

lx+2

li
l1 p p

q

(c)

p

b b q

(b)

a q

p

b

a

qb

p

(d)

a

Figure 9: (a)–(b) Illustration for Case 1A. (c)–(d) Illustration for Case 1B.

Gbqp admits a drawing Γbpq on Lx+2 such that the vertices p, b, q lie on
l1, lx+2, lx+2, respectively. By Lemma 5, Gapq admits a drawing Γapq on
L(n′+2)/3 such that a, p, q lie on l1, l1, l(n′+2)/3, respectively. By Stretch,
we modify Γapq such that a, p, q lie on l1, l1, lx+2, respectively. Finally, by
Stretch and Reshape we can merge these drawings to obtain a drawing of
Gabq on Lx+3. Figures 9(c)–(d) show an illustration.

Case 1C (leaf(Tb,Gbqp) ≤ x). The drawing of this case is similar to Case
1B. The only difference is that we use Tb,Gbqp

while drawing Gbqp.

Observe that each of the Cases 1A–1C produces a drawing of Gabq such that a, b
lie on l1, lx+3, respectively, and q lies on either l1 or lx+3. We use the Stretch
operation to modify the drawing such that a, b lie on l1, lx+4, respectively, and
q lies on either l2 or lx+3. Specifically, if q is on lx+3, then we push b to ll+4.
Otherwise, q is on l1, and in this case we push a to l0, and then shift the drawing
up by one layer to move a back to l1.

If q lies on lx+3, then we place the vertices wk+1, . . . , wt(= c) on l2 and lx+3

alternatively, as shown in Figure 10(a). Similarly, if q lies on l2, then we draw
the path wk+1, . . . , wt(= c) in a zigzag fashion, placing the vertices on lx+3

and l2 alternatively such that each vertex is visible to both a and b. For each
i > k + 1, Lemma 4 ensures that the graphs Gawiwi−1 and Gbwiwi−1 are plane
3-trees. Since max∀i>k+1{G∗awiwi−1

, G∗bwiwi−1
} ≤ x, we can draw Gawiwi−1 and

Gbwiwi−1
using Lemma 5 inside their corresponding triangles.

Case 2 (leaf(Tp,Gabp) > x). Since G∗abp≤n′/2, by Lemma 1, leaf(Ta,Gabp
) +

leaf(Tb,Gabp
) ≤ n′ − leaf(Tp,Gabp

) ≤ 5n′/9. Hence we draw Gabq considering
the following scenarios.

Case 2A (leaf(Ta,Gabp) ≤ x and leaf(Tb,Gabp) ≤ x). We refer the reader
to Figures 10(b)–(c). Since G∗bqp≤n′/2, by Lemma 1, one of the trees in
the Schnyder realizer of Gbqp has at most n′/3 ≤ x leaves.

If leaf(Tp,Gbpq
) ≤ x, then we draw Gabq on Lx+3, where a, b, p, q lie

on l1, lx+3, lx+2, l1, respectively, as in Figure 10(b). Specifically, since
leaf(Tb,Gabp

and leaf(Tp,Gbpq
) both are at most x, we use Lemma 2 to

draw Gabp and Gabp. Since G∗apq ≤ (n′ + 2)/3, we can draw Gapq using
Lemma 5. Finally, we use Stretch and Reshape to merge these drawings.
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Figure 10: (a) Illustrating Case 1. (b)–(c) Illustrating Case 2A. (d)–(e) Case
2B.

If leaf(Tp,Gbpq
) > x, then either leaf(Tb,Gbpq

) ≤ x or leaf(Tq,Gbpq
) ≤ x.

In this case we draw Gabq on Lx+3, where a, b, p, q lie on l1, lx+3, l2, lx+3,
respectively, as in Figure 10(c). Specifically, we use Lemma 2 to draw
Gbpq. Since leaf(Ta,Gabp

) ≤ x, we use Lemma 2 to draw Gabp, and since
G∗apq ≤ (n′ + 2)/3, we draw Gapq using Lemma 5. Finally, we use Stretch
and Reshape to merge these drawings.

Case 2B (leaf(Ta,Gabp) > x and leaf(Tb,Gabp) ≤ n′/9). If leaf(Tp,Gbpq
) ≤

n′/3, then we first draw Gbpq using Lemma 2 such that b, p, q lie on ln′/3+2,
ln′/3+2, l1, respectively, and then use the Stretch condition to shift b to
lx+3. By Lemma 2 and the Stretch condition, there exists a drawing
of Gabp on Lx+3 with a, b, p lying on l1, lx+3, ln′/3+2, respectively. Since
G∗apq ≤ (n′ + 2)/3, we can draw Gapq using Lemma 5 inside triangle apq.
Figure 10(d) illustrates the scenario after applying Stretch and Reshape.

If leaf(Tp,Gbpq
) > n′/3, then by Lemma 1 either leaf(Tb,Gbpq

) ≤ n′/3 −
2 or leaf(Tq,Gbpq

) ≤ n′/3 − 2. Hence we can use Lemma 2 and the
Stretch condition to draw Gbpq such that b, p, q lie on lx+3, ln′/9+2, lx+3,
respectively. On the other hand, we use Lemma 2 to draw Gabp such
that a, b, p lie on l1, ln′/9+2, ln′/9+2, respectively, and then use the Stretch
condition to move b to lx+3. Since G∗apq ≤ (n′ + 2)/3, we can draw Gapq

using Lemma 5 inside triangle apq. Figure 10(e) illustrates the scenario
after applying Stretch and Reshape.

Case 2C (leaf(Ta,Gabp) ≤ n′/9 and leaf(Tb,Gabp) > x). The drawing
in this case is analogous to Case 2B. The only difference is that we use
Ta,Gabp

while drawing Gabp.

Each of the Cases 2A–2C produces a drawing of Gabq such that a, b lies on
l1, lx+3, respectively, and q lies on either l1 or lx+3. Hence we can extend these
drawings to draw G as in Case 1. �
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4.2 Drawing Algorithm

We are now ready to describe our algorithm.

4.2.1 Decomposition.

Let G be an n-vertex plane 3-tree with the outer vertices a, b, c and the repre-
sentative vertex p. A tree spanning the inner vertices of G is called the repre-
sentative tree T if it satisfies the following conditions [22]:

(a) If n = 3, then T is empty.

(b) If n = 4, then T consists of a single vertex.

(c) If n > 4, then the root p of T is the representative vertex of G and the
subtrees rooted at the three clockwise ordered children p1, p2 and p3 of p
in T are the representative trees of Gabp, Gbcp and Gcap, respectively.

Recall that every r-vertex tree T ′ has a vertex v′ such that the connected
components of T ′ \ v′ are all of size at most r/2 [19]. Such a vertex v in T
corresponds to a decomposition of G into four smaller plane 3-trees G1, G2, G3,
and G4, as follows.

- The plane 3-tree Gi, where 1 ≤ i ≤ 3, is determined by the representative
tree rooted at the ith child of v, and thus contains at most r/2 + 3 =
(n− 3)/2 + 3 = (n+ 3)/2 vertices.

- The plane 3-tree G4 is obtained by deleting v and the vertices from G that
are descendent of v in T , and contains at most (n+ 3)/2 vertices.

4.2.2 Drawing Technique.

Without loss generality assume that G∗3 ≤ G∗2 ≤ G∗1. If G1 is incident to the
outer face of G, then let (a, b) be the corresponding outer edge. Otherwise, G1

does not have any edge incident to the outer face of G. In this case there exists
an inner face f in G that is incident to G1, but does not belong to G1. We
choose f as the outer face of G, and now we have an edge (a, b) of G1 that is
incident to the outer face of G. Let P=(w1, . . . , wk(= p), wk+1(= q), . . . , wt)
be the maximal path in G such that each vertex on P is adjacent to both
a and b, where {a, b, p}, {a, p, q}, {b, q, p} are the outer vertices of G1, G2, G3,
respectively, e.g., see Figure 11. Assume that n′ = n + 3 and x = 4n′/9. We
draw G on Lx+4 by distinguishing two cases depending on whether G∗4 > x or
not.

Case 1 (G∗4 > x). Recall that G∗2 ≤ G∗1 ≤ n′/2. Since G∗3 + G∗2 +
G∗1 ≤ G∗ − G∗4 + 9 ≤ n′ + 6 − 4n′/9, we have G∗3 ≤ 5n′/27 + 2 ≤ n′/3 for
sufficiently large values of n. If max∀i>k+1{G∗awiwi−1

, G∗bwiwi−1
} ≤ x holds,

then G admits a drawing on Lx+4 by Lemma 6. We may thus assume that
there exists some j > k + 1 such that either G∗awjwj−1

> x or G∗bwjwj−1
> x.

Hence max∀i>k+1,i6=j{G∗awiwi−1
, G∗bwiwi−1

} ≤ n′/9.
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Figure 11: Illustration for G1, G2, G3 and G4.

We first show that Gabq can be drawn on Lx+3 in two ways: One drawing Γ1

contains the vertices a, b, q on l1, lx+3, l2, respectively, and the other drawing Γ2

contains a, b, q on l1, lx+3, lx+2, respectively. We then extend these drawings to
obtain the required drawing of G. Consider the following scenarios depending
on whether G∗1 ≤ x or not.

- If G∗1 ≤ x, then G∗3 ≤ G∗2 ≤ G∗1 ≤ x. Here we draw the subgraph
G′ induced by the vertices a, b, p, q such that they lie on l1, lx+3, lx+2, l2,
respectively. Since G∗3 ≤ G∗2 ≤ G∗1 ≤ x, by Lemma 5, G1, G2 and G3

can be drawn inside their corresponding triangles, which corresponds to
Γ1. Similarly, we can find another drawing Γ2 of Gabq, where the vertices
a, b, p, q lie on l1, lx+3, l2, lx+2, respectively.

- If G∗1 > x, then G∗3 ≤ G∗2 ≤ n′/9. Since G∗1 < n′/2, we can use Chrobak
and Nakano’s algorithm [6] and Stretch operation to draw G1 such that
that a, b lie on l1, ln′/3+1, respectively, and p lies either on l2 or ln′/3. First
consider the case when p lies on ln′/3. We then use the Stretch condition
to push b to lx+3. To construct Γ1, we place q on l2, and to construct Γ2,
we place q on lx+2. Since G∗3 ≤ G∗2 ≤ n′/9, for each placement of q, we
can draw G2 and G3 using Lemma 5 inside their corresponding triangles.
The case when p lies on l2 is handled symmetrically, i.e., first by pushing
a downward using Stretch operation so that the drawing spans (x + 3)
horizontal lines, then shifting the drawing upward such that a comes back
to l1, and finally placing the vertex q on l2 (for Γ1) and lx+2 (for Γ2) .

We now show how to extend the drawing of Gabq to compute the drawing of G.
Consider two scenarios depending on whether G∗awjwj−1

> x or G∗bwjwj−1
> x.

- Assume thatG∗awjwj−1
> x. Shift b to lx+4, and draw the path wk+1, . . . , wj−1

in a zigzag fashion, placing the vertices on l2 and lx+3 alternatively, such
that l(wk+1) 6= l(wk+2), and each vertex is visible to both a and b. Choose
Γ1 or Γ2 such that the edge (a,wj−1) spans at least x + 3 lines. We
now draw Gawjwj−1

using Chrobak and Nakano’s algorithm [6]. Since
x < G∗awjwj−1

≤ n′/2, we can draw Gawjwj−1
on at most n′/3 parallel

lines. By the Stretch and Reshape conditions, we merge this drawing with
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the current drawing such that wj lies on either lx+3 or ln′/9+2. Since
G∗bwjwj−1

≤ n′/9, we can draw Gbwjwj−1 inside its corresponding triangle

using Lemma 5. Since max∀i>j{G∗awiwi−1
, G∗bwiwi−1

} ≤ n′/9, it is straight-
forward to extend the current drawing to a drawing of G on x+ 4 parallel
lines by continuing the path wj , . . . , wt in the zigzag fashion.

- Assume that G∗bwjwj−1
> x. The drawing in this case is similar to the case

when G∗awjwj−1
> x. The only difference is that while drawing the path

wk+1, . . . , wj−1, we choose Γ1 or Γ2 such that the edge (b, wj−1) spans at
least x+ 3 lines.

Case 2 (G∗4 ≤ x). Observe that G∗2 ≤ G∗1 ≤ n′/2. We now show that
G∗3+G∗2+G∗1 can be at most n−5 in the worst case. If G∗4 = 0, then G1, G2 and
G3 spans the graph G. Let I1, I2 and I3 be the inner vertices of G1, G2 and G3,
respectively. Then G∗3+G∗2+G∗1 = (I1+I2+I3)+9 = (n−4)+9 = n+5 = n′+2.

Since G∗3 ≤ G∗2 ≤ G∗1, we have G∗3 ≤ (n′ + 2)/3. Hence G admits a drawing
on Lx+4 by Lemma 6.

The following theorem summarizes the result of this section.

Theorem 2 Every n-vertex planar 3-tree admits a straight-line drawing with
height 4(n+ 3)/9 + 4 = 4n/9 +O(1).

5 Conclusion

In this paper we have shown that every n-vertex planar graph with maximum
degree ∆, having an edge separator of size λ, admits a polyline drawing with
height 4n/9 +O(λ), which is 4n/9 + o(n) for any planar graph with ∆ ∈ o(n).
While restricted to n-vertex planar 3-trees, we compute straight-line drawings
with height at most 4n/9 +O(1). In some cases the width of the drawings that
we compute for plane 3-trees may be exponentially large over n. Hence it would
be interesting to find drawing algorithms that can produce drawings with the
same height as ours, but bound the width as a polynomial function of n.

Several natural open question follows.

- Does every n-vertex planar triangulation admit a straight-line drawing
with height at most 4n/9 +O(1)?

- What is the minimum constant c such that every n-vertex planar 3-tree
admits a straight-line (or polyline) drawing with height at most cn?

- Does a lower bound on the height for straight-line drawings of triangula-
tions determine a lower bound also for their polyline drawings?

Recently, Biedl [1] has examined height-preserving transformations of planar
graph drawings, which shed some light on the last open question.
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