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Abstract

Having the ability to draw dynamic graphs is key to better understanding evolv-
ing relationships and analyzing the patterns and trends in a network. Traditional
force-directed methods are not suitable for laying out dynamic graphs because of
their design for static graphs. An alternative is to create an incremental version
of the force multilevel multi-pole method (FM3); however, previous solutions are
more susceptible to graph degradation, that is, graph illegibility due to long edges
or edge crossings. This is typically caused when distant components are connected,
resulting in long and overlapping edges. We present our incremental version of
FM3 with a refinement scheme, which solves this problem by “refining” the parts
of the graph with high energy. Our resulting visualization maintains readability
of the graph structure and is efficient in laying out these changing networks. We
evaluate the effectiveness of our method by comparing it with two previous online
dynamic graph methods.
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1 Introduction
Graphs are ubiquitous, found in fields ranging from biology and chemistry to sociol-
ogy, software engineering, and cyber security. Graph drawing can be used as a visual
means to understand and analyze this relational data. In graph visualization, the nodes
represent entities and links represent relationships. Although techniques exist to aes-
thetically and efficiently lay out static graphs [19, 24, 25, 29, 30], these are not intended
for applications with graphs that change over time [13].

Real-world applications, such as Facebook and Twitter, require analysis of dynamic
networks. Finding the optimal way to visualize dynamic graphs remains a challenging
research topic. The primary goal for dynamic graph visualization is to ensure the sta-
bility of the layout [8, 17, 28, 31] and preserve the mental map [1, 34, 36, 37]. The
mental map represents the user’s underlying understanding of the graph structure. It is
important that the mental map remains consistent, or stable, over time. If not, confusion
may occur.

Visualizing dynamic graphs is often done by animating over the sequence of of-
fline graphs where all the time steps are known in advance [6, 14, 17, 36]. Another
approach is to display selected time steps side-by-side as small multiples [44]. Given
prior knowledge of the complete time sequence, one can optimize the layout for ani-
mation and specific analysis goals [7, 13, 14, 32]. However, this dependency on prior
knowledge restricts these methods from online applications.

In online applications, such as real-time monitoring of networks or systems, the
graph is constantly updated and its behavior over time cannot be predicted. This added
complexity, coupled with the lack of available online dynamic graph data, makes gen-
erating optimal layouts an even more challenging problem with limited attention in
existing research [9, 17, 21, 32].

We have examined existing online dynamic graph layout methods and found their
results to have undesirable limitations on performance or layout quality. Some are
too expensive to use for real-time applications. Others are more successful when the
algorithm involves anchoring large portions of the graph and allowing only a small
subset of the graph to move. Nevertheless, these methods come with several trade-
offs. Although the non-anchored nodes move to their ideal locations in most cases, an
undesirable effect happens when two disconnected components merge. Nodes usually
cannot reach their ideal positions immediately, as shown in Figure 1. This linking of
disconnected graphs may also lead to edge crossings. These parts of the graph stay in
suboptimal positions, and can only improve their placement if new nodes or edges are
added to the same neighborhood.

In this paper, we present an incremental version of the multilevel multi-pole layout
method that is suitable for visualizing online dynamic graphs. It is publicly available
as an open-source library. The library is written in C++ and for modern graphics cards.
The library can be found at http://vidi.cs.ucdavis.edu/Projects/Streaming
with an example that requires Qt. Our work makes the following contributions to online
dynamic graph drawing:

• Our incremental layout method maintains graph readability and is efficient when
laying out the network changes.

http://vidi.cs.ucdavis.edu/Projects/Streaming
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Figure 1: An undesirable limitation. A graph has many disconnected components
(a), and a node is introduced which links two components together (b). One layout
method [17] allows the new node (in orange) and its neighbors to move after the new
node is added. If these nodes cannot reach their ideal position in a single time step,
they are affixed to the same positions (c) until new nodes or edges are later introduced
into the same neighborhood.

• The refinement technique reduces long edges by using the nodes’ energy to de-
termine correct placement.

• The refinement technique can be applied independently or in tandem with an
existing force-directed layout method.

• The layout method is fast because our implementations for both the layout and
refinement calculations are GPU-accelerated.

We evaluated our method using several dynamic graph data sets, including ones
from real-world online applications, and compared the layouts with those produced
by previous methods. Also, we expand on our previous version of this research [12]
by discussing scalability of our incremental method with refinement. The test results
demonstrate the effectiveness and usability of our method when visualizing online dy-
namic networks.

2 Related Work
Force-directed approaches have several features that are beneficial for visualizing
evolving networks. These methods produce aesthetically appealing layouts and smooth
animation due to their underlying physical model, which moves the graph towards a
low energy state. The addition and removal of nodes can be treated as the creation
and removal of particles. Using force calculations, the algorithm applies forces on
these “particles,” which affect their position in the graph. Beck et al. [4] provide a
comprehensive review of state-of-the-art techniques in dynamic graph visualization.
However, force-directed approaches are not without fault: Minor changes to the graph,
such as the linking of two disconnected components, can have a large impact on the
forces.

Several static force-directed layouts for large graphs have been proposed [24]. Gen-
erally, these force-directed layouts attempt to minimize the number of force calcula-
tions. Walshaw [46] used a multilevel approach, where a coarser graph is generated
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recursively through an edge collapse operation. Harel and Koren [25] used a similar
multilevel approach, based on an approximation of the k-center problems. Quigley et
al. [39] employed a multi-pole approach, where distant nodes were grouped together
into a single node cluster for force calculation. Their implementation used a quadtree
for clustering. Gajer et al. [18] used a maximum independent set filtration technique to
coarsen the graph. Hachul et al. [24] combined an efficient multi-pole and multilevel
method to lay out the graph. Instead of using a quadtree, Hachul et al. used a kd-tree
which guarantees O(N · logN) for all pair repulsion forces. Koren et al. [30] took a
different approach by optimally minimizing the quadratic energy function. This mini-
mization problem is expressed as a generalized Eigenvalue problem. To achieve a fast
layout, they use an algebraic multi-grid algorithm. Harel and Koren’s technique [26]
embeds the graph in a high-dimensional space and then projects down to 2D.

Dynamic graphs are often visualized using timelines, animation, or as a hybrid
of the two. Although our focus is on animation, timelines provide a comprehensive
overview of the transition between time steps. Greilich et al. [22] introduced TimeArc-
Trees, which vertically aligns the graph nodes and facilitates the comparison of nodes
across time steps. Burch et al. [10] extended TimeArcTrees using parallel edge splat-
ting. In this technique, the graph is first arranged into a bipartite graph and edge density
is applied to reduce the overplotting of the edges. Reda et al. [40] used timelines to
visualize the evolution of communities. They used a sorting strategy to place large and
constantly changing communities on top of the visualization, based on an influence
factor. Vehlow et al.’s [45] approach visualizes both dynamic graphs and the dynamic
community structure in a single image. They also apply a reordering strategy to the
communities, similar to that of Reda et al.’s, and advance color assignment to improve
edge crossings. As Beck et al. pointed out, these methods do not scale well with larger
graphs.

For animation, several algorithms were developed to handle offline dynamic
graphs. Diehl and Görg [13] built a metagraph from the time series to help preserve
the mental map. Erten et al. [14] used a modified GRIP algorithm to render 2D and 3D
animations of evolving graphs. Kumar and Garland [31] abstracted the graph through
stratification which employs a hierarchical force-directed layout algorithm. Brandes et
al. [7] used a spectral method to improve animation between time steps. Collberg et
al. [11] created GEVOL, a system for visualizing the evolution of software. Sallaberry
et al. [41] clustered each time step and linked those clusters throughout time. The
clustering provides a node order which is used by their previous work [35] to generate
a graph layout.

Online dynamic graphs are series of graphs in which time steps and the changes that
occur within them are not known ahead of time. Lee et al. [32] created an algorithm
that preserves the mental map while generating aesthetically pleasing graphs. The
drawback is that the algorithm is slow from recalculating the full layout at each time
step. Brandes and Wagner [9] instead used Bayesian decision theory to generate the
graph. Frishman and Tal [17] created a novel force-directed algorithm that can handle
large graphs. Their implementation runs on the GPU and provides a 17 times speedup
over their CPU version. Gorochowski et al. [21] looked at using the age of the node
to stabilize the graph. The age was calculated based on when the node appeared and
how much movement it saw through its lifetime. Hayashi et al. [27] studied how
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initial node placement affects the responsiveness of their layout algorithm. Our work is
similar to Frishman and Tal’s approach, but differs due to how the multilevel multi-pole
is constructed and includes a refinement step.

Another research area of online dynamic graphs is on constrained graphs. Frishman
and Tal [15] looked into dynamically drawing predetermined clustered graphs. North
[36] addressed drawing dynamic directed acyclic graphs, while Görg et al. [20] looked
into drawing sequences of orthogonal and hierarchical graphs.

A common speedup technique for force-directed layouts is to implement the algo-
rithm on the GPU. Auber and Yves [2] implemented a force-directed algorithm that
uses Euler’s method. Gumerov and Duraiswami [23] parallelized the fast multi-pole
method and managed to achieve a 30 to 60 times improvement over their CPU ver-
sion. Stock and Gharakhani [43] developed a GPU version of the N-body algorithm.
Although this paper does not directly discuss graphs, the N-body algorithm is used in
many of the fast force-directed layout methods [16, 19, 23]. Frishman and Tal [16] cre-
ated a multilevel force-directed graph layout. In turn, Godiyal et al. [19] implemented
a GPU version of FM3 that is 30 percent faster than Frishman and Tal’s algorithm.
This speedup difference can be attributed to the approximation method for the all-pairs
repulsive forces used in Frishman and Tal’s approach. It has a larger aggregated error
compared to that of FM3 with the possibility of becoming unbounded for unstructured
distributions [42].

Measuring the aesthetics of a layout is a difficult process. Bennett et al. [5] thor-
oughly summarized the heuristics used to measure the aesthetics of graph visualization.
Measures of interest include edge lengths and crossings, with the idea that both edge
crossings and lengths should be minimized. Frishman and Tal [17] introduced the no-
tion of potential energy to measure the layout quality. Lower energy implies low stress
on the graph. Lower energy also leads to shorter edges. Gorochowski et al. [21] used
the same energy calculations to compare their work against Frishman and Tal’s. To
provide a fair comparison, we also use the same energy calculations when comparing
our layout with theirs.

Our layout method achieves better performance with the help of our novel refine-
ment technique that gradually alleviates areas of high energy. Energy is defined as
the amount of force applied to a node. The evaluation in Section 4 indicates that our
method produces aesthetically pleasing layouts, at the cost of greater movement of
nodes. This movement is necessary to bring pairs of nodes connected with long edges
closer and thus improves overall readability.

3 Methodology

The methodology section describes the process of converting FM3 to an incremental
algorithm. We explain how our refinement technique works and how it can be applied
either independently from or integrated into the layout method.
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3.1 An Incremental Algorithm
Our incremental algorithm is a modified version of FM3, which is a fast, multilevel
multi-pole force-directed layout method. Compared to traditional force-directed lay-
outs, FM3’s efficiency is due to the use of the multilevel and multi-pole strategies.

First, the multilevel component reduces the number of expensive calculations by
constructing a skeleton of the layout, which can be quickly computed. FM3 starts with
the original, or finest, graph, G0, and uses maximal independent set to select super
nodes. A super node is a single node that represents a large set of nodes from finer
levels. These super nodes make up a coarser graph, G1, and the process is repeated
until the user-specified threshold–such as the number of nodes or in-between level
changes–is met. At this point, this subset of nodes represents the coarsest level, GK .

Secondly, the multi-pole component approximates the all node-pair repulsive force
calculation. Nodes that are sufficiently far from a given node, v, are grouped together
before the repulsive forces are calculated. In FM3, this partition of distant nodes is
determined by using a kd-tree. The grouped nodes are represented as a single node,
which is located at the group’s centroid. The resulting force of this representative node
is the sum force of all the nodes within a respective partition.

During the layout step, a force calculation is applied to graph GK , in which the
resulting node positions are used for the initial layout of the finer graph, GK−1. These
steps are repeated until the original graph G0 is drawn. At each step, nodes have a
smaller range of movement than that of the previous level. This process of reducing
movement over time is called simulated annealing, which in turn reduces the temper-
ature. Temperature represents a dampening factor to the amount of distance a node
can move. More details of FM3 can be found in Godiyal [19], on which our GPU-
accelerated implementation is based.

FM3 is not designed for online dynamic graph drawing. To make it incremental,
we need to:

1. Include an initial layout construction step
2. Add a merging step, which places new nodes and selects nodes to move
3. Modify the multilevel calculation step
4. Pick a specific force model for the force calculation step
5. Add an animation step for smooth transition of the layout rendering

We describe each of these five steps in more detail below:

Initial Layout Construction: For the initial layout, L0, we use standard FM3 layout
with a degree metric for the selection of the super nodes, which is described in the
Multilevel Calculation section.
Merging: This stage attempts to place new nodes at their ideal positions by using po-
sitioned nodes from the previous layout. Initial node placement is imperative because
error is introduced when previously positioned nodes are at suboptimal positions. This
error propagates across layouts, making it difficult to correct in subsequent time steps.

Our approach minimizes this error by assigning coordinates to new nodes in the
following manner. Positioned nodes from Li−1 are copied over to Li. If a new node v is
not connected to any other positioned node, v is placed in a random position within the
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Figure 2: The figure shows how our algorithm assigns positions to new nodes. A
dashed node and edge indicate a new node and edge, respectively. Nodes colored in
orange represent nodes that are flagged to move by our algorithm. (a) A node with no
edges is placed randomly inside the bounding box of the graph. (b) A node connected to
a positioned node is placed at a desired length, dl, from the positioned node. (c) A node
connected to at least two positioned nodes is placed at the centroid of the positioned
nodes. (d) When an edge is added or removed between two positioned nodes, our
algorithm flags both nodes to move.

bounding box, as shown in Figure 2a, where the bounding box is the smallest rectangle
that all nodes fit within. If v is connected to one positioned node u, v is placed randomly
around u at a distance dl, where dl is the desired length between two connected nodes
in our spring-based energy model. Figure 2b shows an example of an orange node that
is placed at distance dl from its already positioned neighbor. If v is connected to at least
two positioned nodes, v is placed at the geometric center of all the connected nodes,
shown in Figure 2c. All affected nodes are flagged to move.

In our merging stage, the insertion or deletion of edges affects node placement. If an
edge is inserted between two new nodes, u and v, node u is randomly placed inside the
bounding box, similar to Figure 2a, and node v is placed randomly around u at a radius
of dl, equivalent to Figure 2b. Both nodes are selected to move. Also, our method
moves positioned nodes when a new edge is introduced to another node–whether new
or positioned–namely, when node u is connected and node v is not. Since it is not
restricted by other nodes, node v is randomly placed around node u at a distance dl as
if it were a new node and is marked to move. Another instance of node placement is the
change of connectivity between positioned nodes u and v. When an edge is removed,
the two affected nodes are flagged to move because their current positions are invalid
and should move closer to their respective components. After adding an edge, we flag
both nodes to move, shown in Figure 2d, to minimize overlapping edges in case these
components are distant from one another.
Multilevel Calculation: In FM3, the process of picking a super node is done randomly
or by indexing [19]. When dealing with multiple levels from the coarsening of G0, our
method is more deterministic when selecting a super node than FM3’s multilevel ap-
proach. In our implementation, super nodes are selected by their degree in descending
order. A new node will have a low chance of becoming a super node, but the likelihood
increases when its degree increases.

Having a multilevel representation of the graph reduces the computation time. In
incremental layout methods, including ours, only nodes within a certain vicinity have
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their forces calculated. Also, coarser graph levels have cheaper computation compared
to the original graph because force calculations are applied to the super nodes. Starting
from the coarsest level, the super node’s resulting movement is used to interpolate the
movement of its adjacent nodes at the next finer graph level, until the finest level G0 is
reached. In our method, when we calculate Li, where Li is the layout calculation at ith

time, we compute the layout 250 times at the coarsest level. The number of iterations
to compute the layout decays linearly until we reach the finest level. At the finest level,
we compute the layout 30 times. These are the default parameters which work well in
practice. The user can change these to meet their needs.

Our method uses a contribution factor to restrict the range of movement for the
super nodes. In the traditional FM3, nodes at coarser graph levels have greater range
of movement than those at finer levels. This is caused by the nature of simulated
annealing. The contribution factor counterbalances this large disparity of movement in
favor of maintaining the mental map. This also prevents suboptimal node positioning
per level, which, if not addressed, can ultimately degrade the final graph level, G0. Each
super node’s contribution factor is determined by how many of its nodes are allowed
to move. For example, if there is only one node that is allowed to move under a super
node, then the super node will only move slightly.
Force Calculation: The repulsive forces are modeled as

~Frep =
C · (~u−~v)
‖~u−~v‖3 (1)

to achieve a greater spreading of disconnected graph components. The spring forces
can be modeled as [19]

~Fspring = ‖~u−~v‖ · log
(
‖~u−~v‖

dl

)
· (~u−~v) (2)

where ~u and~v represent the positions of node u and v, and ‖~u−~v‖ is the norm of node
u and v. C is the repulsive constant and dl is the desired length between two nodes. In
practice, we found that C = 4.0 and dl = 0.055 work well, but these parameters can be
modified as needed.

The force calculation is modeled as ~F total = ~Frep +~Fspring. The repulsive calcula-
tion is computed for all node pairs, whereas the attractive calculation is computed only
for node pairs connected by an edge.

Animation: Animation is employed to display the graph changes between Li−1 to Li.
Existing nodes smoothly transition into their new positions from Li−1 to Li. New nodes
do not exist in Li−1 and must be introduced into Li. By default, we use Graph Diaries
[3], an animation mode that uses different stages to emphasize graph changes, such as
deletion, movement, and addition.

3.2 Refinement Method
We introduce our refinement scheme, which consists of two phases. The first phase
detects and marks nodes with high energy and the second phase allows those marked
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Figure 3: Energy levels are mapped from yellow to red, where red represents high
energy. Refinement allows only nodes with high energy (a) to move until they reach a
low energy state, which is represented in yellow (b).

nodes to move. As previously mentioned, force-directed layouts are built on top of a
physical model. The physical model attempts to move graph nodes towards a state of
low energy: the lower the energy, the higher the layout quality will be.

Energy and force are related by ~F = ∇En [17]; we can compute energy by inte-
grating the force, ~F . Given a force model and two nodes, positioned at ~u and ~v, the
repulsive energy is calculated by

Enrep =
−C
‖~u−~v‖

(3)

The spring energy is calculated by

Enspring =
1
9
· (‖~u−~v‖3 · (log

(
‖~u−~v‖

dl

)
−1)+dl3) (4)

The total energy for node~v is computed by summing over all edges connected to~v
and all~v and~u node pairs: En(v) = Enrep +Enspring.

En(v) = ∑
u,v∈V,u6=v

−C
‖~u−~v‖

+ ∑
u:(u,v)∈E

1
9
· (‖~u−~v‖3 · (log

(
‖~u−~v‖

dl

)
−1)+dl3) (5)

where ~u and ~v represent the positions of node u and v, and ‖~u−~v‖ is the norm of
node u and v. Ideally, we want an approach that will gradually modify the graph by
only moving a subset of the nodes. If all nodes were allowed to move to a lower energy
state, the mental map would be broken. Once we quantify the energy for individual
nodes, we need to determine when a node’s energy is high in relation to the entire
system. Every node or edge that is introduced increases the total energy of the system,
making it difficult to determine the baseline of high energy. A simple approach is to
subtract graph Gk from Gk−1 to see which nodes have high energy. However, this is
only conclusive for the current time step and nodes that gradually increase in energy
over time will not have a large enough difference to be detected.
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Instead, we use the mean of the nodes’ energy, µ , and compare it with each node’s
energy, yielding a definition of high energy. As new nodes and edges are added, the
total and mean energy will increase. We define a node to have high energy when
abs(En(v)−µ)

µ
> K, where K is a user-defined constant and En(v) is the energy of a par-

ticular node v. In our implementation, we define K to be 1.
To move the nodes in the second phase, we compute the layout for the finest level of

the graph. Although the original graph, G0, does not leverage the multilevel algorithm,
we run the layout step for a subset of the graph that has been marked to have high
energy. A demonstration of the concept is shown in Figure 3. In addition, refinement
runs the layout step for a fixed number of iterations. This is a adjustable parameter;
reducing the number of steps trades quality for speed. In our implementation, we have
set this number to 20. We also modify the temperature factor to anneal nodes to their
final positions. This factor affects the mental map’s quality [38] and complements our
force model. In our system, we set temperature to 1.0.

Refinement can be applied in two ways: independently from or integrated into the
layout method. Independent refinement runs between layout calculations and repeats at
regular intervals until the next layout calculation starts with newly-read data. Integrat-
ing refinement into the layout method involves applying the first phase of refinement,
after the layout method has marked nodes, but before the layout calculation. In this
case, not only are new nodes and their neighbors marked to move, as discussed in Sec-
tion 3, but also nodes with high energy are included. We expect that refinement is best
used when it runs independently from the layout method. By using multiple and smaller
layout calculations, independent refinement has more opportunities to shift high energy
nodes to a lower energy state. Another benefit of applying refinement independently
is that it makes refinement a viable option for existing layout methods, as the layout
methods do not have to be modified to run refinement. If a layout method does not have
sufficient time between time steps, then integrated refinement is preferred. However,
such integrated refinement has limited opportunities to fix the graph, as it is only called
once before the main layout algorithm is executed.

Naively calculating the energy for nodes takes O(N2+E) time, where N is the num-
ber of nodes and E is the number of edges. The cost comes from calculating the energy
for all pairs of nodes. Computing a single iteration of FM3 is O(N · log(N)+E). When
comparing the two costs, the computation of energy is more expensive. By leveraging
FM3’s multi-pole method, we can reduce refinement’s energy calculation by approxi-
mating energy to achieve the same O(N · log(N) ·E) cost. The exact measurement of
energy is not needed, as the refinement algorithm is only applied to nodes that have high
energy. Since FM3 uses a kd-tree for traversal [19], this adds another O(N · log(N))
cost for the multi-pole estimation, but for large N the estimation will be faster.

4 Evaluation
In this section, we evaluate our layout method visually and use a series of metrics to
examine the stability, quality, and speed of our layout method for comparison with
existing methods. We apply our refinement technique to these methods to show the
benefits of relieving high energy areas when nodes are placed in suboptimal positions.
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We discuss the details of the metrics used to characterize the graphs’ state. We use a
combination of real and synthesized data sets that vary in both size and number of time
steps.

4.1 Layout Methods

We evaluate our layout method by comparing it with two advanced online dynamic
layout methods, which we refer to as “pinning”, by Frishman and Tal [17], and “ag-
ing”, by Gorochowski et al. [21]. For pinning, Frishman and Tal modified their previ-
ous work on static layout methods [16], which was similar to FM3. Pinning reduces
layout calculations by allowing recently updated nodes and their neighbors to move.
Nodes are assigned a pinning weight that determines the nodes’ range of movement.
In addition, neighbors of the newly added nodes are allowed to move, based on their
distance-to-modification, or the number of hops, from the newly added node. This pro-
cess is done by applying a breadth-first-search-like algorithm that places new nodes in
a D0 node set, then traverses the edge list to create D1 set. This is repeated until Dmax
sets have been created. Pinning also adds a node, called the center of gravity, which
pulls all nodes toward it. This ensures that nodes and small components will not drift
far from the center. Aging introduces an “aging factor” that quantifies a relationship
between the node’s age and how much of its immediate neighborhood has changed
over time. Nodes that are younger, that is, experience a large amount of change around
them, have a larger range of movement. They also have an aging rate that determines
how fast nodes age per time step. We could not find existing implementations of these
algorithms, so we implemented them according to their respective papers.

While implementing pinning, we noticed that a few pieces of information are miss-
ing. We have made several assumptions in efforts to replicate the paper’s results and
provide a fair comparison against our layout method.

For example, the paper does not state how node movement is affected when an
edge is added between existing nodes. Although they are assigned to the D0 node set,
existing nodes do not move because their assigned pinning weight is high. As a result,
these nodes do not properly transfer movement to their neighbors. Neglecting this
case increases the likelihood of edge crossings, which degrade the graph’s readability
over time. Instead, we have decided to assign pinning weights of zero to these nodes,
allowing these possibly distant components to move closer to minimize edge crossings.

Additionally, with initial node placement, the paper does not specify how far new
nodes should be placed from their reference points. When new nodes with no edges
are added, we place them away from the center at a distance based on the relationship
between the central node’s attractive forces and other nodes’ repulsion forces. We have
included a scaling factor to modulate this calculated distance because graph layouts’
bounding boxes vary in size. When a new node v is connected to a positioned node
u, we place node v at a distance dl away from u on a line towards the center node. In
our implementation, the central node is positioned at (0,0) and is the bounding box’s
center when calculating the forces. Since the attractive forces for the central node are
not mentioned, we picked a magnitude of 0.02 which best replicates their results when
using our force model.
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Frishman and Tal’s algorithm stops coarsening after four levels or “several” hun-
dred nodes. We used 200 for our implementation. Also, their distance-to-modification
pass has a cutoff at Dmax, which we set to 6 for the first four data sets and 4 for the
remaining three data sets.

Since aging can be applied to any incremental layout, we have decided to incorpo-
rate it into our method. To do so, we have made assumptions on what the aging rate is
for our data sets. The aging rate is used to tune the trade-offs between graph structure
and evolutionary changes. We set the aging rate as 0.5 in our implementation across all
our data sets.

4.2 Data sets
We use seven data sets with varying size and velocity. Throughout these graphs’ evo-
lution, there are multiple instances of addition and deletion of nodes and edges. As a
result, some data sets’ sizes grow, while others stay the same.

The first data set is taken from McFarland’s study [33] which documents student
interaction in a classroom. The visualization of this graph shows clusters that expand,
shrink, and split over time. The network’s edges appear and disappear, reflecting the
nature of interactions among the classrooms involved in this study. This data set is our
smallest graph, with 20 nodes and 82 time steps. We use the McFarland data set for
direct comparison with pinning and aging algorithms since their results are shown in
Gorochowski et al.’s work.

The second and third data sets are from Stack Overflow, a forum where individuals
post questions about programming. Users not only answer questions, but also provide
feedback to the questions and supplied answers. Users are rewarded points when they
post popular questions, answers, or comments. The first Stack Overflow data set is a
one-month trial run of the collection in November 2014. The data set starts with 304
nodes and 606 edges and expands to 4,000 nodes and 5,000 edges. The second data
set, Stack Overflow Live, is a live feed of the site. At the time of the recording, the
data set started with 80 nodes and 80 edges and ended with 638 nodes and 964 edges.
Both data sets are characterized by many small, independent components that merge
together over time. In the Stack Overflow data sets, nodes and edges do not disappear
because all user activity is archived.

The Facebook, HepPh, and YouTube data sets are acquired from a website, which
hosts collections of streaming graph data sets [47]. Visualization of the graphs is shown
in Figure 4(a, b, c). The Facebook data set starts with 822 nodes and 1,160 edges
and expands to 1,268 nodes and 2,004 edges. The data set focuses on new or lost
connections between individuals. The data set, an example of a small world graph, is
characterized by one large cluster and many small clusters. The HepPh data set is a
citation network collected from arxiv.org on high energy physics phenomenology.
It starts at 21,716 nodes and 284,710 and expands to 21,874 nodes and 289,386 edges.
The Youtube data set is a social network where a link is formed when a user subscribes
to another user. The network has a large number of nodes that are connected by a single
edge. The network starts at 35,209 nodes and 108,286 edges and grows to 36,354 nodes
and 110,996 edges. Both HepPh and YouTube experience only the addition of nodes
and edges to their network.

arxiv.org
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(a) (b)

(c) (d)

Figure 4: Visualization of the larger data sets: (a) Facebook, (b) HepPh, (c) YouTube,
and (d) Internet. For HepPh, YouTube, and Internet nodes were not rendered to improve
readability. The Facebook data set has a single large component and many small ones.
The other data sets all have a single large component, but vary in their structure. The
YouTube data set stands out amongst the three graphs with a large number of star burst
patterns, where many nodes have a single connection to the same node.

The last data set is a communication network of routers that comprise the internet
that was collected in 2001 and spans over two months. The graph grows and shrinks
from 34,379 nodes and 143,648 edges to 34,395 nodes and 143,784 edges. The data
set is visualized in Figure 4d. Unlike the first four data sets, these last three rarely have
distant component merging. This is due to the fact that each of these data sets contains
one large component, and any additions to the graph connect to this large component.

4.3 Metrics

Stability, quality, and timing metrics are used to assess the effectiveness of the differ-
ent layouts. These metrics are the same as the ones used by Frishman and Tal [17]
and Gorochoski et al. [21] in their comparison study. Stability is synonymous to the
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Figure 5: Visualization of the Stack Overflow-Live data using pinning, our layout
method with independent refinement, and aging at the same instance. Pinning tends
to have nodes near the center due to its central attractive force, whereas aging and our
layout have nodes spread out across the viewing space. Pinning and aging generate
long edges and edge crossings (a,b,e,f)–characteristics which degrade the graph over
time. With refinement, our method relieves this problem by shifting parts of the graph
to lower the system’s energy (c,d).

preservation of the mental map. Stability measures the amount of change in a graph by
quantifying the change in position for all nodes or the distance a node moved. A new
node’s change in position is zero in the time step when it is first introduced

Timing is measured before and after every layout computation call. We use the
average time across layout computations to assess the speed of layout methods. The
speed of our refinement technique is difficult to measure because it runs when the
layout is waiting for new data. Therefore, it is not part of the layout step and can be
considered free as it is not taking away from the computation of the layout.

Selecting a quality metric to evaluate dynamic layouts is difficult. There have been
few studies looking at the importance of preserving the mental map in dynamic layouts
[37, 38]. We define quality as the measurement of energy, where low energy produces
aesthetically pleasing graphs–nodes are placed at optimal edge lengths from each other,
making the graph’s structure easy to comprehend. We use the total energy of the system
to match the metrics used by Frishman and Tal [17] and Gorochowski et al. [21]. Since
our refinement technique uses our energy model to determine which nodes have high
energy, we simply sum the energy for all nodes:

Entotal = ∑
i=1...n

En(i) (6)

where n is the total number of nodes.
To ensure fair comparisons of layout quality, all layout implementations use the

same force model. Aging naturally uses our force model, since it is built upon our
layout method. Our pinning implementation uses our spring-system force model.
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Data sets Metrics Energy ∆ pos Time

McFarland
Pinning 1,584 2.48 0.020
Aging 25.12 0.7470 0.021
Our Layout 1,159 0.745 0.008

Stack Overflow-Live
Pinning 137,651 119 0.067
Aging 546,130 272 0.061
Our Layout 24,764 350 0.059

Stack Overflow
Pinning 1,457k 151 0.084
Aging 113,188k 658 0.085
Our Layout 862k 658 0.084

Facebook
Pinning 14,803k 308 0.208
Aging 186,310k 1,019 0.131
Our Layout 9,724k 3,042 0.133

HepPh
Pinning 311,468k 652 1.121
Aging 496,579k 224 0.474
Our Layout 52,150k 708 0.468

YouTube
Pinning 1,719,475k 2,838 1.846
Aging 378,747k 860 0.679
Our Layout 393,727k 1,184 0.689

Internet
Pinning 8,077,376k 1,012 2.254
Aging 316,010k 122 2.550
Our Layout 278,588k 307 0.543

Table 1: Comparison of layout methods using energy, ∆ position, and time. Lowest
quantities are in bold. Results are the average of these metrics, characterizing the
graphs’ state throughout the observed session. Energy is the total energy in the system,
∆ position is the change in nodes’ position, and time is measured in seconds.

4.4 Analysis of Our Layout Method

The results of our study are given in Table 1, Table 2, Figure 4, Figure 5, Figure 6, and
http://vis.cs.ucdavis.edu/Videos/Incr.mp4.

The evaluation is conducted on a Macbook Pro laptop. It has an NVIDIA GeForce
GT 750M graphics card, a 2.3 GHz Intel Core i7 processor, and 16 gigabytes of RAM.

Quality, Stability, and Timing Comparisons: Table 1 is the quantitative comparison
among our layout method, pinning, and aging. Figure 5 shows a visual comparison of
the three layouts for the Stack Overflow Live data set. In the pinning results, a distinct
ring of nodes forms. The ring is a consequence of the pinning implementation, which
places new nodes with no edges around this ring. Nodes are spread out in aging and our
layout method because nodes are placed randomly inside the graph’s bounding box.

From Table 1, we can see in most cases our layout has the lowest energy. We ob-
serve around 1.5 to 29 times improvement over pinning and 1.3 to 133 times for aging.

http://vis.cs.ucdavis.edu/Videos/Incr.mp4
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Data sets Metrics Energy ∆ pos Time

McFarland Pinning 1,584 2.48 0.020
Pinning+ref 671 6.92 0.020

Stack Overflow-Live Pinning 137,651 119 0.067
Pinning+ref 42,943 294 0.082

Stack Overflow Pinning 1,457k 151 0.084
Pinning+ref 43.8k 317 0.124

Facebook Pinning 14,803k 308 0.208
Pinning+ref 76.6k 409 0.231

HepPh Pinning 311,468k 652 1.121
Pinning+ref 82,765k 1135 1.109

YouTube Pinning 1,719,475k 2,838 1.846
Pinning+ref 1,587,272k 4,384 2.31

Internet Pinning 8,077,376k 1,012 2.254
Pinning+ref 517,841k 2,382 2.733

Table 2: Comparison of pinning with and without refinement, using energy, ∆ position,
and time to measure the performance. Lowest quantities are in bold. Results character-
ize the graphs’ state throughout the observed session. Energy is the total energy in the
system, ∆ position is the change in nodes’ position, and time is measured in seconds.

The low energy is attributed to the layout gradually repairing itself. This is apparent
visually, where our layout method better handles merging of distant components than
the other two methods. Our layout reduces long edges, whereas these problems are
evident in the other two layouts due to their high energy.

In our experiments, a layout’s stability is analyzed using an average change in po-
sition. There is a clear difference in how the algorithms behave among the smaller and
larger data sets. The pinning layout has the smallest average ∆ position on small data
sets, while aging has the smallest average ∆ position on the larger data sets. In most
cases, our layout has a higher ∆ position because nodes are shifting into a better posi-
tion to reduce energy, therefore trading stability for lower energy. Aging also suffers
from a large ∆ position in the smaller data sets. As we noted in Section 4.2, the last
three data sets have few to no distant components merging. This difference plays a
large role in how well the layout methods do in stability. For example, aging takes a
large penalty when distant components merge. In all accounts, our refinement tech-
nique increases node movement in favor of gradually fixing the graph, which is evident
in Figure 5.

In our implementation of the layout methods, we found there is little difference in
speed when computing layouts on the small graphs. As graphs become larger, differ-
ences start to arise. Pinning takes the longest, while aging and our layout are three
times faster. Pinning’s longer time is likely attributed to its distance-to-modification
component, where the number of nodes it visits increases rapidly as the size of the
graph and node degree increase. Since aging uses our incremental layout code, it is not
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Figure 6: Visualization of the Stack Overflow data, comparing pinning and pinning
with independent refinement at the same instance. Many of the same trends found in
Figure 5 are observed in this visualization. Pinning suffers from long edges and edge
crossings (a,b), which are fixed when refinement is added (c,d).

a surprise it attains times similar to those attained by our method. Aging benefits from
the performance gains our layout method provides.

It is interesting to see aging performing best on the YouTube data set. We can see
YouTube has a different structure than the rest of the large data sets, shown in Figure
4. There seems to be a strong preferential attachment in the data set, showing that “the
rich get richer.” New nodes are likely connected to nodes with high degree and are
placed near to their ideal placement. Therefore, the refinement step does not have as
many opportunities to flag high energy nodes.

Refinement with Pinning: Table 2 shows the results of applying our refinement tech-
nique to pinning. With refinement, pinning has 1.2 to 200 times lower energy. As
expected, the refinement version takes longer to calculate than pinning by itself. How-
ever, this extra time is negligible, as refinement is meant to run while the layout is idle.
Similar to Table 1, pinning with refinement has a higher change in position than pin-
ning alone has. From Figure 6, we can see that the extra movement is used to fix long
edges and spread out nodes.

Figure 6 shows the benefits of our refinement technique. We can see that long
edges and edge crossings are less evident in the images on the right of the figure. The
added benefit is that refinement helps spread out the nodes in each component, making
it easier to see the structure.
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5 Discussion

The previous layout methods used in our evaluation have unique benefits. Pinning
maintains graph stability using pinning weights to restrict node movement. Aging
provides an anchor point for graph exploration by moving nodes based on their evolu-
tionary changes. However, our layout algorithm places nodes at their optimal positions
by considering each node’s energy. Our refinement technique identifies high energy
components in the graph and reduces the system’s energy by gradually moving nodes
to a lower energy state. Our results show that our refinement technique can be used
to improve existing layout methods with respect to both layout quality and readability,
creating graph drawings that best visualize the relations among involved entities.

5.1 Scalability and Performance

Scalability of an incremental layout method depends on the volume and velocity of
the incoming data. Volume is the amount of incoming data at a time and velocity is
the rate of new data flowing in. Incremental layouts are efficient when a small portion
of the graph changes due to the introduction of new nodes and edges. Although the
computation time naturally increases when the volume of data increases, incremental
layouts scale better than conventional layouts. This improved scaling comes from the
reduced amount of work the incremental layout has to do before computing the force
calculation. For example, the incremental layout only calculates one kd-tree per level
and does not have to calculate the forces for all levels. Incremental layouts are prefer-
able, as long as this overhead is low. By using our incremental layout method with our
refinement technique, we find promising potential in its scalability, in terms of quality,
stability, and speed, which is a result of reducing the system’s energy when possible.

Visual scalability is dependent on the data set and tasks performed. As dynamic
graphs are an extension of static graphs, any visual scalability problems found in static
graphs will occur in dynamic graphs. For example, as data size increases, tracking
individual nodes becomes more difficult. If the task is to generate an overview of the
graph, then the size plays a smaller role over the graph’s structure. We can see this
demonstrated in Figure 4, where each of the larger data sets has a unique structure.
Animation is helpful when the graph remains small in size. Bach et al. [3] suggest to
aggregate the data when the graph becomes too large.

Our layout method is written as an independent library, which can be quickly ported
into other graph drawing systems. The library is easy to thread; the rendering and
animation stages run separately from the layout calculation. However, the downside is
that our current implementation spends a portion of time converting the input into the
proper GPU format for the library. This does not invalidate our timing results because
all three methods were implemented with the same pipeline. A closer coupling of the
GPU to the data can be leveraged for faster loading and formatting of the graph, but at
the risk of being unable to easily port and thread the library.
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5.2 How Refinement Works

To show how refinement works, we compare the energy of the graph with and without
refinement. We chose to compare three levels of refinement that use three, five, or ten
refinement steps between each layout step. The resulting plots are shown in Figure 7.
The y-axis is the total energy of the graph in log scale and x-axis is the number of
layout steps. The blue line is the computation of the layout without refinement and
green is with refinement. In particular, for the refinement case, each line contains dots
where larger dots represent a typical layout computation and small dots represent an
incremental computation.

We can see a gradual increase in energy for the computation without refinement
steps, shown in Figure 7. It is interesting to note that the energy dips in some of the time
steps. These dips are attributed to the placement of nodes as part of the incremental
layout. Nodes with no edges are moved to their newly connected nodes and thus can
be placed in a more optimal position. This is also true for any nodes that have been
flagged to move, providing another chance to reduce the energy.

The plots show that with each step of refinement, the energy goes down. This
trend continues until a layout step is done, when energy shoots up. The large spikes
that we see in particular time steps, for example in 8, 16, and 18, are attributed to
distant components merging. What happens is that two forces are acting on a node: the
repulsive and spring force. Spring force is polynomial, while repulsive force is linear.
Large energies are produced when either connected nodes are too close–thus having
both the repulsive and spring force acting on them–or are far away.

When comparing different refinement steps between the layout steps, we can see
a diminishing return. This is much more apparent in Figure 7c, for the plot where ten
refinement steps were used. In this plot, not all sections between the layout step exhibit
a diminishing return. There seems to be a correlation between how large an energy
jump is after the layout step and diminishing returns. If there is a large increase in
energy, more refinement steps are necessary to reduce newly introduced energy. We
conclude that there is an energy baseline; energy cannot decrease below this threshold.
If the energy increase is small per layout, the new energy is closer to the baseline and
thus will have a higher diminishing return.

This makes choosing the correct amount of refinement steps between the layout
steps difficult even for the same graph. In general, having more refinement steps is
beneficial. It can improve other parts of the graph, since refinement works on the entire
graph and not just the newly introduced nodes and edges. If an interval does not have
enough time to lower the energy, a future refinement step has the opportunity to do
so. We can see this effect in Figure 7c (10 refinement) between layout step 12 and 16,
where the energy continues to decrease until it reaches the energy baseline. In real-
world applications, the data can come in at any rate. Therefore, any opportunity for
refinement to run can improve the graph’s quality. As we pointed out before, refinement
is considered free because it runs while the layout is waiting for data to come in. Trying
to estimate the amount of steps before the diminishing return occurs is not necessary.
The limiting factor should be data velocity and not a user-defined parameter.
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6 Conclusion
We have presented an incremental layout method and a refinement technique for vi-
sualizing online dynamic graphs that are used to create stable and aesthetic pleasing
layouts. First, we have shown how to convert FM3 into our incremental multilevel
multi-pole algorithm. Second, our refinement technique is used to identify high energy
nodes and move them to a low energy state. The refinement technique can be used in
tandem or separately from the layout method. Lastly, we are able to employ a GPU to
accelerate the layout and refinement technique. An empirical evaluation with metrics
shows that our method helps improve layout quality and readability.

For future work, we plan to investigate how to incorporate history, that is, prior
states of the graph, into online dynamic graphs. Our current method helps monitor
ever-changing graphs, but provides no means for reviewing previous network changes.
To improve analysis, it would be helpful to have a mechanism that allows users to
explore the network’s history, while still allowing the system to visualize new data.
The difficulty arises in how we should store the graph’s history and present it back
to the user. A possible avenue of research is to store previous data in a compression
format similar to that of videos. Visualizing the history can also be shown as a video
or a series of small snapshots in a secondary view.
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(a)

(b)

(c)

Figure 7: The total energy in the system observed in the Facebook dataset of 50 layout
steps. We observed the energy after the first layout step, which is a full FM3 calcula-
tion. Energy is mapped to the y-axis in log scale, and the x-axis displays the number
of layout computations. Both lines represent the energy produced by our incremental
layout, namely that green lines show when our refinement technique is applied, and
blue lines are without refinement. The three graphs show the energy for intervals 3(a),
5(b), and 10(c), which is indicative of the amount of refinement computation steps.
The energy in a layout without refinement tends to gradually increase, whereas with
our refinement technique, there is a noticeable decrease of energy after each energy
spike.
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