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Abstract

The scalability of graph layout algorithms has gradually improved for
many years. However, only recently a discussion has started to investigate
the usefulness of established quality metrics, such as the number of edge
crossings, in the context of increasingly larger graphs stemming from a
variety of application areas such as social network analysis or biology.
Initial evidence suggests that the traditional metrics are not well suited
to capture the quality of corresponding graph layouts. We propose a new
family of quality metrics for graph drawing; in particular, we concentrate
on larger graphs. We illustrate these metrics with examples and apply
the metrics to data from previous experiments, leading to the suggestion
that the new metrics are effective.
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1 Introduction

Several of the earliest papers on Graph Drawing (for example, [24, 25, 26])
discussed requirements for a “good” visualization of a graph. For example,
Tamassia et al.[25] state:

Aesthetics: We use the term aesthetics to denote the criteria that
concern certain aspects of readability. A well-admitted aesthetics,
valid independently from the graphic standard, is the minimisation
of crossings between edges. Also, in order to avoid unnecessary waste
of space, it is usual to keep the area occupied by the drawing reason-
ably small. When the grid standard is adopted, it is meaningful to
minimize the number of bends (turns) along the edges, as well as
their total length.

We prefer the term quality metrics rather than “aesthetics”.
These early quality metrics were stated in terms of geometric properties of

the layout. The underlying and often unstated assumption that these geometric
properties of layout measure the “goodness” of a graph drawing was unchal-
lenged until the experiments of Purchase et al. [22]. These experiments showed
that human task performance is correlated with some of the previously defined
quality metrics. A conclusive result was that task times and error rates were
both correlated with the number of edge crossings. Subsequent experiments
have confirmed and refined these initial results [13, 19, 20, 21, 29]. All these
early experiments used relatively small graphs as stimuli; and the validity of the
results for larger graphs was not tested.

Human experiments with larger graphs began recently [15, 16]. In particular
it has been pointed out that edges and vertices become “blobs” in large graph
drawings such as the biological network in Fig. 1; almost all the edge crossings
are hidden in the blobs. Any causal relationship between readability and edge
crossings seems unlikely. Further, a graph drawing can display “structure”
despite having a large number of edge crossings; see, for example, Fig. 2. In this
paper we propose a quality metric for large drawings such as Figs. 1 and 2.

Although it is seldom explicitly stated as a quality metric for graph drawing,
stress is often used as such. There are various measures of stress (for example,
see [7, 8, 10, 12]); the most commonly used is to define the stress in a drawing
D of a connected graph G = (V,E) as

σ =
∑
u,v∈V

wuv (dG(u, v)− d<2(D(u), D(v)))
2

(1)

where dG(u, v) is the graph theoretic distance between u and v, d<2(D(u), D(v))
is the Euclidean distance between the locations D(u) and D(v) of u and v, and
wuv is a constant.

Stress appears to measure the “faithfulness” of a graph drawing [17, 23], in
the following sense. Informally, a drawing D of a graph G is faithful if G can be
determined from D. For a large graph G, a low stress drawing D such as in Fig. 1
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Figure 1: Crossings can be hidden in a drawing of a large graph. This drawing of
a RNA sequence graph has very dense local structures, but clearly visible global
structure.

Figure 2: This drawing of the data graph from the Walshaw graph library [28]
clearly shows the graph’s “structure”, despite a large number of crossings.
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may not completely determine G. However, the low value of stress indicates
that the Euclidean distances between vertices are (approximately) proportional
to the graph-theoretic distances in the graph (see equation (1)); we say that
such a drawing is (approximately) distance faithful.

Quality metrics are significant firstly because they measure success or failure
of a graph drawing method. Most importantly, they can be used as optimisation
goals in graph visualisation methods. For example, algorithms that aim to
draw graphs with a small number of crossings, a small number of edge bends,
and low energy/stress are well established in the academic literature [3] and in
commercial graph visualization tools. New quality metrics, such as proposed
in this paper, potentially can be used with optimisation algorithms to give new
visualisation methods.

This paper proposes a new family of quality metrics for graph visualization,
especially for large graph drawings. Here, by “large”, we mean that the graphs
are large enough to make “blobs” such as in Fig. 1 inevitable. This includes
dense graphs with a few hundred vertices as well as sparse graphs with a few
thousand vertices.

The proposed metrics are based on the notion of the “shape” of a set of
points in <2. Our proposal, simply stated, is that a drawing is good if the shape
of the set of vertex positions is similar to the original graph.

In Section 2 we describe this notion more precisely and illustrate with exam-
ples. In Section 3 we give some empirical indication that the metrics are valid,
based on data sets from previous experiments [2, 16]. Section 4 concludes with
a discussion and some open problems.

2 Shape-based Metrics

Fig. 3 summarises our proposal. The quality of a drawing D of a graph G is the
similarity between G and the “shape” of the set of vertex locations of D. The
“shape” is expressed as a graph, called a “shape graph”.

Original graph 𝑮 Graph drawing 𝑫 

Point set  𝑷 

Fo
rg

et ed
g

es 

Shape graph 𝑮′ 

The quality of the drawing 𝑫 is 
the similarity between 𝑮 and 𝑮′ 

Draw 

Construct shape graph 

Figure 3: Shape-based quality metrics.

To make these notions more precise, we need to examine the notion of the
shape of a set of points, and the notion of similarity between two graphs.

Note that we have an underlying assumption that the shape of the graph
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drawing is the same as the shape of the set of vertex locations. For large
graphs, this is a reasonable assumption, as vertices tend to be so close together
that edges are hardly visible. In Fig 4, for example, the graph drawing is almost
indistinguishable from its set of vertex locations.

(a) (b) 

Figure 4: (a) a graph drawing D; (b) the set of vertex locations of D.

2.1 Shape Graphs

Informally, a shape graph for a set of points P is a geometric graph with vertex
set P that captures the “shape” of P in some sense.

The classical example of a shape graph is the α-shape [5]. When α = 0 the
α-shape is the convex hull; in general, alpha shapes generalize the concept of
the convex hull. For α > 0, the α-shape graph for a set of points P contains a
straight-line edge between a pair of points if and only if the two points can be
touched by an open disc of radius α−1 that contains no points of P ; for details
see [5]. Note that α-shapes capture the shape of the boundary of P , and not
the internal structure of P . For this paper we need a concept of shape that
captures the internal structure of a set of points.

A more suitable kind of shape graph is a “proximity graph”: an edge is
placed between two points p, q ∈ P if p is “close to” q in some sense. There are
many kinds of proximity graphs (see [27]); some examples are below:

• The k-nearest neighbours graph has a (directed) edge from point p ∈ P to
point q ∈ P if the number of points r ∈ P with d(p, r) < d(p, q) is at most
k − 1.
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• Various triangulations and quadrilateralizations: for example, the Delau-
nay triangulation, greedy triangulations, and minimum-weight quadrilat-
eralizations.

• The Gabriel graph (GG) has an edge between distinct points p, q ∈ P if
the closed disc which has the line segment pq as a diameter contains no
other elements of P .

• The relative neighbourhood graph (RNG) has an edge between distinct
points p, q ∈ P if there is no point r ∈ P such that d(p, r) ≤ d(p, q) and
d(q, r) ≤ d(p, q).

• A Euclidean minimum spanning tree (EMST) is a minimum spanning
tree of P where the weight of the edge between each pair of points is the
Euclidean distance.

Note that many of these shape graphs are local in that the existence of
an edge between two points is determined by a local neighbourhood of those
points. Other shape graphs, such as the Euclidean minimum spanning tree and
minimum weight quadrilateralizations, are global.

In Section 3 below, we examine quality metrics based on the Euclidean
minimum spanning tree, the Gabriel graph, and the relative neighborhood graph
respectively; each of these shape graphs can be computed in O(n log n) time
using standard algorithms [18]. However, our remarks apply in principle to any
shape graph.

2.2 Graph Similarity

Suppose that G1 = (V,E1) and G2 = (V,E2) are two graphs with the same
vertex set. A simple measure for the similarity of G1 and G2 is the mean
Jaccard similarity :

MJS(G1, G2) =
1

|V |
∑
u∈V

|N1(u) ∩N2(u)|
|N1(u) ∪N2(u)|

, (2)

where Ni(u) is the set of neighbours of u in Gi for i = 1, 2. It is straight-forward
to compute the mean Jaccard similarity in linear time.

Note that 0 ≤ MJS(G1, G2) ≤ 1. Also, if G1 and G2 share many edges,
then MJS(G1, G2) is close to 1; if they share very few edges then MJS(G1, G2)
is close to 0.

More complex measures for graph similarity include graph edit distance [9],
and measures based on the notion that the similarity of two vertices u and u′

depends on the similarity of their neighbours (see, for example, [14]). However,
these metrics are computationally expensive and do not scale beyond a few
thousand vertices; mean Jaccard similarity can be computed in linear time and
performs well in the experiments described below in Section 3.
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2.3 The Shape-based Metrics

We can now explicitly define our proposed metrics. Suppose that D is a drawing
of a graph G; we want to measure the quality of D. Let P denote the set of
vertex locations of D, and suppose that µ is a shape graph function (that is, µ
takes a set of points and produces a shape graph on this set of points). Further,
let η be a graph similarity function, that is, η takes two graphs as input and
returns a positive real number that indicates the similarity between these two
graphs. Then we define the quality metric Qµ,η by

Qµ,η(D) = η(G,µ(P )).

Throughout this paper we use the mean Jaccard similarity for graph simi-
larity, and so we abbreviate Qµ,η to Qµ.

The time to compute Qµ depends on the choice of µ; for all such choices µ
explicitly described in this paper, Qµ can be computed in time O(n log n).

2.4 Related Metrics

Our proposed metrics are, in spirit, related to the “graph theoretic scagnostics”
approach to scatterplots (see [30]). Scagnostics measure global shape character-
istics of scatter plots based on proximity graphs. Using EMST, α-hull, and the
convex hull to characterize the global shape, these measures enable quantitative
statements regarding shape, trend, density, outlier, and coherence characteris-
tics of a scatterplot.

In the case that the shape graph µ is a k-nearest neighbor graph, the “neigh-
borhood inconsistency” [8] and “neighborhood preservation precision” [7, 8]
metrics used by Gansner et al. are also related. These two metrics have a dif-
ferent motivation to ours: rather than measure the general notion of shape, they
attempt to measure whether neighbours in the layout coincide with neighbours
in the graph. Nevertheless, we can regard the “neighborhood inconsistency” as
an example of a local shape-based metric when the shape graph µ is a k-nearest
neighbor graph, and the similarity function η is based on the “stochastic neigh-
bor embedding” of Hinton and Roweis [11].

2.5 Bounds

It is clear that if D is a drawing of a graph G, then for every choice of µ,

0 ≤ Qµ(D) ≤ 1.

More precise bounds may be obtained for more specific cases. As an example,
we can compute an upper bound for the Euclidean minimum spanning tree
based metric QEMST as follows. Consider the graph G = (V,E) with n vertices
and m edges; we assume that m > n. Suppose that V = {1, 2, . . . , n} and
di is the degree of vertex i in G; we assume without loss of generality that
1 ≤ d1 ≤ d2 ≤ · · · ≤ dn.
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Since m > n,
n∑
i=1

di > 2(n− 1);

let `∗ be the smallest integer such that

l∗∑
i=1

di > 2(n− 1).

Suppose that T = (V,E′) is a Euclidean minimum spanning tree of the
locations of vertices in the drawing D of G, and d′i is the degree of i in T .
Equation (2) implies that

QEMST (D) <
1

n

n∑
i=1

d′i
di
,

and since
∑n
i=1 d

′
i = 2(n− 1), it is straightforward to deduce that

QEMST (D) <
`∗ + 1

n
. (3)

We can refine this bound. For k = 1, 2, , . . . , n we define

f(k) = n− k +

k∑
i=1

di.

Now f(k) is nondecreasing in k and f(n) = 2|E| > 2(n− 1). Let k∗ denote the
smallest integer such that f(k∗) > 2(n− 1). Further let

r =

n∑
i=k∗+1

1

di
,

and

s =
n+ k∗ − 2−

∑k∗−1
i=1 di

dk∗
.

Then we can deduce the following upper bound:

QEMST (D) ≤ k∗ − 1 + s+ r

n
. (4)

For specific families of graphs, more specific bounds can be obtained. For
example, if G is regular of degree d > 1, then from (3) we can deduce:

QEMST (D) <
1

n

⌈
2(n− 1)

d

⌉
≈ 2

d
.

Similar bounds can be derived for the metrics QGG and QRNG based on the
Gabriel graph and the relative neighbourhood graph.
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2.6 Some Examples

Although our proposal is principally aimed at large graphs, we first describe
an easy example using a smaller graph, for illustrative purposes. Consider the
graph drawing D0 in Fig. 5(a). The set P0 of vertex locations of D0 is shown in
Fig. 5(b). A Euclidean minimum spanning tree T0 on P0 is shown in Fig. 5(c).

Our proposal is that the quality QEMST (D0) of the graph drawing D0 can
be measured as the similarity between the (combinatorial) graphs in Figs. 5(a)
and (c). Using the mean Jaccard similarity in Equation (2), we can calculate the
value QEMST (D0) = 0.60. The upper bound on QEMST for this graph, given
by the inequality (3), is 0.68. The comparatively high value of QEMST (D0)
expresses the fact that the “shape” of the drawing D0 is similar to the graph
G. Intuitively, the graph drawing D0 is a reasonably faithful representation of
the graph G.

(a) (b) (c) 

Figure 5: (a) A graph drawing D0. (b) The set P0 of vertex locations of D0. (c)
A Euclidean minimum spanning tree T0 on P0.

A larger example is illustrated with two drawings Da and Db in Fig. 6 of a
graph blobs1001, which has 1001 vertices and 7537 edges. Both drawings are
computed with the organic layout tool of yFiles [1], but with different settings.
The drawing Da in Fig. 6(a) is computed using yFiles “quality/time ratio”
set to minimise time (at the cost of quality); the drawing Db in Fig. 6(b) has
this ratio set to maximise quality (at the cost of time).

One can compute QEMST (Da) = 0.088, and QEMST (Db) = 0.100. This
confirms the intuition that the quality of Db is a little higher that of than Da.
Further, the upper bound from (3) for blobs1001 is 0.165, so both drawings are
reasonable but perhaps not optimal.

3 Three Experiments

In this section, we describe three tests of the shape-based quality metrics. In the
first test we progressively deform a good drawing and compute the shape-based
quality metrics. The second and third tests investigate how the shape-based
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(a) (b) 

Figure 6: Two drawings of the graph blobs1001: (a) drawing Da computed using
yFiles “quality/time ratio” set to minimise time (at the cost of quality);
(b) drawing Db with “quality/time ratio” set to maximise quality (at the
cost of time).

quality metrics perform on two specific data sets from previous experiments [2,
16].

3.1 Progressive Deformation

Consider drawing D0 in Fig. 5(a) of the small graph G, as described in Sec-
tion 2.6. We examine what happens when we progressively deform the drawing
to make it worse. Suppose that Dδ is formed from D0 by moving each vertex
in a random direction by a random distance in the range [0, δw], where w is the
width of the screen. Drawings Dδ for δ = 0.1, 0.2, and 0.5 are shown in Fig. 7.

For δ = 0.1, the shape of the drawing is fairly close to G; that is, the mini-
mum spanning tree Tδ shares quite a few edges withDδ. The valueQEMST (D0.1) =
0.42 is reasonably high. As δ increases, the shape graph Tδ is less similar to
G, and the values of QEMST (Dδ) fall. For δ = 0.5 the shape of the drawing
shows no resemblance to G, and QEMST (Dδ) is low. Intuitively, as the drawing
becomes worse, the shape of the set of points differs more and more from the
graph.

For a larger example, we consider a graph stringyBlobs with 2736 vertices
and 15103 edges; a drawing stringyBlobsOrganic of stringyBlobs using the
yFiles organic layout [1] is in Fig. 8. The graph stringyBlobs is globally
sparse and tree-like, but it has some dense “blobs”; this structure is faithfully
shown by the organic layout in Fig. 8.

In a progressive deformation of stringyBlobsOrganic, we moved vertices
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𝛿 𝐷𝛿  𝑇𝛿  𝑄𝐸𝑀𝑆𝑇 𝐷𝛿  

0.1 0.42 

0.2 0.34 

0.5 0.07 

Figure 7: The drawing Dδ in the second column is formed from the drawing D0

in Fig. 5 by moving each vertex in a random direction by a random distance
in the range [0, δ]. The graph Tδ in the third column is a Euclidean minimum
spanning tree of the vertex locations of Dδ.

randomly by a distance of 0.005 ∗ screenSize over 30 steps; steps 5, 10, and
15 are shown in Figs. 9, 10, and 11. As the drawing is deformed, the “blobs”
merge and split, and the “stringy” parts become tangled; the drawing displays
less structure. With further deformation, the drawing becomes more or less a
single blob.

The values of the metric QEMST are charted in Fig. 12. As expected, the
metric decreases as the drawing is deformed and displays less structure.

In fact, progressive deformation of other large graphs produces similar re-
sults. As another example, progressive deformation of the drawingDb in Fig. 6(b)
yields the chart in Fig. 13.



40 Eades et al. Shape-Based Quality Metrics for Large Graph Visualization

Figure 8: A drawing stringyBlobsOrganic of the graph stringyBlobs, drawn
with the yFiles organic layout tool [1].

3.2 The “Untangling” Data Set

3.2.1 The GION experiment

Marner et al. [16] introduced a new method called GION for supporting inter-
action with graph drawings on large displays. The user study of [16] focussed on
the task of untangling a graph drawing: subjects were presented with a graph
drawing (a Fruchterman-Reingold layout [6]), and were simply asked to untan-
gle the layout. Eight RNA sequence graphs were used, ranging from 1159 to
7885 vertices. These graphs are locally dense, but globally very sparse. Their
global structure is often tree-like, perhaps path-like. There were 16 subjects.

The experimental system captured, for each subject and each graph, a snap-
shot drawing every 5 seconds; the snapshot at time t is denoted by Dt. Two
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Figure 9: Progressive deformation of the drawing stringyBlobsOrganic in
Fig. 8: after 5 steps of deformation.

such snapshot graph drawings are shown in Fig. 14(a) and (b).

The main result of the experiment, reported in detail in [16], was that the
GION method is better in several ways than more traditional interaction meth-
ods.

3.2.2 Shape-based metrics and the GION data set

The GION experiment provides a large data set recording how users tried to
untangle graph drawings (8 graphs 16 users 24 snapshot drawings). We can
re-use this data to check our shape-based quality metrics. For each snapshot
Dt, we computed the number χ(Dt) of edge crossings, the (scaled) stress σ(Dt),
and the metrics QEMST (Dt), QGG(Dt), and QRNG(Dt), respectively based on
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Figure 10: Progressive deformation of the drawing stringyBlobsOrganic in
Fig. 8: after 10 steps of deformation.

Euclidean minimum spanning tree, Gabriel graphs, and relative neighborhood
graphs.

Commonly-held graph drawing wisdom is that χ(Dt) and σ(Dt) decrease
with the quality of the graph drawing. We expect that quality increases as the
graph is untangled, and so we expect that χ(Dt) and σ(Dt) decrease with t.

Note that the shape-based quality metricsQEMST (Dt), QGG(Dt), andQRNG(Dt)
are expected to increase with t. To make the comparison between these met-
rics easier, we place them on a comparable scale by inverting and normalising
crossings and stress, as follows.

We define

Q̄χ(Dt) =
Mχ − χ(Dt)

Mχ
, Q̄σ(Dt) =

Mσ − σ(Dt)

Mσ
,
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Figure 11: Progressive deformation of the drawing stringyBlobsOrganic in
Fig. 8: after 15 steps of deformation.

where Mχ = maxt χ(Dt) and Mσ = maxt σ(Dt).

Note that Q̄χ(Dt) (respectively Q̄σ(Dt)) decreases from 1 to 0 as the number
of crossings (respectively stress) increases from 0 to the maximum Mχ (respec-
tively Mσ). For the shape-based metrics, we simply linearly normalise QEMST

(respectively QGG and QRNG) to give Q̄EMST (respectively Q̄GG and Q̄RNG)
so that it increases from 0 to 1 as the (shape-based) quality of the drawing
increases.

Intuitively, one may expect that the drawing improves in quality as the
untangling proceeds. However, the results reported in [16] were counterintuitive
in terms of crossings and stress: as the subjects untangled the graph drawings,
there was a tendency to increase both crossings and stress (that is, both Q̄χ
and Q̄σ decreased).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Figure 12: QEMST values as the drawing stringyBlobsOrganic is deformed.

1 11 21 31 41

Q
_E

M
ST

 

Deformation step 

Figure 13: QEMST values as the drawing Db in Fig. 6(b) of blobs1001 is
deformed.

In contrast, we found that Q̄EMST , Q̄GG, and Q̄RNG all increased as the
subjects untangled the drawings. The charts in Fig. 15 show Q̄χ, Q̄σ, Q̄EMST ,
Q̄GG, and Q̄RNG, averaged over all subjects, for the first 3 of the 8 graphs. The
horizontal axis is time t; the vertical axis shows the values of the metrics. For
graphs #1 and #2, both crossings and stress increase with t (that is, Q̄χ(Dt) and
Q̄σ(Dt) decrease). In contrast, Q̄EMST , Q̄GG, and Q̄RNG increase. Graphs #4,
#5, #6, #7, and #8 showed very similar patterns to graphs #1 and #2. Graph
#3 was a little different in that crossings decrease (and thus Q̄χ increases), albeit
chaotically.

Overall, the data from the untangling experiment shows that both crossings
and stress metrics became worse as the subjects untangled the graphs, but the
shape-based metrics became better. With some provisos (see Section 4 below),
this suggests that the shape-based metrics are better than crossings and stress
for measuring untangling.
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(a) (b) 

Figure 14: Two snapshots from the GION experiment.
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Figure 15: Metrics against untangling.

3.3 The “Preference” Data Set

3.3.1 The “preference” experiment

Chimani et al. [2] report an experiment at the University of Osnabrück aimed at
determining whether human preferences in graph drawing correlates with cross-
ings and stress. There were two follow-up experiments, at the Graph Drawing
conference in 2014, and at the University of Sydney. The design and results of
all three experiments were similar; see [2]. Here we investigate the data from
the University of Sydney experiment, aiming to determine whether shape-based
metrics are correlated with preference.

This experiment had 40 subjects. Each subject was presented with 20 “in-
stances”. Each instance displayed a pair of drawings of the same graph, as in
the screenshot in Fig. 16.

There is a slider bar at the bottom of the screen, and the subject indicates
which of the pair of drawings he/she prefers by sliding to the left or right. The
slider bar has a scale on the left from 5 to 1 and on the right from 1 to 5, with
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Figure 16: Example of a typical “instance” (a graph pair shown to participants)
for the preference experiment.

zero in the middle. The slider bar is used to give a score to the drawing that
the subject prefers, indicating how much the subject prefers it. A score of 5 on
the left indicates a strong preference for the drawing on the left, a score of 5 on
the right indicates a strong preference for the drawing on the right, and a score
of zero indicates no preference.

A total of 118 graphs, ranging in size from small (25 vertices and 29 edges)
to moderately large (8000 vertices and 15580 edges), were used. Five drawings
for each graph were generated, and the instances were chosen randomly. For
details, see [2].

The results for a particular quality metric Qµ are expressed in terms of the
“Qµ-ratio”, defined as follows. Consider an instance consisting of two drawings
Dleft and Dright of a graph G, such as in Fig. 16. Let Qµ(Dleft) (respectively
Qµ(Dright)) be the value of the Qµ metric for Dleft (respectively for Dright).
We define the Qµ-ratio for this instance as

max(Qµ(Dleft), Qµ(Dright))

min(Qµ(Dleft), Qµ(Dright))
.

If the Qµ-ratio is approximately 1, then (according to the quality metric Qµ)
Dleft has approximately the same quality as Dright. We expect that the subject
prefers Dleft in about 50% of such instances; our experiments showed that this
was true for all the metrics under investigation.
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If the Qµ-ratio is significantly larger than 1, then we expect that most sub-
jects prefer the drawing with the higher quality (according to the quality metric
Qµ). Further, as the Qµ-ratio increases, we expect that more and more subjects
prefer the drawing with higher quality. To make this precise, we need to define
some further terms.

For each quality metric Qµ and each instance I we compute a score Sµ(I) as
follows. Suppose that for this instance, the subject gives a score of x (0 ≤ x ≤ 5).
If the subject chose the drawing with a higher value of the quality metric Qµ,
then Sµ(I) = x; otherwise Sµ(I) = −x. The expectation that most subjects
prefer the drawing with the higher quality becomes an expectation that in most
instances, Sµ(I) is positive.

For each metric Qµ, we chart the median of Sµ(I) over all instances I
against the Qµ-ratio in Fig. 17. The charts for crossings and stress are shown
in Fig. 17(a), and for EMST, GG, and RNG in Fig. 17(b).
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Figure 17: Stress and crossing ratios, shape graph ratios, and preferences.

For both crossing and stress, there is adequate data for ratios from 1 to 5;
however, the data for ratios larger than 4.5 is small (less than 20 instances) and
the results at this end of the spectrum must be treated with caution.

Crossings. Overall, there is a slight preference for fewer crossings (median over
all instances is +1). As the crossing ratio increases, the median preference
for the drawing with fewer crossings increases. When the crossing ratio
is above 2.5 the median preference for the drawing with fewer crossings is
+3, and stays steady at +3 as the crossing ratio increases beyond 2.5.

Stress. Overall, there is a preference for lower stress (median over all instances
is +2). As the stress ratio increases, the median preference for lower stress
rises; it hovers between +3 and +4 when the stress ratio is above 4.
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3.3.2 Shape-based metrics and the “preference” data set

For EMST, GG, and RNG, there is adequate data for ratios from 1 to 1.5; but
the data for ratios larger than 1.45 is small (less than 20 instances) and the
results at this end of the spectrum must be treated with caution.

EMST. The median preference for the drawing with higher value of Q̄EMST

is chaotic when the EMST-ratio is less than 1.2. The preference rises to
+4 when the EMST-ratio rises from 1.2 to 1.3, and remains at +4 as the
EMST-ratio increases beyond 1.3.

GG. Overall, there is a preference for drawings with a higher value of Q̄GG
(median over all instances is +2). The preference for the drawing with
higher value of Q̄GG rises smoothly with GG-ratio. When the GG-ratio
is above 1.2 the median preference for the drawing with higher value of
Q̄GG is +4, and remains at +4 as the GG-ratio increases beyond 1.2.

RNG. Overall, there is a preference for drawings with a higher value of Q̄RNG
(median over all instances is +1). The preference for the drawing with
higher value of Q̄RNG rises smoothly with RNG-ratio. When the RNG-
ratio is above 1.2 the median preference for the drawing with higher value
of Q̄RNG is +4, and remains at +4 as the RNG-ratio increases beyond
1.2.

One can conclude that people prefer drawings with fewer crossings, lower
stress, and higher values for the shape-based metrics QEMST , QGG, and QRNG.
More significantly, the preference for better GG and RNG based metrics is
stronger than the preference for fewer crossings and lower stress.

Further, note that the overall preference for EMST-based metrics seems
unreliable when the EMST-ratio is small; this suggests that EMST is not as
good a model as GG and RNG.

4 Conclusion and Open Problems

This paper proposes a new family of metrics, aimed at measuring the quality of
large graph drawings in terms of their shape.

4.1 Empirical validation

The proposal that the shape-based metrics are good measures of the quality of
a graph drawing is supported by the “progressive deformation” experiment as
described in Section 3.1.

The data from both the “untangling” experiment and the “preference” exper-
iment also support the proposal; there is some indication that the shape-based
metrics are better than crossings and stress. However, the support from these
human experiments has some significant limitations:
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• Neither experiment was designed to test the shape-based metrics. To
safely validate the new metrics, further study is needed.

• The “untangling” experiment used a very specific kind of graph: RNA
sequence graphs, which are locally dense with a global “tree-like” struc-
ture. For more general classes of graphs, further experimentation would
be useful.

• The experiments use the notions of “untangledness” and “preference” as
proxies for ground truth quality. It would be useful to test the metrics in
a task-oriented experiment.

Designing experiments to fully validate shape-based metrics remains an open
problem. In particular, we hypothesise that time and error of tasks on large
graphs (see [15]) is related to shape-based metric values. The design of experi-
ments to test this hypothesis is difficult. A significant problem is to determine
which tasks are appropriate for large graph visualization; further difficulties
arise because the results of such an experiment could be highly dependent on
the specific tasks used.

4.2 Stress and shape-based metrics

It is tempting to suggest that stress and shape-based metrics are related. How-
ever, the relationship may not be strong. As a simple example, see the two
drawings in Fig. 18. Here we would argue that Fig. 18(a) and Fig. 18(b) convey
the structure of graph equally, and that the higher stress of Fig. 18(b) does not
mean that it is a worse drawing.

(a) (b) 

Figure 18: Two drawings with different stress values, but the same shape-based
metric values.

In a slightly larger example, consider the two drawings in Fig. 19; this graph
has 295 vertices and 931 edges. The stress in Fig. 19(a) is much larger than
that in Fig. 19(b), yet the shape-based metrics return almost the same value.
Again we believe that Fig. 19(a) and Fig. 19(b) convey the structure of graph
equally (perhaps (a) is better), and that the lower stress of Fig. 19(b) does not
mean that it is a better drawing.

Our belief here (that in both Fig. 18 and Fig. 19, drawings (a) and (b)
convey the graph structure equally) is just based on intuition; testing this belief
empirically remains an open problem.
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(a) (b) 

Figure 19: Two more drawings with different stress values, but the same shape-
based metric values.

A further interesting open problem is to investigate whether there is any
mathematical relationship between stress and shape-based metrics.

4.3 Algorithm evaluation

We believe that shape-based metrics can be used to compare graph drawing
algorithms, especially for large graphs. We conjecture that the one reason that
energy and force directed methods are universally used for large graphs is be-
cause they show shape better than other methods (for example, circular layout,
orthogonal layout). This conjecture is currently untested.

4.4 Optimisation

Algorithms that draw graphs to optimize shape-based metrics are unknown.
Note that (as with most graph layout problems) optimisation problems of this
kind are typically NP-hard. For example, it is clearly NP-hard to find a drawing
which optimises QEMST (see [4]). Thus approximation approaches are in order.
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