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Abstract
Defective coloring is a variant of the traditional vertex-coloring in

which adjacent vertices are allowed to have the same color, as long as the
induced monochromatic components have a certain structure. Due to its
important applications, as for example in the bipartisation of graphs, this
type of coloring has been extensively studied, mainly with respect to the
size, degree, diameter, and acyclicity of the monochromatic components.

We focus on defective colorings with κ colors in which the monochro-
matic components are acyclic and have small diameter, namely we con-
sider (edge, κ)-colorings, in which the monochromatic components have
diameter 1, and (star, κ)-colorings, in which they have diameter 2.

We prove that the (edge, 3)-coloring problem remains NP-complete
even for graphs with maximum vertex-degree 6, hence answering an open
question posed by Cowen et al. [9], and for planar graphs with maximum
vertex-degree 7, and we prove that the (star, 3)-coloring problem is NP-
complete even for planar graphs with bounded maximum vertex-degree.
On the other hand, we give linear-time algorithms for testing the existence
of (edge, 2)-colorings and of (star, 2)-colorings of partial 2-trees. Finally,
we prove that outerpaths, a notable subclass of outerplanar graphs, always
admit (star, 2)-colorings.
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1 Introduction

Graph coloring is a fundamental problem in graph theory, which has been ex-
tensively studied over the years (see, e.g., [6] for an overview). Most of the
research in this area has been devoted to the vertex-coloring problem (or color-
ing problem, for short), which dates back to 1852 [27]. In its general form, the
κ-coloring problem asks to label the vertices of a graph with a given number κ
of colors, so that no two adjacent vertices have the same color. In other words,
a κ-coloring of a graph partitions its vertices into κ color classes, each deter-
mining an independent set. A central result in this area is the so-called four
color theorem, according to which every planar graph admits a κ-coloring with
κ ≤ 4; see e.g. [19]. Note that the 3-coloring problem is NP-complete [17], even
for graphs of maximum vertex-degree 4 [11].

Several variants of this problem have been proposed over the years; see,
e.g., [31] for a survey. One of the most studied is the so-called defective coloring,
independently introduced by Andrews and Jacobson [2], Harary and Jones [21],
and Cowen et al. [9]. In this problem, edges between vertices of the same
color class are allowed as long as the monochromatic components, which are the
connected components of the subgraphs induced by vertices of the same color,
maintain some special structure. In this respect, one can regard the classical
vertex-coloring as a defective one in which every monochromatic component is
an isolated vertex, given that every color class determines an independent set.
Besides its theoretical interest, the defective coloring problem has interesting
applications. For example, it can be regarded as the scheduling problem [8]
where vertices represent tasks and edges represent conflicts between tasks in
terms of shared resources. Here, a defect means tolerating some threshold of
conflict: for example, each user running a task may find the maximum slowdown
incurred for executing its task with one conflicting other task acceptable, and
with more than one conflicting task unacceptable.

Over the years, models of defective colorings have been defined in terms of
the maximum vertex-degree of each monochromatic component [3, 10, 9, 26, 28],
of their size [1, 15, 22], of their acyclicity [12, 14, 35] (under the name of tree-
partition-width), or of their diameter [13].

In this work we focus on the latter two aspects, namely we study defective
colorings in which each monochromatic component is acyclic and has small
diameter. In particular, we consider the cases in which the diameter is at most
1 (hence each component is either a vertex or an edge) or at most 2 (hence each
component is a star, i.e. a tree with a central vertex connected to any number
of leaves; see Figure 1d). We hence call the two corresponding problems (edge,
κ)-coloring and (star, κ)-coloring, respectively. Figures 1a-1c show a trade-off
between number of colors and diameter of the monochromatic components. We
present algorithmic and complexity results for these two problems when κ = 2
and κ = 3.

The model we study can be seen as a variant of the bipartisation of graphs,
namely the problem of making a graph bipartite by removing a small number
of elements (e.g, vertices or edges), which is a central graph problem with many
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(a) (b) (c) (d)

Figure 1: (a-c) Different colorings of the same graph: (a) a traditional 4-coloring,
(b) an (edge, 3)-coloring (c) a (star, 2)-coloring; (d) a star with three leaves; its
center has degree 3.

applications [20, 24]. The bipartisation by removal of (a not-necessarily minimal
number of) non-adjacent edges corresponds to the (edge, 2)-coloring problem.
On the other hand, a (star, 2)-coloring also determines a bipartisation, in which
independent stars are removed instead of vertices. Note that we do not ask
for the minimum number of removed edges or stars but for the existence of a
solution.

We observe that the (edge, κ)-coloring setting also fits into the other models
of defective colorings that have been studied so far. In fact, any monochromatic
component with diameter at most 1 has also size at most 2 and vertex-degree
at most 1. This observation implies that several results on the defective col-
oring with bounded maximum vertex-degree carry on to the (edge, κ)-coloring
problem. More precisely, from a result of Lovász [26] it follows that all graphs
of maximum vertex-degree 5 are (edge, 3)-colorable. However, Cowen et al. [9]
prove that the (edge, 3)-coloring problem is already NP-complete for graphs of
maximum vertex-degree 7 and for planar graphs1 of maximum vertex-degree 10.
In the same work, they prove that the (edge, 2)-coloring problem is NP-complete
for graphs of maximum vertex-degree 4 and for planar graphs of maximum
vertex-degree 5. Also, they prove that not all outerplanar graphs2 are (edge,
2)-colorable, while Eaton and Hull [28] prove that all triangle-free outerplanar
graphs are.

On the other hand, (star, κ)-colorings have no direct relationship with the
other defective coloring models, since their monochromatic components may
have both the size and the maximum vertex-degree unbounded. Results on the
complexity of the (star, 2)-coloring problem have been provided by Dorbec et
al. [13], who proved that this problem is NP-complete even for planar graphs of
maximum vertex-degree 4 and for triangle-free planar graphs.

Our contributions are:

• We prove that the (edge, 3)-coloring problem remains NP-complete for
graphs with vertex-degree at most 6 (Section 2); this answers a question

1In [9] no explicit bound is given on the maximum vertex-degree; however, their proof can
be adapted to work for planar graphs with maximum degree 10 by using planar graphs with
maximum degree 4 in the reduction

2An outerplanar graph is a graph that admits a planar drawing in which all the vertices
are on the same face
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posed by Cowen et al. [9] in 1997 (recall that graphs of maximum vertex-
degree 5 always admit such colorings [26]). We also show that this problem
is NP-complete even for planar graphs of vertex-degree at most 7, which
was already known only for planar graphs of vertex-degree at most 10 [9].
Also, we prove NP-completeness of the (star, 3)-colorings problem, even
for (planar) graphs of bounded maximum vertex-degree, namely for graphs
with vertex-degree at most 9 and for planar graphs with vertex-degree at
most 16.

• We present efficient algorithms for testing the existence of (edge, 2)-
colorings and (star, 2)-colorings of subclasses of planar graphs (Section 3).
In particular, we describe linear-time algorithms for testing (edge, 2)-
colorability and (star, 2)-colorability of partial 2-trees. We remark that
partial 2-trees are a meaningful subclass of planar graphs that is of inter-
est in computational complexity theory, since many NP-complete graph
problems are solvable in linear time on these graphs (see, e.g., [34]).

We also recall that the partial k-trees are those graphs with treewidth at
most k, for any k ≥ 1. Intuitively, the treewidth [33] is a parameter that
measures how much a graph is similar to a tree, and it has applications in
parameterized complexity (see, e.g., [16]). Since both types of colorability
are expressible in the monadic second-order logic (MSO logic), they are
decidable in linear time for graphs of bounded treewidth, as a consequence
of Courcelle’s theorem [7]. However, the use of MSO logic and Courcelle’s
theorem usually leads to algorithms having impractical running times,
with high dependence on their parameters. This motivates the design of
more efficient ad-hoc algorithms (see, e.g., [4, 25]).

• We provide a subclass of outerplanar graphs that is always (star, 2)-
colorable, namely the class of outerpaths (Section 4). An outerpath is
an outerplanar graph whose weak-dual3 is a path. Note that it is easy to
construct an outerpath not admitting any (edge, 2)-coloring.

2 NP-completeness Results

In this section we study the computational complexity of the (edge, 3)-coloring
and the (star, 3)-coloring problems.

As discussed above, problem (edge, 3)-coloring is NP-complete [9] for graphs
of maximum vertex-degree 7, while graphs of maximum vertex-degree 5 always
admit (edge, 3)-colorings [26]. We close this gap by proving in Theorem 1 that
the problem remains NP-complete even for graphs of maximum vertex-degree
6. Then, in Theorem 2 we prove that the NP-completeness result extends to
planar graphs of maximum vertex-degree 7. We leave as an open question the
complexity of the problem for planar graphs of maximum vertex-degree 6.

3The weak-dual of a plane graph is the subgraph of its dual obtained by neglecting the
face-vertex corresponding to its unbounded face.
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For the (star, 3)-coloring problem we prove NP-completeness for graphs of
maximum vertex-degree 9 and for planar graphs of maximum vertex-degree 16.
While the (star, 2)-coloring problem was already known to be NP-complete,
even for restricted graph classes [13], to the best of our knowledge these are the
first NP-completeness results for the (star, 3)-coloring problem.

From now on, given a defective coloring of a graph, we call colored edge an
edge whose end-vertices have the same color.

Theorem 1 Problem (edge, 3)-coloring is NP-complete for graphs of maximum
vertex-degree 6.

Proof: Membership in NP is shown in [9]. To prove the NP-hardness, we em-
ploy a reduction from the Not-All-Equal 3-SAT (nae3sat) problem [30, p.187].
An instance of nae3sat consists of a 3-CNF formula φ with variables x1, . . . , xn
and clauses C1, . . . , Cm. The task is to find a truth assignment satisfying φ in
which no clause has all its three literals equal in truth value (that is, not all
are true). We show how to construct a graph Gφ of maximum vertex-degree 6
admitting an (edge, 3)-coloring if and only if φ is satisfiable.

Consider the graph of Figure 2a, which we denote by G4,5,5, as it contains
one vertex u1 of degree 4, two distinct vertices u2 and u3 of degree 5 (white in
Figure 2a), and four vertices v1, v2, v3, and v4 (gray in Figure 2a) of degree 6,
which form a K4. Each of u1, u2, u3 is connected to each of v1, v2, v3, v4, and
there exists an edge (u2, u3). We claim that in any (edge, 3)-coloring of G4,5,5

vertices u1, u2, and u3 have the same color, even in the absence of edge (u2, u3).
We refer to this color as the color of G4,5,5. Suppose, for a contradiction, that
u1 and u2 have different colors, say white and black. Since v1, v2, v3, and v4
form a K4, at most two of them have the third color, say gray. Since u1 (u2)
is incident to all v1, v2, v3, and v4, at most one of them can be white (black).
So, exactly two out of v1, v2, v3, and v4 are gray, one is white, and one is black.
Further, each of them is incident to a colored edge. Since u3 is adjacent to all
of v1, v2, v3, and v4, one of them is incident to two colored edges, regardless
of the color of vertex u3; contradiction. A schematization of G4,5,5 is given in
Figure 2b.

Now, consider the graph of Figure 2c denoted by G3,3,5,5, as it has two
vertices s and t of degree 3, and two other vertices x and y of degree 5. Graph
G3,3,5,5 contains five copies G0, G1, G′1, G2, and G′2 of G4,5,5, connected by
edges e1, e′1, e2, e′2, e3, and e′3. We claim that in any (edge, 3)-coloring of
G3,3,5,5 vertices s and t have the same color, say black, while one of x and y
is white and the other one is gray. Namely, e1, e2, and e3 guarantee that G0,
G1, and G2 have mutually different colors. Thus, x and y have different colors.
Symmetrically, G0, G′1, and G′2 have mutually different colors. Also, s and t
are only incident to G1, G′1, G2, and G′2 (dotted edges in Figure 2c). Hence,
both of them have the color of G0, which is different from the ones of x and y,
completing the proof of the claim. We schematize G3,3,5,5 as in Figure 2d.

For k ≥ 1, we form a chain of length k, which contains 3k + 1 copies
G1, . . . , G3k+1 of G3,3,5,5 connected to each other as follows (see Figure 2e). For
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Figure 2: Illustration of: (a) graph G4,5,5, (b) schematization of G4,5,5, (c) graph
G3,3,5,5 and (d) schematization of G3,3,5,5, (e) a chain of length two, (f) schema-
tization of this chain. Colored edges are schematized as curly edges.

i = 1, . . . , 3k + 1, let si, ti, xi, yi be the vertices of Gi. Then, for i = 1, . . . , 3k,
we introduce between Gi and Gi+1 two vertices zi and z′i which form a K4 with
ti and si+1, as well as edges (yi, zi) and (z′i, xi+1) (dotted in Figure 2e). Assume
that in Gi vertices si and ti are black, xi is gray, and yi is white (see e.g. G1

or G4 in Figure 2e). Since ti and si+1 are incident to colored edges in Gi and
Gi+1 and are incident to each other due to edge (ti, si+1), they have different
colors. Hence, zi and z′i have the third color. Since zi is incident to yi, the color
of zi and z′i is gray, and the one of si+1 and ti+1 is white. Since z′i is incident to
xi+1, the color of xi+1 is black and the one of yi+1 is gray. So, the coloring of Gi
uniquely determines the one of Gi+1. Note that zi and zi+3 have the same color,
with 1 ≤ i ≤ 3k − 2, and that all vertices of the chain have degree 6, except for
vertices zi and z′i (which have degree 4), and for vertices x1 and y3k+1 (which
have degree 5). We schematize a chain as in Figure 2f (for k = 2). Thus, the
schematization of a chain C of length k is treated as a tripartite graph with par-
titions B[C] = {z3i+1, z

′
3i+1; 0 ≤ i ≤ k−1}, P [C] = {z3i+2, z

′
3i+2; 0 ≤ i ≤ k−1}

and N [C] = {z3i+3, z
′
3i+3; 0 ≤ i ≤ k− 1}, each containing 2k vertices of degree

4 having the same color. The symbols B, P , and N stand for Black, Positive,
and Negative, respectively.

Graph Gφ contains a chain C of length d 3m+2n
4 e, referred to as global chain

(topmost chain in Figure 3a). For each variable xi of φ, graph Gφ contains a
chain Cxi

of length dni+1
4 e, where ni is the number of occurrences of xi in φ,

1 ≤ i ≤ m (variable-gadget ; see Figure 3a). For i = 1, . . . , n, we connect a vertex
with degree 4 of partition B[C] to a vertex in P [Cxi ] and to a vertex in N [Cxi ]
(solid gray edges in Figure 3a). These connections ensure that if partition B[C] is
black, then neither P [Cxi

] nor N [Cxi
] is black and, hence, B[Cxi

] is black. Thus,
P [Cxi

] and N [Cxi
] will act as the positive and negative partitions of chain Cxi

.
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Figure 3: (a) Reduction from nae3sat to (edge, 3)-coloring: φ = (x1 ∨ x2 ∨
x3)∧ (¬x1∨¬x2∨¬x3). The solution corresponds to the assignment x1 = false
and x2 = x3 = false. Partitions Nx1

, Px2
and Px3

(Px1
, Nx2

and Nx3
, resp.)

are colored gray (white, resp.). (b) An attachment gadget.

For each clause Ci = (λj ∨ λk ∨ λ`) of φ, 1 ≤ i ≤ m, where λj ∈ {xj ,¬xj},
λk ∈ {xk,¬xk}, λ` ∈ {x`,¬x`} and j, k, ` ∈ {1, . . . , n}, graph Gφ contains a
triplet of so-called clause-vertices that form a 3-cycle and so cannot have the
same color (clause-gadget ; see Figure 3a). We connect each clause-vertex of
clause Ci to a vertex of degree less than 6 of partition B[C] (dashed gray edges
in Figure 3a). These connections guarantee that if partition B[C] is colored
black, then no clause-vertex is also colored black. The length of the global
chain guarantees that all connections can be made so that no vertex of partition
B[C] has degree larger than 6.

If λj is positive (negative), then we connect the clause-vertex corresponding
to λj in Gφ to a vertex of degree smaller than 6 that belongs to the positive
partition P [Cxj

] (to the negative partition N [Cxj
]) of chain Cxj

. Similarly, we
create connections for literals λk and λ`; see the solid-black edges leaving the
triplets for clause C1 and C2 in Figure 3a.

The length of Cxi
, for i = 1, . . . , n guarantees that all connections are ac-

complished so that no vertex of P [Cxi
] and N [Cxi

] has degree larger than 6.
Thus, Gφ has maximum vertex-degree 6. Since Gφ is linear in the size of φ, the
construction can be done in O(n+m) time.

We show that Gφ is (edge, 3)-colorable if and only if φ is satisfiable. First
assume that φ is satisfiable. We color partitions P [C], N [C], and B[C] of C white,
gray, and black, respectively. If xi is true (false), then we color P [Cxi

] white
(gray) and N [Cxi

] gray (white), and B[Cxi
] black. Hence, the tripartitions of

Cxi
are of different colors, as required by the construction. Further, if xi is true

(false), then we color gray (white) all the clause-vertices of Gφ that correspond
to positive literals of xi in φ and we color white (gray) those corresponding to
negative literals. Thus, a clause-vertex of Gφ cannot have the same color as its
two neighbors at the variable-gadget of xi, with 1 ≤ i ≤ m. Since in the truth
assignment of φ no clause has all three literals true, no three clause-vertices
belonging to the same clause have the same color.
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Suppose that Gφ is (edge, 3)-colorable and, w.l.o.g., that partition B[C] of
global chain C is black. Hence, P [Cxi ] and N [Cxi ] are white or gray, i = 1, . . . , n.
If P [Cxi

] is white, then we set xi = true; otherwise, we set xi = false. Assume,
for a contradiction, that there is a clause of φ whose literals are all true or all
false. By construction, the corresponding clause-vertices of Gφ have the same
color, which is a contradiction since they form a 3-cycle in Gφ. �

We now consider planar graphs of bounded vertex-degree.

Theorem 2 Problem (edge, 3)-coloring is NP-complete for planar graphs of
maximum vertex-degree 7.

Proof: NP membership is shown in [9]. To prove NP-hardness, we employ a
reduction from the 3-coloring problem, which is NP-complete even for planar
graphs of maximum vertex-degree 4 [11]. Let G be a graph of maximum vertex-
degree 4; we construct a planar graph G′ of maximum vertex-degree 7 admitting
an (edge, 3)-coloring if and only if G is 3-colorable.

Consider the (edge, 3)-colorable graph of Figure 3b, which we call attachment
gadget, with a distinguished vertex v, which we call pole-vertex. We claim that,
in any (edge, 3)-coloring of an attachment gadget, the pole-vertex is incident to
exactly one colored edge. To prove this, we show that vertices v1, v2, and v3
have different colors. Considering the symmetry of the vertices, w.l.o.g. assume,
for a contradiction, that v1 and v2 have the same color, say gray. Then, each
of vertices v1,1, v1,2, v1,3, v3, v2,2, v2,3 must be colored either black or white,
since each of them is incident to the gray edge (v1, v2). However, the subgraph
of the attachment gadget induced by these vertices has no (edge, 2)-coloring, as
shown in [10], which is a contradiction.

Graph G′ is obtained from G by attaching a copy Gu of the attachment
gadget at each vertex u of G, identifying u with the pole-vertex of Gu. Since u
has three neighbors in the gadget and at most four in G, graph G′ has vertex-
degree at most 7. In addition, since the size of G′ is linear in the one of G, the
reduction can be performed in linear time.

If G admits a 3-coloring, then G′ admits a (edge, 3)-coloring in which each
pole-vertex in G′ has the same color as the corresponding vertex of G, while the
colors of the vertices in each attachment gadget are determined based on the
color of its pole-vertex, as in Figure 3b. For the other direction it is sufficient
to prove that, in any (edge, 3)-coloring of G′, every two adjacent pole-vertices v
and w of G′ have different colors, as in this case a 3-coloring of G can be obtained
by coloring each vertex as the corresponding pole-vertex in G′. Namely, since
both v and w are incident to a colored-edge in their attachment gadgets, edge
(v, w) cannot be colored. �

We conclude the section presenting our results on problem (star, 3)-coloring.

Theorem 3 Problem (star, 3)-coloring is NP-complete for graphs of maximum
vertex-degree 9 and for planar graphs of maximum vertex-degree 16.
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(a) (b)

Figure 4: (a) The complete graph on six vertices K6. (b) The attachment gadget
for the planar case.

Proof: The problem clearly belongs to NP; a non-deterministic algorithm only
needs to guess a color for each vertex of the graph and then check whether the
graphs induced by each color-set are forests of stars, which can be done in linear
time. To prove that the problem is NP-hard, we employ a reduction from the
3-coloring problem that is the same as the one of Theorem 2, up to the choice
of the attachment gadget.

To prove the first part of the statement we use as attachment gadget the
complete graph K6 on six vertices, which is (star, 3)-colorable (see Figure 4a).
The proof is based on the fact that in any (star, 3)-coloring of K6 each vertex
is incident to exactly one colored edge. This is due to the fact that, if three
vertices had the same color, then they would form a cycle of colored edges,
given that K6 is a complete graph. Hence, if we attach a copy of K6 to each
vertex of the original instance G of the 3-coloring problem, using any of its six
vertices as the pole-vertex, then we can prove as in Theorem 2 that G admits
a 3-coloring if and only if the resulting graph (which has vertex-degree 9, since
G has vertex-degree 4) admits a (star, 3)-coloring.

For the second part of the theorem, we use as attachment gadget the planar
graph of Figure 4b, with its topmost vertex being the pole-vertex. Since the pole-
vertex has degree 12, the resulting graph is planar and has vertex-degree 16.
Also, it is possible to prove that in any (star, 3)-coloring of the attachment
gadget the pole-vertex is adjacent to at least a colored edge. This completes the
proof of the theorem. �

3 Efficient Testing Algorithms

In this section we give linear-time algorithms for the (edge, 2)-coloring and for
the (star, 2)-coloring problems, restricted to certain subclasses of planar graphs.
We recall that both these problems are NP-complete, even for planar graphs of
bounded vertex-degree [9, 13]. In particular, we consider (edge, 2)-colorings of
partial 2-trees (i.e., graphs with treewidth at most 2 [29]) in Theorem 4 and
(star, 2)-colorings of the same class of graphs in Theorem 5.

Both algorithms are based on an efficient dynamic programming technique
that exploits the SPQ-tree data structure (formally recalled below). From a
high-level perspective, an SPQ-tree T of a partial 2-tree G is a tree-like data
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Figure 5: (a) A series-parallel graph G. (b) The SPQ-tree T of G. Each S- and
P -node is labeled with the poles of the corresponding subgraph. Each Q-node
is labeled with the edge it represents.

structure such that each node µ corresponds to a subgraph Gµ of G, and Gµ
can be obtained with one of two possible compositions (a “series” or a “par-
allel” composition) of the subgraphs corresponding to the children of µ in T .
The leaves of T correspond to the edges of G. We traverse T bottom-up and,
for each node µ, we compute a small set of representative solutions for Gµ.
These representative solutions for node µ are obtained by suitably merging the
representative solutions associated with the children of µ. Since the graphs as-
sociated with the children of µ either all share a same separation pair of Gµ or
they are attached one another through cut vertices of Gµ so to form a path,
their corresponding solutions can be efficiently merged to obtain a new set of
solutions for node µ.

Basic definitions. We first introduce some basic definitions and tools. Series-
parallel graphs are graphs with two special vertices, called their poles, induc-
tively defined as follows. An edge (s, t) is a series-parallel graph with poles s and
t. Let G0, G1, . . . , Gk be a sequence of series-parallel graphs (k ≥ 1) and let si
and ti be the poles of Gi (i = 0, . . . , k). A series composition of G0, G1, . . . , Gk
is a series-parallel graph with poles s = s0 and t = tk, containing each Gi as a
subgraph, and such that ti and si+1 have been identified (i = 0, 1, . . . , k − 1).
A parallel composition of G0, G1, . . . , Gk is a series-parallel graph with poles
s = s0 = s1 = · · · = sk and t = t0 = t1 = · · · = tk, which contain each Gi as a
subgraph.

An SPQ-tree T of a series-parallel graph G is a tree, rooted at some node,
representing the series (S-nodes) and parallel (P -nodes) compositions of G, as
well as the single edges of G (Q-nodes) [18]. Figures 5a and 5b show a series-
parallel graph and a corresponding SPQ-tree. The pertinent graph Gµ of a node
µ of T , is the series-parallel subgraph of G such that the subtree of T rooted at
µ is an SPQ-tree of Gµ. We will denote by sµ and tµ the poles of Gµ.
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A 2-tree is a graph obtained by starting from an edge and iteratively attach-
ing a new vertex per time to two already adjacent vertices. A partial 2-tree is
any subgraph of a 2-tree. It is known that the class of 2-trees coincides with
the class of maximal series-parallel graphs [23], i.e., the series-parallel graphs
that cannot be augmented with any edge while remaining series-parallel. Also,
a graph is a partial 2-tree if and only if all its biconnected components are
series-parallel graphs [5].

3.1 Testing (edge, 2)-colorability of Partial 2-Trees

We first describe an algorithm, called SPColorer, to test in linear time whether
a biconnected series-parallel graph G admits an (edge, 2)-coloring; the extension
to the case in which G is not biconnected will be presented later. The idea is to
incrementally compute such a coloring (if any) by visiting bottom-up an SPQ-
tree T of G. Since the number of all feasible colorings for a given subgraph
of G may be exponential in the size of the subgraph, we define an equivalence
relation on the set of these colorings, and keep track of only one representative
solution in each equivalence class during the visit. The relation is based on the
following definitions.

Let G be a biconnected series-parallel graph and assume an (edge, 2)-coloring
C exists for G. Call white and black the two colors of C, and for each vertex v
of G we denote by N(v) be the set of its neighbors. If v is white (black) and
N(v) contains no white (black) vertices (i.e., v has no incident colored edges),
we say that v is of type W0 (type B0). If v is white (black) and N(v) contains
one white (black) vertex (i.e., v has one incident colored edge), v is of type W1

(type B1). Let T be an SPQ-tree of G rooted at an arbitrary Q-node ρ, and
let µ be a node of T . We say that two (edge, 2)-colorings C1 and C2 of the
pertinent Gµ of µ are equivalent if pole sµ (pole tµ) is of the same type in C1
and C2. Since we have four possible types for a vertex, this relation yields up
to 16 equivalence classes of (edge, 2)-colorings for Gµ. Each of these classes
is represented in the following as a pair (X,Y ), where X and Y are the types
of sµ and of tµ, respectively. Each element (i.e., each (edge, 2)-coloring) of an
equivalence class is called a solution for Gµ. An equivalence class is feasible if
it contains at least one solution.

It is immediate to see that if C is an (edge, 2)-coloring of G and if C1 is
the restriction of C to Gµ (hence, C1 is a solution for Gµ), then replacing C1
in C with any equivalent solution C2 for Gµ yields a valid (edge, 2)-coloring of
G. Exploiting this property, algorithm SPColorer visits T bottom-up and, for
each visited node µ of T , efficiently computes a set, called the feasible bag of µ
and denoted by bµ, containing one (representative) solution from each feasible
equivalence class of (edge, 2)-colorings of Gµ. Hence, bµ contains at most 16
solutions. If bµ is empty, the algorithm halts and returns false. If the algorithm
reaches the root ρ of T and bρ is not empty, then it returns true and one of
these solutions as a witness.

To compute bµ, we will make use of the following operation. Let ν1 and ν2
be two children of µ, and suppose µ is a P -node. Recall that sµ = sν1 = sν2 ,
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and tµ = tν1 = tν2 . Let C1 and C2 be a solution for Gν1 and Gν2 , respectively,
such that sν1 and sν2 (tν1 and tν2) have the same color in C1 and C2. Let G∗

be the (series-parallel) subgraph of Gµ obtained by the parallel composition
of Gν1 and Gν2 . The union operation of C1 and C2 returns a solution C∗ for
G∗, obtained by merging C1 and C2, provided that neither sµ nor tµ becomes
incident to two colored edges in G∗. An analogous operation is defined if µ is
an S-node; in this case, t1 and s2 (which are identified in the composition) must
have the same color in C1 and C2 and, after the merging, t1 = s2 must not be
incident to two colored edges. In both cases, the union operation can be easily
performed in constant time by representing each solution as an SPQ-tree of the
corresponding pertinent graph and storing the types of the two poles.

We now prove, for each type of node µ, that the feasible bag bµ can be
computed efficiently.

Lemma 1 Let µ be a non-root Q-node of T . The feasible bag bµ of µ can be
computed in O(1) time.

Proof: Node µ is a leaf of T and Gµ is an edge between the poles sµ and tµ.
All and only the following equivalence classes are feasible for Gµ: (W1,W1),
(B1, B1), (W0, B0), (B0,W0). Each of these classes has only one possible solu-
tion, thus bµ is unique and can be computed in constant time. �

Lemma 2 Let µ be a P -node of T . Let ν1, . . . , νk, be the k ≥ 2 children of µ
in T , whose corresponding feasible bags have been already computed. A feasible
bag bµ of µ can be computed in O(k) time.

Proof: Recall that sµ = sν1 = · · · = sνk and tµ = tν1 = · · · = tνk . We first
determine whether an equivalence class is feasible for Gµ, and then compute a
solution for it.

We start with the equivalence classes where both poles sµ and tµ are not in-
cident to colored edges. Let (X,Y ) ∈ {(W0,W0), (W0, B0), (B0,W0), (B0, B0)}
be any of these classes. Clearly, (X,Y ) is feasible for Gµ if and only if it is fea-
sible for each Gνi (i = 1, . . . , k). Also, if (X,Y ) is feasible for Gνi (i = 1, . . . , k),
then the union operation on the corresponding solutions provides a solution for
Gµ in class (X,Y ).

Consider now the equivalence classes in which there is only one pole (not
both) incident to a colored edge. Assume that sµ is the pole incident to a
colored edge (the other case is symmetric). It is easy to see that (X,Y ), with
X ∈ {W1, B1} and Y ∈ {W0, B0}, is feasible for Gµ if and only if there exists
one bag bνi such that bag bνi contains a solution in class (X,Y ) and every bag
different from bνi contains a solution in (W0, Y ), if X = W1, or in (B0, Y ),
if X = B1. Again, if the condition is satisfied, the union operation on the
corresponding solutions provides a solution for Gµ in class (X,Y ).

Finally, consider the equivalence classes with both poles incident to a colored
edge. Consider the class (W1,W1); analogous arguments hold for the others.
Class (W1,W1) is feasible for Gµ if and only if there exist either one bag bνi ,
with 1 ≤ i ≤ k, such that (i) bag bνi contains a solution in class (W1,W1) and
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(ii) every bag different from bνi contains a solution in (W0,W0), or two bags
bνi and bνj , with 1 ≤ i, j ≤ k, such that (i) bag bνi contains a solution in class
(W1,W0), (ii) bag bνj contains a solution in class (W0,W1), and (iii) every bag
different from bνi and bνj contains a solution in (W0,W0). If one of the two
conditions holds, the union operation on the corresponding solutions gives a
solution for Gµ in (W1,W1).

Since for each of the 16 classes there are k bags to check (each containing at
most 16 representative solutions), and since the union operation takes constant
time, bag bµ is computed in O(k) time. �

Lemma 3 Let µ be an S-node of T . Let ν1, . . . , νk, be the k ≥ 2 children of µ
in T , whose corresponding feasible bags have been already computed. A feasible
bag bµ of µ can be computed in O(k) time.

Proof: Recall that sµ = sν1 , tν1 = sν2 , . . . , tνk−1
= sνk , tνk = tµ. We

determine whether a class is feasible for Gµ through k − 1 intermediate steps.
For the illustration, consider the class (W0,W0) (the argument is analogous for
the other classes). Let Gi denote the graph resulting from the series composition
of Gν1 , Gν2 , . . . , Gνi .

At step i, for 1 ≤ i ≤ k − 1, consider the graphs Gi and Gνi+1
. Let bi be a

bag containing one solution for each class (W0, Y ) that is feasible for Gi (where
Y can be any type). Such a bag is computed in the previous step if i > 1, or it
coincides with bν1 if i = 1. Then, we compute a bag bi+1 containing one solution
for each class that is feasible for Gi+1, as follows. A class (W0, Z) (where Z can
be any type) is feasible for Gi+1 if there exist a class (W0, Y ) that is feasible for
Gi and a class (X,Z) that is feasible for Gνi+1

such that either X = W0 and
Y ∈ {W0,W1}, or Y = W0 and X ∈ {W0,W1}, or X = B0 and Y ∈ {B0, B1},
or Y = B0 and X ∈ {B0, B1}, that is, X and Y are such that tνi and sνi+1

have
the same color and at most one of them is incident to a colored edge. If (W0, Z)
is decided as feasible, the union operation on the corresponding solutions gives
a solution for Gi in (W0, Z).

Finally, since Gk corresponds to Gµ, then (W0,W0) is feasible for Gµ if and
only if bk contains a representative solution in (W0,W0). Computing bk for
each class takes O(k) time, and this computation is done 16 times. Hence, bµ
is computed in O(k) time. �

Lemma 4 Let ρ be the root of T . Let ξ be the (only) child of ρ in T , whose
corresponding feasible bag has been computed. A feasible bag bρ of ρ can be
computed in O(1) time.

Proof: Consider each class (X,Y ) ∈ bξ. If X ∈ {W0,W1} and Y ∈ {B0, B1},
or vice versa, then add (X,Y ) to bρ. Otherwise, if X = Y = W0, then add
(W1,W1) to bρ, while if X = Y = B0, then add (B1, B1) to bρ. In all the other
cases, do not add any class to bρ. �

Lemmas 1–4 and the fact that an SPQ-tree T of G has O(n) nodes imply the
following result.
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Lemma 5 Let G be an n-vertex biconnected series-parallel graph. There exists
an O(n)-time algorithm that decides whether G admits an (edge, 2)-coloring.

Extension to non-biconnected graphs. In the following, we extend the
result of Lemma 5 to every partial 2-tree G. Let B be the set of blocks (i.e.,
biconnected components) of G. As already pointed out, each block in B is a
biconnected series-parallel graph. Let C be the set of cutvertices ofG. Construct
a tree T with vertex set B ∪C in which the edges are defined as follows: c ∈ C
is adjacent to b ∈ B if and only if the block b contains c. Tree T is called the
block-cutvertex tree of G, or simply the BC-tree of G. Furthermore, observe
that the union operation on two solutions can be naturally extended to the case
when the two corresponding subgraphs Gν1 and Gν2 share only one (cut) vertex.

Theorem 4 Let G be an n-vertex partial 2-tree. There exists an O(n)-time
algorithm that decides whether G admits an (edge, 2)-coloring.

Proof: If G is biconnected, then the statement follows by Lemma 5. Otherwise,
let T be the BC-tree of G, rooted at an arbitrary cutvertex. We visit T bottom-
up and apply SPColorer to each block of G. In order to obtain a consistent and
valid coloring for the cutvertices, we extend SPColorer so to handle additional
inter-block constraints, as described below for the different types of nodes of T .

Let b be a leaf of T (associated with a block of G) and let cb be the cutvertex
corresponding to the parent of b in T . Root the SPQ-tree Tb of b at a Q-node
having cb as a pole, and apply SPColorer to b. If SPColorer returns false, then
a solution does not exist for G as well. If SPColorer returns true, let the block
bag Bb of b coincide with the feasible bag associated with the root node of Tb.

Let c be a cutvertex of T and let b1, b2, . . . , bk be the k ≥ 1 blocks that are
children of c in T . Let the cutvertex bag Bc of c be a set of solutions computed
as follows. If all the block bags Bbi , for 1 ≤ i ≤ k, contain at least one solution
where c is of type W0 (resp., B0), then apply the union operation on these
solutions and add it to Bc. If all the block bags Bbi , for 1 ≤ i ≤ k, contain at
least one solution where c is of type W0 (resp., B0), except for one block bag
which contains a solution where c is of type W1 (resp., B1) then apply the union
operation on these solutions and add it to Bc. Clearly, Bc contains at most four
solutions. If Bc is empty, then the algorithm halts and returns false. If c is the
root of T and Bc contains at least one solution C, then the algorithm returns
true and C as a witness.

Let b be a block of G that is not a leaf of T , and let cb be the cutvertex
corresponding to the parent of b in T . Let c1, . . . , ck be the k ≥ 1 cutvertices
that correspond to the children of b in T . Root the SPQ-tree Tb of b at a Q-node
having cb as a pole. We apply SPColorer to b with the following modification.
Every time a node µ of Tb is visited such that one of the two poles is a cutvertex
ci (1 ≤ i ≤ k), we need to ensure that ci receives a valid color with respect to
all the other blocks attached to ci, as follows.

Assume that ci coincides with pole sµ, the other case is symmetric. For each
class (X,Y ) such that the feasible bag bµ contains a solution in this class, we
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perform the following operation. Suppose that X = W0 (that X = B0). Remove
the solution corresponding to (X,Y ) from bµ; then, for each Z ∈ {W0,W1} (for
each Z ∈ {B0, B1}), if the cutvertex bag Bci contains a solution in which ci is
of type Z, then add to bµ a solution for class (Z, Y ), obtained by applying the
union between the solution in which ci is of type Z and the one corresponding
to (X,Y ). Suppose that X = W1 (that X = B1). Remove the solution corre-
sponding to (X,Y ) from bµ; then, if Bci contains a solution in which ci is of type
W0, then add to bµ a solution for class (X,Y ), again obtained by applying the
union between the corresponding solutions. At the end of this procedure there
may exist two solutions that belong to the same class; we pick one arbitrarily.
Again, if SPColorer returns false, then a solution does not exist for G as well.
If SPColorer returns true, then let the block bag Bb of b be the feasible bag of
the root of Tb.

The time complexity of the algorithm is O(n), as for each block b with nb
vertices we spend O(nb) time to compute its block bag by Lemma 5 (including
the operations at cutvertices); for each cutvertex c with nc children in T we
spend O(nc) time to compute its cutvertex bag; and

∑
∀b∈B nb +

∑
∀c∈C nc =

O(n). �

3.2 Testing (star, 2)-colorability of Partial 2-Trees

We now turn our attention to the (star, 2)-coloring problem by extending the
test for partial 2-trees provided in Section 3.1 to this problem.

Let T be an SPQ-tree of G rooted at an arbitrary Q-node ρ, and let µ be a
node of T . We maintain the same definition of equivalence between two colorings
of C1 and C2 of Gµ as in the (edge, 2)-coloring case, with the only difference that
the set of possible types of the poles has to be larger in this case, in order to
encompass all the possible configurations that may arise in a (star, 2)-coloring.
Namely a pole of µ, say sµ, in a (star, 2)-coloring can be of the following types:
(i) W0: pole sµ is white and no vertex in N(sµ) is white (the monochromatic
component containing sµ is an isolated vertex) (ii) W1: pole sµ is white, there
exists exactly one white vertex w in N(sµ), and N(w) contains at least one
white vertex different from sµ (the monochromatic component containing sµ
is a star with center w, and sµ is one of its leaves) (iii) W2: pole sµ is white
and either there exists more than one white vertex in N(sµ) or there exists
exactly one white vertex w in N(sµ), which is not tµ and has no white neighbor
different from sµ (the monochromatic component containing sµ is a star and sµ
is its center) (iv) W3: pole sµ is white and the only white vertex in N(sµ) is
tµ, which has no white neighbor other than sµ (the monochromatic component
containing sµ only consists of edge (sµ, tµ), and it is still undecided which of
them is the center). Types B0, . . . , B3 are defined analogously, with color black
instead of white.

Note that there exist eight possible types for a vertex; however, a pole is of
type either W3 or B3 if and only if the other pole is of the same type. This
implies that the total number of equivalence classes of (edge, 2)-colorings for
Gµ is 38. Recall that an equivalence class of a (star, 2)-coloring is represented
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by a pair (X,Y ), where X and Y are the types of sµ and tµ, respectively. In
the following, a pair of the form (X, ·) will be used to denote an equivalence
class in which sµ is of type X, while tµ can be of any type. Pair (·, Y ) is defined
analogously.

Based on the property that the number of equivalence classes is still bounded
by a constant, we provide a linear-time algorithm to test the existence of a (edge,
2)-coloring of a partial 2-tree that works along the same lines as algorithm
SPColorer. In the following we show how to compute in constant time the
feasible bag bµ of µ of a node µ ∈ T starting from the feasible bags of the
children of µ.

Lemma 6 Let µ be a non-root Q-node of T . The feasible bag bµ of µ can be
computed in O(1) time.

Proof: Node µ is a leaf of T and Gµ is an edge between the poles sµ and tµ.
Only the following equivalence classes are feasible for Gµ: (W0, B0), (B0,W0),
(W3,W3), (B3, B3). Each of these classes has only one possible solution, thus
bµ is unique and can be computed in constant time. �

Lemma 7 Let µ be a P -node of T . Let ν1, . . . , νk, be the k ≥ 2 children of µ
in T , whose corresponding feasible bags have been already computed. A feasible
bag bµ of µ can be computed in O(k) time.

Proof: Recall that sµ = sν1 = · · · = sνk and tµ = tν1 = · · · = tνk . We first
determine whether an equivalence class is feasible for Gµ, and then compute a
solution for it.

In the following, we consider a pole of µ, say sµ, and for each possible type
T0, . . . , T3, with T ∈ {W,B}, we discuss which are the conditions on the classes
contained in the feasible bags of ν1, . . . , νk that have to be satisfied in order
for sµ to be of that type. Testing whether a certain equivalence class (X,Y ) is
feasible for Gµ can be done by combining the conditions that have to be satisfied
in order for sµ to be type X and tµ to be type Y , in the same way as in the last
part of the proof of Lemma 2.

• Pole sµ can be of type T0 (that is, it is not incident to any colored edge)
if and only if each bag bνi , with 1 ≤ i ≤ k, contains a solution in class
(T0, ·).

• Pole sµ can be of type T1 (that is, it is a leaf of a colored star) if and only
if at least one of the following conditions is satisfied:

– there exists a child νh of µ such that bag bνh contains a solution in a
class (T1, ·) and each bag bνi , with 1 ≤ i 6= h ≤ k, contains a solution
in a class (T0, ·); or

– there exist two children νh and νz of µ such that bag bνh contains
a solution in a class (T3, T3), bag bνz contains a solution in class
(T0, T2), and each bag bνi , with 1 ≤ i 6= h, z ≤ k, contains a solution
in a class either (T0, T0) or (T0, T2).
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• Pole sµ can be of type T2 (that is, it is the center of a colored star) if and
only if at least one of the following conditions is satisfied:

– there exists a child νh of µ such that bag bνh contains a solution in
class (T2, ·) and each bag bνi , with 1 ≤ i 6= h ≤ k, contains a solution
in a class either (T0, ·) or (T2, ·); or

– there exist two children νh and νz of µ such that bag bνh contains
a solution in a class (T3, T3), bag bνz contains a solution in class
(T2, T0), and each bag bνi , with 1 ≤ i 6= h, z ≤ k, contains a solution
in a class either (T0, T0) or (T2, T0).

• Pole sµ can be of type T3 (that is, it is still undecided whether it is a leaf
or a center of a colored star) if and only if there exists a child νh of µ such
that bag bνh contains a solution in a class (T3, T3) and each bag bνi , with
1 ≤ i 6= h ≤ k, contains a solution in class (T0, T0).

Once an equivalence class (X,Y ) has been positively tested by checking the
corresponding conditions to hold at the same time for both the poles, the union
operation on the solutions for the children of µ provides a solution for Gµ in
class (X,Y ).

Since for each of the 38 classes there are k bags to check (each containing at
most 38 representative solutions), and since the union operation takes constant
time, bag bµ is computed in O(k) time. �

Lemma 8 Let µ be an S-node of T . Let ν1, . . . , νk, be the k ≥ 2 children of µ
in T , whose corresponding feasible bags have been already computed. A feasible
bag bµ of µ can be computed in O(k) time.

Proof: Recall that sµ = sν1 , tν1 = sν2 , . . . , tνk−1
= sνk , tνk = tµ. We first

determine whether an equivalence class is feasible for Gµ, and then compute a
solution for it.

For each equivalence class (X,Y ) we test whether it is feasible for Gµ by
selecting a class (Xi, Y i) in the feasible bag of each child νi, with i = 1, . . . , k,
such that: (A) X = X1. (B) Y = Y k. (C) For any two consecutive children µi
and µi+1, we have that tµi

and sµi+1
have the same color and, if Y i = W1 then

Xi+1 = W0, if Y i = B1 then Xi+1 = B0, if Xi+1 = W1 then Y i = W0, and if
Xi+1 = B1 then Y i = B0. (D) For any three consecutive children µi−1, µi, and
µi+1, we have that tµi−1

and sµi
have the same color, tµi

and sµi+1
have the

same color, and if Xi = Y i = W3, then at least one of Y i−1 and Xi+1 is W0,
while the other one is W0 or W2 or W3; analogously, if Xi = Y i = B3, then at
least one of Y i−1 and Xi+1 is B0, while the other one is B0 or B2 or B3.

Note that the first two conditions ensure that the coloring belongs to (X,Y ),
while the other two ensure that it is a valid (star, 2)-coloring. The test can be
performed in O(k) time using a technique similar to the one used in Lemma 3.
Repeating the test for all the 38 classes yields a total O(k) running time to
compute bµ. �
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Lemma 9 Let ρ be the root of T . Let ξ be the (only) child of ρ in T , whose
corresponding feasible bag has been computed. A feasible bag bρ of ρ can be
computed in O(1) time.

Proof: Let sξ = sρ and tξ = tρ be the poles of ξ. Consider any class (X,Y ) ∈ bξ.
Note that X,Y 6= W3, B3, since Gξ does not contain an edge between the
poles. If X ∈ {W0,W1,W2} and Y ∈ {B0, B1, B2}, or vice versa, then add
(X,Y ) to bρ. Otherwise, suppose that X,Y ∈ {W0,W1,W2}, the case in which
X,Y ∈ {B0, B1, B2} being analogous. If X = Y = W0, then add (W3,W3) to
bρ. If X = W0 and Y = W2, then add (W1,W2) to bρ. If X = W2 and Y = W0,
then add (W2,W1) to bρ. If X = W0 and Y = W2, then add (W1,W2) to bρ. In
all the other cases, do not add any class to bρ. �

Lemmas 6–9 and the fact that an SPQ-tree T ofG hasO(n) nodes imply that
there exists an O(n) testing algorithm for biconnected series-parallel graphs. In
order to extend the algorithm to every (non-biconnected) partial 2-tree, we can
apply the same procedure as in Theorem 4, with the following modifications.

The first modification is in the computation of the cutvertex bag Bc of a
cut-vertex c. Namely, if all the block bags Bbi , for 1 ≤ i ≤ k, contain at least
one solution where c is of type W0 (resp., B0), then apply the union operation
on these solutions and add it to Bc. If all the block bags Bbi , for 1 ≤ i ≤ k,
contain at least one solution where c is of type W0 (resp., B0), except for one
block bag which contains a solution where c is of type W1 (resp., B1) then apply
the union operation on these solutions and add it to Bc. Finally, if all the block
bags Bbi , for 1 ≤ i ≤ k, contain at least one solution where c is of type either
W0, or W2, or W3 (resp., either B0, or B2, or B3), with at least one of them
being different from W0 (from B0), then apply the union operation on these
solutions and add it to Bc. Clearly, Bc contains at most eight solutions.

The other modification is on the operations that have to be performed when a
node µ of Tb is visited in which one of the two poles is a cutvertex ci (1 ≤ i ≤ k).
Assume w.l.o.g. that ci coincides with pole sµ. For each class (X,Y ) such that
the feasible bag bµ contains a solution in this class, we perform the following
operation.

Suppose that X = W0 (that X = B0). Remove the solution corresponding to
(X,Y ) from bµ; then, for each Z ∈ {W0,W1,W2} (for each Z ∈ {B0, B1, B2}),
if the cutvertex bag Bci contains a solution in which ci is of type Z, then add
to bµ a solution for class (Z, Y ), obtained by applying the union between the
solution in which ci is of type Z and the one corresponding to (X,Y ). Suppose
that X = W1 (that X = B1). If Bci does not contain any solution in which ci
is of type W0 (of type B0), then remove the solution corresponding to (X,Y )
from bµ. Suppose that X = W2 (that X = B2). If Bci does not contain any
solution in which ci is of type either W0 or W2 (of type either B0 or B2), then
remove the solution corresponding to (X,Y ) from bµ. Suppose that X = W3

(that X = B3). Remove the solution corresponding to (X,Y ) from bµ; then,
if Bci contains a solution in which ci is of type W0 (of type B0), then add a
solution in (X,Y ) to bµ, while if Bci contains a solution in which ci is of type
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W2 (of type B2), then add a solution in (W2,W1) (in (B2, B1)) to bµ. In both
cases, the solutions are obtained by applying the union operation. At the end
of this procedure there may exist two solutions that belong to the same class;
we pick one arbitrarily. All the rest of the algorithm works as for SPColorer.
We summarize the result in the following.

Theorem 5 Let G be an n-vertex partial 2-tree. There exists an O(n)-time
algorithm that decides whether G admits a (star, 2)-coloring.

4 Outerpaths

In this section we aim at determining notable classes of graphs that always
admit a (star, 2)-coloring. In particular, we consider outerplanar graphs, since
this class is known to have good properties with respect to coloring; in fact, every
outerplanar graph admits a 3-coloring [32], and every triangle-free outerplanar
graph admits an (edge, 2)-coloring. On the other hand, it is known that not all
outerplanar graphs admit an (edge, 2)-coloring [9].

We hence ask whether allowing stars instead of edges as monochromatic
components can help, namely whether every outerplanar graph admits a (star,
2)-coloring. We answer this question in the negative, by providing in Lemma 10
an example of a small outerplanar graph that is not (star, 2)-colorable. On
the other hand, we prove in Theorem 6 that there exists a notable subclass of
outerplanar graphs, called outerpaths, for which this property holds.

Lemma 10 There exist outerplanar graphs that are not (star, 2)-colorable.

Proof: We prove that the outerplanar graph of Figure 6a is not (star, 2)-
colorable. In particular, we show that in any 2-coloring of this graph there
exists a monochromatic path of four vertices. Assume w.l.o.g. that vertex u has
color gray. Then, at least two vertices out of u1, . . . , u8 are gray, as otherwise
there would be a path of four white vertices. Hence, u is the center of a gray star.

Next, we observe that either u2 is white or the path u21, . . . , u24 must consist
of only white vertices. Similarly, we observe that either u3 is white or the path
u31, . . . , u34 must consist of only white vertices. If both u2 and u3 are white, then
either one of paths u21, . . . , u24 and u31, . . . , u34 consists only of gray vertices, or
there exists a path from one of u21, . . . , u24 via u2 and u3 to one of u31, . . . , u34,
that consists only of white vertices. Clearly, all aforementioned cases lead to a
monochromatic path of four vertices. �

While not all outerplanar graphs admit a (star, 2)-coloring, as we observed
in Lemma 10, we prove in Theorem 6 that every outerpath admits a coloring of
this type, by giving a linear-time constructive algorithm. Note that the example
provided in Lemma 10 is “almost” an outerpath, meaning that the weak-dual of
this graph is “almost” a path, given that it contains only degree-1 and degree-2
vertices, except for one specific vertex, which has degree 3 (see the face of the
graph in Figure 6a highlighted in gray).
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u
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u21
u22
u23
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u31
u32
u33
u34

u2 u3
u4
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u7

u8

(a)

v1

v2

f1
f2

f3

v3 v5 v6

f5

v4

f4

(b)

Figure 6: (a) An outerplanar graph that is not (star, 2)-colorable. (b) An outer-
path, whose spine edges are drawn as dashed segments. Dotted arcs highlighted
in gray correspond to edges belonging to the fan of each spine vertex. Note that
|f6| = 0.

Before describing the (star, 2)-coloring algorithm, we observe that it is easy
to construct an outerpath not admitting any (edge, 2)-coloring. In fact, consider
a graph G composed of a path P with six vertices and of an additional vertex v
connected to all the vertices of P . Since the weak dual of G is a path with five
vertices, G is an outerpath. Also, in any (edge, 2)-coloring of G there exists at
most one vertex of P with the same color as v; hence, at least three consecutive
vertices of P must have the same color, and hence G does not admit any (edge,
2)-coloring.

We now describe the (star, 2)-coloring algorithm. Let G be an outerpath.
We assume that G is inner-triangulated. This is not a loss of generality, as any
(star, 2)-coloring of a triangulated outerpath induces a (star, 2)-coloring of any
of its subgraphs. We first give some definitions; refer to Figure 6b. We call spine
vertices the vertices v1, v2, . . . , vm with degree at least 4 in G. We consider an
additional spine vertex vm+1, which is the (unique) neighbor of vm along the
cycle delimiting the outer face that is not adjacent to vm−1. Note that the spine
vertices of G induce a path, that we call spine of G4. The fan fi of a spine
vertex vi consists of the set of neighbors of vi in G, except for vi−1 and for those
following and preceding vi along the cycle delimiting the outer face5; note that
|fi| ≥ 1 for each i = 1, . . . ,m, while |fm+1| = 0. For each i = 1, . . . ,m + 1, we
denote by Gi the subgraph of G induced by the spine vertices v1, . . . , vi and by
the fans f1, . . . , fi−1. Note that Gm+1 = G. We denote by ci the color assigned
to spine vertex vi, and by c(Gi) a coloring of graph Gi. Recall that an edge of
G is called colored if its two endpoints have the same color.

Theorem 6 Every outerpath admits a (star, 2)-coloring, which can be com-
puted in linear time.

Proof: Let G be an outerpath with spine v1, . . . , vk. We describe an algorithm

4Note that the spine of G coincides with the spine of the caterpillar obtained from the
outerpath G by removing all the edges incident to its outer face, neglecting the additional
spine vertex vm+1.

5Fan fi contains all the leaves of the caterpillar incident to vi, plus the following spine
vertex vi+1.
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Figure 7: Schematization of the algorithm. Each node represents the (unique)
condition satisfied by Gi at some step 0 ≤ i ≤ k. An edge label 0, 1, e, o
represents the fact that the cardinality of a fan fi is 0, 1, even 6= 0, or odd 6= 1.
If the label contains two characters, the second one describes the cardinality of
fi+1. An edge between Qj and Qh with label x ∈ {1, e, o} (with label xy, where
y ∈ {0, 1, e, o}) represents the fact that, if Gi satisfies condition Qj and |fi| = x
(resp. |fi| = x and |fi+1| = y), then fi is colored so that Gi+1 satisfies Qh.

to compute a (star, 2)-coloring of G. At each step i = 1, . . . , k of the algorithm
we consider the spine edge (vi−1, vi), assuming that a (star, 2)-coloring of Gi has
already been computed satisfying one of the following conditions (see Figure 7):

Q0: The only colored vertex is v1;

Q1: ci 6= ci−1, vertex vi−1 is the center of a star with color ci−1, and no colored
edge is incident to vi;

Q2: ci = ci−1, and no colored edge other than (vi−1, vi) is incident to vi−1 or
vi;

Q3: ci 6= ci−1, vertex vi−1 is a leaf of a star with color ci−1, and no colored edge
is incident to vi;

Q4: ci 6= ci−1, vertex vi−1 is the center of a star with color ci−1, and vertex vi
is the center of a star with color ci; further, i < k and |fi| > 1;

Q5: ci = ci−1, vertex vi−1 is the center of a star with color ci−1, and no colored
edge other than (vi−1, vi) is incident to vi; further, i < k and |fi| = 1.

Next, we color the vertices in fi in such a way that c(Gi+1) is a (star, 2)-
coloring satisfying one of the conditions; refer to Figure 7 for a schematization
of the case analysis. In the first step of the algorithm, we assign an arbitrary
color to v1, and hence c(G1) satisfies Q0. For i = 1, . . . , k we color fi depending
on the condition satisfied by c(Gi).
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vi+1

vi

vi−1

(a)

vi+1
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vi−1

(b)

vi+1
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vi−1

(c)
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(d)
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vi−1 vi+1
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Figure 8: Graph Gi+1 after coloring fi when c(Gi) satisfies: Q1 and (a) |fi| = 1
or (b) |fi| > 1; Q2 and (c) |fi| = o, or |fi| = e and (d) |fi+1| = 0, (e) |fi+1| = 1,
or (f) fi+1 > 1. Shaded regions represent Gi. Bold edges connect vertices with
the same color, while spine edges are dashed.

Coloring c(Gi) satisfies Q0: Independently of the cardinality of fi, we color
its vertices with alternating colors so that ci+1 6= ci. In this way, the only
possible colored edges are incident to vi and not to vi+1. So, c(Gi+1) satisfies
condition Q1.

Coloring c(Gi) satisfies Q1: In this case we distinguish the following subcases,
based on the cardinality of fi.

• If |fi| = 0, we have that i = k and hence Gk = G. It follows that c(Gk) is
a (star, 2)-coloring of G.

• If |fi| = 1 (that is, fi contains only vi+1; see Figure 8a), we set ci+1 = ci.
Since the only neighbor of vi+1 in Gi+1 different from vi is vi−1, whose
color is ci−1 6= ci, and since vi has no neighbor with color ci other than
vi+1, by condition Q1, coloring c(Gi+1) is a (star, 2)-coloring satisfying
condition Q2.

• If |fi| > 1 (see Figure 8b), we color the vertices in fi with alternating
colors so that ci+1 6= ci. This implies that every colored edge of Gi+1 not
belonging to Gi is incident either to vi, if its color is ci, or to vi−1, if its
color is ci−1; the latter case only happens if |fi| is odd. Thus, vi (resp.
vi−1) is the center of a star of color ci (resp. ci−1) in Gi+1. Since vi has
no neighbor with color ci in Gi, while vi−1 is a center also in Gi, coloring
c(Gi+1) is a (star, 2)-coloring. Finally, since vi+1 has no neighbors with
color ci+1 6= ci, by construction, c(Gi+1) satisfies condition Q1.

Coloring c(Gi) satisfies Q2: We again distinguish subcases based on |fi|.
• If |fi| = 0, we have that i = k and hence c(Gk) is a (star, 2)-coloring of
G = Gk.

• If |fi| is odd, including the case |fi| = 1 (see Figure 8c), we color the
vertices of fi with alternating colors in such a way that ci+1 6= ci. By
construction, c(Gi+1) is a (star, 2)-coloring satisfying condition Q1.

• If |fi| is even and different from 0, instead, we have to consider the cardi-
nality of fi+1 in order to decide the coloring of fi. We distinguish three
subcases:
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Figure 9: Graph Gi+1 after coloring fi when c(Gi) satisfies: Q3 and (a) |fi| = 1,
or (b) |fi| = e; Q4 (c); or Q5 (d). Shaded regions represent Gi. Bold edges
connect vertices with the same color, while spine edges are dashed.

|fi+1| = 0 : Note that in this case i = k holds (see Figure 8d). We color
the vertices of fi with alternating colors so that ci+1 = ci. Note that
the unique neighbor of vi−1 in fi has color different from ci−1, since
|fi| is even. Hence, all the new colored edges are incident to vi, which
implies that c(Gi+1) is a (star, 2)-coloring satisfying condition Q2.

|fi+1| = 1 : Note that i < k and fi+1 only contains vi+2 (see Figure 8e).
We color the vertices of fi with alternating colors so that ci+1 = ci.
Since (i) all the new colored edges are incident to vi, (ii) vi and
vi−1 have no neighbor with their same color in Gi (apart from each
other), (iii) ci+1 = ci, and (iv) i < k, we have that c(Gi+1) is a (star,
2)-coloring satisfying condition Q5.

|fi+1| > 1 : Note that i < k (see Figure 8f). Independently of whether
|fi+1| is even or odd, we color the vertices of fi so that ci+1 6= ci,
the unique neighbor of vi+1 different from vi has also color ci+1, and
all the other vertices have alternating colors. Since each new colored
edge is incident to either vi or vi+1, since ci+1 6= ci, and since i < k,
coloring c(Gi+1) is a (star, 2)-coloring satisfying condition Q4.

Coloring c(Gi) satisfies Q3:

• If |fi| = 0, we have that i = k and hence c(Gk) is a (star, 2)-coloring of
G = Gk.

• If |fi| = 1 (that is, fi contains only vi+1; see Figure 9a), we set ci+1 = ci.
As in the analogous case in which c(Gi) satisfies condition Q1, we can
prove that c(Gi+1) is a (star, 2)-coloring which satisfies condition Q2.

• If |fi| is even and different from 0 (see Figure 9b), we color the vertices of
fi with alternating colors in such a way that ci+1 6= ci. By construction,
c(Gi+1) is a (star, 2)-coloring which satisfies condition Q1.

• If |fi| is odd and different from 1, we again consider the cardinality of fi+1

in order to decide the coloring of fi. For the four possible classes of values
of |fi+1|, the coloring strategy and the condition satisfied by the resulting
coloring c(Gi+1) are the same as for the analogous case in which c(Gi)
satisfies Q2 and |fi| is even.
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Coloring c(Gi) satisfies Q4: Note that |fi| > 0, given that i < k, and |fi| 6= 1,
by condition Q4. Independently of whether |fi| is even or odd (see Figure 9c),
we color the vertices in fi with alternating colors so that ci+1 6= ci. In this
way, the only possible colored edges are incident to vi−1 and to vi, which are
both centers of a star already in Gi, and not to vi+1. Hence, c(Gi+1) is a (star,
2)-coloring satisfying condition Q1.

Coloring c(Gi) satisfies Q5: Note that |fi| = 1, by condition Q5 (that is, fi
only contains vi+1; see Figure 9d). We set ci+1 6= ci; clearly, c(Gi+1) is a (star,
2)-coloring satisfying condition Q3.

Observe that the running time of the algorithm is linear in the number of
vertices of G. In fact, at each step i = 1, . . . , k, the condition Qj satisfied
by c(Gi) and the cardinalities of fi and fi+1 are known (the cardinality of all
the fans can be precomputed in advance), and the coloring strategy to obtain
c(Gi+1) and the condition satisfied by this coloring are uniquely determined by
these information in constant time. �

5 Conclusions

In this work we presented algorithmic and complexity results for the (edge, κ)-
coloring and the (star, κ)-coloring problems, with κ ∈ {2, 3}, which ask for the
existence of defective κ-colorings of given graphs in which every monochromatic
component is an edge and is a star, respectively. There exist several open
questions raised by our work.

• What is the complexity of the (edge, 3)-coloring problem for planar graphs
of maximum vertex-degree 6?

• What is the complexity of the (star, 3)-coloring problem for (planar)
graphs of maximum vertex-degree 6, 7, 8?

• Is it possible to extend our linear-time testing algorithms from Section 3
to efficiently test (edge, 2)-colorability and (star, 2)-colorability of every
graph of bounded treewidth? We recall that Courcelle’s theorem [7] al-
ready provides a linear-time testing algorithm for these graphs, which is
however unusable in practice due to the large constant factors.

• Are there other classes of graphs, besides the outerpaths, that are always
(star, 2)-colorable, e.g., outerplanar graphs with maximum vertex-degree
4?

• One possible way to expand the class of graphs that admit defective col-
orings is to allow larger values on the diameter of the monochromatic
components.

• The variant of the problem that minimizes the total number of defective
edges is of interest; it is related to the max-cut and the k-partization
problems.
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