
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 20, no. 2, pp. 461–479 (2016)
DOI: 10.7155/jgaa.00403

Exponential vs. Subexponential Tower of Hanoi

Variants

Daniel Berend 1 Amir Sapir 2,3

1Departments of Mathematics and Computer Science,
Ben-Gurion University of the Negev, Israel

2Department of Computer Science, Sapir Academic College, Yehudah, Israel
3The Center for Advanced Studies in Mathematics at Ben-Gurion University,

Beer-Sheva, Israel

Abstract

We deal here with Tower of Hanoi variants played on digraphs. A major
source for such variants is achieved by adding pegs and/or restricting direct
moves between certain pairs of pegs. It is natural to represent a variant of this
kind by a directed graph whose vertices are the pegs, and an arc from one vertex
to another indicates that it is allowed to move a disk from the former peg to the
latter, provided that the usual rules are not violated. We denote the number of
pegs by h. For example, the variant with no restrictions on moves is represented
by the Complete graph Kh; the variant in which the pegs constitute a cycle and
moves are allowed only in one direction is represented by the uni-directional
graph Cyclich .

For all 3-peg variants, the number of moves grows exponentially fast with
n. However, for h ≥ 4 pegs, this is not the case. For example, for Cyclich the
number of moves is exponential for any h, while for a path on 4 vertices it is

O(
√
n3

√

2n).
This paper characterizes the graphs for which the transfer of a tower of size n

of disks from a peg to another requires exponentially many moves as a function
of n.

To this end we introduce the notion of a shed, as a graph property. A vertex

v in a strongly-connected directed graph G = (V, E) is a shed if the subgraph

of G induced by V (G) − {v} contains a strongly connected subgraph on 3 or

more vertices. Graphs with sheds will be shown to be much more efficient than

those without sheds, for the particular domain of the Tower of Hanoi puzzle.

Specifically, we show how, given a shed, we can indeed move a tower of disks

from any peg to any other within O(λn
α

) moves, where λ > 1 and α = 1

2
+o(1).

For graphs without a shed, this is impossible.

Submitted:
March 2014

Reviewed:
December 2015

Revised:
July 2016

Accepted:
August 2016

Final:
October 2016

Published:
October 2016

Article type:
Regular paper

Communicated by:
M. Kaufmann

Research supported in part by the Sapir Academic College, Israel

E-mail addresses: berend@cs.bgu.ac.il (Daniel Berend) amirsa@cs.bgu.ac.il (Amir Sapir)

http://dx.doi.org/10.7155/jgaa.00403
mailto:berend@cs.bgu.ac.il
mailto:amirsa@cs.bgu.ac.il

462 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

1 Introduction

Given are 3 pegs and a certain number n of disks of distinct sizes. Initially, the
disks form a tower: the largest at the bottom of one of the pegs (the source),
the second largest on top of it, and so on, until the smallest at the top of that
peg. The well-known Tower of Hanoi problem asks: how do we optimally move
the tower to another peg (the destination peg), subject to the following rules:

1. At each step only one disk is moved.

2. The moved disk must be a topmost one.

3. At any moment, no disk may reside on a smaller one.

We shall refer to constraints 1-3 as the Hanoi rules (HR).
The puzzle was invented over a hundred years ago by Lucas [24]. Ever since

then, it was studied from numerous points of view. For example, in [2, 3, 1],
algebraic properties of the solution to the Tower of Hanoi are discussed, and
it is shown that the string representing the optimal solution – where the ith

character denotes the disk moving at the ith step – is square-free. This line of
work was extended in [4]. The combinatorial aspect has been considered too
(cf. [19, 21]). As computer science education has evolved, the Tower of Hanoi
problem has been used as a common example, demonstrating the elegance of
recursive programming. The reader is referred to [35, 10] for a review of the
history of the problem, to [36] for an extensive bibliography of papers on various
lines of research in the field and to the recent (and first!) book [18] on many of
the mathematical aspects of the subject.

Many variants of the original puzzle have come up, some of which will be
described here, though not chronologically. Without changing the basic peg
structure (3 pegs, each pair being connected bi-directionally), one direction is
solving the problem for any initial and final configurations – arrangements of
disks among the pegs such that HR3 is not violated (cf. [15]). Other challenging
versions have been proposed and solved in [26, 27, 28, 29, 25]. In another
direction, a disk may reside on top of a smaller one, with various limitations,
[22, 12].

Another version of the original problem is where we impose restrictions on
the movements between pegs, which was discussed in several papers. In [32, 35,
17], the “three-in-a-row” (Path3) arrangement is studied. The uni-directional
cycle (Cyclic3) has been solved in [5, 14]. It is natural to represent a variant
by a directed graph. A necessary and sufficient condition for a variant (on
3 or more pegs) to be solvable, for any source and destination pegs and any
number of disks, is that the corresponding graph is strongly connected [23]. For
3 pegs there are 5 (up to isomorphism) strongly connected variants. A single
optimal algorithm for all these variants was obtained in [31], accompanied with
an explicit formula for the minimum number of moves for each variant. (Note
that individual algorithms and explicit formulas were known beforehand for the
common variant K3, for Path3, and for Cyclic3, as mentioned above.)

JGAA, 20(2) 461–479 (2016) 463

Probably the first version with four or more pegs is “The Reve’s Puzzle” [13,
pp. 1−2], in which there are 4 pegs and various specific numbers of disks. It has
been generalized to any number of pegs and any number of disks in [33], with
solutions in [34] and [16], which were (among several other solutions) proved to
be identical in [20]. Analysis of the algorithms given for these problems reveals,
somewhat surprisingly, that the number of moves in the solution grows sub-
exponentially as a function of the number of disks n. In the case of 4 pegs, it

grows like Θ(
√
n2

√
2n) (cf. [35]). The lower bound issue was considered in [37]

and [11], where it has been shown to grow at a rate close to that yielded by the
algorithm.

Allowing four or more pegs, and imposing restrictions on whether a direct
move of a disk from peg i to peg j is allowed, for each pair (i, j) of pegs, we obtain
a huge number of graphs (83 non-isomorphic strongly connected digraphs on 4
vertices already), and no algorithm seems a natural candidate to be optimal.
The question whether a variant is sub-exponential had been resolved only for
particular ones: Star [35] (which was proved to be sub-exponential), Cyclic [7]
(exponential) and Path [9] (sub-exponential; specifically, for h = 4 pegs, the

number of moves grows slower than 1.6
√
n · 3

√
2n.)

The fact that, even for the original multi-peg variants on complete graphs,
it is not known whether the proposed algorithms are optimal, indicates that
the complexity issue for this directed-graph generalization is non-trivial. Facing
the wealth of variants, we would like an easy way to determine, given a variant,
whether the number of moves required grows exponentially or sub-exponentially
fast. This paper presents a simple necessary and sufficient condition for a variant
to be sub-exponential. In addition, it shows that

• almost all graphs are sub-exponential;

• the exponential graphs form a family with a concise description; and

• all the sub-exponential graphs are at most “slightly worse” than K4 and
Path4.

In Section 2 we describe the problem domain. The main results are introduced
in Section 3. The proofs of the theorems are presented in Section 4.

2 Problem domain and notations

Any arrangement of pegs and their immediate connections, such that each
peg is reachable from each other, constitutes a variant. As mentioned above, it
is natural to represent a variant by a digraph G, whose vertices are the pegs,
and an arc from one vertex to another designates the ability of moving a disk
from the former peg to the latter, provided that the HR are obeyed. In the rest
of the paper, when we mention a variant graph, we mean a strongly connected

464 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

simple directed graph (which amounts to requiring that each peg is reachable
from each other) on h ≥ 3 vertices.

A configuration is a distribution of the disks among the pegs, in accordance
with HR.3. A configuration is perfect if all disks reside on the same peg. Such
a configuration will be denoted by Ri,n, where n is the number of disks (disk 1
being the smallest and disk n the largest) and i the peg containing the disks.

Given a variant graph G and a positive integer n, the corresponding config-
uration graph G(n) is the graph whose vertices are all configurations of n disks
over G, where there is an arc from a vertex to another if one can pass from
the former to the latter by a single disk move. More generally, for any pair of
configurations there is a corresponding task, of passing from the first to the sec-
ond. Thus, an optimal solution of a task corresponds to a shortest path between
the vertices of G(n) representing the task’s initial and final configurations. The
diameter of G(n) is denoted by Dn(G).

A task is perfect if both its initial and final configurations are perfect. We
use the notation Ri,n → Rj,n both for the task and for a minimal length solution
of it. The length of such a minimal solution is expressed by |Ri,n → Rj,n|. We
set di,j,n(G) = |Ri,n → Rj,n|. An interesting quantity is dn(G) = max

i,j
di,j,n(G),

which we call the little diameter of G(n). When the identity of the graph to
which we refer is clear, we may omit it from this notation. For example, we
may write Dn instead of Dn(G).

Formally, a move is composed of the disk being moved, the peg on which it
resides prior to the move, and the peg to which it is transferred. A solution to
a task is a sequence of moves accomplishing it. The algorithms constructed in
the proofs of our results produce solutions to all perfect tasks.

A variant graph G is H-exp if Dn(G) grows exponentially fast as a function
of the number of disks, namely there exist C > 0 and λ > 1 such that Dn(G) ≥
Cλn for all n. G is H-subexp if for every ε > 0 there exists a constant C = C(ε)
such that Dn(G) ≤ C(1 + ε)n. In principle, it could have been the case that
a graph is neither H-exp nor H-subexp. However, it will follow, in particular,
from Theorem 1, below, that the rate of growth of Dn(G) is sufficiently regular
to ensure this dichotomy. In addition, H-subexp graphs admit an explicit sub-
exponential bound. Namely, we prove that, if G is H-subexp, then Dn(G) ∈
O(λnα

) moves, where λ > 1 and α = 1
2 + o(1).

3 Main results

The main problem we study is how to identify, given a variant graph, whether
it is H-subexp or H-exp. We start by proving that the number of moves behaves
regularly as a function of the number of disks.

For a variant graph G, denote λG = infn≥1
n

√

dn+1(G).

Theorem 1 For any variant graph G

lim
n→∞

n

√

dn(G) = λG .

JGAA, 20(2) 461–479 (2016) 465

Let us recall Corollary 1 of [8]:

Proposition 1 For any variant graph and any number of disks,

Dn ≤ (2n− 1)dn .

Combining Theorem 1 and Proposition 1 one can infer

Corollary 1 For every graph G and ε > 0 there exists an n0 such that

λn−1
G ≤ dn(G) ≤ Dn(G) ≤ (λG + ε)n−1, n ≥ n0.

Remark 1 Corollary 1 states that dn and Dn are not too far apart, justifying
that it suffices to focus on dn.

The main question this paper answers is: what property must G have so
that λG = 1? To answer this, we need the following notion.

Definition 1 A shed in a strongly connected digraph G (see Fig. 1) is a vertex
w with the property that the graph induced by V (G)−{w} contains a strongly
connected subgraph of size at least 3.

4 (the shed)

1

3

1

2

G

4 (a shed)

1

3

G2

2

Figure 1: Two graphs with sheds

Our main result is

Theorem 2 A variant graph G with h ≥ 3 vertices is H-subexp if and only if
it contains a shed.

Of course, for h = 3 the graph cannot contain a shed, so such a graph is
always H-exp (which is trivial anyway).

Unlike the proof of sub-exponentiality for K4 (cf. [35]) or for the path Ph [9]
for h ≥ 4, the proof for general graphs containing a shed is quite cumbersome.
The reason is, intuitively, that the former graphs have (at least) two sheds. This
means that there are a lot more options of keeping a block of small disks on
some peg for a while, taking care in the meantime of other (large) disks. On

466 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

the other hand, if the graph has a single shed, then no obvious sub-exponential
algorithm comes to mind, and in fact it may seem surprising at first glance that
such an algorithm exists at all.

It is possible to give a very explicit description of those strongly connected
graphs not containing a shed. To this end, we need

Definition 2 A moderately enhanced cyclic graph (see Fig. 2) is a graph com-
posed of a single uni-directional cycle containing all the vertices, augmented
with some arcs in the reverse direction, provided that no two such arcs are
adjacent.

2

3

1

45

6

7

1

2

3

45

6

7

(a) A non moderately enhanced cyclic graph
(since it has two consecutive back arcs)

(b) A moderately enhanced cyclic graph

Figure 2: A moderately enhanced cyclic graph and a graph with a shed

Proposition 2 gives a simple characterization of shedless graphs.

Proposition 2 A strongly connected graph on h ≥ 4 vertices has no shed if
and only if it is a moderately enhanced cyclic graph.

4 Proofs

To prove Theorem 1, we first need

Lemma 1 For every strongly connected graph G,

dm+n−1 ≤ dmdn, m, n ≥ 1.

Proof: We need to show that, for every 1 ≤ i, j ≤ h with i 6= j, the task
Ri,m+n−1 → Rj,m+n−1 can be performed within at most dmdn moves. Let Tm

be an optimal solution for the task Ri,m → Rj,m, and Ti′,j′,n with i′ 6= j′ be
optimal solutions for the tasks Ri′,n → Rj′,n. Clearly, |Ti′,j′,n| ≤ dn for every
(i′, j′).

JGAA, 20(2) 461–479 (2016) 467

Denote by Tm,(l) the l-th move within Tm. We are going to combine the
above-mentioned solutions into a (not necessarily optimal) solution forRi,m+n−1 →
Rj,m+n−1, as follows. Consider the smallest n disks 1, 2, . . . , n as a single disk
− number 1 − and the largest m− 1 disks n+1, n+2, . . . , n + m − 1 as disks
2, 3, . . . ,m, respectively. Write the solution for Ti,j,m, then replace each move
of disk 1 from peg i′ to peg j′ by Ti′,j′,n and each move of a disk k ≥ 2 by the
same move, but of disk k + n− 1. The procedure is described in Algorithm 1.

Algorithm 1 uses several pre-defined functions:
DiskNumber(Tm,(l)) retrieves the disk being moved in Tm,(l).
UpdateDiskNumber(Tm,(l), s) replaces the disk performing the move Tm,(l) by
disk s.
SourcePeg(Tm,(l)) and DestinationPeg(Tm,(l)) retrieve the peg on which the
disk resides prior to move l and after that move, respectively.

Algorithm 1 Combine()

/* Combining existing solutions with m and n disks to obtain a solution */
/* with m+ n− 1 disks. The symbol ‘*’ stands for concatenation. */
Tm+n−1 ← [] /* The empty sequence */
/* Producing the required solutions with m and n disks. */
Tm ← (Ri,m → Rj,m)
for i′ ← 1 to h do

for j′ ← 1 to h, j′ 6= i′ do
Ti′,j′,n ← (Ri′,n → Rj′,n)

end for

end for

for l← 1 to |Tm| do
r ← DiskNumber(Tm,(l))
if r ≥ 2 then

Tm+n−1 ← Tm+n−1 * UpdateDiskNumber(Tm,(l), r + n− 1)
else

i′ ← SourcePeg(Tm,(l))
j′ ← DestinationPeg(Tm,(l))
Tm+n−1 ← Tm+n−1 * Ti′,j′,n

end if

end for

return Tm+n−1

Since each move in Tm is replaced either by Ti′,j′,n for some (i′, j′) (if it is
a move of disk 1) or by a single move of some other disk (otherwise), the total
number of moves increases at most by a factor of dn. In particular:

|Ri,m+n−1 → Rj,m+n−1| ≤ dmdn , m, n ≥ 1 .

Consequently:

dm+n−1 = max
i,j

di,j,m+n−1 ≤ dmdn.

468 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

Proof of Theorem 1: Putting bn = ln dn+1, we obtain by Lemma 1:

bm+n ≤ bn + bm , m, n ≥ 0 .

The sequence (bn)
∞
n=0 is thus sub-additive, which implies that the sequence bn

n
converges to its greatest lower bound (cf. [30, p. 198]), and hence so does the
sequence

ebn/n = n

√

dn+1 ,

thus proving the theorem.

Proof of Corollary 1: Since n

√

dn+1(G) converges to λG from above, for any
ε > 0 and sufficiently large n

λG ≤ n

√

dn+1(G) ≤ λG + ε ,

or, equivalently,
λn−1
G ≤ dn(G) ≤ (λG + ε)n−1 .

In combination with Proposition 1, this proves the corollary.
To establish the proof of the ‘if’ part (which is the main part) of Theorem 2,

we will need several definitions. Unless explicitly stated otherwise, G will denote
a strongly connected graph with h ≥ 4 vertices containing a shed w, and G

′

− a strongly connected subgraph of size at least 3 of the graph left after w is
removed. (Note that G may contain more than one shed, and for each choice
of a shed there may be several appropriate strongly connected subgraphs of G.
For our purposes, though, any choice of a shed vertex and a strongly connected
component in accordance with that shed is suitable.) Taking a shortest path
from w ∈ V (G) − V (G

′

) to V (G
′

), we denote the entrance vertex to G
′ − the

last vertex on this path and the only one that belongs to G
′ − by e. Similarly,

an exit vertex x ∈ V (G
′

) is the first vertex on a shortest path leading from
V (G

′

) to w. These paths will be denoted by pw,e and px,w, respectively. The
sequence of moves of disk r along, say, the path pw,e is expressed by tw,e,r. S(l)

is the l-th move in a sequence of moves S.

Example 1 In each of the graphs G1 and G2 in Figure 1, vertex w = 4
is a shed. (In fact, in G2 all vertices but 2 and 3 are sheds.) For G1 we
have e = x = 1, whereas for G2 we have e = 2, x = 3.

As hinted above, most of the work is required for the ‘if’ part of Theorem 2.
The following lemma shows that some of the tasks are of sub-exponential com-
plexity. Let Inner = V (G

′

)−{e, x}. We first show that tasks in which the source
is the shed and the destination lies in Inner (or vice versa) are sub-exponential.

Lemma 2 Let G,G
′

, w be as above and v ∈ Inner. Then |Rw,n → Rv,n| and
|Rv,n → Rw,n| grow sub-exponentially fast as functions of n.

JGAA, 20(2) 461–479 (2016) 469

Proof: Fix a number λ ≥ λG′ . It suffices to show that for some α < 1 there
exists a constant C such that

|Rw,n → Rv,n| ≤ Cλnα

, n = 1, 2, . . . ,

and
|Rv,n → Rw,n| ≤ Cλnα

, n = 1, 2,

In fact, we will show that this is the case for every α > 1
2 . The proof is based

on the procedures ShedToInner (Algorithm 2) and InnerToShed (Algorithm 3),
which perform, respectively, the tasks Rw,n → Rv,n and Rv,n → Rw,n in

fw,v(n) ≤ Cλnα

(1)

and

fv,w(n) ≤ Cλnα

(2)

moves. We discuss ShedToInner in detail.

Algorithm 2 ShedToInner(w, v, n)

/* The algorithm moves a tower of n disks from the shed w to a vertex
v ∈ V (G

′

) − {e, x}, where G
′

, e and x are defined following the proof of
Corollary 1. */
if n ≥ 1 then

m← ⌈n− nα⌉
T ← ShedToInner(w, v,m)

for r ← m+ 1 to n do

T ← T ∗ tw,e,r

T ← T ∗ InnerToShed(w, v,m)

T ← T ∗ Accumulate(e, v, r,m+ 1 . . . r − 1)
T ← T ∗ ShedToInner(w, v,m)

end for

end if

return T

For each i, j ∈ V (G
′

) we choose a simple path from i to j. The sequence
of moves of a single disk r (henceforth transfer) along this path is denoted by
ti,j,r. A sequence of moves joining a single disk r, currently on peg i, to the
set of disks {m+ 1, . . . , r − 1}, currently on peg j, utilizing only the subgraph
G

′

, is produced by Accumulate(i, j, r,m+1 . . .r−1) (detailed in Algorithm 4),
provided that there are no other disks in G

′

.
The algorithm ShedToInner(w, v, n) splits the disks into two sets. One is

that of the smaller disks − {1, 2, . . . ,m}, where m = ⌈n− nα⌉, which will be
repeatedly moved between the shed and vertex v. The other set − {m+1,m+
2, . . . , n} − is that of the larger ones, that will be accumulated one by one
on vertex v. At the beginning, the smallest m disks are moved (recursively) to

470 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

Algorithm 3 InnerToShed(w, v, n)

/* The algorithm moves a tower of n disks from a vertex v ∈ V (G
′

)− {e, x}
to the shed w. */
if n ≥ 1 then

m← ⌈n− nα⌉
T ← InnerToShed(w, v,m)

for r ← n downto m+ 1 do

T ← T ∗ Split(v, x, r,m+ 1 . . . r − 1)
T ← T ∗ ShedToInner(w, v,m)

T ← T ∗ tx,w,r

T ← T ∗ InnerToShed(w, v,m)

end for

end if

return T

vertex v, revealing the larger ones. Then the algorithm performs n−m iterations,
in each of which the next disk from the set {m + 1,m + 2, . . . , n} is handled.
We enumerate the first iteration by m + 1, the second by m + 2, and so on.
Immediately prior to iteration r, m < r ≤ n, disks 1, 2, . . . ,m,m+ 1, . . . , r − 1
are at vertex v, and disks r, r + 1, . . . , n are at the shed vertex, w. In iteration
r:

• Disk r (whose transfer is the goal of the iteration) is temporarily moved
to vertex e.

• The smallest m disks are moved from vertex v to the shed.

• Disk r is joined to disks m+ 1, . . . , r − 1, using G
′

only.

• The smallest m disks are returned from the shed to vertex v.

By the end of the iteration, disks 1, 2, . . . ,m,m + 1, . . . , r are at v, while the
larger disks, r + 1, . . . , n, are still at the shed.

Principally, Algorithm InnerToShed works in a similar way. It splits the
disks into the set of the smaller disks − {1, 2, . . . ,m}, where m = ⌈n− nα⌉,
which will be repeatedly moved between vertex v and the shed. The other set −
{m+1,m+2, . . . , n} − is that of the larger disks, that will be accumulated one
by one on the shed. The procedure Split serves as the opposite to Accumulate.

The procedure Accumulate is detailed in Algorithm 4.
The procedure MoveInG

′

(i, j,D) moves a set of disks D from vertex i to j,
usingG

′

only. The call MoveInG
′

(v, e,m+1 . . . r−1)moves the tower consisting
of disks m + 1, . . . , r − 1 from v to e. The call MoveInG

′

(e, v,m + 1 . . . r)
performs an analogous task (from e to v, with the additional disk). Thus, by
Corollary 1, the number of moves produced by the (r − m)-th invocation of
Accumulate is bounded above by C

′

λr−m, for some constant C
′

= C
′

(G
′

).
(In fact, Algorithm 4 is not necessarily the most efficient way to perform the
accumulation, but it suffices for our needs.)

JGAA, 20(2) 461–479 (2016) 471

Algorithm 4 Accumulate(e, v, r,m+ 1 . . . r − 1)

/* Starting with disks m + 1 . . . r − 1 on peg v and disk r on peg e, the
algorithm */
/* unites them so that all disks will reside on peg v, using G

′

only. */
T ← MoveInG

′

(v, e,m+ 1 . . . r − 1)
T ← T ∗ MoveInG′

(e, v,m+ 1 . . . r)
return T

Since each step carried out by ShedToInner, Accumulate and MoveInG
′

obeys the HR, and at the end all disks reside on vertex v, the correctness of the
algorithms is straightforward.

Inequalities (1) and (2) are proved simultaneously by induction on n, where
the constant C will be determined later. Since fw,v(1) ≤ h − 1 and fv,w(1) ≤
h − 1, both inequalities are valid for n = 1 provided C ≥ h − 1. Assume
that (1) and (2) hold with n replaced by every smaller number. For simplicity,
we consider fw,v (consideration of fv,w is analogous) for the case of n disks.
Algorithm 2 makes:

• n−m+ 1 calls to ShedToInner(w, v,m),

• n−m calls to InnerToShed(w, v,m),

• n−m transfers of a single disk along a simple path in G, and

• n−m calls to Accumulate(e, v, r,m+1 . . .r−1), for r = m+1,m+2, . . . , n.

Since m = ⌈n− nα⌉, we have

fw,v(n) ≤ (n−m+ 1)fw,v(m) + (n−m)fv,w(m)

+(n−m)h+

n−m
∑

i=1

C
′

λi

≤ (2nα + 1)max(fw,v(m), fv,w(m)) + nh+ C
′

λ
λ−1λ

nα

≤ (2nα + 1)Cλmα

+ C
′′

λnα

≤ (2nα + 1)Cλ(n−nα+1)α + C
′′

λnα

< 3nαCλ(n− 1
2
nα)α + C

′′

λnα

,

(3)

where C
′′

= C
′

λ
λ−1 + 1, for sufficiently large n.

Now (n− 1
2n

α)α = nα(1− 1
2n

α−1)α = nα(1− α
2n

α−1 +O(n2α−2)), and hence

fw,v(n) ≤ Cλnα 3nα

λ
α

2
n2α−1 + C

′′

λnα ≤ Cλnα

,

472 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

where we assume that C > C
′′

.
This completes the proof of (1). The proof of (2) is analogous.
The following lemma is required for the proof of the ‘only if’ part of Theo-

rem 2.

Lemma 3 There exists a constant C with the following property. For every
graph G, not containing a strongly connected component of size 3 or more, and
for any initial configuration, the number of different disks which can participate
in any legal sequence of moves is bounded above by Ch

1
2
lg h+2 , where h = |V (G)|.

Here lg h ≡ log2 h.

Proof: Let T be any legal move sequence and i any peg. Set l=⌊(h−2)Ch
lgh

2 ⌋+2
(where the constant C is sufficiently large; see below). Consider the first move
of the disk residing at the l-th place (counting from the top) of peg i before T is
started. Right before this move, all smaller disks (residing on peg i prior to T)
have to be spread on h−2 of the other pegs, making it necessary for at least one
peg to accept more than Ch

1
2
lg h disks from peg i, contradicting [6, Theorem

1.3] if C is sufficiently large. It follows that the overall number of disks that can

participate in any task is bounded above by h(h− 2)Ch
1
2
lg h + 2h, proving the

lemma.

Proof of Theorem 2: (a) Here we prove the ‘if’ part of the theorem. Let
G′, w, e, x be as before. Take λ > λG′ . We will show that, if α > 1

2 is arbitrarily
fixed, then for every pair of vertices i, j ∈ V (G), there exists a constant K such
that

|Ri,n → Rj,n| ≤ Kλnα

, n = 1, 2, (4)

Take v ∈ V (G′) − {e, x}. Due to Lemma 2, it remains to consider the
following cases:

• Case 1: i = w, j ∈ V (G
′

)− {v},

• Case 2: i ∈ V (G
′

)− {v}, j = w,

• Case 3: i, j ∈ V (G
′

),

• Case 4: i, j ∈ V (G), where at least one of i, j does not belong to V (G
′

) ∪
{w}.

Remark 2 In fact, there is some overlap between the cases. For example, in
Case 1 we need only to take care of the case where j = e, and in Case 2 only of
i = x, but this is of no consequence.

Case 1: We employ ShedToG
′

(w, j, n) (Algorithm 5), which moves a tower
of n disks from the shed to any vertex j ∈ V (G

′

) − {v}. In order to place the
next largest disk at the destination, it performs the following:

JGAA, 20(2) 461–479 (2016) 473

• Moves all the disks from the shed to vertex v.

• Moves all disks but the largest in the set from v back to the shed.

• Moves the largest disk from vertex v to the destination.

Remark 3 Setting the set of largest disks to contain more than one disk at a
time, we could get a more efficient algorithm; however, for our purpose, this
algorithm suffices.

The procedures ShedToInner and InnerToShed are as in the proof of Lemma 2.
Algorithm 5 provides the details.

Algorithm 5 ShedToG
′

(w, j, n)

/* The algorithm moves a tower of n disks from the shed w to any j ∈
V (G

′

)− {v}. */
if j ∈ V (G

′

)− {e, x} then
T ← ShedToInner(w, j, n)

else

v ← a vertex in V (G
′

)− {e, x}
T ← [] /* The empty sequence */
for r ← n downto 2 do

T ← T ∗ ShedToInner(w, v, r)
T ← T ∗ InnerToShed(w, v, r− 1)
T ← T ∗ tv,j,r

end for

T ← T ∗ tw,j,1

end if

return T

If a single disk can be moved uninterruptedly from a vertex to another,
the number of moves is less than h. This is the situation whenever the tv,j,r
is performed (disk r is moved along a simple path from v to j, where these
two vertices are in G

′

and all other disks currently in G
′

are larger than r).
ShedToInner(w, v, n) and InnerToShed(w, v, n) require at most Cλnα

moves
each, for an appropriate C. We now bound the number of moves fw,j(n) per-

formed by ShedToG
′

(w, j, n):

fw,j(n) ≤ nCλnα

+ nCλnα

+ nh ≤ 3Cnλnα

.

Case 2: We employ G
′

ToShed, which moves a tower of n disks from any
vertex i ∈ V (G

′

)− {v} to the shed. Clearly:

fi,w(n) ≤ nCλnα

+ nCλnα

+ nh ≤ 3Cnλnα

,

as for fw,j.

474 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

Algorithm 6 G
′

ToShed(w, i, n)

/* The algorithm moves a tower of n disks from any vertex i ∈ V (G
′

)− {v}
to the shed. */
if i ∈ V (G

′

)− {e, x} then
T ← InnerToShed(w, i, n)

else

v ← a vertex in V (G
′

)− {e, x}
T ← ti,w,1

for r ← 2 to n do

T ← T ∗ ti,v,r
T ← T ∗ ShedToInner(w, v, r− 1)
T ← T ∗ InnerToShed(w, v, r)

end for

end if

return T

Case 3 is a consequence of the first two cases, by first moving all disks from
i to w, and then moving them from w to j.

Case 4: Observe that, once G′ has been set, each vertex in V (G) − V (G′)
may serve as a shed. Thus, for any i ∈ V (G′) and j ∈ V (G) − V (G′), both
inequalities |Ri,n → Rj,n| ≤ Kλnα

and |Rj,n → Ri,n| ≤ Kλnα

hold. Now let
i, j ∈ V (G)− V (G′). Take a vertex k ∈ V (G′). We move a tower of disks from
i to j by first moving it from i to k, and then from k to j. This proves the
correctness of (4) in this case.

(b) We turn to the ‘only if’ part of the theorem. Take any strongly connected
graph G without a shed. Start with any configuration C. Denote by v0 the
vertex on which disk 1 resides in C. What is the maximum number of moves
which may be done without moving disk 1, without reaching any configuration
more than once?

Clearly, as long as we do not move disk 1, all other disks may use only the
graph induced by V (G) − {v0}, which has no strongly connected component
of size at least 3. By Lemma 3, since in this graph there are h − 1 vertices,
m = C(h − 1)

1
2
lg(h−1)+2 is an upper bound on the number of disks that may

participate in any sequence of moves. This implies that the length of any such
sequence of moves cannot exceed the length of the longest possible simple path
in the configuration graph for m disks, which is at most b = (h − 1)m − 1.
(The other disks do not participate, and thus we ignore them.) Note that
any sequence longer than that must reach at least one configuration more than
once, and thus contains a loop, which can never appear in optimal solutions.
We emphasize that h,m, and therefore b, do not depend on the number of disks
n.

We assert that dn(G) (and, in fact, even min
i,j

di,j,n(G)) grows exponentially

fast as a function of n. Take an arbitrary pair of vertices i, j ∈ V (G). Denote

JGAA, 20(2) 461–479 (2016) 475

an = di,j,n for n ≥ 1. We shall show that

an ≥ A·
(

b+ 1

b

)n

for an appropriate A > 0.
Let Sn+1 be an optimal solution for the task Ri,n+1 → Rj,n+1, and l(Sn+1)

its length. Divide Sn+1 into consecutive subsequences of length b + 1 (and
a remainder of length at most b at the end). Define two operations on such
sequences:

(1) Drop: Remove all moves of disk 1.

(2) Decr: Decrement the disk number in each move by 1.

Starting with a sequence involving disks 1, 2, . . . , n+ 1, and applying Drop and
then Decr to it, we arrive at a sequence involving disks 1, 2, . . . , n. Moreover,
applying Drop and then Decr to Sn+1, we obtain a (not necessarily optimal)
solution Sn for Ri,n → Rj,n, where each previous subsequence of length b + 1
shrank to length at most b. Since l(Sn+1) = an+1 and l(Sn) ≥ an, this yields

an ≤ l(Sn) ≤
⌊

l(Sn+1)

b+ 1

⌋

·b+ b ≤ an+1

b+ 1
b+ b .

Hence:

an+1 ≥
b+ 1

b
an − (b + 1) .

Since an −→
n→∞

∞, this implies that

an ≥ A·
(

b+ 1

b

)n

,

thus completing the proof of this part.

Proof of Proposition 2: Denote by Gns the family of graphs on h ≥ 4 vertices
which do not have a shed, and by Gec the family of moderately enhanced cyclic
graphs (see Fig. 2.(b)). Recall that a moderately enhanced cyclic graph is
composed of a uni-directional cycle (henceforth the main cycle) of all vertices,
augmented perhaps by up to

⌊

h
2

⌋

non-adjacent arcs in the reverse direction
(henceforth back arcs).

It is straightforward to show that Gec ⊆ Gns. For the direction Gns ⊆ Gec, let
G ∈ Gns. Distinguish between two cases.

• Case 1: G is (strictly) directed: There are two vertices i, j in G such that
(i, j) ∈ E(G) but (j, i) ∈/E(G).

Since G is strongly connected, there is a path from j to i. The path has to
pass through at least one vertex in V (G)−{i, j}, say k. Clearly, the graph

476 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

induced by {i, j, k} and the other vertices along the path from j to i is
strongly connected with at least 3 vertices. The graph is actually G itself.
Indeed, had there been a vertex not included in it, that vertex would be a
shed – contradicting the ‘shedlessness’ of G. This path, together with the
arc from i to j, constitutes the (only) main cycle in G. Obviously, there
are no two consecutive back arcs along this cycle; if there were such arcs
between, say, {i′ , j′

, k
′}, all other vertices would have been sheds.

• Case 2: The graph is undirected.

Take any two adjacent vertices i, j. Since G is strongly connected, there is
at least one vertex k, adjacent, say, to j. The subgraph induced by {i, j, k}
is strongly connected. All other vertices of G are sheds, contradicting the
assumption that G ∈ Gns.

This completes the proof of the proposition.

Acknowledgements

The authors would like to thank the referee for his important suggestion, which
made the statement of the paper sharper, and for the rest of his remarks.

JGAA, 20(2) 461–479 (2016) 477

References

[1] J.-P. Allouche, D. Astoorian, J. Randall, and J. Shallit. Morphisms, square-
free strings, and the Tower of Hanoi puzzle. Amer. Math. Monthly, 101:651–
658, 1994.

[2] J.-P. Allouche, V. Berthe, and J. Shallit. Sur des points fixes de morphismes
du monöıde libre. RAIRO Inform. Théor. Appl., 23:235–249, 1989.

[3] J.-P. Allouche and F. Dress. Tours de Hanoi et automates. RAIRO Inform.
Théor. Appl., 24:1–15, 1990.

[4] J.-P. Allouche and A. Sapir. Restricted Towers of Hanoi and morphisms.
Lect. Notes in Comput. Sci., 3572:1–10, 2005. doi:10.1007/11505877_1.

[5] M. D. Atkinson. The cyclic Towers of Hanoi. Inf. Process. Lett., 13:118–119,
1981. doi:10.1016/0020-0190(81)90123-X.

[6] D. Azriel and D. Berend. On a question of Leiss regarding the
Hanoi Tower problem. Theoretical Comput. Sci., 369:377–383, 2006.
doi:10.1016/j.tcs.2006.09.019.

[7] D. Berend and A. Sapir. The Cyclic multi-peg Tower of Hanoi. Trans. on
Algorithms, 2(3):297–317, 2006. doi:10.1145/1159892.1159893.

[8] D. Berend and A. Sapir. The diameter of Hanoi graphs. Inf. Process. Lett.,
98:79–85, 2006. doi:10.1016/j.ipl.2005.12.004.

[9] D. Berend, A. Sapir, and S. Solomon. Subexponential upper bound for the
Path multi-peg Tower of Hanoi. Disc. Appl. Math., 160(10-11):1465–1483,
2012. doi:10.1016/j.dam.2012.02.007.

[10] J.-P. Bode and A. M. Hinz. Results and open problems on the Tower of
Hanoi. Congr. Numer., 139:113–122, 1999.

[11] X. Chen and J. Shen. On the Frame-Stewart conjecture about
the Towers of Hanoi. SIAM J. on Computing, 33(3):584–589, 2004.
doi:10.1137/S0097539703431019.

[12] Y. Dinitz and S. Solomon. Optimality of an algorithm solving the Bot-
tleneck Tower of Hanoi problem. Trans. on Algorithms, 4(3):1–9, 2008.
doi:10.1145/1367064.1367065.

[13] H. E. Dudeney. The Canterbury Puzzles (and Other Curious Problems). E.
P. Dutton, New York, 1908.

[14] M. C. Er. The Cyclic Towers of Hanoi: a representation approach. Comput.
J., 27(2):171–175, 1984. doi:10.1093/comjnl/27.2.171.

[15] M. C. Er. A general algorithm for finding a shortest path
between two n-configurations. Inform. Sci., 42:137–141, 1987.
doi:10.1016/0020-0255(87)90020-X.

http://dx.doi.org/10.1007/11505877_1
http://dx.doi.org/10.1016/0020-0190(81)90123-X
http://dx.doi.org/10.1016/j.tcs.2006.09.019
http://dx.doi.org/10.1145/1159892.1159893
http://dx.doi.org/10.1016/j.ipl.2005.12.004
http://dx.doi.org/10.1016/j.dam.2012.02.007
http://dx.doi.org/10.1137/S0097539703431019
http://dx.doi.org/10.1145/1367064.1367065
http://dx.doi.org/10.1093/comjnl/27.2.171
http://dx.doi.org/10.1016/0020-0255(87)90020-X

478 Berend and Sapir Exp. vs. Subexp. Tower of Hanoi Variants

[16] J. S. Frame. Solution to advanced problem 3918. Amer. Math. Monthly,
48:216–217, 1941.

[17] D.-J. Guan. Generalized Gray codes with applications. Proc. Natl. Sci.
Counc. ROC(A), 22(6):841–848, 1998.

[18] A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr. The Tower of Hanoi –
Myths and Maths. Birkhäuser, 2012. doi:10.1007/978-3-0348-0237-6.

[19] S. Klavžar, U. Milutinović, and C. Petr. Combinatorics of topmost discs of
multi-peg Tower of Hanoi problem. Ars Combinatoria, 59:55–64, 2001.

[20] S. Klavžar, U. Milutinović, and C. Petr. On the Frame-Stewart algorithm
for the multi-peg Tower of Hanoi problem. Disc. Appl. Math., 120(1-3):141–
157, 2002. doi:10.1016/S0166-218X(01)00287-6.

[21] S. Klavžar, U. Milutinović, and C. Petr. Hanoi graphs
and some classical numbers. Expo. Math., 23:371–378, 2005.
doi:10.1016/j.exmath.2005.05.003.

[22] C. S. Klein and S. Minsker. The super Towers of Hanoi prob-
lem: large rings on small rings. Disc. Math., 114:283–295, 1993.
doi:10.1016/0012-365X(93)90373-2.

[23] E. L. Leiss. Solving the “Towers of Hanoi” on graphs. J. Combin. Inform.
System Sci., 8(1):81–89, 1983.

[24] É. Lucas. Récréations Mathématiques, volume III. Gauthier-Villars, Paris,
1893.

[25] W. F. Lunnon and P. K. Stockmeyer. New Variations on the Tower of
Hanoi. 13th Intern. Conf. on Fibonacci Numbers and Their Applications,
2008.

[26] S. Minsker. The Towers of Antwerpen problem. Inf. Process. Lett.,
38(2):107–111, 1991. doi:10.1016/0020-0190(91)90230-F.

[27] S. Minsker. The Linear Twin Towers of Hanoi problem. ACM SIGCSE
Bull., 39(4):37–40, 2007. doi:10.1145/1345375.1345410.

[28] S. Minsker. Another brief recursion excursion to Hanoi. ACM SIGCSE
Bull., 40(4):35–37, 2008. doi:10.1145/1473195.1473215.

[29] S. Minsker. The classical/linear Hanoi hybrid problem: reg-
ular configurations. ACM SIGCSE Bull., 41(4):57–61, 2009.
doi:10.1145/1709424.1709446.

[30] G. Pólya and G. Szegő. Problems and Theorems in Analysis, volume I.
Springer Verlag, 1972.

http://dx.doi.org/10.1007/978-3-0348-0237-6
http://dx.doi.org/10.1016/S0166-218X(01)00287-6
http://dx.doi.org/10.1016/j.exmath.2005.05.003
http://dx.doi.org/10.1016/0012-365X(93)90373-2
http://dx.doi.org/10.1016/0020-0190(91)90230-F
http://dx.doi.org/10.1145/1345375.1345410
http://dx.doi.org/10.1145/1473195.1473215
http://dx.doi.org/10.1145/1709424.1709446

JGAA, 20(2) 461–479 (2016) 479

[31] A. Sapir. The Tower of Hanoi with forbidden moves. Comput. J., 47(1):20–
24, 2004. doi:10.1093/comjnl/47.1.20.

[32] R. S. Scorer, P. M. Grundy, and C. A. B. Smith. Some binary games. Math.
Gazette, 280:96–103, 1944.

[33] B. M. Stewart. Advanced problem 3918. Amer. Math. Monthly, 46:363,
1939.

[34] B. M. Stewart. Solution to advanced problem 3918. Amer. Math. Monthly,
48:217–219, 1941.

[35] P. K. Stockmeyer. Variations on the Four-Post Tower of Hanoi puzzle.
Congr. Numer., 102:3–12, 1994.

[36] P. K. Stockmeyer. Tower of Hanoi bibliography, 2005. URL:
http://www.cs.wm.edu/~pkstoc/biblio2.pdf.

[37] M. Szegedy. In how many steps the k peg version of the Towers of Hanoi
game can be solved? Lect. Notes in Comput. Sci., 1563:356–361, 1999.
doi:10.1007/3-540-49116-3_33.

http://dx.doi.org/10.1093/comjnl/47.1.20
http://www.cs.wm.edu/~pkstoc/biblio2.pdf
http://dx.doi.org/10.1007/3-540-49116-3_33

	Introduction
	Problem domain and notations
	Main results
	Proofs

