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Star-Shaped and L-Shaped Orthogonal Drawings
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Abstract

An orthogonal drawing of a plane graph G is a planar drawing of G,
denoted by D(G), such that each vertex of G is drawn as a point on the
plane, and each edge of G is drawn as a sequence of horizontal and ver-
tical line segments with no crossings. An orthogonal polygon P is called
orthogonally convex if the intersection of any horizontal or vertical line L
and P is either a single line segment or empty. An orthogonal drawing
D(G) is called orthogonally convex if all of its internal faces are orthogo-
nally convex polygons. An orthogonal polygon P is called a star-shaped
polygon if there is a point p ∈ P such that the entire P is visible from p.
An orthogonal drawing D(G) is called a star-shaped orthogonal drawing
(SSOD) if all of its internal faces are star-shaped polygons. Every SSOD
is an orthogonally convex drawing, but the reverse is not true. SSOD
is visually more appealing than orthogonally convex drawings. Recently,
Chang et al. gave a necessary and sufficient condition for a plane graph
to have an orthogonally convex drawing. In this paper, we show that if
G satisfies the same condition given by Chang et al., it not only has an
orthogonally convex drawing, but also a SSOD, which can be constructed
in linear time.

An orthogonal drawing D(G) is called an L-shaped drawing if each
face of D(G) is an L-shaped polygon. In this paper we also show that
an L-shaped orthogonal drawing can be constructed in O(n) time. The
same algorithmic technique is used for solving both problems. It is based
on regular edge labeling and is quite different from the methods used in
previous results.
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1 Introduction

Among many graph drawing styles, orthogonal drawing has attracted much
attention due to its various applications in circuit schematics, relationship dia-
grams, data flow diagrams etc. [3]. An orthogonal drawing of a plane graph G
is a planar drawing, denoted by D(G), of G such that each vertex of G is drawn
as a point on the plane, and each edge is drawn as a sequence of horizontal
and vertical line segments with no crossings. A bend is a point where an edge
changes its direction. (Figure 1 (b) shows an orthogonal drawing of the graph
in Figure 1 (a). The point p is a bend.)

Rahman et al. [12] gave a necessary and sufficient condition for a plane
graph G of maximum degree 3 to have an orthogonal drawing without bends.
A linear-time algorithm to find such a drawing was also obtained in [12]. In the
drawings constructed in [12], the faces ofD(G) can be of complicated shapes. An
orthogonal polygon P is orthogonally convex if, for any horizontal or vertical line
L, the intersection of L and P is either empty or a single line segment. (Figure 1
(c) shows an orthogonally convex polygon. The face marked by F in Figure 1 (b)
is not orthogonally convex.) An orthogonal drawing D(G) is orthogonally convex
if all faces of D(G) are orthogonally convex polygons. The orthogonally convex
drawings are more visually appealing than arbitrary orthogonal drawings.

Chang et al. [2] gave a necessary and sufficient condition (which strengthens
the conditions in [12]) for a plane graph G of maximum degree 3 to have an
orthogonal convex drawing without bends. A linear-time algorithm to find such
a drawing was also obtained in [2].
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(a) (b) (d)(c) (e)

Figure 1: (a) A plane graph G, (b) an orthogonal drawing of G, (c) an orthog-
onally convex polygon, (d) a star-shaped orthogonal polygon, (e) an L-shaped
polygon.

An orthogonal polygon P is called star-shaped if there exists a point p in P
such that for all other point q in P , the line segment (p, q) is entirely contained
in P . (In other words, the entire polygon P is visible from p. See Figure
1 (d).) It is easy to see that any star-shaped orthogonal polygon is always
orthogonally convex. But the reverse is not true. An orthogonal drawing D(G)
is called a star-shaped orthogonal drawing (SSOD) if every inner face of D(G)
is a star-shaped orthogonal polygon. The star-shaped orthogonal drawings are
more visually appealing than orthogonally convex drawings (see Figure 1 (c)
and (d)). In this paper, we show that if G satisfies the same conditions given
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in [2], then G has a SSOD without bends. In addition, such a drawing can be
constructed in linear time.

To the best knowledge of the authors, SSOD is a new drawing style. Al-
though star-shaped drawings have been studied before [7, 8], the polygons in
their drawings are required to be star-shaped but not orthogonal. In [11, 4], the
problem of covering orthogonal polygons by star-shaped orthogonal polygons is
studied.

An orthogonal polygon P is called L-shaped if P has exactly five convex
corners and one concave corner (see Figure 1 (e)). An orthogonal drawing D(G)
is called L-shaped if every face of D(G) is either a rectangle or an L-shaped
polygon. In [13], an algorithm for testing if G has an L-shaped orthogonal
drawing was given. The testing is done by checking if an axillary graph has
a perfect matching and takes O(n1.5) time. If G passes the test, an L-shaped
drawing of G can be constructed in O(n2) time [13]. In [14], it was shown that
the construction part can be done in linear time. In this paper, we show that
our method can also be used to construct an L-shaped orthogonal drawing of G
in linear time. Our algorithm is simpler and quite different from the algorithm
in [14].

The paper is organized as follows. In Section 2, we present the definitions
and preliminary results. Section 3 describes a special rectangular dual needed by
our algorithm. In Section 4, we present our SSOD algorithm. In Section 5, we
discuss how to construct an L-shaped orthogonal drawing. Section 6 concludes
the paper.

2 Preliminaries

Most definitions in this paper are standard. Let G = (V,E) be a graph with n
vertices. Let N(v) denote the set of the neighbors of a vertex v. The degree of a
vertex v is the number of neighbors of v in G. A vertex of degree 2 (respectively
3) is called a 2-vertex (respectively 3-vertex). The maximum degree of G is
denoted by ∆(G). G is called a d-graph if ∆(G) ≤ d. A connected graph G is
called biconnected if it has no cut vertices.

A planar graph is a graph G that can be drawn on the plane so that the
vertices are drawn at points on the plane and the edges are drawn as curves
connecting their end vertices without crossings. Such a drawing is called a
plane embedding of G. A plane graph is a planar graph with a fixed plane
embedding. For the problems considered in this paper, the case that G is only
connected can be easily reduced to the biconnected case [12, 2]. Thus, as in
[12, 2], G always denotes a biconnected plane 3-graph in the rest of this paper.

A fixed embedding of G divides the plane into a set of connected regions
called faces. The unbounded face of G is called the exterior face. The bounded
faces are called the interior faces. The contour of a face f is the cycle formed
by the vertices and the edges on the boundary of f . The contour of the exterior
face of G is denoted by Co(G).

A cycle C of G with k edges is called a k-cycle. A triangle is a 3-cycle. G is
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called internally triangulated if all of its interior faces are triangles. G is called
triangulated if all of its faces (both interior and exterior) are triangles. A cycle
C of G divides the plane into two regions: the interior and the exterior region.
A separating cycle of G is a cycle C such that there is at least one vertex in the
interior region of C and at least one vertex in the exterior region of C. Note
that a separating cycle may be contained in the interior of other separating
cycles. A separating cycle C is called maximal if it’s not contained in any other
separating cycle C ′.

Let D(G) be an orthogonal drawing of G without bends. Each cycle C of
G is drawn as an orthogonal polygon, denoted by D(C), in D(G). Let a be a
vertex of C. We will also use a to denote the point in D(C) that corresponds
to a. A vertex a of D(C) is called a corner of D(C) if the interior angle of
D(C) at a is 90◦ or 270◦. A corner with 90◦ (270◦, respectively) interior angle
is called a convex (concave, respectively) corner. For an orthogonal drawing
D(G) without bends, any concave corner a of D(G) must be a vertex of G, and
since there are only two line segments incident to a, the degree of this vertex
must be 2.

The algorithm Bi-Orthogonal-Draw in [12] finds an orthogonal drawing
of the input graph G. The first step of algorithm Bi-Orthogonal-Draw ar-
bitrarily selects four 2-vertices on the exterior face Co(G) and draw Co(G) as
a rectangle with the selected four vertices as its four corners. The drawing al-
gorithm in [2] is a modified version of the algorithm Bi-Orthogonal-Draw.
It also draws the exterior face Co(G) as a rectangle with four selected vertices
as the four corners of the exterior rectangle [2]. We will following the same
convention as in [12, 2]: the input to our problem is a plane graph H with four
specified 2-vertices a, b, c, d on Co(H) in clockwise order. Our goal is to produce
an orthogonal drawing D(H) of H such that Co(H) is drawn as a rectangle with
a, b, c, d as the northwest, northeast, southeast and southwest corner of D(H),
respectively.

To further simplify the presentation, we construct a new graph G from H
as follows (see Figure 2 (a)):

1. Add eight new vertices a′′, a′, b′′, b′, c′′, c′, d′′, d′ in the exterior face of G;
connect them into a clockwise cycle.

2. Add four new edges (a, a′), (b, b′), (c, c′), (d, d′).

Clearly, H has a no-bend orthogonal drawing with a, b, c, d as the four corners
if and only if G has a no-bend orthogonal drawing with a′′, b′′, c′′, d′′ as the four
corners (see Figure 2 (b)). Note that G satisfies the following properties:

Property 1 1. G is a biconnected plane 3-graph.

2. G has eight vertices on its exterior face Co(G); four are 2-vertices and
four are 3-vertices; the 2-vertices and 3-vertices alternate on Co(G).

3. The four 2-vertices on Co(G) are specified as the northwest, northeast,
southeast, southwest vertices.
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Figure 2: (a) The construction of G from H, (b) drawings of H and G, (c) and
(d) conditions in Theorem 1, (e) conditions in Theorem 2.

In the rest of the paper, without loss of generality, we always assume G
satisfies Property 1.

Let C be a cycle of G. A leg of C is an edge e that is in the exterior of C
and has exactly one vertex on C. The vertex of e that is on C is called a leg
vertex of C. A k-legged cycle is a cycle C with exactly k legs. The k leg vertices
divide C into k sub-paths. Each sub-path is called a contour path of C.

Theorem 1 [12] Let G be a plane graph that satisfies the conditions as in
Property 1. Then G has an orthogonal drawing without bends if and only if the
following two conditions hold:

1. Every 3-legged cycle C has at least one 2-vertex.

2. Every 2-legged cycle C has at least two 2-vertices.

Figure 2 (c) shows a 3-legged cycle C = {a, b, c, d} and an orthogonal drawing
of C (d is a 2-vertex.) Figure 2 (d) shows a 2-legged cycle C = {a, b, c, d} and
an orthogonal drawing of C (c and d are two 2-vertices.)

Theorem 2 [2] Let G be a plane graph that satisfies the conditions in Property
1. Then G has an orthogonally convex drawing without bends if and only if the
following two conditions hold:

1. Every 3-legged cycle C has at least one 2-vertex.

2. Every 2-legged cycle C has at least two 2-vertices, at least one on each of
its two contour paths.

Figure 2 (e) shows a 2-legged cycle C = {a, b, c, d} and an orthogonal drawing
of C (b and d are two 2-vertices.) Note that, in Figure 2 (d), the 2-legged cycle
C satisfies the condition 2 in Theorem 1, but not the condition 2 in Theorem
2. Hence there exists no orthogonally convex drawing: In any drawing, the face
outside of C (marked by F ) cannot be orthogonally convex. In Section 4, we
will show that any graph satisfying the conditions in Theorem 2 has a SSOD
without bends.
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Let G∗ = (V ∗, E∗) be the dual graph of G. To avoid confusion, the members
of V ∗ are called nodes. Each node in V ∗ corresponds to an interior face f of
G, and two nodes in V ∗ are adjacent to each other in G∗ if and only if their
corresponding faces in G share an edge as common boundary. (Note that there
is no node in V ∗ corresponding to the exterior face of G. This is is slightly
different from the normal definition of the dual graph.)

Definition 1 Let G∗ be an internally triangulated plane graph whose exterior
face has four nodes. A rectangular dual of G∗ is a rectangle R divided into
smaller rectangles such that the following hold:

1. No four smaller rectangles meet at the same point.

2. Each smaller rectangle corresponds to a node of G∗.

3. Two nodes of G∗ are adjacent in G∗ if and only if their corresponding
small rectangles share a line segment as their common boundary.

Figure 3 (a) shows an orthogonal drawing D(G) of a graph G that satisfies
the conditions in Property 1. Figure 3 (b) shows the dual graph G∗ of G. Note
that the orthogonal drawing D(G) in Figure 3 (a) is also a rectangular dual R of
G∗ (each face of D(G) is a rectangle). Not every internally triangulated graph
G∗ has a rectangular dual. The following theorem characterizes such graphs.

Theorem 3 [10] A plane graph G∗ = (V ∗, E∗) has a rectangular dual with four
rectangles on its boundary if and only if:

1. Every interior face of G∗ is a triangle and the exterior face of G∗ is a
quadrangle.

2. G∗ has no separating triangles.

G is called a proper triangular plane (PTP) graph if it satisfies the two con-
ditions in Theorem 3. Our algorithm heavily depends on the following concept:

Definition 2 A regular edge labeling (REL) R = {T1, T2} of a PTP graph G∗

is a partition of the interior edges of G∗ into two subsets T1, T2 of directed edges
such that the following conditions hold:

1. For each interior node v, the edges incident to v appear in clockwise order
around v as follows: a set of edges in T1 leaving v; a set of edges in T2
leaving v; a set of edges in T1 entering v; a set of edges in T2 entering v.
(All four sets are not empty.)

2. Let vN , vE , vS , vW be the four exterior nodes of G in clockwise order. All
interior edges incident to vN are in T1 and entering vN . All interior edges
incident to vE are in T2 and entering vE. All interior edges incident to
vS are in T1 and leaving vS. All interior edges incident to vW are in T2
and leaving vW .
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Figure 3: (a) An orthogonal drawing D(G) of a graph G, which is also a rect-
angular dual of G∗, (b) the dual graph G∗ of G with an REL R = {T1, T2}, (c)
the subgraph G∗SN , (d) the subgraph G∗WE .

Figure 3 (b) shows an example of REL of a PTP graph. The red solid lines
are edges in T1. The green dashed lines are edges in T2.

Theorem 4 [5, 6] Every PTP graph G∗ has an REL which can be constructed
in linear time. From an REL of G∗, a rectangular dual of G∗ can be constructed
in linear time.

3 A Special Rectangular Dual

A PTP graph G∗ may have many different RELs. From the same REL of
G∗, we may obtain different rectangular duals. In this section, we describe a
rectangular dual of G∗ with special properties, which is needed by our SSOD
construction. First we outline the rectangular dual algorithm DUAL in [5].

Let G∗ be a PTP graph with an REL R = {T1, T2}. The SN subgraph G∗SN
is the directed subgraph of G∗ consisting of the edges in T1 and the four exterior
edges directed as vS → vW → vN , vS → vE → vN (see Figure 3 (c)). The WE
subgraph G∗WE is the directed subgraph of G∗ consisting of the edges in T2 and
the four exterior edges directed as vW → vS → vE , vW → vN → vr (see Figure
3 (d)).

Define the dual graph GSN of G∗SN as follows. The vertex set of GSN is
the set of the interior faces of G∗SN plus two exterior faces fW and fE . For
each directed edge e∗ in G∗SN , the left face of e∗, denoted by left(e∗), is the face
in G∗SN that is located to the left of e∗ when walking along e∗. Similarly, the
right face of e∗, denoted by right(e∗), is the face in G∗SN that is located to the
right of e∗ when walking along e∗. For each directed edge e∗ in G∗SN , there is a
corresponding edge e in GSN directed from the face left(e∗) to the face right(e∗).
GSN is an acyclic directed graph with fW as the only source and fE as the only
sink [5]. A consistent numbering of order k1 of GSN is a mapping F1 from the
vertex set of GSN to the set of integers {0, 1, ..., k1} such that (1) F1(fW ) = 0
and F1(fE) = k1, and (2) if there is an edge from the vertex f to the vertex g
in GSN , then F1(f) < F1(g). (For example, a topological numbering of GSN is
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a consistent numbering.) (Figure 4 (a) shows an example: The small circles are
nodes in G∗SN , the solid lines are the edges in G∗SN , the blue dashed lines are
the edges in GSN , the small squares are the vertices in GSN , the number inside
a square is the number assigned to the vertex of GSN .) The dual graph GWE

of G∗WE and the consistent numbering F2 of GWE are defined similarly.
For any node u in G∗SN , the left face of u, denoted by left(u), is the face in

G∗SN bounded by the left most edge entering u and the left most edge leaving
u. The right face of u, denoted by right(u), is the face in G∗SN bounded by the
right most edge entering u and the right most edge leaving u (see Figure 4 (b)).
Define l(u) = F1(left(u)) and r(u) = F1(right(u)). Clearly, l(u) < r(u).

For any node u in G∗WE , the top face of u, denoted by top(u), is the face in
G∗WE bounded by the left most edge entering u and the left most edge leaving
u. The bottom face of u, denoted by bottom(u), is the face in G∗WE bounded
by the right most edge entering u and the right most edge leaving u. Define
t(u) = F2(top(u)) and b(u) = F2(bottom(u)). Clearly, b(u) < t(u).

The algorithm DUAL in [5] assigns each node u in G∗ a rectangle with the
left boundary x = l(u), the right boundary x = r(u), the bottom boundary
y = b(u), and the top boundary y = t(u). It was shown in [5] these rectangles
constitute a rectangular dual of G∗.

The subgraphs G∗SN and G∗WE are completely defined by the given REL
R = {T1, T2}. However, there may be many consistent numberings for GSN
(and GWE .) Different numberings will result in different rectangular duals.
In the following lemma, we show that G∗ has a rectangular dual with special
properties. This special rectangular dual is important for our SSOD drawing
and may have applications in solving other drawing problems. For a rectangular
dual R of G∗, let ru denote the rectangle in R corresponding to the node u.

Lemma 1 Any PTP graph G∗ has a rectangular dual R such that the following
properties hold for any node u in G∗.

1. Let v1 → u be the first clockwise T1 edge entering u and u → v2 the first
clockwise T1 edge leaving u. Then there exists a vertical strip in R that
intersects rv1 , ru, rv2 .

2. Let w1 → u be the first clockwise T2 edge entering u and u→ w2 the first
clockwise T2 edge leaving u. Then there exists a horizontal strip in R that
intersects rw1 , ru, rw2 .

Proof: Let R = {T1, T2} be any REL of G∗. We use the right-most topological
sort to calculate a consistent numbering F1 of GSN which is defined as follows.
We run the topological sort algorithm on GSN starting from the (only) source
vertex fW of GSN . Once a vertex u in GSN has been numbered, we number
the outgoing neighbors of u in GSN . Among all neighbors of u, we always
visit the right-most outgoing neighbor v1 first. After all vertices that can be
numbered from v1 have been numbered, we continue to number the next right-
most outgoing neighbor of u, and so on. Figure 4 (a) shows the consistent
numbering obtained by the right-most topological sort of GSN .
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of GSN , (b) the pattern of the edges around a node u. The first clockwise
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examples of the rectangles corresponding to the nodes v1, u, v2.

Consider any node u in G∗. Let e∗1 = v1 → u be the first clockwise T1
edge entering u and e∗2 = u → v2 be the first clockwise T1 edge leaving u. See
Figure 4 (b). Let l(u) = F1(left(u)), r(u) = F1(right(u)), l(v1) = F1(left(v1)),
r(v1) = F1(right(v1)), l(v2) = F1(left(v2)), r(v2) = F1(right(v2)). Let a be
the number assigned to the left face of e∗1 and b be the number assigned to the
right face of e∗2. By the construction of DUAL algorithm in [5], the rectangle ru
shares a boundary with and is located above the rectangle rv1 , and the rectangle
rv2 shares a boundary with and is located above the rectangle ru.

By the definition of consistent numbering, the following hold: (1) l(v1) ≤
a < r(v1), (2) l(v2) < b ≤ r(v2), and (3) l(v2) ≤ l(u) ≤ a < r(u) ≤ r(v1).

Because F1 is obtained by using the rightmost topological sort of GSN , we
have a < b. This implies (4) l(v1) ≤ a < b ≤ r(v2). By (1) through (4),
l(v1), l(u), l(v2) are all ≤ a and r(v1), r(u), r(v2) are all > a. Because all these
quantities are integers, the vertical strip with the left vertical boundary line
x = a and the right vertical boundary line x = a + 1 intersects the three
rectangles rv1 , ru, rv2 .

So Statement 1 holds. Figure 4 (c) and (d) show two possible relative posi-
tions of rv1 , ru, rv2 .

Similarly, we can use the right-most topological sort to calculate a consistent
numbering F2 of GWE . By using the same argument, we can show Statement
2 holds. �

4 Star-shaped Orthogonal Convex Drawing

Let G be a plane graph that satisfies the conditions in Theorem 2. In this
section, we describe how to find a SSOD without bends for G.

Let v be a 2-vertex in G with two neighbors u,w. The operation contracting
v is defined as follows: delete v and replace the two edges (u, v) and (v, w) by a
single edge (u,w).
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the drawing of the subgraph in (a).

First we modify G as follows. For every 3-legged cycle C in G with more
than one 2-vertex on C, we arbitrarily choose one 2-vertex and contract every
other 2-vertices on C. For every 2-legged cycle C in G with more than two
2-vertices on C, we arbitrarily choose one 2-vertex on each contour path of C
and contract every other 2-vertices on C. After this modification, the resulting
graph H has the following properties:

Property 2 1. Each 3-legged cycle C of H has exactly one 2-vertex on C.

2. Each 2-legged cycle C of H has exactly one 2-vertex on each of the two
contour paths of C.

After we construct a SSOD D(H) of H, we can obtain a SSOD D(G) of G
as follows: Consider any 2-vertex v that was contracted from G. Let u,w be
the two neighbors of v in G. In the drawing D(H), the edge (u,w) is drawn as
a line segment L. We simply draw v in the middle of L. After doing this for
every contracted vertex v, we get a SSOD D(G) for G. Thus, without loss of
generality, we assume G satisfies the conditions in Property 2 from now on.

Let G∗ be the dual graph of G, but without the node corresponding to the
exterior face of G. So G∗ has exactly four nodes on its exterior face. Each
2-vertex of G corresponds to a pair of parallel edges in G∗. We only keep one
of them in G∗. These edges in G∗ are called marked edges.

Note that every 3-legged cycle C in G corresponds to a separating triangle
C∗ in G∗, and every 2-legged cycle C in G corresponds to a separating 2-cycle
C∗ in G∗. A 3-legged cycle C is shown in Figure 5 (a). The edges in G are
drawn as dashed lines, the edges in G∗ are drawn as solid lines. The nodes in
G∗ are drawn as empty circles. The 2-vertex g in G corresponds to two parallel
edges (w, x) in G∗. We keep only one of them in G∗ and (w, x) is a marked edge.
Figure 5 (b) shows a 2-legged cycle and its corresponding separating 2-cycle in
G∗.
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We first outline the main ideas of our algorithm. Basically, we want to
construct a rectangular dual of G∗ which will be the “skeleton” of the drawing
D(G). However, because G∗ has separating 2-cycles and 3-cycles, it is not a PTP
graph and hence has no rectangular dual. We have to modify G∗ to get a PTP
graph G∗′ as follows. For each separating 2-cycle or 3-cycle C∗ in G∗ incident
to a node x, we perform a node split operation on x (which will be defined
later.) This operation “splits” x into two nodes and “destroys” C∗. After all
separating 2-cycles and 3-cycles in G∗ are destroyed, the resulting graph G∗′ is
a PTP graph. Each node x in G∗ either corresponds to a node in G∗′ (if x is not
split); or a set of nodes in G∗′ (since there may be multiple separating cycles
incident to x, we may have to split x multiple times.) We then find an REL
R′ of G∗′ and construct a rectangular dual D(G∗′) of G∗′ by Lemma 1. D(G∗′)
is a “skeleton” of a SSOD D(G) of G. Each face f of D(G) corresponds to a
node x in G∗, which either corresponds to a single rectangle in D(G∗′) (if x is
not split), or an orthogonal polygon F that is the union of several rectangles in
D(G∗′) (each rectangle corresponds to a split node of x.) Figure 5 (c) illustrates
the drawing D(G) for the graph G in Figure 5 (a) by using this process. We
split the node x into two nodes x1 and x2 in order to destroy the separating
triangle C∗ = {u, v, x}. In Figure 5 (c), each rectangle corresponds to a node in
G∗. The union of the two rectangles marked by x1 and x2 corresponds to the
node x. The drawing in Figure 5 (c) is an orthogonal drawing of the graph G
in Figure 5 (a). Note the location of the 2-vertex g in D(G).

Since we want D(G) to be a SSOD of G, we must make sure each face F
in D(G) is star-shaped. This is done by carefully constructing the REL R′ so
that certain properties are satisfied (which are discussed later.)

4.1 Node Split Operation

In this subsection, we describe the details of our algorithm based on the ideas
outlined above. Let G∗1 be the graph obtained from G∗ as follows:

• For each maximal separating triangle C∗ in G∗, delete all interior nodes
of C∗.

• For each maximal separating 2-cycle C∗ in G∗, delete all interior nodes of
C∗, and replace the two edges of C∗ by a single edge. We call these edges
the merged 2-cycle edges.

Clearly G∗1 is a PTP graph. By Theorem 4, G∗1 has an REL R1 = {T1, T2}.
We now need to add the deleted nodes back into G∗1. We process the separating
cycles of G∗ one by one.

First consider a separating triangle C∗ in G∗. Let G∗(C∗) denote the induced
subgraph of G∗ consisting of the nodes on and in the interior of C∗. Let G∗1 ∪
G∗(C∗) be the graph obtained by adding the interior nodes of C∗ back into G∗1.
We want to construct an REL for G∗1 ∪G∗(C∗). However, G∗1 ∪G∗(C∗) is not a
PTP graph because C∗ is a separating triangle. We must modify G∗1 ∪G∗(C∗)
so that C∗ is not a separating triangle in it.
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Figure 6: Node split operation. (a) Before split, (b) after split.

Let C be the 3-legged cycle in G corresponding to C∗. By Property 2, there
is exactly one 2-vertex a in G on C. The vertex a corresponds to a marked edge
e∗a in G∗. e∗a must be incident to one of the three nodes of C∗. Let x denote
this node. We say the separating triangle C∗ is assigned to x. (In Figure 5 (a),
the marked edge e∗ = (x,w) in G∗ corresponds to the 2-vertex g in G. e∗ is
incident to the node x. So the separating triangle C∗ = {u, v, x} is assigned to
x.) We perform the node split operation at x defined below:

Definition 3 Let x be an interior node of G∗ with neighbors y1, ..., yp in clock-
wise order (see Figure 6.) The node split operation at x with respect to the two
edges (x, yi) and (x, yj) (1 ≤ i < j ≤ p) is:

1. Delete x. Create two new nodes x1 and x2. Add a new edge (x1, x2).

2. For t = i + 1, ..., j − 1, replace the edge (x, yt) by (x1, yt). For t = j +
1, j + 2, ..., p, 1, ..., i− 1, replace the edge (x, yt) by (x2, yt).

3. Replace the two edges (x, yi) and (x, yj) by four new edges: (x1, yi), (x2, yi)
and (x1, yj), (x2, yj).

Let e∗1, e∗2 and e∗3 be the three edges of C∗. Two of them, say e∗1 and e∗2,
are incident to x. Depending on the pattern of these two edges in R1, there are
eight cases for node split operation at x (see Figure 7 (a) - (h).) If both e∗1 and
e∗2 are T1 edges entering x, we call it the case south. If e∗1 is a T2 edge entering x
and e∗2 is a T1 edge entering x, we call it the case southwest. The other six cases
are respectively called the case southeast, east, northeast, north, northwest and
west.

For example, consider the case south. We split x with respect to two edges:
(z, x) is the marked edge in G∗ that is in the interior of C∗; and (x, y) is a
T1 edge in the exterior of C∗ leaving x (we will specify how to pick the edge
(x, y) later.) In Figure 7 (a), the left figure for the case south shows the edge
pattern of C∗ before the node split operation. The right figure shows the edge
pattern of C∗ after the node split operation. In Figure 7 (a), a blue dotted
circle indicates the component inside C∗ that was deleted. The blue dotted
arrow (z, x) indicates the marked edge inside C∗.

Note that when looking from outside of C∗, the patterns of the involved
edges are identical before and after the node split operation. After splitting
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Figure 7: Cases of node split operation.

x into two nodes x1 and x2, each of the two edges (z, x) and (x, y) is split
into two edges. C∗ becomes a quadrangle with four exterior nodes x1, x2, u, v
in clockwise order. We recursively construct an REL R(C∗) for G∗(C∗) with
x1, x2, u, v as the north, east, south and west node respectively. Now we put
the nodes and the edges in the interior of the subgraph G∗(C∗) back into G∗1,
together with the edge pattern specified in R(C∗). It is easy to see that after
these operations, we get a valid REL of the graph G∗1 ∪G∗(C∗).

The other cases are similar as shown in Figure 7 (b) - (h). Readers are
invited to verify that, for each of the eight cases, we get a valid REL of the
graph G∗1 ∪G∗(C∗) after splitting x and putting R(C∗) back into R1. For the
cases south, east, north and west, the pattern of the third edge e∗3 of C∗ is unique
(as shown in Figure 7 (a), (b), (g) and (h).) For the other four cases, there are
two possible patterns for the edge e∗3. Only one pattern of e∗3 is shown in Figure
7 (c), (d), (e) and (f). The other pattern of e∗3 is similar. (For example, for the
case southwest, the edge e∗3 can also be in T2 directed from v to u. In this case,
e∗3 remains in T2 directed from v to u after the node split operation.)

Next consider a separating 2-cycle C∗ in G∗. C∗ corresponds to a merged
2-cycle edge e∗ = (x, y) for some nodes x and y in G∗1. Let C be the 2-legged
cycle in G corresponding to C∗. By Property 2, C has two 2-vertices, a and b,
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one on each of its two contour paths. a and b correspond to two marked edges e∗a
and e∗b in G∗. One of them, say e∗a, is incident to the node x. The other (e∗b) is
incident to the node y. We say e∗ is assigned to both x and y. Or equivalently,
we say the separating 2-cycle C∗ is assigned to both x and y. (In Figure 5 (b),
the edges (x, v) and (y, w) are two marked edges in G∗. They are incident to x
and y, respectively. So the separating 2-cycle C∗ = {x, y} is assigned to both
x and y.) The processing of C∗ is similar to a separating triangle. The only
difference is that we need to split both x and y. Depending on the pattern
of e∗ = (x, y) in R1, there are four cases. For example, if e∗ = y → x is in
T1, then we split x according to the case south, and split y according to the
case north. (See Figure 7 (i), case 2-cycle.) After performing these two node
split operations, C∗ becomes a quadrangle with four exterior nodes x1, x2, y2, y1
in clockwise order. We recursively construct an REL R(C∗) for G∗(C∗) with
x1, x2, y2, y1 as the north, east, south and west nodes respectively. Putting R1

and R(C∗) together, we get a valid REL of G∗1 ∪G∗(C∗).

4.2 The Edge Pattern around a Node

Although we can process the separating cycles of G∗ in arbitrary order to add
all deleted nodes back into G∗1, doing so does not guarantee a SSOD of G at
the end. Consider a node x in G∗1. Let C be the set of all separating cycles
of G∗ assigned to x. If C contains several separating cycles, x must be split
multiple times in order to destroy all separating cycles in C. The problem of
breaking all separating triangles has been studied in [1]. However, our goal here
is different. To make sure the union of the rectangles corresponding to these
split nodes constitutes a star-shaped orthogonal polygon, we must split the node
x carefully as described below.

Figure 8 (a) shows the general pattern of the edges in G∗1 around x with
respect to the REL R1 = {T1, T2}. (In Figure 8 (a), a blue dotted circle
indicates the component inside a separating triangle C∗ assigned to x. The
blue dotted arrow indicates the marked edge inside C∗. A thick line indicates
a merged 2-cycle edge assigned to x.) We partition C into four subsets (some
subsets may be empty):

• CS = {C∗ ∈ C | C∗ is a case south or southwest separating triangle, or a
case south separating 2-cycle }
Let mS = |CS |. Denote the separating cycles in CS by C∗si (1 ≤ i ≤ mS .)

• CE = {C∗ ∈ C | C∗ is a case east or southeast separating triangle or a case
east separating 2-cycle }
Let mE = |CE |. Denote the separating cycles in CE by C∗ei (1 ≤ i ≤ mE .)

• CN = {C∗ ∈ C | C∗ is a case north or northeast separating triangle or a
case north separating 2-cycle }
Let mN = |CN |. Denote the separating cycles in CN by C∗ni (1 ≤ i ≤ mN .)
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Figure 8: (a) The edge pattern around a node x, (b) the subgraph created for
x, (c) the orthogonal drawing of the subgraph in (b).

• CW = {C∗ ∈ C | C∗ is a case west or northwest separating triangle or a
case west separating 2-cycle }
Let mS = |CS |. Denote the separating cycles in CS by C∗wi (1 ≤ i ≤ mW .)

We create a subgraph around x as follows (see Figure 8 (b)):

• Replace x by a new node x0 and create a cycle K around x0. K contains
four corner nodes xsw, xse, xne, xnw. The edge xsw → x0 is in T2. The
edge xse → x0 is in T1. The edge x0 → xne is in T2. The edge x0 → xnw
is in T1.

• Between xsw and xse, K has a sub-path KS containing max{1,mS} edges.
All edges in KS are in T2 directed counterclockwise. The nodes on KS

are named as xsi (1 ≤ i ≤ mS − 1) counterclockwise. For 1 ≤ i < mS , the
edge xsi → x0 is in T1. For 1 ≤ i ≤ mS , the edge (xs(i−1), xsi) is used to
destroy the separating cycle C∗si. Namely, (xs(i−1), xsi) is an edge of the
quadrangle obtained from C∗si. Here xs0 = xsw and xsmS

= xse.

• Between xse and xne, K has a sub-path KE containing max{1,mE} edges.
All edges in KE are in T1 directed counterclockwise. The nodes on KE

are named as xei (1 ≤ i ≤ mE−1) counterclockwise. For 1 ≤ i < mE , the
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edge x0 → xei is in T2. For 1 ≤ i ≤ mE , the edge (xe(i−1), xei) is used to
destroy the separating cycle C∗ei. Namely, (xe(i−1), xei) is an edge of the
quadrangle obtained from C∗ei. Here xe0 = xse and xemE

= xne.

• Between xne and xnw, K has a sub-path KN containing max{1,mN}
edges. All edges in KN are in T2 directed clockwise. The nodes on KN

are named as xni (1 ≤ i ≤ mN − 1) counterclockwise. For 1 ≤ i < mN ,
the edge x0 → xni is in T1. For 1 ≤ i ≤ mN , the edge (xn(i−1), xni) is
used to destroy the separating cycle C∗ni. Namely, (xn(i−1), xni) is an edge
of the quadrangle obtained from C∗ni. Here xn0 = xne and xnmN

= xnw.

• Between xnw and xsw, K has a sub-path KW containing max{1,mW }
edges. All edges in KW are in T1 directed clockwise. The nodes on KW

are named as xwi (1 ≤ i ≤ mW − 1) counterclockwise. For 1 ≤ i < mW ,
the edge xwi → x0 is in T2. For 1 ≤ i ≤ mW , the edge (xw(i−1), xwi) is
used to destroy the separating cycle C∗wi. Namely, (xw(i−1), xwi) is an edge
of the quadrangle obtained from C∗wi. Here xw0 = xnw and xwmW

= xsw.

When some of the sets CS , CE , CN , CW are empty, they are treated as a special
case. For example, suppose CW = ∅. Then KW just contains one T1 edge
xsw → xnw, and we split the T2 edge w1 → x into two T2 edges w1 → xsw and
w1 → xnw (see Figure 8 (b)).

Figure 8 (a) and (b) show an example of this construction. The south neigh-
bors of x are s1, s2, s3, s4. The east neighbors of x are e1, e2, e3. The north
neighbors of x are n1, n2, n3. The west neighbors of x are w1, w2.
CS = {C∗s1, C∗s2, C∗s3} (C∗s3 is the separating 2-cycle represented by the merged

2-cycle edge (s3, x)). For i = 1, 2, 3, C∗si contains a marked edge (ai, x) in its
interior.
CE = {C∗e1, C∗e2} (C∗e2 is the separating 2-cycle represented by the merged

2-cycle edge (x, e3)). For i = 1, 2, C∗ei contains a marked edge (bi, x) in its
interior.
CN = {C∗n1, C∗n2} (C∗n2 is the separating 2-cycle represented by the merged

2-cycle edge (x, n3)). For i = 1, 2, C∗ni contains a marked edge (ci, x) in its
interior.
CW = ∅.
Note that, for each separating 2-cycle represented by a merged 2-cycle edge

e∗, both end nodes of e∗ are split after this operation. For example, the separat-
ing 2-cycle C∗s3 (represented by e∗ = (s3, x)) becomes a quadrangle with nodes
xs2, xse, s

′
3, s3 (s′3 is a split node from s3.)

This construction deals with the most general case. If some of the sets
CS , CE , CN , CW are empty, the construction can be simplified. For example, if
only CS is not empty, we can simply pick a T1 edge x→ y, and split all separating
cycles C∗si with respect to this edge.

Figure 8 (c) shows the portion of the rectangular dual R′ for the nodes in
the subgraph shown in Figure 8 (b). Each small rectangle in R′ is labeled by
the node it represents. Let rx be the union of the rectangle x0 and all rectangles
xαi (α ∈ {s, e, n, w} and 1 ≤ i ≤ mα.) This orthogonal polygon rx is the face
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in the drawing D(G) corresponding to the node x in G∗1. In Figure 8 (c), rx
is outlined by the thick line segments. A shaded rectangle in R′ indicates the
region to draw the interior nodes in a separating cycle C∗αi. To illustrate the
location of 2-vertices, consider the cycle C∗s2. The node a2 is in the interior of
C∗s2. The edge (a2, x) is a marked edge in G∗ and corresponds to a 2-vertex in
G. The northeast corner of the rectangle a2 in Figure 8 (c) is this 2-vertex.

Lemma 2 For any node x in G∗1, the orthogonal polygon rx is star-shaped.

Proof: If x is not split, then rx is a rectangle and the claim is trivially true.
Suppose x is split. rx is obtained by adding the rectangles xαi (α ∈ {s, e, n, w}
and 1 ≤ i ≤ mα) to the rectangle x0. Let PS be the lower envelop of rx.
PS consists of the lower boundary of the rectangles xs0, xs1, . . . , xsmS−1, xsmS

(where xs0 = xsw and xsmS
= xse.) For 1 ≤ i ≤ mS , there is a marked edge

(ai, x) in the interior of the separating cycle C∗si. Note that ai → xs(i−1) is a T1
edge and ai → xsi is a T2 edge. So the rectangle xai must touch the lower side
of the rectangle xs(i−1) and touch the left side of the rectangle xsi. So the lower
side of xsi must be lower than the lower side of xs(i−1). Since this is true for
any 1 ≤ i ≤ mS , the lower envelop PS of rx must be a downward staircase-like
poly-line, with the lower side of xse as its lowest horizontal segment.

Similarly, the upper envelop PN of rx must be an upward staircase-like poly-
line (from right to left, namely from xne to xnw) with the upper side of xnw as
the highest horizontal segment. Because xse → x0 is the first clockwise T1 edge
entering x0 and x0 → xnw is the first clockwise T1 edge leaving x0, by Lemma
1, there is a vertical strip Lv in the drawing R′ that intersects xse, x0, xnw. Any
point p in the region x0 ∩Lv can see the entire lower envelop PS and the entire
upper envelop PN . (See Figure 8 (c)).

Similarly, we can show the left envelop PW of rx is a staircase-like poly-line
(from the left side of xnw to the left side of xsw), with the left side of xsw as the
leftmost vertical segment. The right envelop PE of rx is a staircase-like poly-line
(from the right side of xse to the right side of xne), with the right side of xne as
the rightmost vertical segment. Because xsw → x0 is the first clockwise T2 edge
entering x0 and x0 → xne is the first clockwise T2 edge leaving x0, by Lemma
1, there is a horizontal strip Lh in the drawing R′ that intersects xsw, x0, xne.
Any point p in the region x0 ∩ Lh can see the entire left envelop PW and the
entire right envelop PE . (See Figure 8 (c)).

Then the entire polygon rx is visible from any point p in the region x0∩Lv∩
Lh. �

4.3 Algorithm

Now we can describe our algorithm:

Algorithm SSOD-Draw:
Input: A plane graph G0 that satisfies the conditions in Theorem 2.

1. Contract unneeded 2-vertices from G0 so that the resulting graph satisfies
the conditions in Property 2. Denote the resulting graph by G.
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2. Construct the dual graph G∗ of G.

3. Construct the graph G∗1, by deleting all nodes in the interior of maximal
separating cycles in G∗.

4. Construct a REL R1 of G∗1.

5. By using the procedures described Subsections 4.1 and 4.2, perform node
split operation for all nodes x with at least one maximal separating cycle
C∗ assigned to it. Then C∗ becomes a quadrangle. Make recursive call to
construct a REL R(C∗) for G∗(C∗). Let G∗′ be the PTP graph obtained
from G∗1 by adding all deleted nodes back into G∗1. Let R′ be the REL of
G∗′ obtained after this process.

6. Construct a rectangular dual R′ of G∗′ by usingR′, as described in Lemma
1.

7. Let D(G) be the orthogonal drawing of G obtained from R′ as described
above.

8. Add the 2-vertices contracted during Step 1 back into D(G0).

Corollary 1 The drawing D(G) constructed by Algorithm SSOD-Draw is a
SSOD without bends for G.

Proof: In Lemma 2, we have shown that for any node x in G∗1, the orthogonal
polygon rx corresponding to x is star-shaped. Any node y of G∗ not in G∗1 is
in the interior of a maximal separating cycle C∗. The orthogonal polygon ry
for y in D(G) is contained in the drawing for G∗(C∗). Our argument can be
recursively applied to the drawing of G∗(C∗) to show ry is star-shaped. Hence
D(G) is a SSOD of G. During the entire process, no bends are introduced. �

Next we briefly analyze the run time of Algorithm SSOD-Draw. Let n1
be the size (namely the number of nodes plus the number of edges) of G∗1. All
steps in Algorithm SSOD-Draw involving G∗1 can be done in O(n1) time by
Theorem 4 and basic algorithmic techniques for planar graphs.

Let S denote the set of separating cycles in G∗. We can organize S into
a tree like structure ST as follows [13]. The root t0 of ST corresponds to the
entire graph. Let C∗1 , . . . C

∗
k be all maximal separating cycles of G∗. Then t0

has k children t1, . . . , tk. Each ti corresponds to C∗i (1 ≤ i ≤ k.) Below each
ti, we recursively construct the tree representing the separating cycles within
the subgraph G∗(C∗i ). The tree structure ST can be constructed in linear time
[13, 9]. By using this data structure, we can show that, for each maximal
separating cycle C∗, the time needed to process G∗(C∗) is linear of the size of
G∗(C∗). Therefore the entire algorithm takes linear time. In summary we have:

Theorem 5 Let G be a graph that satisfies the conditions in Theorem 2. Then
G has a SSOD without bends, which can be constructed in linear time.
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5 L-shaped Orthogonal Drawing

Let G∗ be an internally triangulated plane graph with a quadrangular exterior
face. If G∗ has separating triangles, then it does not have a rectangular dual.
However, it is possible to represent G∗ by an L-shaped modules representation
(LSMR) as follows [13]: An LSMR of G∗ is a rectangle R subdivided into a
set of orthogonal modules. Each module is either a rectangle or an L-shaped
polygon. Each node u of G∗ corresponds to a module ru in R. Two nodes u, v
in G∗ are adjacent in G∗ if and only if their corresponding modules ru and rv
share a common boundary.

Not every internally triangulated plane graph G∗ has LSMR. A necessary
and sufficient condition for G∗ to have such a representation was obtained in
[13], which is described below.

Let S be the set of all separating triangles in G∗. A nested separating triangle
sequence (NSTS) assigned to a node x in G∗ is a sequence of separating triangles
T = {C1, C2, . . . , Ck} ⊂ S such that: (1) Ci is contained in the interior of Ci+1

(1 ≤ i < k); and (2) all Ci are incident to the node x. A valid assignment of S
is a partition of S into a set of NSTS T1, T2, . . . , Tq such that each node x in G∗

is assigned at most one Ti. The following results are obtained in [13].

Theorem 6 [13] Let G∗ be an internally triangulated plane graph with a quad-
rangular exterior face.

1. G∗ has a LSMR if and only if there exists a valid assignment of S;

2. The existence of a valid assignment of S can be tested in O(n1.5) time by
finding a perfect matching in an auxiliary graph.

3. If a valid assignment of S is given, a LSMR of G∗ can be constructed in
O(n2) time.
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Figure 9: (a) Splitting x destroys all three separating triangles assigned to x,
(b) and (c) two examples of L-shaped polygon for x.

In [14], it was shown that if a valid assignment of S is given, then a LSMR can
be constructed in linear time. In this section, we show that if a valid assignment
of S is given, a LSMR of G∗ can be constructed in O(n) time. So our algorithm
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is an alternative of the algorithm in [14]. Our method is totally different from
the methods used in [14].

The basic idea is that we can destroy all separating triangles in S by using
node split operation. Let T = {C1, . . . , Ck} be a NSTS assigned to a node x in
G∗. If we split the node x with respect to an edge (z, x) in the interior of C1

and an edge (x, y) in the exterior of Ck, then all Ci (1 ≤ i ≤ k) are destroyed.
See Figure 9 (a).

We apply the same method in Section 4 to solve this problem. Suppose that
we are given a valid assignment of S. Let G∗1 be the graph obtained from G∗ by
deleting all nodes in the interior of all maximal separating triangles in G∗. Then
G∗1 is a PTP graph. So we can find a REL R1 = {T1, T2} for G∗1. Now we want
to put the deleted nodes back into G∗1. By the definition of valid assignment, at
most one maximal separating triangle C is assigned to each node x in G∗1. So
there is no need to use the complicated scheme to split x. We simply apply one
of the cases shown in Figure 7. Suppose that x is split with respect to the edges
(z, x) and (x, y) (where (x, y) is in the exterior of C.) After the split operation,
the edge (x, y) becomes two edges (x1, y) and (x2, y). In all eight cases, the type
of (x1, y) and (x2, y) are the same. Namely they must be one of the following:
(1) they are both in T1 and entering y; (2) both in T1 and leaving y; (3) both
in T2 and entering y; (4) both in T2 and leaving y.

Let D(G) be the drawing of G obtained by Algorithm SSOD-Draw. Each
node x is split at most once. So the module rx is the union of at most two
rectangles. Because of the special edge pattern around the nodes x1 and x2,
rx is always an L-shaped polygon. (Figure 9 (b) and (c) show two examples.)
Thus we have:

Theorem 7 Let G∗ be an internally triangulated plane graph with a quadran-
gular exterior face. Given a valid assignment of S, a LSMR of G∗ can be
constructed in linear time.

6 Conclusion

In this paper, we strengthen one of the results in the recent paper [2]. We
show that if G satisfies the same conditions in [2], it not only has an orthogo-
nally convex drawing, but also a stronger star-shaped orthogonal drawing. The
method we use is quite different from the methods in [2, 12]. By using the same
technique, we show that an L-shaped module representation can be constructed
in O(n) time. It will be interesting to see if this method can be used to solve
other orthogonal drawing problems.
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