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Abstract

In the obnoxious facility game, a location for an undesirable facility is
to be determined based on votes cast by selfish agents. The design of group
strategy proof mechanisms has been extensively studied, and it is known
that choosing a facility location that maximizes the social benefit (i.e., the
sum of individual benefits) may not be a strategy-proof decision, and vice-
versa, the social benefit obtainable by a strategy-proof mechanism does
not maximize the social benefit over all choices of facility locations; their
ratio, called the benefit ratio, can be up to 3 in the line metric space. In this
paper, we investigate a trade-off between the benefit ratio and a possible
relaxation of group strategy proofness, taking 2-candidate mechanisms for
the obnoxious facility game in the line metric as an example. Given a real
λ ≥ 1 as a parameter, we introduce a new concept of strategy proofness,
called “λ-group strategy-proofness,” so that each coalition of agents has no
incentive to lie unless every agent in the group can increase her benefit by
strictly more than λ times by doing so, where 1-group strategy-proofness
reduces to the standard concept of group strategy-proofness. We next
introduce “masking zone mechanisms,” a new notion on the structure of
mechanisms, and prove that every λ strategy-proof (λ-SP) mechanism is
a masking zone mechanism. We then show that, for any λ ≥ 1, there
exists a λ-GSP mechanism whose benefit ratio is at most 1 + 2

λ
, which

converges to 1 as λ becomes infinitely large. Finally we prove that the
bound is nearly tight: given n ≥ 1 selfish agents, the benefit ratio of λ-
GSP mechanisms cannot be better than 1+ 2

λ
when n is even, and 1+ 2n−2

λn+1

when n is odd.
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1 Introduction

1.1 Social choice theory

In social choice theory, we design mechanisms that determine a social decision
based on a vote. That is, for a set Ω of voting alternatives and a set N of
selfish voters with various utilities, we design a mechanism f : Ωn → Ω as a
collective decision making system. Voters are informed of the exact details of
the operation of the mechanisms before they actually vote. We call the benefit
of each voter under the assumption that every agent has voted truthfully her
primary benefit. Each voter may try to manipulate the decision of a mechanism
by changing her voting if it increases her personal utility. A voting which aims
to manipulate the decision of a mechanism is called strategic voting. To the ef-
fect of making a fair decision, we are interested in mechanisms in which no voter
can benefit by a single-handed strategic-voting. Such a mechanism is called a
strategy-proof mechanism. Moreover, a mechanism is called a group strategy-
proof mechanism, if there is no coalition of voters such that each member in
the coalition can simultaneously benefit by their cooperative strategic-voting.
Moulin [9] studied social choice theory under the condition that the set of al-
ternatives is the one-dimensional Euclidean space and each utility function is
a single peaked concave function, and gave necessary and sufficient conditions
of strategy-proofness under such conditions. Following, Border and Jordan [2]
extended the characterization into multi-dimensional Euclidean space, and char-
acterized strategy-proof mechanisms in those metrics. Schummer and Vohra [12]
applied the result of Border and Jordan [2] to the case when Ω is the set of all
points in a tree metric and characterized strategy-proof mechanisms in those
metrics. Moreover, they characterized strategy-proof mechanisms in the case
when Ω is the set of all points in a graph metric which has at least one cycle.

1.2 Facility game

The facility game can be regarded as a problem in social choice theory where
a location of a facility in a metric space will be decided based on locations of
agents (votes by voters), and each agent tries to maximize the benefit from her
utility function defined based on the distance from her location to the location
of the facility.

In a facility game with a set N of agents in a space Ω, each agent reports her
location as a point in the space, and a location of a facility will be determined by
a procedure called a mechanism. The details of how the set of points reported
by the agents is used by the procedure to decide a location of the facility is
known to all the agents in advance. Each agent is selfish in the sense that she
may misreport her location so that the output by the mechanism becomes more
beneficial to her. The facility can be classified as either one of two types, one is
desirable to agents (or each agent prefers the facility to be located near her) and
the other is obnoxious to agents (or each agent prefers the facility to be located
far from her).
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Several studies have been extensively made on the desirable facility game, in
particular on designing mechanisms [1, 2, 7, 8, 11, 12]. Procaccia and Tennen-
holtz [11] proposed a group strategy-proof mechanism which returns the location
of the median agent as the facility location when all agents are located on a path.
Moreover, they designed a randomized mechanism, that is, a mechanism that
does not output a single facility location but a probability distribution of the
facility location over a metric space. In randomized mechanisms, the utility
of agents is defined to be the expected value by the probability distribution of
the facility. On the other hand, a mechanism which outputs a facility location
is called deterministic. The obnoxious facility game was first introduced and
studied by Cheng et al. [4].

For a given mechanism, the benefit for each agent obtained under the as-
sumption that all agents have reported their true locations is called primary
benefit. Mechanisms which only output one of a predetermined set of k candi-
dates for a facility location are called k-candidate mechanisms.

In previous studies of facility games [1, 2, 3, 4, 7, 8, 11, 12], mechanisms are
allowed to distinguish agents. In other words, the input to mechanisms is not
only location information (i.e., where is reported) but also agents’ information
(i.e., who reports the location). On the other hand, there is a category of
mechanisms which are called anonymous, that is, which do not use agents’
information. Anonymous mechanisms would be a fair decision-making policy in
the sense that no indication of a particular agent can reflect to outputs by such
mechanisms.

Another important aspect of mechanisms of facility games is a measure of
the quality of mechanisms. In general, a strategy-proof mechanism may not out-
put a facility location that maximizes some social benefit, such as the sum of all
individual benefits. In other words, the maximum value of the social utility at-
tained by a strategy-proof (or group strategy-proof) mechanism can be less than
the maximum value attainable over all possible choices for a facility location.
This raises a problem of designing a strategy-proof (or group strategy-proof)
mechanism that outputs a location of a facility that maximizes the social ben-
efit among all strategy-proof (or group strategy-proof) mechanisms. A possible
measurement of the performance for a mechanism is a benefit-ratio, the ratio
of the social utility attained by the mechanism to a theoretically maximum
possible social benefit. For example, Alon et al. [1] gave a complete analysis
on benefit-ratios of group strategy-proof mechanisms for the desirable facility
game in general graph metrics.

We review some recent results on the obnoxious facility game. Ibara and
Nagamochi [5, 6] presented a complete characterization of 2-candidate (group)
strategy-proof mechanisms in any metric space, giving necessary and sufficient
conditions for the existence of such a mechanism in a given metric, and proved
that in any metric, a 2-candidate mechanism with a benefit ratio of 4 can always
be designed.

For the obnoxious facility game in the line metric, Ibara and Nagamochi [5, 6]
showed that there exists no k-candidate group strategy-proof mechanism for any
k ≥ 3. Cheng et al. [4] gave a 2-candidate group strategy-proof mechanism in
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the line metric with a benefit ratio of 3, and showed that this is the best possible
over all 2-candidate group strategy-proof mechanisms in the line metric.

1.3 Our Contribution

Since it has been shown that the best benefit ratio is 3 over all 2-candidate group
strategy-proof mechanisms for the obnoxious facility game in the line metric,
we propound the following questions on the game:

1. Is there any way of relaxing the definition of group strategy-proofness so
that the benefit ratio 3 is improved over such relaxed group strategy-proof
mechanisms?

2. With an adequate parameter λ ≥ 1, is there any trade-off between λ-group
strategy-proofness (group strategy-proofness relaxed with a parameter λ)
and the benefit ratio ρ for λ such that ρ approaches 1 as λ becomes
infinitely large; and

3. For each fixed λ ≥ 1, what is the benefit ratio ρ of a λ-group strategy-proof
(or can upper and lower bounds on ρ which are tight be derived)?

This paper gives positive answers to all of the above questions. First we
introduce a relaxed version of (group) strategy-proofness via a parameter λ ≥ 1
by assuming that an agent has no incentive to misreport her own location unless
she can increase her benefit by strictly more than λ times her primary benefit.
Respectively, in every group of agents, at least one agent cannot get an increase
of strictly more than λ times from her primary benefit by strategically changing
her report in coalition with the rest of the group. This parameterization serves
as a relaxation of the notion of group strategy-proofness. Mechanisms which
guarantee the above property are termed “λ-strategy-proof (λ-SP) mechanisms”
and “λ-group strategy-proof (λ-GSP) mechanisms,” where 1-group strategy-
proofness is equivalent to the previously established definition of group strategy-
proofness.

Second, we design a λ-GSP 2-candidate mechanism whose benefit ratio ρ
is at most 1 + 2/λ, which approaches 1 as the parameter λ tends to ∞. This
answers the first and the second question.

Finally, we show that there is no λ-SP 2-candidate mechanism whose benefit
ratio ρ is smaller than 1 + 2/λ for an even n and 1 + (2n − 2)/(λn + 1) for an
odd n, where n (≥ 1) is the number of agents. This gives an answer to the third
and second questions, since our upper and lower bounds on the benefit ratio are
almost tight.

The above results are obtained by introducing a class of mechanisms called
“masking zone mechanisms,” which themselves lead to a new concept of mech-
anisms design.

The remainder of this paper is organized as follows. In Section 2, we give
necessary preliminaries and introduce as general ideas such concepts as strategy-
proofness and parameterized strategy-proofness in Section 2.2, masking zone
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mechanisms in Section 2.3, social benefit in Section 2.4, and the obnoxious
facility game in Section 2.5. Section 3 expands on the topic of masking zone
mechanisms, and shows that being a masking zone mechanism is a necessary
condition for a mechanism to be λ-SP. Following, Section 4 gives an upper
bound on the benefit ratio of λ-GSP mechanisms, by constructing a mechanism
f with a benefit ratio of at most 1 + 2

λ , which extends known results in the
line metric [4]. Immediately after, in Section 5, we show that this bound is the
best obtainable, by giving lower bounds on the benefit ratio of masking zone
mechanisms. Finally, the paper is concluded in Section 6, where we propose a
few questions as possible directions for future research.

2 Preliminaries

2.1 Notation

Let R and R+ be the sets of real and nonnegative real numbers, respectively.

Let Ω be a universal set of points. For a positive integer n ≥ 1, let N be a
set of n agents. For a set S ⊆ N of agents (resp., an agent i ∈ N), let S = N \S
(resp., i = N \{i}). Each agent i ∈ N chooses a point p ∈ Ω as a reported value
χi = p. Let Ωagents ⊆ Ω denote a set of points that can be chosen by an agent.
A vector χ ∈ Ωnagents with reported values χi, i ∈ N is called a profile of N .

A mechanism f is a function that given a profile χ ofN outputs a point t ∈ Ω.
Let Ωfacility ⊆ Ω denote a set of points that can be output by a mechanism,
where a mechanism f is a mapping f(χ) : Ωnagents → Ωfacility. It is common
in the literature, e.g., [3, 4], to represent the locations reported by agents as
an n-dimensional vector ~x, where ~xi is the point reported by an agent i ∈ N .
Under these circumstances, the notion of anonymity plays an important role. A
mechanism f is anonymous if f(~x) = f(~x′) holds for any two vectors ~x and ~x′

that admit a bijection σ on N such that ~x′i = ~xσ(i) for all i ∈ N .

In what follows, we treat a profile χ of N as a multiset {χi | i ∈ N} of n
elements. For convenience, given a profile χ and a set S ⊆ N of agents, let χS
denote the multiset {χi | i ∈ S} of |S| elements. For a subspace Ω′ ⊆ Ω, the
restriction χ|Ω′ of a profile χ on Ω′ is defined to be the multiset

χ|Ω′ = {χi | i ∈ N,χi ∈ Ω′},

where |χ|Ω′ | means the number of elements in χ|Ω′ , i.e., the number of agents
in χ|Ω′ .

The benefit of an agent i ∈ N with respect to a point p ∈ Ωagents and a point
t ∈ Ωfacility is specified by a function βi : Ωfacility × Ωagents → R. We assume
that a larger value in βi is preferable to the agent i ∈ N . For a mechanism
f : Ωnagents → Ωfacility, a point t ∈ Ωfacility is called a candidate if there is
a profile χ ∈ Ωnagents such that f(χ) = t, and the set of all candidates of f
is denoted by C(f) ⊆ Ωfacility. A mechanism with |C(f)| = k is called a k-
candidate mechanism.
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2.2 Strategy Proofness

In this paper, we assume that a larger value of βi is preferable to the agent
i ∈ N .

First we review the definitions of strategy-proofness and group strategy-
proofness of mechanisms [1, 4, 5, 6]. Following, we introduce a new notion of
“λ-strategy-proofness,” an extension of strategy-proofness. Henceforth, let χ be
a profile of a set N of n ≥ 1 agents.

A mechanism f is called strategy-proof (SP for short) if no agent can strictly
benefit from changing her report. Formally, for any agent i ∈ N who changes
her report from χi to χ′i ∈ Ωagents, for the profile χ′ = χi ∪ χ′i it holds that

βi(f(χ), χi) ≥ βi(f(χ′), χi)

A mechanism f is called group strategy-proof (GSP for short) if for every
group of agents, at least one agent in the group cannot benefit from changing
her report in coalition with the rest of the group. Formally, for any non-empty
set S ⊆ N of agents and for any profile χ′ such that χ′

S
= χS , there exists an

agent i ∈ S for whom

βi(f(χ), χi) ≥ βi(f(χ′), χi).

Next we extend the definition of (group) strategy-proofness by introducing
a parameter λ ≥ 1.

A mechanism f is called λ-strategy-proof (λ-SP for short) if no agent can
gain strictly more than λ times her primary benefit by changing her report.
Formally, for any agent i ∈ N and any profile χ′ such that χ′

i
= χi, it holds

that

λβi(f(χ), χi) ≥ βi(f(χ′), χi). (1)

A mechanism f is called λ-group strategy-proof (λ-GSP for short) if for every
group of agents, at least one agent in the group cannot gain strictly more than
λ times her primary benefit by changing her report in coalition with the rest
of the group. Formally, for any non-empty set S ⊆ N of agents and for any
profile χ′ such that χ′

S
= χS , there exists an agent i ∈ S for whom

λβi(f(χ), χi) ≥ βi(f(χ′), χi). (2)

By definition, any λ-GSP mechanism is λ-SP, and 1-strategy-proofness (resp.,
1-group strategy-proofness) is equivalent to the standard definition of strategy-
proofness (resp., group strategy-proofness).

2.3 Masking Zone Mechanisms

In this paper, we introduce “masking zone mechanisms,” another new concept
on the structure of mechanisms.
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Definition 1 Let S be a family of nonempty disjoint subsets of Ω, and S =
Ω \

⋃
S∈S . A mechanism f is a masking zone mechanism with set of masking

zones S if it delivers the same output f(χ) = f(χ′) for any two profiles χ and
χ′ such that

χ|S = χ′|S and |χ|S | = |χ′|S | for all S ∈ S.

In other words, f(χ) of a profile χ never changes as long as a point χi ∈ S ∈ S
changes to a point in the same subset S.

2.4 Social Benefit

We introduce an objective function sb(t, χ) that evaluates the quality of a point
t determined based on a given profile χ. For a point t ∈ Ωfacility and a profile χ,
we define the social benefit sb(t, χ) to be the sum of individual benefits over all
agents, i.e.,

sb(t, χ) =
∑
i∈N

βi(t, χi).

Given a profile χ, let opt(χ) denote the maximum social benefit over all choices
of points t ∈ Ωfacility; i.e.,

opt(χ) = max
t∈Ωfacility

{sb(t, χ)}.

The benefit ratio ρf ≥ 1 of a mechanism f is defined to be

ρf = sup
χ∈Ωn

agents

opt(χ)

sb(f(χ), χ)
.

When λ becomes infinitely large, the constraints of Eqs. (1) and (2) are no
longer meaningful. If there is no such constraint as in Eqs. (1) and (2), then
a λ-SP or λ-GSP mechanism can deliver a point t ∈ Ωfacility that maximizes
sb(t, χ) and ρf = 1 always holds in this case.

2.5 Obnoxious Facility Game with Two Candidates

Let (Ω, β) be an ordered pair of a space Ω and a benefit β = βi for all i ∈ N .
Given two points a, b ∈ Ω, partition the set Ω as follows:

Ωa := {x ∈ Ω | λβ(a, x) < β(b, x)}
Ωb := {x ∈ Ω | λβ(b, x) < β(a, x)}
Ω := Ω \ (Ωa ∪ Ωb). (3)

Observe that for all x ∈ Ω it holds that λβ(a, x) ≥ β(b, x) and λβ(b, x) ≥ β(a, x).
In this paper, we first show that all 2-candidate λ-SP mechanisms to the

obnoxious facility game in a general space Ω are masking zone mechanisms.
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Theorem 1 Let λ ≥ 1. Every 2-candidate λ-SP mechanism f with candi-
date set C(f) = {a, b} is a masking zone mechanism with set of masking zones
{Ωa,Ωb}.

The proof of Theorem 1 is deferred to Section 3, where we first give some
technical results useful to show the proof.

We next consider the obnoxious facility game in the line metric, introduced
by Cheng et al. [4], as a special case of the general (Ω, β). Let (Ω, d) be a metric
with a space Ω ⊆ R in the line and a distance function d : Ω2 → R+ such that

d(x, y) = |x− y| =

{
x− y if x ≥ y,
y − x otherwise.

We assume that, for any agent i ∈ N , the benefit βi = β is given by

β(t, p) = d(t, p) t ∈ Ωfacility, p ∈ Ωagents.

In interest of space and clarity, given a profile χ and a candidate location t ∈
Ωfacility, henceforth we omit referring to the benefit β(t, χi) of agent i, and
directly write d(t, χi). Also we let d(t, P ) denote

∑
p∈P d(t, p) for a point t ∈ R

and a multiset P of points in R, where sb(c, χ) = d(c, χ) for a profile χ of N
and a location c ∈ R.

Recall that it is known that there is no k-candidate SP mechanism in the
line metric, for any k ≥ 3 [5, 6], and that ρf = 3 for any GSP mechanism f and
no GSP mechanism f attains ρf < 3 [4].

In this paper, we examine the benefit ratio of a 2-candidate λ-GSP mecha-
nism f in the line metric, and assume without loss of generality that C(f) =
{0, 1} = Ωfacility ⊆ Ω ⊆ R.

Given a real λ ≥ 1, we denote the subspaces Ωa and Ωb for a = 0 and b = 1
and Ω by subsets I0, I1 and I of R. In other words,

I0 =

(
−1

λ− 1
,

1

λ+ 1

)
, I1 =

(
λ

λ+ 1
,

λ

λ− 1

)
for λ > 1,

and I0 = {p ∈ R | p < 1
2} and I1 = {p ∈ R | p > 1

2} for λ = 1. Let I = I0 ∪ I1
and I = R \ I.

Based on Theorem 1, we design a masking zone λ-GSP mechanism whose
benefit ratio is at most 1 + 2/λ, giving rise to the following claim.

Theorem 2 Let λ ≥ 1. In the line metric, there is a 2-candidate λ-GSP mech-
anism f such that ρf ≤ 1 + 2

λ .

Finally we examine the converse, showing that no masking zone λ-SP mech-
anism f attains a benefit ratio smaller than 1 + 2/λ for an even n = |N |, or
1 + (2n− 2)/(λn+ 1) for an odd n = |N |.

Theorem 3 Let λ ≥ 1 and n = |N | ≥ 1. In the line metric, there is no
2-candidate λ-SP mechanism f such that

ρf <

{
1 + 2

λ if n is even,

1 + 2n−2
λn+1 otherwise.
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3 Masking Zone Mechanisms

This section gives a formal proof of Theorem 1, thereby showing that any 2-
candidate λ-SP mechanism in a general space Ω is a masking zone mechanism.
For convenience, given a set C ⊆ Ω of candidate locations, |C| = 2, for a
candidate c ∈ C, let ĉ denote the other candidate in C \ {c}. By the following
lemma, we derive a necessary condition for a mechanism in the line metric to
be λ-SP.

Lemma 1 Given a real λ ≥ 1, let f be a λ-SP mechanism with candidate set
C(f) = {a, b} ⊆ Ω. Let χ be a profile of N such that f(χ) = c ∈ {a, b}. If there
is an agent i with χi ∈ Ωc, then the profile χ̂ obtained from χ by changing χi to
a point in Ωc still satisfies f(χ̂) = c, where χ̂i = χi and χ̂i ∈ Ωc.

Proof: To derive a contradiction, we assume that f(χ̂) = ĉ. Since χi ∈ Ωc,
we know that λβ(c, χi) < β(ĉ, χi) holds by definition, i.e., λβ(f(χ), χi) =
λβ(c, χi) < β(ĉ, χi) = β(f(χ̂), χi). Since χ̂i = χi, this contradicts the initial
assumption that f is λ-SP. �

We are now ready to prove Theorem 1.

Proof of Theorem 1: Let f be a λ-SP mechanism with candidate set C(f) =
{a, b}. We say that two profiles χ and χ′ of N are zone-equivalent if χ|Ω = χ′|Ω
and |χ|Ωc | = |χ′|Ωc | for each c ∈ C(f) = {a, b}. It suffices to show that for any
two zone-equivalent profiles χ and χ′, it holds that f(χ) = f(χ′). To derive
a contradiction, assume that there exist two zone-equivalent profiles χ and χ′

with f(χ) 6= f(χ′), and let χ and χ′ minimize the number |χ \ χ′| + |χ′ \ χ| of
different locations between them among all such pairs.

Since χ and χ′ are zone-equivalent, there are two distinct locations χi ∈ Ωc
and χ′j ∈ Ωc for some agents i, j ∈ N and some c ∈ {a, b}. Without loss of
generality assume that f(χ) = c and f(χ′) = ĉ (if necessary we exchange the
role of χ and χ′). Let χ̂ be the profile obtained from χ by changing the location
χi ∈ Ωc of agent i to the point χ′j ∈ Ωc. By Lemma 1 and f(χ) = c, we see that
f(χ̂) = c.

Notice that χ̂ and χ′ remain zone-equivalent, and now they have fewer dif-
ferent locations between them than χ and χ′ have. Then by the choice of χ
and χ′, it must hold f(χ̂) = f(χ′) = ĉ, which contradicts f(χ̂) = c, proving
Theorem 1. �

4 Upper Bounds on the Benefit Ratio

In this section, given a real λ ≥ 1, we prove Theorem 2 by constructing a
2-candidate λ-GSP mechanism f whose benefit ratio ρf is at most 1 + 2/λ.

Having in mind that for a given profile χ, the condition for λ-group strategy-
proofness of Eq. (2) concerns exactly the agents i ∈ N with χi ∈ I, we define a
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distorted distance between a point c ∈ {0, 1} and a point p ∈ Ω to be

µ(c, p) =


d(c, p) if p ∈ I,

0 if p ∈ Ic,
1 if p ∈ I1−c,

where clearly −1 ≤ µ(c, p) − µ(1 − c, p) ≤ 1 always holds. Also we let µ(c, P )
denote

∑
p∈P µ(c, p) for a point c ∈ {0, 1} and a multiset P of points in R. Then

for a profile χ of N and a location c ∈ {0, 1}, we have

µ(c, χ) =
∑
i∈N

µ(c, χi) = d(c, χ|I) + |χ|I1−c
|.

Based on this, we propose the following masking zone mechanism f with can-
didate set C(f) = {0, 1}.

Mechanism f(χ): given a multiset χ, return a candidate c ∈ C(f) = {0, 1}

f(χ) =

{
0 if µ(0, χ) > µ(1, χ),

1 if µ(0, χ) ≤ µ(1, χ).
(4)

Lemma 2 The mechanism f of Eq. (4) is λ-GSP.

Proof: To derive a contradiction, we assume that f is not λ-GSP; i.e., by
definition, there is a non-empty subset S ⊆ N and two profiles, χ and χ′, with

χ′
S

= χS and f(χ) 6= f(χ′)

such that every agent i ∈ S satisfies

λd(f(χ), χi) < d(f(χ′), χi).

Notice that by the definition of the subsets Ωa and Ωb, which for the line metric
become the intervals I0 and I1, the previous condition is equivalent to

χi ∈ Ic for c = f(χ) and ∀i ∈ S.

Let S be minimal subject to the above condition, and j be an arbitrary agent
in S.

We prove that the profile χ′′ obtained from χ′ just by changing χ′j to χj
satisfies f(χ′) = f(χ′′), or equivalently

µ(0, χ′)− µ(1, χ′) ≤ 0 if and only if µ(0, χ′′)− µ(1, χ′′) ≤ 0 (5)

by the definition of f of Eq. (4). Observe that χ′′
j

= χ′
j
, χ′′j = χj , and

µ(c, χ′′) = µ(c, χ′)− µ(c, χ′j) + µ(c, χj) for each c ∈ {0, 1}
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by the definition of µ. From this, we have

µ(0, χ′′)−µ(1, χ′′) = µ(0, χ′)−µ(1, χ′)+[µ(1, χ′j)−µ(0, χ′j)]+[µ(0, χj)−µ(1, χj)],
(6)

where we know that −1 ≤ µ(1, χ′j) − µ(0, χ′j) ≤ 1 by the definition of µ. By
χj ∈ Ic for f(χ) = c (i.e., f(χ′) = 1− c), we also see that it holds

µ(0, χj)−µ(1, χj) =

{
−1 if f(χ′) = 1 (i.e., µ(0, χ′)− µ(1, χ′) ≤ 0 by Eq. (4)),

1 if f(χ′) = 0 (i.e., µ(0, χ′)− µ(1, χ′) > 0).

Therefore, if µ(0, χ′) − µ(1, χ′) is nonnegative (resp., positive), then the right-
hand side of Eq. (6) is also nonnegative (resp., positive), implying Eq. (5).

Finally we observe that f(χ′′) = f(χ′) leads to a contradiction.
(i) S = {j}: Since χ′

S
= χS , we see that χ′′ = χ and f(χ′′) = f(χ) 6= f(χ′), a

contradiction.
(ii) S \ {j} 6= ∅: If f(χ′′) = f(χ′) then the subset T = S \ {j} would satisfy
χ′′
S

= χ′
S

= χS , χ′′j = χj and λd(f(χ), χj) < d(f(χ′), χj) = d(f(χ′′), χj) for all
i ∈ T , contradicting the minimality of S. �

It remains to derive an upper bound on the benefit ratio of the mechanism f .

Lemma 3 The benefit ratio of the mechanism f of Eq. (4) is at most 1 + 2/λ
for any real λ ≥ 1.

Proof: In the following, we use the fact that f(χ) = c for c ∈ {0, 1} implies
that µ(c, χ) ≥ µ(1− c, χ) in Eq. (4), i.e.,

d(c, χ|I) ≥ d(1− c, χ|I) +mc −m1−c, (7)

which is symmetric with c ∈ {0, 1}. For notational simplicity, we consider the
case of f(χ) = 0, and the case of f(χ) = 1 can be treated symmetrically.

For each c ∈ {0, 1}, define I−c = {h ∈ Ic | h < c}, I+
c = {h ∈ Ic | h ≥ c},

m−c = |χ|I−c |, m
+
c = |χ|I+c | and mc = |χ|Ic | = m−c +m+

c . For

D = d(0, χ|I) + d(0, χ|I−0 ) + d(0, χ|I+1 ) (≥ 0),

we prove

sb(0, χ) = d(0, χ) ≥ D +m−1
λ

λ+ 1

and

opt(χ) ≤ D +m−1

(
1 +

1

λ+ 1

)
,

which implies the desired result

opt(χ)

sb(0, χ)
≤ 1 +

2

λ
.
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By noting that χ is a disjoint union of five multisets χ|I , χ|I−0 , χ|I+0 , χ|I−1 and

χ|I+1 , we get

d(0, χ) = d(0, χ|I) + d(0, χ|I−0 ) + d(0, χ|I+0 ) + d(0, χ|I−1 ) + d(0, χ|I+1 )

≥ D + d(0, χ|I−1 ) ≥ D +m−1
λ

λ+ 1
(by I−1 = ( λ

λ+1 , 1)).

On the other hand, for opt(χ) = sb(1, χ) = d(1, χ), we get

opt(χ) = d(1, χ|I) + d(1, χ|I0) + d(1, χ|I1)

≤ d(0, χ|I) +m1 −m0 + d(1, χ|I0) + d(1, χ|I1) (by Eq. (7))

= d(0, χ|I) +m1 + d(0, χ|I−0 )− d(0, χ|I+0 ) + d(0, χ|I+1 )−m+
1 + d(1, χ|I−1 )

≤ D +m1 −m+
1 + d(1, χ|I−1 )

= D +m−1 + d(1, χ|I−1 )

≤ D +m−1 +m−1
1

λ+ 1
(by I−1 = ( λ

λ+1 , 1)),

as required. �

In conclusion, the results of Lemma 2 and Lemma 3, together give a proof
of Theorem 2.

In light of a previous result by Cheng et al. [4], who have demonstrated
a strategy-proof GSP mechanism with a benefit ratio at most 3 in the line
metric, we see that the result of Theorem 2 follows as a natural extension of the
introduction of λ-strategy proofness, matching the result of Cheng et al. [4] for
λ = 1.

5 Lower Bounds on the Benefit Ratio

This section derives a lower bound on the benefit ratio of all 2-candidate λ-SP
mechanisms in the line metric.

By Theorem 1, we only need to consider a masking zone 2-candidate λ-SP
mechanism. We show that every such λ-SP mechanism f admits a profile χf

such that
opt(χf )

sb(f(χf ),χf ) is not smaller than 1+2/λ if n is even; 1+(2n−2)/(λn+1)

otherwise.
The following lemma establishes a lower bound on the benefit ratio of any

2-candidate masking zone mechanism in the line.

Lemma 4 Given a real number λ ≥ 1 and a set N of n (≥ 1) agents, let f be
a masking zone mechanism with candidate set C(f) = {0, 1} and set {I0, I1} of
masking zones. Then for any real number δ > 0, there is a profile χ such that

opt(χ)

sb(f(χ), χ)
≥

{
1 + 2

λ ( 1−δ
1+δ ), if n is even

1 + 2n−2
λn+1 ( 1−δ

1+δ ), otherwise.
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Proof: Let f be an arbitrary masking zone mechanism with set {I0, I1} of
masking zones and candidate set C(f) = {0, 1}. Given δ > 0, let ε be a real
number with 0 < ε < min{ 1

λ+1 ,
δ

λ+1}. We distinguish two cases.

Case 1. n (≥ 2) is even: Let χ be an arbitrary profile such that |χ|I0 | = |χ|I1 | =
n
2 and χ|I = ∅. By symmetry, we can assume without loss of generality that
f(χ) = 0 holds. We modify χ into a new profile χ′ such that

χ′i =

{
0 for χi ∈ I0

1− 1
λ+1 + ε for χi ∈ I1,

where χ′|I = χ|I , and |χ′|Ic | = |χ|Ic | for each c ∈ {0, 1}. Since f is a masking
zone mechanism with set of masking zones {I0, I1}, it holds that f(χ′) = f(χ) =
0. By definition, we have

sb(0, χ′) = 0 · n
2

+

(
1− 1

λ+ 1
+ ε

)
n

2
=

(
1− 1

λ+ 1
+ ε

)
n

2
,

and

opt(χ′) = max{sb(1, χ′), sb(0, χ′)} ≥ sb(1, χ′)

= 1 · n
2

+

(
1

λ+ 1
− ε
)
n

2
=

(
1 +

1

λ+ 1
− ε
)
n

2
.

Hence

opt(χ′)

sb(0, χ′)
≥

1 + 1
λ+1 − ε

1− 1
λ+1 + ε

= 1 +
2− 2(λ+ 1)ε

λ+ (λ+ 1)ε

≥ 1 +
2

λ

(
1− (λ+ 1)ε

1 + (λ+ 1)ε

)
≥ 1 +

2

λ

(
1− δ
1 + δ

)
.

Case 2. n (≥ 1) is odd: Let χ be an arbitrary profile such that |χ|I0 | = |χ|I1 | =
n−1

2 and χ|I = { 1
2}. By symmetry, we can assume without loss of generality

that f(χ) = 0 holds. We modify χ into a new profile χ′ such that

χ′i =


0 for χi ∈ I0

1− 1
λ+1 + ε for χi ∈ I1

1
2 for χi ∈ I,

where χ′|I = χ|I , and |χ′|Ic | = |χ|Ic | for each c = 0, 1. Since f is a masking zone
mechanism with set of masking zones {I0, I1}, it holds that f(χ′) = f(χ) = 0.
By definition, we have

sb(0, χ′) = 0 · n− 1

2
+

(
1− 1

λ+ 1
+ ε

)
n− 1

2
+

1

2

=

(
1− 1

λ+ 1
+ ε

)
n− 1

2
+

1

2
,
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and

opt(χ′) = max{sb(1, χ′), sb(0, χ′)} ≥ sb(1, χ′)

= 1 · n− 1

2
+

(
1

λ+ 1
− ε
)
n− 1

2
+

1

2
=

(
1 +

1

λ+ 1
− ε
)
n− 1

2
+

1

2
.

Hence

opt(χ′)

sb(0, χ′)
≥

1 + 1
λ+1 − ε+ 1

n−1

1− 1
λ+1 + ε+ 1

n−1

= 1 +
2(n− 1)− 2(n− 1)(λ+ 1)ε

λ(n− 1) + (λ+ 1)(n− 1)ε+ (λ+ 1)

= 1 +
2(n− 1)

λn+ 1

(
1− (λ+ 1)ε

1 + (λ+1)(n−1)
λn+1 ε

)
≥ 1 +

2(n− 1)

λn+ 1

(
1− (λ+ 1)ε

1 + (λ+ 1)ε

)
≥ 1 +

2(n− 1)

λn+ 1

(
1− δ
1 + δ

)
.

�

By Theorem 1 and Lemma 4, we obtain Theorem 3.

6 Concluding remarks

This paper studied a parameterized relaxation of group strategy proofness, and
the trade-off between the chosen parameter and the benefit ratio of such mecha-
nisms, taking 2-candidate mechanisms for the obnoxious facility game in the line
metric as an example. As a result we introduced the concept of λ-group strategy-
proofness, a parameterized strategy proofness, and demonstrated a mechanism
that has a desired property of a benefit ratio of at most 1 + 2

λ , which tends to
1, as the parameter λ tends to ∞. This result was obtained via a novel view
on mechanism properties, and the introduction of the concept of masking zone
mechanisms, which is a necessary condition for λ-GSP mechanisms. On the
other hand, we also derived lower bounds on the benefit ratio of masking zone
mechanisms: 1 + 2

λ when n = |N | is even and 1 + 2n−2
λn+1 when n = |N | is odd.

The above bounds are tight when |N | is even, meaning that the upper bound
on the benefit ratio is the best we can hope for, but it remains an open question
to the slight gap between the upper and lower bounds for the case when |N | is
odd.

For future work, it remains to investigate whether for a certain λ > 1 there
exists a k-candidate λ-GSP mechanism in the line metric for k ≥ 3, or, following
the result of Ibara and Nagamochi [5, 6], show that no k-candidate λ-SP mech-
anisms exist for k ≥ 3 and any λ ≥ 1. It would also be of interest to investigate
the possible trade-off between the benefit ratio and λ-GSP mechanisms in other
metrics such as trees, circles and Euclidean space.
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