
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 3, pp. 265–280 (2017)
DOI: 10.7155/jgaa.00416

Generalized Bounded Tree Cover of a Graph

Barun Gorain 1 Partha Sarathi Mandal 2

Krishnendu Mukhopadhyaya 3

1Indian Statistical Institute, Kolkata, India
2 Indian Institute of Technology Guwahati, India

3Indian Statistical Institute, Kolkata, India

Abstract

A tree cover of a graph is a collection of subgraphs such that each
vertex is a part of at least one subgraph and each subgraph is a tree.
The bounded tree cover problem (BTC) finds a tree cover with mini-
mum number of trees of bounded weight. This paper considers several
generalized versions of BTC. The first problem deals with graphs hav-
ing multiple metric weight functions. Strong and weak tree cover prob-
lems are two variations of the first problem. In strong tree cover, every
tree must be bounded with respect to all weight functions, whereas in
weak tree cover, each tree must be bounded with respect to at least one
weight function. A 4-approximation algorithm for strong tree cover and
an O(logn)-approximation algorithm for weak tree cover problem are pro-
posed. The objective of the second problem is to find a tree cover where
bounds of the trees in the tree cover are not necessarily same. It is proved
that this problem cannot be approximated within a constant factor unless
P=NP. A constant factor approximation algorithm is proposed when the
ratio of maximum and minimum bounds is bounded by a constant. The
third problem considers BTC for a graph with a general weight function
which is not necessarily metric. A 3-approximation algorithm is proposed
for this problem.

Submitted:
May 2016

Reviewed:
November 2016

Revised:
December 2016

Accepted:
December 2016

Final:
January 2017

Published:
February 2017

Article type:
Regular paper

Communicated by:
M. Kaykobad and R. Petreschi

E-mail addresses: baruniitg123@gmail.com (Barun Gorain) psm@iitg.ernet.in (Partha Sarathi

Mandal) krishnendu@isical.ac.in (Krishnendu Mukhopadhyaya)

http://dx.doi.org/10.7155/jgaa.00416
mailto:baruniitg123@gmail.com
mailto:psm@iitg.ernet.in
mailto:krishnendu@isical.ac.in

266 Gorain et al. Generalized Bounded Tree Cover of a Graph

1 Introduction

Covering vertices of a graph with subgraphs like trees, tours or paths is a widely
studied topic of research [1, 7]. A collection of trees (tours/paths) is called a tree
(tour/path) cover of a graph G = (V,E) if every vertex of G appears in at least
one of the trees (tours/paths). This problem has applications in vehicle routing
[1, 9], where the objective is to serve a set of clients by assigning some vehicles
with proper scheduling. The objectives of the problems vary depending on the
applications. Two classes of problems are popular in literature. The Min-Max
problems [1, 3, 7] aim to minimize the maximum weight of a tree in the tree
cover where the maximum size of the tree cover is given. In the Mincover or
Bounded cover problems [1, 7], the maximum weight of a tree is given. The
objective of Mincover problem is to find a tree cover with minimum number
of trees that covers all the vertices of the graph. Both the above tree cover
problems are NP-hard [1]. In this paper, we concentrate on bounded tree cover
problem.

Definition 1 (Bounded tree cover problem (BTC)[7]) Let G = (V,E,w)
be an undirected graph with positive weights. For a given bound λ ≥ 0, the ob-
jective is to find a tree cover of G with minimum number of trees such that the
weight of each tree is at most λ.

In many applications, multiple weight functions may be associated with a
graph [10]. Consider an application, where geographic locations are represented
as vertices of a graph. Between a pair of locations several attributes like distance,
travel time and traveling cost etc. may be associated. These attributes can be
represented as multiple weight functions of the graph. Some other problems may
also be equivalently restated as BTC of a graph with multiple weight functions.
For example, let us consider the following variation of BTC. Let G = (V,E,w)
be a weighted graph, λ a positive real number, and p a positive integer. The
objective is to find a tree cover of G such that the weight of each tree is at most
λ and each tree can have at most p vertices. This problem can be reformulated
on G by assigning it another weight function w′ where w′(e) = 1, for all e ∈ E.
Now, the objective of the problem is to find a tree cover of G such that for each
tree T of the tree cover, w(T) ≤ λ and w′(T) ≤ p− 1.

Throughout this paper, we denote the vertex and edge set of a graph G
by V (G) and E(G), respectively. For any subgraph H and a weight function
w of G, w(H) denotes the sum of the edge weights of H. For the first two
problems, we consider the input graph G is a complete graph with metric weight
functions. If G is not a complete graph, it can be transformed into its shortest
path metric completion G̃. A tree cover ofG can be constructed from a tree cover
of G̃ by replacing each edge of a tree in G̃ with the shortest path between the
corresponding vertices in G [7]. (vi, vj) denotes the edge between two vertices
vi and vj . A path P of G is denoted by v1v2 · · · vj , where v1, v2, · · · , vj are
consecutive vertices along P from v1 to vj . For any set S, |S| denotes the
number of elements in S.

JGAA, 21(3) 265–280 (2017) 267

A tour on a subtree of the graph is computed by doubling the edges of the
subtree and shortcutting. In this method, we add a copy of each edge of the
subtree to make it an Eulerian graph. Then, we select an Euler tour of the
graph and shortcutting on this tour by removing repeated nodes, one at a time
until all node repetitions are removed.

Related Work: Many interesting results have been reported in literature on
tree cover problems. Evan et al. [3] considered the rooted version of Min-Max
k-tree cover problem. In this problem a set of vertices called roots are given as
input with the graph. The objective is to find a tree cover with k trees such
that the weight of the maximum weighted tree is minimum. A 4-approximation
algorithm is proposed to solve the problem. Nagamochi [8] proposed a (3 −

2
k+1)-approximation algorithm for the Min-Max k-tree cover problem where
each tree of the tree cover has a common root. If the underlying graph is a
tree, the authors proposed a (2 + ε)-approximation algorithm for the rooted
version and a (2 − 2

k+1)-approximation algorithm for the unrooted version of
the Min-Max k-tree cover problem, respectively. The objective of the Min-
Max tree partition problem is to partition the graph into k equal size vertex
sets such that the maximum weight of the minimum spanning trees of each
of the vertex sets is minimized. Guttmann-Beck et al. [6] proposed (2k − 1)-
approximation algorithm to solve this problem for a graph with metric weight
function. Frederickson et al. [4] considered the k-TSP problem, where the
objective is to cover a graph with k tours rooted at a given vertex such that the
total weight of the tours is minimized. An (e+ 1− 1

k)-approximation algorithm
was proposed, where e is the approximation ratio for the TSP problem.

Arkin et al. [1] proposed a 3-approximation algorithm for BTC. The algo-
rithm computes paths of bounded weight and the set of paths is returned as the
set of trees of the tree cover. For each k, 1 ≤ k ≤ n, minimum spanning forest
with k connected components is computed. Then paths of desired weights are
calculated from the tours which are computed on each of the components by
doubling the edges and shortcutting. Shortcutting is a technique to compute a
tour from an Eulerian tour by eliminating duplicate entries of all vertices except
the first vertex. The minimum number of trees over all iterations is returned
as the output of the algorithm. The authors also proposed a 4-approximation
algorithm for Min-Max k-tree cover problem. Khani et al. [7] proposed a 2.5-
approximation algorithm for BTC. The proposed algorithm joins the smaller
trees to reduce the number of trees in the tree cover. The authors also pro-
posed a 3-approximation algorithm for Min-Max k-tree cover problem. These
are the best known constant factor approximation algorithms for the above two
problems.

Our Contribution: In this paper several variations of BTC are considered.
Strong tree cover and weak tree cover problems are introduced on a graph
with multiple metric weight functions. In strong tree cover, every tree must
be bounded with respect to all weight functions, whereas in weak tree cover,
each tree must be bounded with respect to at least one weight function. A
4-approximation algorithm is proposed for strong tree cover problem. Some

268 Gorain et al. Generalized Bounded Tree Cover of a Graph

modifications of the same algorithm gives an approximation factor 3 for the
corresponding path cover problem. For weak tree cover problem, an O(log n)-
approximation algorithm is proposed for a graph having two weight functions.
The same algorithm is extended to work for arbitrary number of weight func-
tions. An inapproximability result is established for BTC when weights of the
trees of the tree cover are bounded by a set of given bounds which are not nec-
essarily same. A constant factor approximation algorithm is proposed for the
special case where the ratio of the maximum and minimum bound is bounded
by a constant. Further, a 3-approximation algorithm is proposed for BTC for a
graph with a general weight function which is not necessarily metric.

2 Tree Cover for Graphs with Multiple Weight
Functions

We introduce strong tree cover and weak tree cover on a graph with multiple
weight functions. In the strong tree cover, the trees in the tree cover need to be
bounded with respect to each of the weight functions. In weak tree cover, the
trees in the tree cover need to be bounded with respect to at least one of the
weight functions. The formal definitions of the problems are given below.

Definition 2 (Strong tree cover problem) Let G be a complete graph with
multiple metric weight functions w1, w2, . . . , wl, (l ≥ 1). For given bounds λ1,
λ2, · · · , λl ≥ 0, the objective is to find a tree cover with minimum number of trees
such that for each tree T in the tree cover, wi(T) ≤ λi, for all i = 1, 2, · · · , l.

Definition 3 (Weak tree cover problem) Let G be a complete graph with
multiple metric weight functions w1, w2, · · · , wl (l ≥ 1). For given bounds λ1,
λ2, · · · , λl ≥ 0, the objective is to find a tree cover with minimum number of
trees such that for each tree T in the tree cover, there exists a j, 1 ≤ j ≤ l, with
wj(T) ≤ λj.

Both of the above problems are NP-hard, since for l = 1, the problems reduce
to BTC, which is NP-hard [1].

2.1 Strong tree cover

In this section, a 4-approximation algorithm for strong tree cover problem is
proposed. We define a weight function w′ on G = (V,E,w1, w2, · · · , wl) as
follows. For any edge e ∈ E(G),

w′(e) =


1 if there exists a j, 1 ≤ j ≤ l,

such that λj = 0

min
{

max{w1(e)
λ1

, w2(e)
λ2

, · · · , wl(e)
λl
}, 1
}

otherwise.

JGAA, 21(3) 265–280 (2017) 269

Note that w′ is a metric as the maximum of two metric is a metric and
minimum of a metric and a constant is also a metric.

Algorithm 1 (StrongTreeCover) is proposed to solve the strong tree cover
problem on G. A formal description of Algorithm 1 is given below.

First, the minimum spanning tree Γ of G is computed with respect to w′.
All the edges of Γ with weights more than one with respect to w′ are deleted.
Let C1, C2, · · · Ch be the connected components of γ after deletion of these
edges. For 1 ≤ i ≤ h, a tour τi is computed on Ci after doubling the edges of Ci
and shortcutting. Let Pi be the path after deleting an arbitrary edge of τi. The
path Pi is split into subpaths of weight atmost one with respect to w′. These
subpaths are the trees of the tree cover SOL, returned by Algorithm 1.

Algorithm 1: StrongTreeCover(G)

1: SOL ={}.
2: Find the minimum spanning tree Γ of G with respect to w′.
3: Delete each edge e from Γ for which wj(e) > λj , for some j.

Let C1, C2, · · · Ch be the connected components after deletion of the
edges.

4: for i = 1 to h do
5: Find a tour τi on Ci after doubling the edges and shortcutting.

Let Pi be the path after deleting an arbitrary edge from τi.
6: while |V (Pi)| > 0 do

7: Pi := v1
i v

2
i · · · , v

|V (Pi)|
i .

8: Let vji be the first vertex on Pi such that w′(v1
i v

2
i · · · v

j+1
i) > 1.

9: SOL = SOL
⋃

(v1
i v

2
i · · · v

j
i) and Pi =

(
Pi \ (v1

i v
2
i · · · v

j
i)
)
\ (vji , v

j+1
i).

10: end while
11: end for
12: return SOL.

Now we analyze the approximation factor of Algorithm 1. Let opt be the
number of trees in an optimal tree cover. The following lemma gives a lower
bound on the optimal solution.

Lemma 1 If Γ is a minimum spanning tree of G with respect to w′ then dw′(Γ)e ≤
2opt.

Proof: Let T1, T2, · · · , Topt be the trees in the optimal tree cover. Clearly,
w′(Ti) ≤ 1 for i = 1, 2, · · · , opt. Let vi be a vertex on Ti. Construct a spanning

tree H of G by adding the set of edges {(vi, vi+1)|i = 1, 2, · · · , opt−1} to
opt⋃
i=1

Ti.

Since w′(vi, vi+1) ≤ 1,

w′(H) =

opt∑
i=1

w′(Ti) +

opt−1∑
i=1

w′(vi, vi+1) ≤ opt+ opt− 1 ≤ 2opt− 1.

270 Gorain et al. Generalized Bounded Tree Cover of a Graph

As Γ is a minimum spanning tree of G with respect to w′ so w′(Γ) ≤ w′(H) ≤
2opt− 1.
Hence dw′(Γ)e ≤ 2opt. �

Theorem 4 The approximation factor of Algorithm 1 is 4.

Proof: Let opt be the number of trees in an optimal tree cover and |SOL| the
number of trees calculated by Algorithm 1. Let C1, C2, · · · , Ch be the connected
components after deleting h − 1 edges in step 3 from the minimum spanning
tree Γ. Then,

w′(Γ) = w′(C1) + w′(C2) + · · ·+ w′(Ch) + h− 1 (1)

Since τi is a tour found after doubling the edges in Ci and shortcutting, and w′

is a metric, we have
w′(τi) ≤ 2w′(Ci) (2)

According to step 9, each time a tree (which is basically a path) is computed
from Pi, the weight of modified Pi is reduced by at least one with respect to w′.
Thus the number of trees computed from τi can be at most dw′(τi)e. If no edge
is deleted from Γ in step 3, then |SOL| ≤ 2 dw′(Γ)e ≤ 4opt. When h ≥ 2, i.e.,
at least one edge is deleted from Γ in step 3,

|SOL| ≤
h∑
i=1

dw′(τi)e

≤
h∑
i=1

w′(τi) + h

≤ 2

h∑
i=1

w′(Ci) + h (From Equation (2))

≤ 2w′(Γ) (From Equation (1))

≤ 4opt (From Lemma 1)

Therefore, the approximation factor of Algorithm 1 is 4. �

2.2 Weak tree cover

First we propose an algorithm to solve weak tree cover problem for a graph with
two weight functions. Then we extend the algorithm to solve the problem for a
graph with any given number of weight functions. We use the 2-approximation
algorithm for k-MST [5] as a subroutine in the proposed algorithm. The defini-
tion of k-MST problem is given below.

Definition 5 (k-MST problem [5]) Let G = (V,E,w) be a weighted graph,
where edge weights are positive real numbers and k a given positive integer. The
objective is to find a minimum weighted tree of G that spans any k vertices of
G.

JGAA, 21(3) 265–280 (2017) 271

Let w1 and w2 be two metric weight functions on G. We define two weight
functions w′1 and w′2 as follows:

w′1(e) =

{
w1(e)
λ1

if w1(e) ≤ λ1,

1 otherwise.

w′2(e) =

{
w2(e)
λ2

if w2(e) ≤ λ2,

1 otherwise.

Algorithm 3 (WeakTreeCover) is proposed to solve the weak tree cover
problem on G. The algorithm calls the recursive Algorithm 2 (FindTree) as
a subroutine. Algorithm (FindTree(G)) computes dn2 e-MST of G, Γ1 with
respect to w′1 and dn2 e-MST of G, Γ2 with respect to w′2, respectively. If
w′1(Γ1) ≤ w′2(Γ2), then the algorithm returns (Γ1, 1) and recusrively call itself on
the graph induced by the remaining vertices. Otherwise, it returns (Γ2, 2) and
recusrively call itself on the graph induced by the remaining vertices. Hence, Al-
gorithm 2 returns O(log n) subtrees, each of which is associated with an integer
i ∈ {1, 2}. (Γ1, 1) means the subtree Γ1 is calculated with respect to the weight
functions w′1. Similarly, (Γ2, 2) means the subtree Γ2 is calculated with respect
to the weight functions w′2. For each pair (Γ′, i) returned by FindTree, each
edge e with wi(e) > λi is deleted from Γ′. This deletion may split Γ′ into several
connected components. For each component, a tour is computed by doubling
the edges and shortcutting. Then paths of weights at most λi with respect to wi
are calculated from the tour. Then the set of paths is returned by the algorithm
as the tree cover of G.

Algorithm 2: FindTree(G)

1: n′ := |V (G)|.
2: if n′ = 1 then
3: Return (G, 1).
4: end if
5: Find a

⌈
n′

2

⌉
-MST Γ1 of G with respect to w′1 using the 2-approximation

algorithm [5]. Let G1 be the induced subgraph with the remaining
vertices.

6: Find a
⌈
n′

2

⌉
-MST Γ2 of G with respect to w′2 using the 2-approximation

algorithm [5]. Let G2 be the induced subgraph with the remaining
vertices.

7: if w′1(Γ1) ≤ w′2(Γ2) then
8: Return (Γ1, 1)

⋃
FindTree(G1).

9: else
10: Return (Γ2, 2)

⋃
FindTree(G2).

11: end if

272 Gorain et al. Generalized Bounded Tree Cover of a Graph

Lemma 2 According to Algorithm 3, if (Γ′, i) ∈ S, then w′i(Γ
′) ≤ 4opt′, where

opt′ is the number of trees in the optimal tree cover of G.

Proof: Since (Γ′, i) is returned by FindTree, there exists a subgraph G′ of

G such that Γ′ is a subtree spanning
⌈
|V (G′)|

2

⌉
vertices of G′. Let optG′ be the

number of trees in the optimal tree cover of G′. Let T1, T2, · · · , Topt1 , Topt1+1,
Topt1+2, · · · ToptG′ be the trees in the optimal tree cover ofG′, where w1(Ti) ≤ λ1

for i = 1, 2, · · · , opt1 and w2(Ti) ≤ λ2 for i = opt1 + 1, opt1 + 2, · · · , optG′ . Let
vi ∈ V (Ti). Construct two subgraphs H1 and H2 as follows:

H1 =

(
opt1⋃
i=1

Ti

)⋃
{(vi, vi+1)|i = 1, 2, · · · , opt1 − 1}

H2 =

 optG′⋃
i=opt1+1

Ti

⋃{(vi, vi+1)|i = opt1 + 1, opt1 + 2, · · · , optG′ − 1}

Now,

w′1(H1) =

opt1∑
i=1

w′1(Ti) +

opt1−1∑
i=1

w′1(vi, vi+1)

≤ 2opt1 − 1

Therefore, dw′1(H1)e ≤ 2opt1 ≤ 2optG′ . Similarly, dw′2(H2)e ≤ 2optG′ .
Since {T1, T2, · · · , Topt1 , Topt1+1, Topt1+2, · · · , ToptG′} is a tree cover of G′,

either |V (H1)| ≥
⌈
|V (G′)|

2

⌉
or |V (H2)| ≥

⌈
|V (G′)|

2

⌉
.

Without loss of generality let |V (H1)| ≥
⌈
|V (G′)|

2

⌉
. For j = 1, 2, let Γoptj be

the optimal
⌈
|V (G′)|

2

⌉
-MST of G′ with respect to w′j . Since H1 is a spanning

tree that spans at least
⌈
|V (G′)|

2

⌉
vertices of G′, therefore,

⌈
w′1(Γopt1)

⌉
≤ dw′1(H1)e ≤ 2optG′

Let Γ1 and Γ2 be the
⌈
|V (G′)|

2

⌉
-MST of G′ with respect to w′1 and w′2,

respectively computed using 2-approximation algorithm [5] (Ref. step 5 and
step 6 of FindTree). Then, w′1(Γ1) ≤ 2w′1(Γopt1).

Therefore,

dw′i(Γ′)e = min{dw1(Γ1)e , dw2(Γ2)e} ≤ 2
⌈
w′1(Γopt1)

⌉
≤ 4optG′

Since optG′ ≤ opt′, therefore dw′i(Γ′)e ≤ 4opt′. �

Theorem 6 The approximation factor of Algorithm 3 is O(log n), where n is
the number of vertices of G.

JGAA, 21(3) 265–280 (2017) 273

Algorithm 3: WeakTreeCover(G,w1, w2)

1: S=FindTree(G).
2: SOL′={}.
3: for each (Γ′, p) ∈ S do
4: Delete every edge e from Γ′ for which wp(e) > λp.
5: Let C1, C2, · · · Ch be the connected components after deletion of the

edges.
6: for i = 1 to h do
7: Find a tour τi from Ci after doubling the edges and shortcutting.
8: Let Pi be the path after deleting any edge from τi.
9: while |V (Pi)| > 0 do

10: Pi := v1
i v

2
i · · · v

|V (Pi)|
i .

11: Let vji be the first vertex on Pi such that wp(v
1
i v

2
i · · · v

j+1
i) > λp.

12: SOL′ = SOL′
⋃

(v1
i v

2
i · · · v

j
i) and

Pi =
(
Pi \ (v1

i v
2
i · · · v

j
i)
)
\ (vji , v

j+1
i).

13: end while
14: end for
15: end for
16: Return SOL′.

Proof: Let (Γ′, i) ∈ S. By Lemma 2, dw′i(Γ′)e ≤ 4opt′. In step 5 through step
14 of Algorithm 3, a set of trees are computed from Γ′. Let the total number
of trees computed from Γ′ be N1. If no edge from Γ′ is deleted in step 5 of

Algorithm 3, i.e., h = 1 then N1 ≤ 2
⌈
wi(Γ

′)
λi

⌉
= dw′i(Γ′)e ≤ 4opt′.

Consider the case when at least one edge is deleted from Γ′, i.e., h ≥ 2. After
the deletion of h−1 edges, Γ′ splits into h connected components C1, C2, · · · , Ch.
The corresponding tours τ1, τ2, · · · , τh are computed after doubling the edges of
each component and shortcutting.

Therefore, N1 ≤
h∑
j=1

dw′i(τj)e ≤
h∑
j=1

2w′i(Cj) + h.

Also, w′i(Γ
′) =

h∑
j=1

w′i(Cj) + h− 1. Therefore,

N1 ≤
h∑
j=1

2w′i(Cj) + h

≤ 2w′i(Γ
′)

≤ 8opt′

Since the total number of trees returned by FindTree is O(log n), therefore
|SOL′| ≤ O(log n) · 8opt′.

Hence, the approximation factor of Algorithm 3 is O(log n).
�

274 Gorain et al. Generalized Bounded Tree Cover of a Graph

Algorithm 3 can be extended to work for a graph with arbitrary number
of weight functions. Let G = (V,E,w1, w2, · · · , wl) be the given graph with
bounds λ1, λ2,· · · , λl. For each i, 1 ≤ i ≤ l, we define w′i as follows:

w′i(e) =

{
wi(e)
λi

if wi(e) ≤ λi,
1 otherwise.

Following modification on FindTree subroutine is made for the extended
version of Algorithm 3. The spanning trees Γ1, Γ2, · · · , Γl are computed with

respect to w′1, w′2, · · · , w′l, respectively such that each Γi spans any
⌈
|V (G)|
l

⌉
vertices of G. FindTree returns (Γj , j)

⋃
FindTree(Gj) where j (1 ≤ j ≤ l)

is the index such that w′j(Γj) = min{w′i(Γi)|i = 1, 2, · · · , l}.
Since in each call of FindTree, the number of vertices of the graph is

reduced by a fixed fraction of 1
l , FindTree returns O(log n) number of subtrees

in S. Using arguments similar to those used in Theorem 6, one can show that
the approximation factor of this modified Algorithm 3 is O(log n).

2.3 Path cover problem

Similar problem like strong and weak tree cover can be defined to cover a graph
with multiple weight functions by paths with bounded weights. As the proposed
algorithms for both strong and weak tree cover problems return a set of paths
as the tree covers, the same algorithms can be applied to get a solution for
corresponding path cover problems. Also, it can be proved that Algorithm 1
and Algorithm 3 yield approximation factors 4 and O(log n), respectively. The
reason for getting the same approximation factor is that Lemma 1 holds for the
strong path cover problem. The above discussion can be summarized by the
following theorem.

Theorem 7 There is a 4-approximation algorithm for strong path cover prob-
lem and a O(log n)-approximation algorithm for weak path cover problem.

With a small modification on Algorithm 1, the approximation factor for
strong path cover problem can be improved. In step 2 of Algorithm 1, a TSP
tour L using Christofides 3

2 -approximation algorithm [2] is computed instead of
an MST Γ. Then each edge e with w′(e) ≥ 1 is deleted from L and L may be
decomposed into a set of paths P1, P2, · · ·Ph (say) after deletion of such edges.
The rest of the steps are same as Algorithm 1 which compute a set of paths from
P1, P2, · · ·Ph and return the set of paths as the set of trees in the tree cover.

The above technique for the strong path cover problem gives an approxi-
mation factor 3. As Christofides algorithm [2] is used to compute L, therefore,
w′(L) ≤ 3

2w
′(Lopt), where Lopt is the optimal TSP tour on G with respect to

w′. With the same arguments as given in Lemma 1, it can be proved that
w′(Lopt) ≤ 2opt. Therefore, w′(L) ≤ 3opt. With the similar steps of calculation

JGAA, 21(3) 265–280 (2017) 275

as Theorem 4, we have,

|SOL| ≤
h∑
i=1

dw′(Pi)e

≤
h∑
i=1

w′(Pi) + h

≤ w′(L)

≤ 3opt

Therefore, the above modified technique gives an approximation factor 3 for the
strong path cover problem.

3 Tree cover with different bounds

In some practical applications it may be required that the trees of the tree cover
are bounded by different limits. For example, consider a service provider having
a set of vehicles with different speed limits. Vehicle Vi can travel maximum
distance Di in time t. With these vehicles the service provider can provide
service to a set of customers who are located at different locations. Suppose
there are multiple service requests from different customers at a time instance
for providing service within time t. Here the goal of the service provider is
to schedule minimum number of vehicles such that all the customers will be
served within that time. The problem can be formulated as BTC with different
bounds. The definition of tree cover problem with different bounds (TCDB) is
given below.

Definition 8 (TCDB) Let G = (V,E,w) be a weighted graph and λ1, λ2, · · · ,
λn ≥ 0 given real numbers. The objective is to find a tree cover {Ti1 , Ti2 , · · · , Tip}
with minimum number of trees such that w(Ti1) ≤ λi1 , w(Ti2) ≤ λi2 , · · · ,
w(Tip) ≤ λip , where ij ∈ {1, 2, · · · , n} and ij 6= iq for j 6= q for j, q = 1, 2, · · · , p.

We prove that there does not exist any constant factor approximation algorithm
for TCDB unless P=NP. Arkin et al. [1] proved the hardness of the following
decision version of BTC.

Definition 9 (k-BTC [1]) Given a graph G = (V,E,w), a real number λ ≥ 0
and a positive integer k, whether there is a tree cover of G with k trees such
that the weight of each tree is at most λ.

Arkin et al. [1] proved that k-BTC is NP-hard for k = |V |
3 . Guttmann-Beck

et al. [6] proved hardness of the following decision version of the Min-Max tree
partitioning problem.

Definition 10 (Min-Max tree partitioning problem [6]) Given a graph G =
(V,E,w) and a real number λ ≥ 0, whether G can be partitioned into two trees

T1 and T2 such that V (T1) = V (T2) = |V |
2 and w(T1) ≤ λ, w(T2) ≤ λ.

276 Gorain et al. Generalized Bounded Tree Cover of a Graph

It can be shown that k-BTC is NP-hard even for k = 2 using the same reduction
technique which is used to prove the hardness of the Min-Max tree partitioning
problem in [6].

Theorem 11 There does not exist any constant factor approximation algorithm
for TCDB, unless P=NP.

Proof: We propose a polynomial time reduction from an instance of 2-BTC to
an instance of TCDB. We show that if there exist a constant factor approxima-
tion algorithm for TCDB then 2-BTC can be decided in polynomial time. If
possible, suppose there exists a z-approximation algorithm A for TCDB. With-
out loss of generality we assume that z is a positive integer. We consider an
instance (G1, λ) of 2-BTC , where G1 = (V1, E1, w1) is a complete weighted
graph with n > 2z vertices. The weight w1 of each edge is integer and sat-
isfies triangle inequality. We construct a complete graph G2 = (V2, E2, w2)
with n2 vertices from G1 as follows. For each vertex vi ∈ V1, we consider n
vertices v1

i , v
2
i , · · · vni in V2. Weight w2 of an edge (vli, v

k
j) ∈ E2 is defined as

w2(vli, v
k
j) = w1(vi, vj) for i 6= j and w2(vli, v

k
i) = 1

2n(n−1) .

We show that G1 has a tree cover with two trees having weights at most λ
iff G2 has a tree cover with two trees having weights at most λ+ 1

2 . Let {T1, T2}
be a tree cover of G1 with w1(T1) ≤ λ and w1(T2) ≤ λ. Let v1, v2, · · · , vq
be the vertices of V (T1). We compute a subtree of T ′1 of G2 as follows. For
every edge (vx, vy) ∈ E(T1), one edge (v1

x, v
1
y) is added in T ′1. Then the edges

{vif , v
i+1
f | i = 1 to n − 1, vf ∈ V (T1)} are added in T ′1. Similarly, T ′2 can be

computed from T2. It can be easily verified that {T ′1, T ′2} is a tree cover of G2

with w2(T ′1) ≤ λ+ 1
2 and w2(T ′2) ≤ λ+ 1

2 .
Conversely, let {T ′1, T ′2} be a tree cover of G2 with w2(T ′1) ≤ λ + 1

2 and
w2(T ′2) ≤ λ + 1

2 . A subtree T1 of G1 from T ′1 is constructed as follows. First
we remove all the edges of type (vki , v

l
i) from T ′1. The remaining edges of T ′1 are

of the form (vki , v
l
j) for i 6= j. For each and every such edge (vki , v

l
j) of T ′1 we

consider the corresponding edge (vi, vj) in G1 and construct a graph G. Then
the minimum spanning tree T1 of G is computed. Note that w1(T1) ≤ λ + 1

2 .
Since the edge weights of G1 are integer, w1(T1) ≤ λ. Similarly, T2 can be
constructed from T ′2.

We consider an instance of TCDB asG2 with n2 bounds {λ+ 1
2 , λ+ 1

2 , 0 · · · , 0}.
Let y be the number of trees in the tree cover returned by algorithm A on G2.

Case 1: (y ≤ 2z) We show that there is a tree cover of G1 with two trees
having weights at most λ. In this case, among these y trees, y − 2 are
singleton vertices. The other two trees of weight λ + 1

2 cover at least
n2− 2z+ 2 vertices of G2. Since n2− 2z+ 2 > n2− n, at least one vertex
from each of the set {v1

i , v
2
i , · · · , vni } of G2 must be covered by at least

one of the trees having weights at most λ+ 1
2 . From these two trees, two

subtrees of G1 with weight at most λ can be computed in the similar way
as explained in the previous paragraph. Hence, G1 has a tree cover with
two trees having weights at most λ.

JGAA, 21(3) 265–280 (2017) 277

Case 2: (y > 2z) As A is a z-approximation algorithm, we can say that there
is no tree cover of G2 with two trees having weight at most λ + 1

2 . This
implies that there doest not exist any tree cover of G1 with two trees
having weight at most λ.

Hence, 2-BTC can be decided in polynomial time by applying A on G2, which
is a contradiction unless P=NP. Hence the statement of the theorem follows. �

3.1 Constant factor approximation algorithm for a special
case of TCDB

To prove the inapproximability of TCDB, we reduce an instance of 2-BTC to
a particular instance of TCDB, where ratio of the maximum bound and the
minimum bound is unbounded. We show that if the ratio of the maximum and
minimum bound is bounded by a constant, then a constant factor approximation
algorithm for TCDB can be designed.

Let G = (V,E,w) be a weighted graph and λ1, λ2, · · · , λn ≥ 0 be the given
bounds for TCDB such that λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. We consider the special
case of TCDB where ratio of the λ1 and λn is bounded by a constant ρ, i.e.,
λ1

λn
≤ ρ. We propose Algorithm 4 (SplTCDB(G)) which uses the algorithm

Path Min k [1] for bounded tree cover as subroutine. First Path Min k [1] is
applied to find a tree cover S of G with bound λ1. If ρ|S| ≥ n, then Algorithm
4 returns all the singleton vertices of G as trees of the tree cover, otherwise, it
splits each subtree of S into trees with weights at least λn.

Algorithm 4: SplTCDB(G)

1: Apply Path Min k [1] to find a tree cover S of G with bound λ1.
2: if ρ|S| ≥ n then
3: return {{v}| v ∈ V (G)}.
4: else
5: Let S = {P1, P2, · · · , Pa}.
6: p = 2.
7: for i = 2 to a do
8: while |V (Pi)| > 0 do

9: Pi := v1
i v

2
i · · · v

|V (Pi)|
i .

10: Let vji be the first vertex on Pi such that w(v1
i v

2
i · · · v

j+1
i) > λp.

11: SOL′ = SOL′
⋃

(v1
i v

2
i · · · v

j
i) and

Pi =
(
Pi \ (v1

i v
2
i · · · v

j
i)
)
\ (vji , v

j+1
i). p = p+ 1.

12: end while
13: end for
14: end if
15: return SOL.

Theorem 12 Algorithm 4 is a 3(ρ+ 1)-approximation algorithm.

278 Gorain et al. Generalized Bounded Tree Cover of a Graph

Proof: Let opt be the number of trees in the optimal solution of TCDB, and
opt1 be the number of trees in the optimal solution for the bounded tree cover
problem with bound λ1. Then opt1 ≤ opt. Since Path Min k [1] is a 3-
approximation algorithm, therefore, |S| ≤ 3opt1. Each subtree of S is split
into at most d λ1

λn
e trees of weight at least λn.

Therefore, |SOL′| ≤ d λ1

λn
e|S| ≤ 3(ρ+ 1) · opt1 ≤ 3(ρ+ 1) · opt. �

4 Tree Cover for General Weighted Graph

The existing works in literature [1, 7] discussed BTC on a graph with met-
ric weight function. In this section, we consider the tree cover problem for a
weighted graph with arbitrary positive weight function. Let G = (V,E,w) be a
weighted graph where w : E → R+ is an arbitrary weight function. Let λ be the
upper bound of the weights of the trees in the tree cover. The following lemma
[7] proposed by Kani et al. is useful in our context.

Lemma 3 ([7]) Let T be any tree with weight w(T) such that for each edge e
of E(T), w(e) ≤ β. Then T can be decomposed into subtrees T1, T2, · · · , Tk
where k ≤ max{dw(T)

β e, 1} such that w(Ti) ≤ 2β for each 1 ≤ i ≤ k.

The idea of splitting a tree into subtrees is explained by Evan et al. in [3].
Note that Lemma 3 holds for any graph with a weight function which is not
necessarily a metric. We define a weight function w 1

2
as follows:

w 1
2
(e) =

{
2w(e)
λ if w(e) ≤ λ

2 ,

1 otherwise.

Lemma 4 Let opt be the number of trees in the optimal tree cover of G and Γ be
the minimum spanning tree of G with respect to w 1

2
(e). Then w 1

2
(Γ) ≤ 3opt−1.

Proof: Let T1, T2, · · · , Topt be the trees in the optimal tree cover of G. Then
w 1

2
(Ti) ≤ 2, for each i, 1 ≤ i ≤ opt. Let vi be a vertex of Ti. Let H =

(
⋃opt
i=1 Ti)

⋃
(
⋃opt−1
i=1 {vi, vi+1}). Clearly, H is a spanning tree of G and w 1

2
(H) ≤∑opt

i=1 w 1
2
(Ti) +

∑opt−1
i=1 w 1

2
(vi, vi+1) ≤ 2opt+ opt− 1 = 3opt− 1. �

Now we are going to describe our algorithm for finding a tree cover of G.
First, we find an MST Γ of G with respect to w 1

2
. Then each edge e ∈ Γ

for which w 1
2
(e) > 1 are deleted from Γ. After deletion of such edges, let Γ

splits into h subtrees Γ1, Γ2, · · · , Γh. For i = 1 to h, a set of subtrees Si are
computed from Γi with weight at most 2 using the splitting strategy proposed
in [3]. Finally, SOL =

⋃h
i=1 Si is returned as the tree cover of G.

Theorem 13 The above technique is a 3-approximation algorithm.

JGAA, 21(3) 265–280 (2017) 279

Proof: Let T ′ ∈ Si. Then w 1
2
(T ′) ≤ 2 and this implies that w(T) ≤ λ. Accord-

ing to Lemma 3, |Si| ≤ max{d 2w(Γi)
λ e, 1} ≤ max{dw 1

2
(Γi)e, 1} ≤ w 1

2
(Γi) + 1.

Also, w 1
2
(Γ) =

∑h
i=1 w 1

2
(Γi) + h− 1.

Therefore, total number of trees in the tree cover is given by

|SOL| ≤
h∑
i=1

(w 1
2
(Γi) + 1)

≤
h∑
i=1

w 1
2
(Γi) + h

≤ w 1
2
(Γ) + 1

≤ 3opt

Therefore, the proposed technique is a 3-approximation algorithm. �

5 Conclusion

Some variations of bounded tree cover problem have been discussed in this
paper. We have introduced strong tree cover and weak tree cover for graphs
with multiple metric weight functions. A 4-approximation algorithm is proposed
for strong tree cover and an O(log n)-approximation algorithm is proposed for
weak tree cover. An inapproximability result is established for bounded tree
cover problem where the trees in the tree cover are bounded by a set of given
bounds which are not necessarily same. We have proposed a 3-approximation
algorithm for BTC for a graph with general weight function.

Designing constant factor approximation algorithm for the weak tree cover
may be an interesting open problem to be investigated in future.

280 Gorain et al. Generalized Bounded Tree Cover of a Graph

References

[1] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and
min-max vehicle routing problems. J. Algorithms, 59(1):1–18, 2006. doi:

10.1016/j.jalgor.2005.01.007.

[2] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie Mellon University, 1976.

[3] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Min-max tree
covers of graphs. Oper. Res. Lett., 32(4):309–315, 2004. doi:10.1016/j.

orl.2003.11.010.

[4] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms
for some routing problems. SIAM Journal on Computing, 7(2):178–193,
1978. doi:10.1137/0207017.

[5] N. Garg. Saving an epsilon: a 2-approximation for the k-mst problem in
graphs. In H. N. Gabow and R. Fagin, editors, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
May 22-24, 2005, pages 396–402. ACM, 2005. doi:10.1145/1060590.

1060650.

[6] N. Guttmann-Beck and R. Hassin. Approximation algorithms for min-max
tree partition. J. Algorithms, 24(2):266–286, 1997. doi:10.1006/jagm.

1996.0848.

[7] M. R. Khani and M. R. Salavatipour. Improved approximation algorithms
for the min-max tree cover and bounded tree cover problems. Algorithmica,
69(2):443–460, 2014. doi:10.1007/s00453-012-9740-5.

[8] H. Nagamochi. Approximating the minmax rooted-subtree cover problem.
IEICE Transactions, 88-A(5):1335–1338, 2005. doi:10.1093/ietfec/

e88-a.5.1335.

[9] V. Nagarajan and R. Ravi. Approximation algorithms for distance con-
strained vehicle routing problems. Networks, 59(2):209–214, 2012. doi:

10.1002/net.20435.

[10] M. Rocklin and A. Pinar. On clustering on graphs with multiple edge types.
Internet Mathematics, 9(1):82–112, 2013. doi:10.1080/15427951.2012.

678191.

http://dx.doi.org/10.1016/j.jalgor.2005.01.007
http://dx.doi.org/10.1016/j.jalgor.2005.01.007
http://dx.doi.org/10.1016/j.orl.2003.11.010
http://dx.doi.org/10.1016/j.orl.2003.11.010
http://dx.doi.org/10.1137/0207017
http://dx.doi.org/10.1145/1060590.1060650
http://dx.doi.org/10.1145/1060590.1060650
http://dx.doi.org/10.1006/jagm.1996.0848
http://dx.doi.org/10.1006/jagm.1996.0848
http://dx.doi.org/10.1007/s00453-012-9740-5
http://dx.doi.org/10.1093/ietfec/e88-a.5.1335
http://dx.doi.org/10.1093/ietfec/e88-a.5.1335
http://dx.doi.org/10.1002/net.20435
http://dx.doi.org/10.1002/net.20435
http://dx.doi.org/10.1080/15427951.2012.678191
http://dx.doi.org/10.1080/15427951.2012.678191

	Introduction
	Tree Cover for Graphs with Multiple Weight Functions
	Strong tree cover
	Weak tree cover
	Path cover problem

	Tree cover with different bounds
	Constant factor approximation algorithm for a special case of TCDB

	Tree Cover for General Weighted Graph
	Conclusion

