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Abstract

A drawing of a graph G is radial if the vertices of G are placed on
concentric circles C1, . . . , Ck with common center c, and edges are drawn
radially: every edge intersects every circle centered at c at most once. G is
radial planar if it has a radial embedding, that is, a crossing-free radial
drawing. If the vertices of G are ordered or partitioned into ordered levels
(as they are for leveled graphs), we require that the assignment of vertices
to circles corresponds to the given ordering or leveling.

We show that a graph G is radial planar if G has a radial drawing in
which every two edges cross an even number of times; the radial embedding
has the same leveling as the radial drawing. In other words, we establish
the weak variant of the Hanani-Tutte theorem for radial planarity. This
generalizes a result by Pach and Tóth.
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1 Introduction

In a leveled graph every vertex is assigned a level in {1, . . . , k}. We can capture
the leveling of the graph visually, by placing the vertices on parallel lines or
concentric circles corresponding to the levels of G. To further emphasize the
levels, we can require that edges respect the levels in the sense that edges must
lie between the levels of their endpoints, and be monotone in the sense that they
intersect any line (circle) parallel to (concentric with) the chosen lines (circles)
at most once. If we choose lines, we obtain the concept of level-planarity; for
circles we get radial (level) planarity.

Radial planarity was introduced by Bachmaier, Brandenburg and Forster [1]
as a generalization of level-planarity [7]. Radial layouts are a popular visualization
tool (see [8] for a recent survey); early examples of radial graph layouts can
be found in the literature on sociometry [16]. Bachmaier, Brandenburg and
Forster [1] showed that radial planarity can be tested, and an embedding can be
found, in linear time. Their algorithm is based on a variant of PQ-trees [2] and is
rather intricate. It generalizes an earlier linear-time algorithm for level-planarity
testing by Jünger and Leipert [14]. In this paper, we take the first step toward
an alternative algorithm for radial planarity testing via a Hanani-Tutte style
characterization.

The classical Hanani-Tutte theorem [5, 25] states that a graph is planar if
and only if it can be drawn in the plane so that every two independent edges
cross an even number of times. A particularly nice algorithmic consequence
of this result is that it reduces planarity testing to solving a system of linear
equations (of polynomial size) over Z2, a purely algebraic problem, which can
be solved in polynomial time.

If we could show that a leveled graph G is radial planar if it has a radial
drawing (respecting the leveling) in which every two independent edges cross an
even number of times, we would have a new, simple, polynomial-time algorithm
for radial planarity. We take the first step toward this result: a weak Hanani-
Tutte theorem. A weak variant of the Hanani-Tutte theorem makes the stronger
assumption that every two edges cross an even number of times. Often, this
leads to stronger conclusions. For example, it is known that if a graph can be
drawn in a surface so that every two edges cross evenly, then the graph has an
embedding on that surface with the same rotation system, i.e. the cyclic order
of the ends of edges at each vertex remains the same [3, 19].

Our main result, proved in Section 3, is the following theorem:

Theorem 1 If a leveled graph has a radial drawing in which every two edges
cross an even number of times, then it has a radial embedding with the same
rotation system and leveling.

Theorem 1 implies a polynomial-time algorithm for radial planarity testing
of a leveled graph G if a combinatorial embedding (rotation system) of G is
fixed. This algorithm (sketched in Section 4) is based on solving a system of
linear equations over Z2, see also [22, Section 1.4]. Thus, our algorithm runs
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in time O(|V (G)|2ω), where O(nω) is the complexity of multiplication of two
square n × n matrices. Since our linear system is sparse, it is also possible
to use Wiedemann’s randomized algorithm [26], with expected running time
O(n4 log2 n) in our case.

Remark 1 In a sequel to this paper we prove the strong Hanani-Tutte theorem
for radial planarity [10], using Theorem 1 as the base case (mirroring the
development for level-planarity).

Theorem 1 is a generalization of a weak variant of the Hanani-Tutte theorem
for level-planarity1, first proved by Pach and Tóth [17, 11], the result also
follows from the proof of a more general result by M. Skopenkov [24]. The full
Hanani-Tutte theorem for level-planarity was established only more recently [11],
and it led to a quadratic time level-planarity test. A computational study of
Chimani and Zeranski [4] of various algorithms for upward planarity testing
(an NP-complete problem related to level-planarity), showed that the algorithm
based on the Hanani-Tutte characterization of level-planarity performs very well
in practice (it beats all other algorithms in nearly all scenarios).

Hanani-Tutte style characterizations have also been established for partially
embedded planar graphs, several classes of simultaneously embedded planar
graphs [23], and two-clustered graphs [9]. The family of counterexamples in [9,
Section 6] (also, in a slightly different context, in [21, Example 1.6]) shows that
a straightforward variant of the Hanani-Tutte theorem for clustered graphs with
more than two clusters fails. Gutwenger et al. [13] showed that by using the
reduction from [23], this counterexample can be turned into a counterexample
for a variant of the Hanani-Tutte theorem for two simultaneously embedded
planar graphs [23, Conjecture 6.20]. For higher-genus (compact) surfaces, the
weak variant is known to hold in all surfaces [3, 20], while the strong variant
is known for the projective plane only [18, 6]. It remains an intriguing open
problem whether the strong Hanani-Tutte theorem holds for closed surfaces
other than the sphere and projective plane.

2 Terminology

For the purposes of this paper, graphs may have multiple edges, but no loops.
An ordered graph G = (V,E) is a graph whose vertices are equipped with a
total order v1 < v2 < · · · < vn. We consider an ordered graph as a special case
of a leveled graph, in which every vertex of G is assigned a level, a number in
{1, . . . , k} for some k. The leveling of the vertices induces a weak ordering of
the vertices.

For convenience, we represent radial drawings as drawings on a (standing)
cylinder. Intuitively, imagine placing a cylindrically-shaped mirror in the center

1The result is stated for x-monotonicity, the special case of level-planarity in which every
level contains a single vertex. As we will see below, this special case is equivalent to the general
case.
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of a radial drawing.2 The cylinder is I × S1, where I is the unit interval [0, 1]
and S1 is the unit circle. Thus, a point on the cylinder is a pair (i, s), where
i ∈ I and s ∈ S1. The projection to I or S1 maps (i, s) ∈ I × S1 to i, or s. We
denote a projection of a point or a subset α of I × S1 to I by I(α) and to S1
by S1(α). The winding number of a closed curve on a cylinder is the number of
times the projection to S1 of the curve winds around S1, i.e., the number of times
the projection passes through an arbitrary point of S1 in the counterclockwise
sense minus the number of times the projection passes through the point in the
clockwise sense. A closed curve (or a cycle in a graph) on a cylinder is essential
if it has an odd winding number.

A radial drawing of G is a drawing of G on the cylinder such that the
projection to I of every edge is injective (i.e., an edge does not “turn back”) and
for every pair of vertices u < v we have I(u) < I(v). We also speak of individual
edges as being radial when they satisfy this condition. In a radial drawing
an upper (lower) edge at v is an edge incident to v for which min I(e) = I(v)
(max I(e) = I(v)). A vertex v is a sink (source), if v has no upper (lower) edges.
In order to avoid unnecessary complications, we assume that I(G) is contained
in the interior of I.

The rotation at a vertex in a drawing (on any surface) of a graph is the
cyclic, clockwise order of the ends of edges incident to the vertex in the drawing.
The rotation system is the set of rotations at all the vertices in the drawing. In
the case of radial drawings the upper (lower) rotation at a vertex v is the linear
order of the end pieces of the upper (lower) edges in the rotation at v starting
with the direction corresponding to the clockwise orientation of S1. The rotation
at a vertex in a radial drawing is completely determined by its upper and lower
rotation. The rotation system of a radial drawing is the set of the upper and
lower rotations at all the vertices in the drawing.

Since we work exclusively on a cylinder (or on a plane), we can two-color
the complement of any closed curve (which may have self-crossings) so that
connected regions each get one color and crossing the curve switches colors.3

See Figure 1. In a closed walk, it is possible for an edge to appear twice on that
walk, in which case crossing the curve “switches colors twice”, meaning that the
color is the same locally on both sides of any such edge.

When speaking of two edges in a drawing crossing evenly, or oddly, we are
referring to the parity of the number of crossings between the two edges. A
drawing of G is even if every two edges in the drawing cross an even number of
times.

For any (non-degenerate) continuous deformation of a drawing of G, the
parity of the number of crossings between a pair of edges changes only when
an edge passes through a vertex during the deformation. We call this event an
edge-vertex switch. Note that when an edge e passes through a vertex v the
parity of the number of crossings between e and every edge incident to v changes.

2Search for “cylindrical mirror anamorphoses” on the web for many cool pictures of this
transformation.

3This can be shown by starting with a two-coloring of the complement of a circle, and
proving that the two-coloring can be maintained as the curve is gradually deformed.
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3 Weak Hanani-Tutte for Radial Drawings

I

S1

Figure 1: Two-coloring the com-
plement of a closed curve on the
cylinder. The left and right side
are identified.

In this section, we prove Theorem 1, the weak
Hanani-Tutte theorem for radial planarity. We
claim that it will be sufficient to restrict our-
selves to the special case in which every level of
G contains a single vertex, an ordered graph.

Theorem 2 If an ordered graph G has an
even radial drawing, then it is radial planar.
In this case it has a radial embedding with the
same ordering and the same rotation system
as the original drawing, and the parity of the
winding number of every cycle remains the
same.

The reduction of Theorem 1 to Theorem 2
is based on the same construction used in [11,
Section 4.2] to reduce level-planarity to x-
monotonicity: Suppose we are given an even
radial drawing of a leveled graph G. If any
level of G contains more than one vertex, we
do the following: if any vertex at that level is
a source or a sink, we add a crossing-free edge on the empty side of that vertex.
We place the new vertex at a new level, close to the current level we are working
on. We now slightly perturb all the vertices of the current level so no two vertices
are at the same level (without moving them past any of the new vertices we
created). We can do so, while keeping all edges radial, and without introducing
any crossings. Since the new vertices we added are at unique levels, we only
perform the perturbation on the original levels, see Figure 2 for an illustration.
Call the resulting ordered graph G′. By Theorem 2, G′ has a radial embedding
in which the rotation system, the levels of the vertices, and the parity of the
winding numbers of cycles are the same as in the radial drawing of G′. We can
now move all perturbed vertices back to their original levels, the additional edges
we added ensure that this is always possible.

We will make use of the weak Hanani-Tutte theorem for x-monotone graphs
due to Pach and Tóth [17], reproved in [11].

Theorem 3 (Pach, Tóth [17]) Suppose that G can be drawn so that edges
are x-monotone and every two edges cross an even number of times. Then there
exists an embedding of G, in which the vertices are drawn as in the given drawing
of G, the edges are x-monotone, and the rotation system is the same.

Figure 3 shows an example of an ordered graph for which x-monotonicity
and radial planarity differ. A radial embedding of a graph not admitting an
x-monotone embedding, must contain an essential cycle (we will prove this later,
in Lemma 7).
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Figure 2: The leveled graph on the left does not admit a radial embedding with
the same rotation system, v2 and v3 are sources at the same level. The middle
illustration shows that perturbing vertices at the same level can turn a level
graph that does not admit a radial embedding with the given rotation system
into an ordered graph admitting such an embedding. The right illustration shows
the construction: adding a crossing-free edge below both sources. The resulting
ordered graph does not admit a radial embedding with the given rotation system.

3.1 Working with Even Radial Drawings

Given a connected graph G with a rotation system, we can define a facial walk
purely combinatorially by following the edges according to the rotation system
(see, for example, [12, Section 3.2.6]), where we traverse consecutive edges at each
vertex in clockwise order.4 A vertex can occur multiple times on a facial walk
(in which case it is a cut-vertex). Any drawing of a graph G on an orientable
surface defines a rotation system. For an even drawing of a connected graph G
on the plane, the rotation system describes an embedding of the graph in the
plane, so that the facial walks correspond to actual faces. This is the essence of
the weak Hanani-Tutte theorem in the plane:

Theorem 4 (Cairns, Nikolayevsky [3]5) If a graph has an even drawing in
the plane, then it has an embedding in the plane with the same rotation system.

We need some terminology for radial drawings of an ordered graph G with
v1 < v2 < . . . < vn. The maximum (minimum) of a facial walk W in a radial
drawing of G is the maximum (minimum) v so that v lies on W . A local maximum
(local minimum) of a facial walk W is a vertex v on W so that v > u and v > w
(v < u and v < w), where u and w are the predecessor and successor of v on the
facial walk W .

Let e = uv and e′ = vw be two consecutive edges on a facial walk in a
drawing of G. We call (e, v, e′) a wedge at v, and we can identify it with a small
neighborhood of v in the drawing enclosed by the ends of e and e′ (in clockwise
order) at v. Intuitively, we think of the wedges as being the corners of some face;
Theorem 4 tells us that this intuition is justified for planar even drawings.

4Facial walks bound faces of an embedding of the graph in some surface.
5Cairns and Nikolayevsky prove this result for arbitrary orientable surfaces; a simple, direct

proof for the plane can be found in Pelsmajer, Schaefer, Štefankovič [19].
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Figure 3: An instance of an ordered graph that admits a radial embedding
(shown on the left) but not an x-monotone embedding with the same rotation
system (an x-monotone drawing is shown on the right). The left and right sides
of the left illustration are identified (as indicated by the arrows).

A point in the complement of W is in the interior (exterior) of W if it
receives the same (opposite) color as a wedge in W when we two-color W . Note
that in an even drawing all the wedges of a facial walk have the same color.

At a sink (source) v, the wedge that contains the region directly above (below)
v is called a concave wedge. See Figure 4. A facial walk W in a radial drawing is
an upper (lower) facial walk if its maximum (minimum) vertex is a sink (source)
and the concave wedge at that vertex is part of the interior of W . An outer
facial walk is an upper or lower facial walk; other facial walks are inner facial
walks.

Lemma 1 In an even radial drawing of a connected graph G, at most one facial
walk has a concave wedge at its maximum (minimum) and it can only happen at
vn (v1). Hence, G has either two outer facial walks (one lower and one upper)
or exactly one outer facial walk (which is both lower and upper).

Proof: Without loss of generality, suppose that G has a facial walk W with a
concave wedge at its maximum u. Since u is the maximum of W and the wedge
at u is concave, everything above u lies in the interior of W (as defined above).
Hence, if there is a vertex v > u, such a vertex v lies in the interior of W . Since
G is connected, there is a (shortest) path from v to W . Since all edges are even,
this path (edges and vertices) lie in the interior of W , and thus the path must
attach to W in its interior, contradicting the definition of facial walk. So u = vn.

On the other hand, both v1 and vn are incident to concave wedges, so there
always is a lower and an upper facial walk, though it it possible that they are
the same. �

Let C be a cycle in a radial drawing of G. Then C is non-essential if and
only if in the two-coloring of (the complement of) C the concave wedge of C at
the minimum and maximum of C receive the same color: if we draw a curve
between those two wedges, the number of times it crosses C will have the same
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parity as the winding number of C. For example, Figure 1 shows a non-essential
curve, whereas v2v4v5 in Figure 3 is essential.

Lemma 2 The parity of the winding number of a cycle in an even radial drawing
of a graph is determined by the rotation system of the graph.

v2

v1

Figure 4: Two concave
wedges, a sink, v1, on
the left, and a source, v2,
on the right.

Proof: Let e, f and e′, f ′, respectively, be edges in-
cident to the maximum v and minimum u of C. Let
<v be the lower rotation at v and let <u be the upper
rotation at u. Suppose that e <v f and suppose that
e, e′, f ′, f appear in this order along C. We will show
that the cycle C winds evenly if e′ <u f

′ and oddly if
f ′ <u e

′.
Two-color the complement of C. Traverse the path

in C which begins with v, e and ends with e′, u. At
the beginning, the colored region to the right includes
the concave wedge at v. Since C is an even drawing,
the color immediately to the right will be the same
as we begin and end our path traversal. At the end,
the colored region to the right includes the concave
wedge at u if and only if e′ <u f

′. As noted earlier,
the concave wedges have the same color if and only if
the winding parity is even. �

In a radial drawing of G a vertex is below (above) an essential cycle C if it is
not on C and has the same color as 0× S1 (1× S1) in the two-coloring of the
complement of C.

Lemma 3 If an even radial drawing of a connected graph contains an essential
cycle, then the graph has two outer facial walks.

Proof: Let C be an essential cycle of a graph G in an even radial drawing. G
can be split into two induced subgraphs GL and GU , where GL is induced by
the vertices on and below C and GU is induced by the vertices on and above C.
Note that by definition C (traversed counterclockwise) is the upper outer facial
walk of GL and (traversed clockwise) the lower outer facial walk of GU . By
Lemma 1, GL has a lower facial walk WL, and GU has an upper facial walk WU .
Then WL and WU are also the lower and upper facial walks of G. If WL 6= WU ,
we are done. Otherwise, both walks are traversals of C (and C = G). Since C is
essential, the concave wedges at its extrema have different colors in a 2-coloring
of the complement of C, so the upper facial walk and the lower facial walk of C
must be different. �

Intuitively, an essential cycle separates the rest of the graph into the part
above, and the part below it; the following lemma makes this precise.

Lemma 4 Let P be a path and let C be an essential cycle, vertex disjoint from
P , in an even radial drawing of a graph. Then I(P ) does not contain I(C).
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Proof: Suppose I(P ) contains I(C). We can then find a vertex u on P above
C and a vertex v on P below C. Thus, the sub-path of P between u and v, and
hence, an edge of P on the sub-path between u and v intersects an edge of C an
odd number of times, which is a contradiction. �

The next lemma allows us to simplify facial walks.

Lemma 5 If an ordered graph has an even radial drawing, then we can augment
the drawing of the graph by adding edges so that the resulting drawing is still
even and radial, every inner facial walk has at most two local minima and two
maxima, and each outer facial walk of each component has exactly one local
minimum and one local maximum.

For the proof of Lemma 5, we need the following lemma, which is a simple
extension of a similar redrawing result for x-monotone drawings from [11]. Call
an edge bounded if its points lie between its endpoints; that is, I(u) < I(p) < I(v)
for every point p in the interior of edge uv. Call the drawing of G bounded if all
edges are bounded.

Lemma 6 If an ordered graph has an even bounded drawing, then it has an
even radial drawing with the same rotation system.

Proof: It is sufficient to show how to redraw any particular edge e = uv radially
without changing the remainder of the drawing, and so that e remains even:
While keeping I(e) = [I(u), I(v)] and the rotation system fixed, we continuously
deform e so that its projection to I becomes injective. As e is deformed, it will
pass through some vertices an odd number of times; call this set of vertices S. To
reestablish the original crossing parities between e and all other edges, we need
to perform (e, w)-switches for every vertex w ∈ S. We can do so by deforming e
inside [I(w)− ε, I(w) + ε]× S1, ensuring that any new crossings with e (other
than the ones due to pushing e over w) will come in pairs (keeping the drawing
even) and so that e remains radial. �

Proof of Lemma 5: We first describe how to reduce the number of local
maxima in an inner facial walk if that number is at least three.

So, suppose there is an inner facial walk W which has at least three local
maxima. Let u be the vertex of W with minimum I-coordinate, and let v1, v2 be
two local maxima on W with largest I-coordinates. (It’s possible that v1 = v2
since a vertex can appear more than once in W .) Then W is comprised of a
u, v1-walk Wuv1 , a u, v2-walk Wuv2 , and a v1, v2-walk Wv1v2 . Letting u′ be the
vertex of minimum I-coordinate on Wv1v2 , that walk is the union of a u′, v1-walk
Wu′v1 and a u′, v2-walk Wu′v2 . (As sub-walks of W , Wu′v2 would be reversed.)
Figure 5 illustrates the decomposition of W .

Note that for each W ′ ∈ {Wuv1 ,Wuv2 ,Wu′v1 ,Wu′v2}, the I-coordinates of
the endpoints of W ′ are the maximum and minimum of I(W ′). Since we assumed
that there are at least three local maxima, at least one of these walks must
contain a local maximum not at its endpoints; let W ′ be that walk. We add to G



144

v1

v2

u

u′

Wuv1

Wu′v1 Wu′v2

Wuv2

Wv1v2

Figure 5: Decomposed facial walk W .

an edge connecting the two endpoints of W ′ by following W ′ on its interior side
(as determined by W ), and then using Lemma 6 to make the resulting drawing
even and radial. Then W is replaced by two facial walks, each containing the
new edge; one of the new walks omits the internal local maximum of W ′, and
the other at least one of v1, v2, so both of the new facial walks have fewer local
maxima than W . By repeating this process we will eventually obtain a drawing
in which every inner facial walk has at most two local maxima. The same
procedure can be used for local minima (by reversing the underlying ordering of
the graph). We conclude that every inner facial walk can be assumed to have at
most two local minima and two local maxima.

Let W be an outer facial walk, and let u, v be its minimum/maximum vertex.
If either (or both) of the u, v-subwalks of W has a local maximum or minimum not
at its endpoints, use Lemma 6 to add an edge from u to v along the subwalk(s),
starting and ending in the exterior of W . By Lemma 6 we can make the drawing
even and radial. Hence, we end up with a new outer facial walk having exactly
one minimum and maximum. �

One consequence of Lemma 5 is the following useful fact. It allows us to
treat non-essential components of a radial embedding as if they were edges (since
x-monotone embeddings can be made arbitrarily narrow).

Lemma 7 If a graph has an even radial drawing that contains no essential
cycles, then it has an x-monotone embedding with the same rotation system.

Proof: It is sufficient to prove this for the case that the graph is connected
(since it is easy to combine x-monotone embeddings of different components).
Using Lemma 5, we can assume that the outer facial walk consists of two edges
between the minimum and maximum vertices of the graph (note that there is
only one outer facial walk; if there were two, both would be essential). Using
Lemma 8 from the next section, we can clean one of these edges of crossings.
Since the edge is part of an outer facial walk (and the rotation system did not
change), cutting the cylinder close to the crossing-free edge leaves us with an
even x-monotone drawing of G in the plane. Theorem 3 now implies that the
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graph has an x-monotone embedding with the same rotation system (we remove
any edge we added during the process at this point). �

3.2 Removing Radial Crossings

In this section we complete the proof of Theorem 2. We will make use of a
simple redrawing tool that allows us to clear crossings with a single edge. This
is a slight extension of redrawing results we have used in previous papers.

Lemma 8 Suppose we are given a radial drawing of G (not necessarily even),
and an even edge e of G. Then the edges crossing e can be redrawn inside
I(e)× S1 to make e crossing-free and keeping the drawing radial. The redrawing
does not change the rotation system, the vertex locations, the crossing parity
between any pair of edges, or the winding number parity of any cycles.

We note that if the original drawing is even, then so is the redrawing.

Proof: Consider an edge f crossing e. Cut f wherever it crosses e. This leaves us
with an even number of ends of f on each side of e (since f crossed e evenly). On
each side of e pair up the ends in order, and reconnect them locally. Edge f may
now consist of multiple components, but we can connect these by narrow tunnels
to each other without changing the crossing parity between f and any other edge.
However, f may no longer be radial. Since we can perform the reconnections
so that the curve representing f lies strictly between its two endpoints, we can
make f radial by using the same redrawing as in Lemma 6. Since e does not
separate the cylinder, we can do so without crossing e. Repeating this for every
edge f crossing e, removes all crossings with e. The redrawing of the edges does
not affect the rotation system, the vertex locations, or the parity of the winding
number of cycles. �

In a first step, we show that we can assume that a counterexample to
Theorem 2 has to be connected. Call a connected component of a radially drawn
graph G essential if it contains an essential cycle.

Lemma 9 A counterexample to Theorem 2 with the smallest number of vertices
is connected.

The following argument also shows that a minimal counterexample to the
strong Hanani-Tutte theorem for radial planarity is connected.

Proof: For the sake of contradiction let G denote a minimal counterexample.
We apply Lemma 5 to ensure that facial walks satisfy the restrictions established
there.

Suppose that G contains a non-essential component G0. Apply induction
to obtain a radial embedding of G0 with the winding number parity of cycles
preserved. Thus, the embedding has no essential cycles, so Lemma 7 implies
that the embedding is x-monotone. Let m0 := min I(G0) and M0 := max I(G0).
By Lemma 5, the outer face of G0 is bounded by two radially-drawn paths from
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I = m0 to I = M0. Then G0 can be deformed to a new radial embedding so
that G0 lies in small neighborhood of any given radially-drawn curve C with
I(C) = [m0,M0]. We can do likewise for every non-essential component. If every
component is non-essential, it is easy to combine them to get an embedding of
G, which satisfies Theorem 2. We conclude that G contains at least one essential
component.

Let G∗ be the union of the essential components of G. Apply induction to
get a radial embedding of G∗. Let E′ be the set of edges e in G∗ with M0 ∈ I(e).
Then G∗ − E′ is the disjoint union of the two subgraphs G−∗ , G

+
∗ induced by

vertex sets {v ∈ V (G∗) : I(v) < M0} and {v ∈ V (G∗) : I(v) > M0}, respectively.
Suppose that the upper outer face of G−∗ lies entirely above I = m0. Then

its boundary includes an essential facial walk WU , for which m0 < I(WU ) < M0.
Then I(G0) contains I(WU ), contradicting Lemma 4.

Thus, the upper outer face of G−∗ intersects I = m0. Every face of G∗ in the
upper outer face of G−∗ intersects I = M0, so G∗ has a face f that intersects both
I = m0 and I = M0. By Lemma 5, the boundary of f includes a radially-drawn
path between its minimum and maximum vertices. An embedding of G0 can be
inserted into f alongside that path. We can do likewise for every non-essential
component of G, so that none of them intersect each other. Thus, we may
assume that all components of G are essential.

Let G1 be the component containing the minimum vertex v1, and let G2 =
G \G1. Let W1 be the upper facial walk of G1 and let W2 be the lower facial
walk of G2. Since W2 is essential and min I(W2) > I(v1), Lemma 4 implies that
max I(W2) > max I(W1). Then since W1 is essential, min I(W2) > min I(W1)
by Lemma 4.

By Lemma 5, W1 consists of two radially-drawn curves. We can deform the
radial embedding of G1 within the region minW1 < I < maxW1 so that, except
for a small strip near I = minW1, G1 occupies only the a small neighborhood of
a single radial curve (see Figure 6). Likewise we deform the radial embedding
of G2 so that on the region minW2 < I < maxW2 it lies very near a radial
curve, except I = minW2. Then it is easy to combine the two resulting radial
embeddings of G1 and G2 to get an embedding of G, which satisfies Theorem 2.

�

Proof of Theorem 2: For a contradiction, suppose there is a counterexample
to the theorem. We can assume that it has no inner facial walks with exactly
two edges. If not, remove one such edge from a counterexample with the fewest
number of such walks. We can embed it by induction, then add the edge back
to the embedding to satisfy Theorem 2.

Among such counterexamples, choose G to be one with the fewest number
of vertices, then the largest number of edges. By Lemma 9 we know that G is
connected, and Lemma 5 tells us that every inner facial walk of G contains at
most two local minima and maxima, and every outer facial walk at most one
local minimum and maximum.

We will prove that for 1 ≤ i ≤ n, G has an even radial drawing Di with
the given rotation system, so that the restriction of Di to [I(v1), I(vi)]× S1 is
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W1
W2

G1

G2

min I(W1)

min I(W2)

max I(W1)

max I(W2)

Figure 6: The radial embedding of G1, deformed so that except for a small strip
near I = minW1, it occupies only a “skinny” region. Likewise for G2, so such
embeddings are easily combined with no overlap.

crossing-free. Then Dn restricted to G will be the desired drawing, completing
the proof.

We may let D1 be the given drawing of G. Suppose that we have the drawing
Di of Gi as described above for some i < n. We will show how to obtain Di+1.
We distinguish two cases based on whether vi+1 is a source or not.

Vertex vi+1 is not a source. Let e be any lower edge at vi+1. Use Lemma 8 to
clear e of crossings, without affecting the drawing within the region [I(v1), I(vi)]×
S1, leaving it crossing-free as before. See Figure 7(a).

Let πi be the cyclic order that elements of G intersect the circle I(vi)× S1,
except replace its only vertex vi by the edges in the upper rotation of vi (in that
order).

The edges in the lower rotation at vi+1 must be consecutive in πi: if not,
then πi has a subsequence a, b, c, d where a, c are incident to vi+1 and b, d are
not. But then b or d must cross a or c an odd number of times—a contradiction.

We can change the cyclic order in which edges intersect I(vi+1) × S1 to
any other cyclic order while maintaining a radial drawing, by continuously
deforming edges within the region

(
[I(vi+1)− ε, I(vi+1) + ε]× S1

)
\ (e ∪ vi+1).

See Figure 7(b). The modified drawing will still be even since that region contains
no vertices. We will make the order in which edges intersect I(vi+1)× S1 \ vi+1

match the order obtained from πi after removing the (consecutive) edges which
are incident to vi+1. Then every pair of edges crosses an even number of times
within [I(vi), I(vi+1)]×S1 \e. Finally, edges can easily be redrawn in that region
(as geodesics) with no crossings in that region, giving us Di+1 as desired. See
Figure 7(c).
Vertex vi+1 is a source. Let W be the facial walk in which vi+1 occurs in
the concave wedge. Since vi+1 is a source, W must have two local maxima
(possibly the same vertex). Let z be the maximum vertex of W and let v be the
other local maximum of W . Let u denote the minimum of W . By Lemma 5,
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vi+1

vi

b d c a

e a b c d

vi+1

vi

b d c a

a b c de

(a) (b)

vi+1

vi

b d c a

e a b c d

(c)

Figure 7: Case: vi+1 is not a source. (a) Drawing of [I(vi), I(vi+1)] × S1 (left
and right sides are identified), dashed curves may cross. (b) Edges crossing
I(vi+1)× S1 are deformed in a small neighborhood of I(vi+1)× S1 so their cyclic
order matches Oi. (c) Edges are redrawn using geodesics.

W is comprised of four radially-drawn paths: a u, v-path P , a v, vi+1-path Q,
a vi+1, z-path R and a z, u-path. In Di we clear P of crossings by repeatedly
applying Lemma 8 to each edge of P .

The circle I(vi+1)× S1 is broken into two curves by vi+1 and P ; let S be the
one which reaches P from the interior of W . Similarly, the circle I(v)×S1 is split
into two curves by v and R; let T be the one which reaches R from the exterior
of W . (See Figure 8.) If S is free of crossings, then there is room alongside P to
draw a crossing-free edge from vi+1 to u; we can then apply induction to finish
the proof.

Our goal is to clear S of crossings while keeping the drawing even, and P
crossing-free. Consider the simple closed curve formed by S, Q, and the part of
P that connects v to S; let VS be the set of vertices in its interior (note that v
and vi+1 lie in its exterior). Consider the simple closed curve formed by T , Q,
and the part of R that connects vi+1 to T ; let VT contain the vertices on that
curve and in its interior (the side that does not contain VS). Then VS and VT
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Q

u

v

vi+1

z

P

R

S

T

VS VT

Figure 8: W , for the case that vi+1 is a source. Dashed curves may cross. Dotted
curves are not part of G itself. Each shaded region is defined by a two-coloring
of the complement of a closed curve.

are disjoint.

Let ES be the set of edges incident to vertices in VS . Any edge from VS to
its complement must cross S oddly (exactly once), since P is crossing-free and
edges of Q are even; hence the other endpoint lies below I = I(S).

Let ET be the set of edges incident to vertices in VT . Consider any edge e
from VT to its complement. Since W is a face, e reaches VT from the interior of
T . Then e crosses T oddly (exactly once) or e crosses R oddly below I = I(T )
in which case e crosses R oddly above I = I(T ), too. In either case, the other
endpoint of e lies above I = I(T ). Thus, ES and ET are disjoint and share no
endpoints.

For every vertex w and edge e with I(w) ∈ I(e), perform a radial (e, w)-
move without crossing P if either (i) e ∈ ES and w ∈ VT , or (ii) e ∈ ET and
w ∈ VS . We claim that the resulting drawing is still even. Indeed, only a pair of
edges eS ∈ ES , eT ∈ ET may change crossing parity—once for each endpoint in
I(eS) ∩ I(eT ) which is in VS ∪ VT . If I(eS) ∩ I(eT ) 6= ∅, then it contains exactly
two endpoints of {eS , eT }. If an endpoint of eS or eT is not in VS ∪ VT , then it
lies in the region I > I(T ) or I < I(S), so it is not in I(eS) ∩ I(eT ). Thus, the
crossing parity of eS , eT remains even.

The (e, w)-moves with w = vi+1 moved every crossing with S past vi+1 and
off of S. No other (e, w)-move affects the region near I = I(vi+1), so S is now
free of crossings. So, we can continue as before.

Finally, the invariance of the parity of winding numbers follows from Lemma 2
and the fact that the rotation system of the embedding is the same as that of
the original drawing. �
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4 Algorithm

Theorem 1 allows us to reduce the algorithmic problem of radial planarity testing
with a fixed rotation system to a system of linear equations over Z/2Z. For
planarity testing, systems like this were first constructed by Wu and Tutte [22,
Section 1.4.2].

Unlike in the case of x-monotone drawings, two drawings of an edge e with end
vertices fixed cannot necessarily be obtained one from another by a continuous
deformation during which we keep the drawing of e radial: up to a continuous
deformation, two radial drawings of an edge differ by a certain number of (Dehn)
twists. We perform a twist of e = uv, u < v very close to v, i.e., the twist is
carried out by removing a small portion Pe of e such that we have I(w) 6∈ I(Pe),
for all vertices w, and reconnecting the severed pieces of e by a curve intersecting
every edge e′, s.t. I(Pe) ⊂ I(e′), exactly once. Observe that with respect to the
parity of crossings between edges performing a twist close to v equals performing
an edge-vertex switch of e with all the vertices w < v (even those w for which
w < u). Hence, the orientation of the twist does not matter, and any twist of
e keeping e radial can be simulated by a twist of e very close to v and a set of
edge-vertex switches of e with certain vertices w, for which u < w < v.

By the previous paragraph a linear system for testing radial planarity with
the fixed rotation system can be constructed as follows. The system has a
variable xe,v for every edge-vertex switch (e, v) such that I(v) ∈ I(e), and a
variable xe for every edge twist. Given an arbitrary radial drawing of G we
denote by cr(e, f) the parity of the number of crossings between e and f . In the
linear system, for each pair of independent edges (e, f) = (uv,wz), where u < v,
w < z, u < w, and w < v, we require

cr(e, f) ≡
{
xe,w + xe,z + xf mod 2 if z < v, and
xe,w + xf,v + xe mod 2 if z > v.

For a pair of dependent edges (e, f) = (uv, uw) we require that

cr(e, f) ≡

 xf,v + xe mod 2 if u < v < w, and
xf,v + xe + xf mod 2 if u > v > w, and
xe + xf mod 2 if u < v = w.

This (sparse) linear system over GF 2 is solvable if and only G has a radial
embedding with the given rotation system.

5 Open Questions

In a second part of this paper, we establish the strong Hanani-Tutte theorem for
radial drawings, answering the main open question left by the current paper, but
there are other follow-up questions specifically linked to the weak variant. The
weak Hanani-Tutte theorem can be strengthened in various ways; for example,
Loebl and Masbaum showed that if a graph can be drawn in the plane so that
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every even subgraph (a subgraph is even if all its vertices have even degree) has
an even number of self-crossings, then the graph is planar, and can be embedded
with the same embedding scheme [15]. Does a similar result hold for x-monotone
or radial drawings? We have to assume that the graph is 2-connected (since
trees can fail to be x-monotone for specific levelings). For the plane, it is known
that if every cycle has an even number of self-crossing, then the graph is planar
(though the rotation may have to change) [22]. Again, it is open whether a
similar result holds for x-monotone or radial drawings.

By collapsing both 0× S1 and 1× S1 to a point, we can treat radial drawings
as a special case of graph drawings on the piece-wise linearly embedded sphere
S in Euclidean three-space, where levels are given by a single coordinate, call it
z. Does our result extend to drawings of this type? Does it make a difference
if for every vertex v on level i we also prescribe a connected component of
{(x, y, z) ∈ R3| z = i} ∩ S to which v belongs in a drawing?
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