
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 20, no. 2, pp. 435–459 (2016)
DOI: 10.7155/jgaa.00401

Graph Layout with Versatile Boundary

Constraints

Yani Zhang 1 Alex Pang 2

1Expedia Inc.
2Computer Science Department, University of California at Santa Cruz

Abstract

Graph layouts are in general data dependent and help to reveal struc-

tural and attribute relationships in the data set. However, there are sit-

uations when one may wish to alter the layout e.g. to emphasize parts

of the data set or for aesthetic reasons. This paper strives to meet that

need for the case of force-directed graph layout algorithms. Our approach

is to add boundary constraints to specify where graph nodes may or may

not be positioned. Users can interactively draw one or more boundaries.

Boundaries may self-intersect and define different topology e.g. donut or

figure eight shapes. Additional control, subject to the density of nodes,

can impart different density distributions within defined boundaries. We

tested the feasibility of this concept on several data sets and different

boundary constraints.
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1 Introduction

Graph drawing has been an area of active research interest in the information
visualization community as abstract graph models are widely used in various
areas ranging from social networks, security, scientific applications, and others.
Among the fairly extensive body of literature about graph layout algorithms
such as those described in field survey papers [7, 14], force-directed approach
[2, 3, 18] is the most well-known method for drawing undirected graphs due
to their flexibility of adding constraints, ease of implementation and generally
satisfactory layouts. Specifically, a graph is viewed as a neat drawing of the
node particles that can be generated by minimizing an energy function [4].

Based on this force-directed idea, many practical graph drawing systems
have been developed. In general, layout is dictated by using a repulsive force
to separate vertices apart from each other and a pseudo-gravity force to hold
the entire graph together but without constraining the size and shape of the
graph. In certain situations, one would like the layout to meet some specific
requirements or common aesthetics such as symmetry, minimum edge crossings,
etc. while at the same time, obtain the desired graph with a minimum amount
of time. With these goals in mind, various kinds of constraints were taken into
account in constrained graph layouts [9, 13, 17, 21]. Widely used graph drawing
constraints include placing a given vertex in the center or on the outer boundary
of the drawing, placing a group of vertices as a cluster, or aligning vertices hor-
izontally or vertically [21]. Thus, drawing a graph using force-directed methods
can be formalized as a complex multi-objective optimization problem.

In this paper, we propose an alternative approach to specify constraints by
allowing the users to interactively draw a boundary wherein the graph layout will
be constrained. We model these boundaries as a set of additional environmental
forces that contribute to the forces acting on the vertices in the graph. Since
our approach is based on force-directed simulation, it can take advantage of the
existing optimization results from other force-directed graph layout algorithms.

There are two motivations for this work. One is purely from an aesthetic or
design perspective where the user is given the flexibility of specifying the bound-
ary shape wherein a graph is to be laid out. The second is more a prospective
use for information visualization where the boundary shape of the graph conveys
some information about the graph. While most papers on graph drawing focus
on the layout of nodes and edges, scaling to larger graphs, or speeding up the
layout algorithms, there is one aspect that has not been investigated sufficiently.
That is the use of the background space in conveying information. Most layouts
are performed over an open ended domain with no boundary constraints and
displayed on a rectangular window. What if the shape, e.g. as simple as the
aspect ratio of the window, can be used to convey some information? Or more
generally, what if the boundary constraint for the graph layout can be used to
display some aspect of the data? The interactive capability described in this
paper allows users to shape the boundary of graph layout to suit their applica-
tion needs or aesthetic desires. But it also offers the possibility to explore data
dependent boundaries in the future.
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The remainder of this paper is organized as follows. We discuss related
work with aspects of interactivity and constraints in graph drawing methods
in section 2. Section 3 provides a basic background on force-directed methods
and the definition of our graph drawing problem. In section 4 we give a formal
definition of boundary constraints and present our new force-directed model
with boundary constraints. Implementation work is described in section 5 and
boundary constrained layout of graphs and analysis of results are presented in
section 6. We provide conclusions and identify some avenues for future work in
section 7.

2 Related Work

2.1 Interactivity

There are many interactive constraint-based graph layout systems in existence
today. However, they do not include outside environment force as additional
constraints to the graph drawings. For example, the GLIDE (Graph Layout
Interactive Diagram Editor) system [19] is a graph editor for drawing medium-
sized graphs that organizes the interaction within a vocabulary of specialized
constraints for graph drawing. CGV (Coordinated Graph Visualization) [22] is
another graph visualization system that incorporates several interactive views
to address different aspects of graph visualization. These graph drawing systems
indeed focus on interaction but did not support interactively defining boundary
constraints for graph layouts.

Alternatively, there are constraints-driven layout algorithms for network di-
agrams [6], which propose a variety of layout techniques to exhibit the Visual
Organization Features (VOFs). VOFs are arrangements of related vertices in
the diagram including horizontal and vertical alignment, axial and radial sym-
metries, etc. However, these VOFs do not include constraining the graph within
an area where the desired shape can be achieved. Such boundary constraints can
be useful in many applications such as automatic graph layout, network graph
analysis and visual design. Note that while there are very powerful, focus-
ing mechanisms used in magnification, fisheye, or other layout lenses described
in [23], they are different from what we are proposing in that they typically deal
with only a subset of the graph or the layout space.

2.2 Constraints in Graph Drawing Methods

Traditional methods that incorporate boundary constraints controlled the size
of the graph layout by assuming that the boundary of the pre-specified drawing
region acted as a wall [11]. Regions were rectangular in shape and were repre-
sented as inequality constraints wherein graph vertices must lie. No forces were
used in their formulation.

Other forms of constrained graph layout models have also been proposed.
A formalism for the declarative specification of graph drawing with Prolog
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and an associated constraint-solving mechanism have been developed by Ka-
mada [15]. Using this formalism, one can express several simple geometric
constraints among the vertices, such as horizontal or vertical alignment, and
circular arrangements. Dengler [6] provided a notation for describing the de-
sired perceptual organization of a layout of a graph by means of a collection of
layout patterns based on positions. These include clustering, zoning, sequential
placement, T- shape, and hub shape. This method incrementally improves an
initial randomly-generated drawing.

Interestingly, layout constraints can also be used to provide both structural
and dynamic stability [1]. Structural stability refers to the constraints specified
by users or application programs. Constraints are specified as linear equations
for each dimension independently. Dynamic stability refers to a small change in
graph layout as a result of a small change in the structure of the graph.

A comprehensive approach for constrained graph drawing was presented by
He and Marriot [13]. They provide a general model that supports: (i) the
specification of arbitrary arithmetic linear equality and inequality constraints
on the coordinates of the vertices; (ii) suggests coordinates for the vertices, each
with an associated weight, which denotes the strength of the suggestion. They
show how to extend the force-directed approach by Kamada [16] to support
such placement constraints which is fast and produces good results in practice.

Two layout algorithms produce results that bear some potential resemblance
to what our proposed approach can produce. Dwyer [8] introduced 3 novel
constraints for graph layout that can support a wide variety of layouts. The
third of these provides for constraints so that convex boundaries containing a
number of nodes do not penetrate each other. Our proposed method supports
this as well, but also supports concave boundaries as well as boundaries with
different topologies. Simonetto et al. [20] adapts force directed algorithms to
Euler like diagrams. A graph representing a set (where nodes are set elements
and edges are set boundaries) is initially laid out. Set boundaries are generated
automatically and constrain the set elements to stay within its boundaries. This
differs from our work in that our boundaries are defined interactively by the user
and uses significantly less boundary nodes and edges.

With the exception of [8, 20], the above mentioned force-directed methods
are all supported by the position constraints of vertices or fixed-subgraph con-
straints in the graph, but our approach is based on adding an additional force
to constrain the whole graph. The benefit of our approach is that the additional
boundary forces are processed in the same way as forces acting on graph ele-
ments and therefore the complexity is dominated by the size of the graph. Using
the same termination criteria, i.e. small enough change in energy function from
the previous step or reaching a maximum number of iterations, we observe that
the convergence rate with or without the boundary constraints are very similar.
In contrast, with the other methods mentioned above, more work has to be
done after each iteration to take into account position constraints. Thus, our
approach achieves better interactivity with users because the graph would take
boundary constraints into consideration while converging to the final layout.
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3 Force-directed Graph Layout

3.1 Definitions

3.1.1 Graph

In force-directed methods, a graph G is defined as a pair (VG, EG) where VG is
a set of vertices and EG is a set of edges EG ⊂ VG × VG. A drawing of such
graph G on the plane is defined as a mapping D from VG to R

2, where R is
the set of real numbers. Then for mapping D, each vertex v ∈ VG is placed at
point D(v) on the plane, and each edge (u, v) ∈ EG for u, v ∈ VG is displayed
as a straight-line segment connecting D(u) and D(v). In our graph drawings,
we use a dot on the plane to represent a vertex and a straight line connecting
two vertices to represent an edge.

3.1.2 Boundary

Similarly, a boundary Bp of the graph is defined also as a pair (VBp, EBp).
Suppose boundary Bp has n vertices (which we will refer to as boundary vertices
to distinguish them from graph vertices) and m edges (which we will refer to as
boundary edges to distinguish them from graph edges), then VBp is defined as a
set of boundary vertices VBp = {vp(1), vp(2), · · · , vp(n)} and EBp is defined as
a set of boundary edges that connects adjacent vertices and forms a connected
path. That is, EBp = {ep(1), ep(2), · · · , ep(m)} where ep(i) = vp(i)vp(i+ 1)

(i = 1, 2, · · · ,m − 1) and for special case i = m, ep(m) = vp(m)vp(1). Note
that while we use the graph notation to represent a boundary, it is a special
case where n = m, and it forms a closed loop. The coordinates of the boundary
vertices in the mapping D are defined interactively by users, so the boundary
can be deformed into arbitrary shapes and may even self-intersect. Multiple
boundaries in the same graph are allowed to support boundaries of different
topologies. In these cases, the boundaries are represented by a set composed
of B1, B2, · · · , Bq to specify q distinct boundaries. While there is flexibility in
terms of how boundaries are represented and the different types of topology
that one can construct, one must nevertheless be careful about the semantics
of these boundaries in terms of using them as boundary constraints for graph
placement. Also, while an individual boundary may self-intersect, we do not
allow a boundary to intersect with another boundary.

3.2 Common Forces

Now we introduce some common forces in classical force-directed methods. The
graph drawing algorithm of Tutte [24] is one of the earliest force-directed method
in literature. The model they proposed partitions the set of vertices into two
sets, a set of fixed vertices and a set of free vertices. By nailing down the fixed
vertices as a strictly convex polygon and then placing each free vertex at the
barycenter of its immediate neighbor during each iteration, the model is able
to yield a nice drawing. Subsequently, Eades [10] proposed a simple spring
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embedder algorithm which most models today, including our proposed model,
is built upon.

In that model, every pair of vertices is connected by a spring (although
Eades’ model did not use Hooke’s Law). For adjacent vertices (vertices that are
connected to each other by an edge), the intensity fs of the attractive spring
force exerted on the two vertices depends on the current distance between them
according to the following formula:

fs(uv) = c1 · log
( |uv|

c2

)

uv

|uv| (1)

where c1 represents a scaling constant for spring force, c2 is the given spring
natural length, and uv denotes the vector from vertex u to vertex v.

For non-adjacent vertices (vertices that are not connected to each other by
an edge), the spring has infinite natural length, thus always has a repelling force.
The intensity fr of the repulsive force exerted on the two vertices depends on
the distance between them:

fr(uv) = −
(

c3
|uv|2

)

uv

|uv| (2)

where c3 is the scaling constant for repulsive forces.
In general, various modifications on force-directed approaches fall into two

categories. One has to do with altering the repulsive force and the spring force
models, while the other attempts to manipulate the local minima problem re-
sulting from the equilibrium between repulsive forces and the spring forces. This
paper is based on the first approach, where we add an additional force repre-
senting the boundary constraints into the graph layout optimization process.

3.3 Graph Drawing Problem

The graph drawing problem considered in our paper is addressed as follows:
Suppose we begin with a randomly positioned drawing of a graph G = (VG, EG)
and a set of boundaries {B1, B2, · · · , Bq} to specify q distinct boundaries, the
layout algorithm should solve the optimization problem and satisfy the following
goals:

• Minimize energy configuration.

• Every vertex of the graph is within the defined boundaries.

• The final layout of the graph preserves the properties of force-directed
methods.

4 Layout with Boundary Constraints

In this section, we first give a formal definition of boundary constraints and
the forces they induce on the graph elements. Then we discuss our layout
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algorithm in depth including how the attractive and repulsive forces are modified
to account for boundaries, and how the boundary forces are calculated. Finally,
we present the algorithm for handling boundary constraints.

At a high level, the user interactively specifies a few boundary vertices that
define a boundary. Each edge along the boundary then induces a boundary force
on graph vertices that is added together with spring and gravitational forces.
The boundary vertices are not affected by the forces from the graph elements
and only serve to define the shape of the boundary. Because the boundary force
calculations are from a small number of boundary edges and processed in the
same way as spring and gravitational forces, adding boundary constraints does
not significantly increase the computation costs.

4.1 Definition of Active Area

Boundary constraints are enforced via boundary forces on graph elements. In
order to determine how these boundary forces affect graph elements, we must
determine the set of boundary edges that can influence an individual graph
element, or conversely, the set of graph elements affected by a boundary force.
For this purpose, we define the active area of a set of boundaries, and the active
area of each boundary edge.

4.1.1 Active Area of A Set of Boundaries

A boundary specifies a partitioning of the space wherein a graph is to be drawn.
For closed boundaries, we need to distinguish between the inside and outside of
the boundary. By convention, we will assume that boundary vertices are ordered
in a counter-clockwise manner so that the inside is to the left of a boundary edge
(see Fig. 1(a)). Furthermore, each boundary Bp encloses an area. For simplicity,
we will use the notation Bp to represent both the boundary and its enclosed
area. Each boundary has its own active area Ap which is encompassed by Bp.
For the case where there is only one boundary, as illustrated in Fig. 1(a), the
active area is Ap (p = 1). In general, if we have more than one boundary and
there are containments between those boundaries, then we define the active
area A as the biggest connected area where the graph layout can take place.
For example, let us assume B1 is the outer boundary, with smaller boundaries
scattered within B1 as shown in Fig. 1(b). Then the active area in that figure is
A = B1− (B2+B3). In general, assuming that boundaries do not intersect each
other i.e. there is only a single connected area whose outer perimeter is specified
by B1, and that B2 · · ·Bq do not intersect each other and do not contain another
boundary within each of them, then the active area of these boundaries can be
expressed as A = B1− (B2+B3+ · · ·+Bq). Violating these assumptions would
mean that there are several disjoint areas, rather than a single contiguous area,
where a single graph must be laid out. Any vertex falling inside the active area
A will have boundary forces acting upon it.
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(a) One boundary case. (b) Multiple boundaries case.

Figure 1: Definition of active area of boundaries.

4.1.2 Active Areas of A Boundary Edges

In general, a boundary edge will exert an inward force perpendicular to the
boundary edge on graph elements in order to keep them within the boundary.
However, not all boundary edges will affect graph vertices at all times. A graph
vertex vG(j) is influenced by a boundary edge only when it is within the active
area of that edge. Given a boundary edge ep(i) belonging to boundary Bp, the
active area of ep(i) is the half space bounded on the left by a vector (which we
call the left vector) from boundary vertex vp(i) and on the right by a vector
(which we call the right vector) from boundary vertex vp(i + 1) as indicated
in Fig. 2. The four graph vertices within the active area of ep(i) are each
assigned a boundary force fBp(vG(j), ep(i)) (see Section 4.3) with a direction
perpendicular to ep(i) and pointing towards the interior of the boundary. For
full consideration of how to define left and right vectors, we need to look at the
types of boundary vertices that make up a boundary edge. That is, whether
the boundary vertex is concave or convex.

Figure 2: Definition of active area of boundary edges.

In Fig. 3, boundary edge ep(i) is drawn as a solid vector from boundary
vertex vp(i) to vp(i + 1). It is bounded on the left by boundary edge ep(i − 1)
and on the right by boundary edge ep(i + 1). A boundary vertex, e.g. vp(i), is
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a convex boundary vertex if the interior angle of the boundary edges that share
that vertex i.e. angle from ep(i−1) to ep(i), is less than or equal to 180 degrees.
Otherwise it is a concave boundary vertex, e.g. vp(i + 1).

Figure 3: Convex and concave boundary vertices.

The active area of a boundary edge depends on the type of boundary vertices
that make up an edge. As we process the boundary edges in a counter-clockwise
manner, there are four cases to handle:

Case 1: Both boundary vertices of ep(i) are convex (see Fig. 4(a)):
If both boundary vertices of boundary edge ep(i) are convex, then the active

area of ep(i) is bounded by left vector −ep(i−1), boundary edge ep(i) and right
vector ep(i + 1) The active area is highlighted in yellow and extends through
the half spaces inside of boundary edges ep(i), ep(i− 1), and ep(i + 1).

A force perpendicular to boundary edge ep(i) is applied to graph elements
in the active area. Otherwise, boundary edge ep(i) does not contribute a force
to the graph element.

Case 2: vp(i) is convex and vp(i+ 1) is concave (see Fig. 4(b)):
The active area is composed of two regions. The first region is bounded by

left vector −ep(i−1), ep(i), and a vector from vp(i+1) to v1p(i+1) as the right

vector. The second is a triangular region bounded by vp(i+ 1)v1p(i+ 1) and

vp(i + 1)v2p(i+ 1). vp(i+ 1)v1p(i+ 1) is perpendicular to ep(i) and

vp(i + 1)v2p(i+ 1) is perpendicular to ep(i + 1). For graph elements falling
in the first region, we apply a force perpendicular to boundary edge ep(i). For
graph elements falling in the triangular region, we apply a force in the direction
from vp(i+ 1) to the graph element.

Case 3: vp(i) is concave and vp(i + 1) is convex (see Fig. 4(c)):

The active area is also composed of two regions. For graph elements in the
triangular region, we apply a force in the direction from vp(i) to the graph el-

ement. Note that vp(i)v1p(i) is perpendicular to ep(i − 1), while vp(i)v2p(i)
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(a) Both boundary vertices of ep(i) are convex.

(b) Boundary vertex vp(i) is convex, boundary vertex
vp(i+ 1) is concave.

(c) Boundary vertex vp(i) is concave, boundary vertex
vp(i+ 1) is convex.

(d) Both boundary vertices of ep(i) are concave.

Figure 4: Four different cases of boundary edges and their corresponding active
areas.
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is perpendicular to ep(i). For graph elements in the half space bounded by

vp(i)v2p(i), ep(i), and vp(i+ 1)vp(i+ 2). we apply a force perpendicular to
boundary edge ep(i). Note that if vp(i) is a left concave boundary vertex of
boundary edge ep(i), then it is also the right concave boundary vertex of bound-
ary edge ep(i − 1) which is handled by case 2 above.

Case 4: Both boundary vertices of ep(i) are concave (see Fig. 4(d)):
There are 3 active regions in this case – two triangular regions associated

with concave boundary vertices and a non-triangular region. Just as in cases 2
and 3, a left concave boundary vertex will be bounded by a vector that is per-
pendicular to the preceding boundary edge. Likewise, a right concave boundary
vertex will be bounded by a vector that is perpendicular to the next boundary
edge. The middle region is the rectangular half space bounded by perpendicular
vector vp(i)v2p(i), ep(i), and perpendicular vector vp(i+ 1)v1p(i + 1). Forces
are applied to graph elements as described in other cases.

4.2 Different Types of Active Area

Here, we consider the number of active areas resulting from either a single or
multiple boundaries, and whether their shape or arrangement result in a single
or multiple active areas where graph elements will be constrained. There are
four possible configurations which we discuss below.

4.2.1 Single Boundary and Single Active Area

(Fig. 1(a)) This is the simplest case, where the boundary constraint is specified
by a single boundary and where the edges in this boundary do not self-intersect.
Graph elements will have forces applies to them if they are in the active area
of each of the boundary edges of the boundary. These forces are summed up
to obtain the net boundary constraint forces acting on a graph element. The
resulting boundary constraint force is then factored in together with other force-
directed components i.e. spring and gravitation forces, to effect a change in the
position of the graph element.

4.2.2 Single Boundary and Multiple Active Area

(Fig. 5) This scenario happens when boundary edges intersect each other. As
an example, boundary edge ep(i−1) and boundary edge ep(i+1) intersect each
other at vp. This results in two separate active areas A1 and A2, which we treat
as two single active areas. In this case, the resulting layout of a graph will be
highly dependent on the initial configuration or position of the graph elements.
If the graph to be laid out is a single connected graph, i.e. all the nodes are
connected together, then the final lay out of the graph will be constrained to
be in either A1 or A2. If the graph to be laid out contains multiple disjoint
components i.e. the graph is actually a forest, then different parts of the forest
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will end up in A1 or A2 depending on their initial positions prior to activating
the boundary constraint forces.

Figure 5: Single boundary and multiple active area.

4.2.3 Multiple Boundaries and Single Active Area

(Fig. 6) Recall that boundary vertices are specified in a counter-clockwise order
so that a sense of what is inside or outside the boundary can be established. In
Fig. 6, boundary B2 is fully inside boundary B1. The active area A = B1−B2, is
a single connected active area. Each of the boundary edges will exert a boundary
constraint force in the direction described in Section 4.3. A graph to be laid
out, whether it is a single connected graph or a forest, will be constrained to
fully reside within the active area A.

Figure 6: Multiple boundaries and single active area.

4.2.4 Multiple Boundaries and Multiple Active Area

Multiple active areas can arise from certain arrangements of multiple bound-
aries. If boundaries are nested with alternating inside-outside orientations as
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in Fig. 7, then one can obtain multiple disjoint active areas. For such cases,
the same behavior as illustrated in Fig. 5 can be expected. That is, the final
layout is sensitive to the initial layout of the graph. Also, if the graph is a single
connected graph, it will end up in one of the active areas; and if it is a forest,
then different parts will go to different active areas.

Aside from this scenario, there are other ways to obtain multiple active areas
using multiple boundaries. For example, one of the enclosed boundaries may
be a self-intersecting boundary, or two of the enclosed boundaries intersect each
other. We do not consider these cases in this paper.

Figure 7: Multiple boundaries and multiple active area.

4.3 Boundary Forces

All graph vertices are affected by boundary forces. However, the force depends
primarily on two factors: (i) whether the graph vertex is inside or outside the
boundary, and (ii) how far the graph vertex is from the boundary. This results
in two boundary force formulations depending on whether a graph vertex is
inside or outside the boundary constraint, as well as two distance calculations
depending on what type of active region the graph vertex falls in.

Before we assign boundary forces to a graph vertex, we run a point-in-
polygon test such as the crossing test described by Haines [12] to determine
whether it is inside or outside the boundary. This is an efficient O(m) test
that depends on the number of edges defining a boundary and can handle self-
intersecting polygons properly.

In Fig. 8, we see that with respect to ep(i), vG(1) is in the active area
(interior vertex) but vG(2) is not (exterior vertex). A graph vertex vG(j) that
is inside the boundary will receive a boundary force fBp from boundary edge
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ep(i) defined by:

fBp(vG(j), ep(i)) = c5 ·
1

de(i)
· ver(i)

|ver(i)|
i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(3)

For a graph vertex vG(j) that is outside the boundary, we assign a stronger
boundary force towards the interior of the boundary to pull them inside. That
boundary force is defined by:

fBp(vG(j), ep(i)) = c5 · de(i) ·
ver(i)

|ver(i)|
i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

(4)

where ver(i) is a vector that is perpendicular to ep(i), de(i) is the distance from
the boundary edge ep(i) to vG(j), and c5 is scaling parameter. Intuitively, c5
is a weighting factor for how important the boundary force should be relative
to the spring and gravitational forces acting on graph vertices. If it is set too
large, the boundary forces will dominate and the graph may be tightly packed
within the boundary. Judicious use of c5 can result in a more aesthetic layout
of the graph within the specified boundary. The distance de(i) is defined by:

de(i) =
vec(j) · ver(i)

|ver(i)|
(5)

where vec(j) = vG(j)− vp(i).

Figure 8: Illustration for calculating boundary forces of interior vs exterior
graph vertices, and triangular vs non-triangular active areas.
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If the graph vertex vG(j) falls within a triangular active area, de(i) is re-
placed with the distance between the the graph vertex and the associated con-
cave boundary vertex as follows:

de(i) = |vp(i + 1)vG(j)| (6)

The boundary force formulation in Eqn. 3 is also changed slightly by re-
placing ver(i) with vG(j)− vp(i + 1) for the case where vp(i + 1) is a concave
boundary vertex.

By iterating through all the boundary edges ep(i) in each of the Bp bound-
aries, the total boundary force acting on vertex vG(j) will be
∑q

p=1

∑n

i=1
fBp(vG(j), ep(i)).

4.4 Modified Force Components

Here we modify the conventional spring and repulsive forces in order to combine
with our boundary forces. We utilize the knowledge of the size of the graph and
the size of the active area to scale the forces appropriately to achieve a uniform
distribution of graph vertices.

4.4.1 Spring Force

Given a graph G, each vertex is placed in some initial random layout with
coordinates Pi(x, y). Once released, the spring forces act to move the system
to a minimal energy state. We use the logarithmic strength springs and modify
Eqn. 1 to:

fs(vG(i), vG(j)) = c1 ·
α

β
· log

(

|vG(i)vG(j)|
c2

)

vG(i)vG(j)

|vG(i)vG(j)|
i, j = 1, 2, · · · , n and i 6= j

(7)

α is the number of vertices in the graph. β is the total active area. Together
α/β represents the average density of vertices within the active area. This
modification of Eqn. 1 allows the attractive spring forces to scale with the
layout density.

4.4.2 Repulsive Force

Eqn. 2 is modified in a similar manner to take into account graph density:

fr(vG(i), vG(j)) = c3 ·
β

α
· vG(i)vG(j)

|vG(i)vG(j)|3
i, j = 1, 2, · · · , n

(8)

This time the force is inversely related to the density α/β.
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4.4.3 Boundary Force

Eqn. 3 and Eqn. 4 are also modified in a similar manner to take into account
graph density. For graph vertices that are within the boundary:

fBp(vG(j), ep(i)) = c5 ·
α

β
· 1

de(i)
· ver(i)

|ver(i)|
(9)

And for graph vertices that are outside the boundary:

fBp(vG(j), ep(i)) = c5 ·
α

β
· de(i) · ver(i)

|ver(i)|
i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

(10)

4.5 Graph Drawing Algorithm

Our drawing algorithm includes three main parts: (1) compute the attractive
spring force of each graph edge and the repulsive gravitational force for each
pair of graph vertices; (2) compute boundary forces for each vertex; then (3)
add the three different kinds of forces together. At each iteration, make a step
towards the direction where the total force is pointing for each vertex, and draw
the updated graph.

5 Implementation and Testing Tools

5.1 Implementation

We developed a prototype using Matlab and its graphic library. Tests were
ran on an Intel Core i5 3GHz PC with 8GB of memory running Windows 7.
Processing 2.0 was used to realize the interactive part with users.

It should be noted that the setting of parameters c1 · · · c5 not only influence
the run times but also the convergence rate of our approach and the quality of the
final drawing. In the following, we briefly explain how to set those parameters.
Recall that c1 is the scaling constant for spring force, c2 is the given spring
natural length, c3 is the scaling constant for the repelling force, Parameter c4
controls the magnitude of movement i.e. the range in which vertices can move.
If c4 is set smaller, then the range of movement of vertices is also smaller and
hence a slower convergence. On the other hand, a large value of c4 may cause
erratic and non-convergent behavior. Parameters c1 · · · c4 are similar to the
parameters used in conventional force-directed methods. The new parameter
c5 controls the weight of boundary forces. If c5 is set to 0, there are in effect
no boundary forces and the convergence falls back on the standard spring and
gravity model. If c5 is set too high (and assuming that c1 · · · c4 were set to
values that produce a stable layout), then the graph will be compressed into a
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very tight ball within the boundary – which is not aesthetically pleasing. The
setting of these parameters should be coordinated so as to achieve a stable and
pleasing graph layout.

5.2 Synthetic Graphs

For testing purposes, we created a synthetic graph generation program. Input
to this program is the number of graph vertices and edges. The vertices are as-
signed an initial random position, while pairs of vertices are connected randomly
using uniform sampling of the vertices with replacement.

In Fig. 9, we show the initial random layout of a graph which has 13 graph
vertices and 5 boundary vertices. Coordinates of the graph vertices are ran-
domly generated while the boundary is user-defined. Red boundary vertices are
connected to form the boundary. Blue graph vertices scattered randomly have
black arrows representing the total force and direction acting on them after each
iteration. After 150 iterations, we can see the graph is indeed totally within the
predefined boundary in Fig. 10.
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Figure 9: Initial layout of graph.
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Figure 10: After 150 iterations.

6 Results and Analysis

In this section, we apply our boundary constraints to several graph datasets
using both synthetic graphs and publicly available graph datasets. First we
demonstrate how the graph layout changes with different boundary constraints.
Then we ran it on different scales of graph data. Lastly, we show some visual
results of arbitrarily shaped boundaries and dynamic response to altering the
boundary during the graph layout process.

6.1 Experimental Results for Different Boundary Force

Functions

We know the boundary forces depends on the distance from the graph vertex to
the boundary edge. Here, we demonstrate the effects of changing the boundary
force functions on the the graph layout. Eqn. 9 specifies an inverse distance
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(a) 1/d (b) 1/ log d

(c) 1/d2 (d) 1/
√
d

Figure 11: Different boundary force functions.

relationship of boundary force on a graph vertex. Fig. 11 illustrates how the
positions of the graph vertices are affected by changing the boundary force
functions without changing the boundary constraints. Note that graph edges
are not drawn in these illustrations and convergence times vary as well. In this
example, we are using the same graph with 2000 vertices and 4000 edges under
the same set of parameters and the same boundary of a regular pentagon.

In Fig. 11(a), we are using inverse of d. By changing it to inverse of the
logarithm of d, the vertices are pushed further away from the middle part of the
boundary edges resulting in curved silhouettes as shown in Fig. 11(b). Since
boundary force of inverse of d2 is dropping much faster than inverse of d, we see
graph vertices are closer to the boundary as shown Fig. 11(c). And since the
boundary force of inverse of

√
d is dropping slower than inverse of d we see the

graph is further pushed further away from the boundary in Fig. 11(d).

6.2 Experimental Results for Different Scales of Graphs

Similar to conventional force-directed methods as discussed in Section 2, the
complexity of our approach depends on number of vertices and edges in the
graph [5]. Because the number of boundary vertices are much less than the
number of vertices in the graph, the running time of our approach remains at
the same level. We ran some experiments to obtain some actual running times.
First, we fixed the ratio of vertices to edges in the graph, then increase the
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(a) n = 100 (b) n = 500

(b) n = 2000 (b) n = 10000

Figure 12: Layout of datasets with have same ratio of vertices to edges.

number of vertices and number of edges proportionately. The running times are
listed in Table 1 and the resultant layouts are shown in Fig. 12. Note that we are
using the same topology of boundary as a regular pentagon and inverse distance
to the boundary edge as the boundary force function for these experiments. We
also hide the edges of each graph in order to have a more clear view of the
distribution of vertices.

Table 1: Running time of datasets that have same ratio of vertices and edges
Number of vertices n Number of edges m Average Running

time t (seconds)
100 200 0.87
500 1000 3.56
2000 4000 6.33
10000 20000 53.91

We can see that the graph vertices are distributed evenly within each bound-
ary. With increasing density of vertices, the graph can reveal the shape of the
boundary more clearly.
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Letter I Heart

Star Intersected

Figure 13: Graph layout with different boundary shapes.

6.3 Visual Results for Boundaries with Different Topology

In this section, we define several convex and concave boundary shapes. The
visual results are listed in Fig. 13. We also defined multiple boundaries with
layouts shown in Fig. 14. Fig. 14(a) with one interior boundary and Fig. 14(b)
with two interior boundaries.

Animation of both changing boundaries and graph layout process are also
an integral part of the visual feedback for the users. Allowing users to adjust
and manipulate boundary vertices where the graph is to be constrained can be
very helpful. Here, we took several screen shots of the graph layout process with
changing boundary shape. First we used a Facebook dataset of 1589 vertices and
2732 edges and changed the layout from an initial square boundary constraint
to a triangular boundary constraint (see Fig. 15). In Fig. 16, a graph inside
a circular sun shape is rearranged to conform to a moon shaped boundary.
Another example illustrated in Fig. 17 simulates graph vertices spreading out
to fill an hour glass shape. At first, all the vertices in graph are at the top, as the
algorithm runs, they expand and spread out over this hour glass shape. Note
that there are no downwards gravitational forces modeled into the simulation.
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(a) Donut (b) Number 8

Figure 14: Different topologies with multiple boundaries.

Initial layout After animation

Figure 15: Layouts from a Facebook user dataset.

Initial sun shape Changed to moon shape

Figure 16: Layout changes from “sun” shape to “moon” shape.
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Initial layout During process

During process Final layout

Figure 17: Simulation with an hour glass shape.

6.4 Convergence Properties

While we do not have a formal proof of convergence for the layout algorithm with
boundary constraints, we have carried out multiple experiments with various
boundary layouts and parameter sets. Figure 18 shows the asymptotic behavior
of forces when there are no boundary constraints. Figures 19 (convex pentagon
shape) and 20 (moon shape with concave boundary nodes) are representative
results showing how the algorithm reaches an asymptotic stable behavior when
boundary forces are introduced. The convergence rate is affected by the amount
of empty space within the boundary and user interactions, and to a lesser degree
by the number of boundary points and the shape of boundary.

7 Conclusion and Future Work

This paper presented a novel way for manipulating and specifying graph layout
with the use of boundary constraints. This is incorporated within a force-
directed simulation and does not significantly increase the cost of graph layout.
The force-directed simulator is self-contained and can be substituted with a more
efficient implementation. We ran experiments on both synthetically generated
graphs and publicly available graphs of fairly small size (10,000 nodes) where
one can still make visually meaningful observations. The boundary constraints
are quite general and can support arbitrary shapes including self-intersections
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Figure 18: Asymptotic behavior when no boundary forces are present.

Figure 19: With pentagon boundary. Figure 20: With moon boundary.

and boundaries with different topologies.
The current work focuses on constraining graph vertices to lie within spec-

ified boundaries. No consideration is made for constraining graph edges to lie
within boundaries as well. A possible extension is to constrain graph edges to lie
within boundaries particular around concave boundary vertices, or to minimize
edge crossings if different topologies are involved.

The shape of the boundary constraint is currently defined by the users. It
may be possible to have a data dependent boundary constraint as a result of
some initial graph analysis, or perhaps dependent on the context of the data
e.g. outline of a country if the data is about the demographics of that country.

Orthogonal to the boundary constraints is the aesthetics of the graph layout
within the boundaries. So, another possible extension is to incorporate aesthetic
metrics of graph layout together with the boundary constraint considerations.
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