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Abstract

Given a graph G and a drawing or layout of G, it is sometimes de-
sirable to alter or adjust the layout. The challenging aspect of designing
layout adjustment algorithms is to maintain a user’s mental picture of the
original layout. We present a new approach to layout adjustment called
cluster busting in anchored graph drawing. We then give two algorithms
as examples of this approach.

The goals of cluster busting in anchored graph drawing are to more
evenly distribute the nodes of the graph in a drawing window while main-
taining the user’s mental picture of the original drawing. We present
simple and efficient iterative heuristics to accomplish these goals. We
formally define some measures of distribution and similarity and give em-
pirical results based on these measures to quantify our methods. The
theoretical analysis of our heuristics presents a formidable challenge, thus
justifying our empirical analysis.
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1 Introduction

A graph G = (V, E) is a set of n nodes V = {v0, v1, . . . , vn−1} and a set of edges
E = {eij = {vi, vj} | there is an edge between vi ∈ V and vj ∈ V }. The edges
can be directed, in which case eij 6= eji or undirected, in which case eij = eji.
The problem of drawing a graph given its combinatorial description G is termed
layout creation in [25]. Layout creation algorithms try to position the nodes and
edges of G such that certain optimization criteria are satisfied.

In the case where graphs with an existing layout must be redrawn, the lay-
outs can have clusters of nodes that are close together, making the labels of the
nodes and the interactions between the nodes hard to read and understand. The
reapplication of a layout creation algorithm is not useful for layout adjustment,
because a new layout that is drastically different from the existing one destroys
the user’s mental picture of the layout [4, 11, 25]. Given a combinatorial de-
scription of a graph G along with an existing drawing D of G, the goal of layout
adjustment algorithms is to produce a new drawing D′ of G such that the layout
can be easily read and such that the user’s mental picture of D is not destroyed.

Our results have been applied to the CORDS project at the Centre for
Advanced Studies (CAS) at the IBM Software Solutions Toronto Laboratory
[3, 13, 14]. The CORDS research project (which ended in 1995) studied the
design, development, and management of distributed applications. One of the
underlying services provided by the CORDS architecture was the support for
visualization.

The following layout adjustment problems were identified as part of the vi-
sualization component in the CORDS project. The programming of distributed
systems with a vast number of processors and communications links requires a
method for visualizing the network as well as the systems running on the net-
work [13]. In particular, there is a requirement to draw graphs of networks in
which the nodes represent geographic locations such as cities in a country or
buildings on a campus. The geographic locations of the nodes provide meaning
to a user who is looking at the layout; therefore, it is important to retain this
location information when drawing the graph. Other types of graphs that must
be displayed by a visualization system are those that have been created by a
user using a graph editor [2]. In this case, the user has put nodes in positions
that either have meaning initially or gain importance after the graph has been
viewed. After the user has edited the layout, the layout can become hard to
read and understand.

In 1993, members of the CORDS team built a prototype to validate the ar-
chitecture [1], and early versions of the layout adjustment algorithms presented
in this paper were used to draw graphs of networks and graphs that were initially
drawn manually.

In [10, 11, 25], an approach to layout adjustment called preserving the mental
map is presented in which some measure of similarity between the node posi-
tions in D and the node positions in D′ is preserved while trying to separate
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overlapping nodes.
In [11], several mathematical models of a user’s mental map are presented.

One such model, called the cluster model, uses the notion of the shape of a
set of points. The idea of using proximity graphs to define the shape of a
set of points is used in pattern recognition [31, 32, 33] and suggested in [11]
as a good measure of a user’s mental map. Proximity graphs of a set of points
include the convex hull, the minimum spanning tree, and the sphere of influence
graph. The mental map is preserved between two layouts if the proximity graphs
defined on the node positions of the two layouts are the same. In [25], these
concepts are further explored, algorithms are presented, and some experiences
with visualization systems are given.

In this paper, we weaken the requirement that the measure of similarity
be preserved. Instead, we try to improve the distribution of the nodes in the
new layout according to some measures of distribution (a process we call cluster
busting) while simultaneously trying to minimize the difference between the two
layouts according to some measures of difference (a process we call anchored
graph drawing). We present two heuristic algorithms for layout adjustment that
are based on this approach. Cluster busting in anchored graph drawing was
introduced in [21].

A drawing of a graph is denoted by D = (G, S, W ), where G = (V, E) is a
graph, S = {p0, p1, . . . , pn−1} is a set of points, and W is a window that contains
S. The window is an isothetic rectangle in the plane such that bl = (xbl, ybl) is
the bottom left corner of W and tr = (xtr, ytr) is the top right corner. A drawing
D′ = (G, S′, W ′) denots a transformation of D where S′ = {p′0, p′1, . . . , p′n−1}
and W ′ contains S′.

The goal of cluster busting in anchored graph drawing is to produce a new
drawing D′ of an existing drawing D such that the following criteria are satisfied:

CB1 W = W ′

CB2 The nodes in D′ should be more evenly distributed inside W than the
nodes in D,

CB3 The general shape of D′ should be the same as D.

These criteria are the same as those presented in [10]. Note that criteria CB1
and CB2 do not take the edges of the graph into consideration. It is unclear
from the description of criterion CB3 whether or not the shape of the drawing
includes the edges of the graph. Our algorithms ignore the edges of the graph
when determining the new node positions. The definition of “shape” presented
in [10] also excludes the edges of the graph.

In Section 2 we present related work. In Section 3, we present measures
of distribution and similarity. Two cluster busting in anchored graph drawing
algorithms are presented in Section 4. In Section 5 we present results, and we
conclude with future areas of research in Section 6.
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2 Related Work

A comprehensive survey of graph drawing algorithms is presented in [8]. Com-
pared to the number of layout creation algorithms available, little work has been
done in designing dynamic graph drawing algorithms or layout adjustment al-
gorithms [8]. An early result in dynamic graph drawing is an algorithm for
drawing trees that change [27]. More recently, polylogarithmic algorithms that
update drawings of trees, special types of digraphs, and general planar graphs
are presented in [5].

In [4], user-defined constraints (in the form of linear equations of two vari-
ables) are added to an existing layout algorithm to keep drawings stable. Exam-
ples of constraints that a user might want to specify include absolute positioning
(for example, if nodes are placed on horizontal levels, a node may be constrained
to a specific level or a specific position within a level), relative positioning (node
pi is to the left of node pj), or clusters (grouping nodes together in a cluster
that can be further constrained by size and/or position). Constraints are de-
fined on an x, y coordinate system: The fact that node pi should be vertically
above node pj translates to two equations, xi = xj , and yi < yj . A constraint
manager maintains a list of all constraints, keeps the set of constraints consis-
tent, and provides functions to add, delete, and query the status of constraints.
It is shown how user-defined constraints can be added to many existing layout
algorithms.

In [24], incremental graph layout allows graphs to be updated without dis-
turbing the existing nodes and edges in the layout. Nodes and edges are added
one at a time such that one node cannot overlap another and an edge cannot
cross a node. In these layouts, every node is a rectangle and every edge is a
sequence of horizontal and vertical segments.

In [10], algorithms are presented that preserve the mental map of the drawing
according to the orthogonal ordering model of a user’s mental map; that is, for
each pair of node positions pi and pj in D with corresponding positions p′i and
p′j , respectively, in D′:

• x′
i < x′

j if and only if xi < xj , and

• y′
i < y′

j if and only if yi < yj

where pi = (xi, yi). Preserving the orthogonal ordering of the nodes while
keeping the nodes inside the original-sized display window may not allow enough
movement to distribute the nodes so that it can be determined if there are edges
between them [22].

As with several other successful methods for drawing general undirected
graphs, our algorithms are heuristic; therefore, we present quantitative measures
of the layouts that provide evidence that the algorithms satisfy the criteria in
practise. In [23, 26, 29, 34], quantitative measures are also used to evaluate
layouts produced by heuristic algorithms. For example, a heuristic algorithm
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that tries to produce drawings with uniform edge lengths, evenly distributed
nodes, and minimal edge crossings is presented in [34]. The algorithm finds an
initial placement of each node by minimizing a cost function made up of three
components representing each of the three criteria. A quantitative measure
is defined for each of the criteria, and layouts produced by the algorithm are
compared with layouts produced by the algorithms in [6] and [17] based on these
measures.

In the following section we define quantitative measurements of layouts for
evaluating the cluster busting in anchored graph drawing algorithms presented
in Section 4.

3 Measuring Similarity and Distribution

It is straight forward to measure if a drawing is inside a given drawing window;
however, quantifying even distribution and similarity are much more difficult.
In this section we present one model of distribution and two models of similarity,
and define measurements of layouts based on these models. In [22], additional
models of distribution and similarity are presented.

3.1 Measuring Distribution

Criterion CB2 states that the nodes in D′ should be more evenly distributed
inside W than the nodes in D. In order to judge if the nodes in one drawing
are more evenly distributed in W than the nodes in another drawing, we need a
method (or methods) for measuring the distribution of points in a given bounded
region. We must not only consider the distribution of the nodes relative to each
other but also the distance between each node and the boundary of W . We have
determined through observation that if the ideal distance between two nodes is
dI , then the ideal distance between a node and the boundary of W is 0.5dI .

We call a method for measuring the distribution of points a model E of
distribution. Given a model E of distribution, let the distribution measure of
the nodes in a drawing D = (G, S, W ) according to the model E be: ΞE(S),
where ΞE (S) ≥ 0.0 increases as S becomes more evenly distributed under the
model E .

An intuitive way of quantifying the distribution of a set of points is to say
that a set of points is evenly distributed in a given bounded region if the min-
imum distance between any two points in the set is maximized; that is, if the
distance between a closest pair of points is maximized. We call this model the
CP model of distribution and define the measure of distribution according to
the CP model as:

ΞCP (S) = min{min
i6=j
{dist(pi, pj)}, min

w∈{tr,bl}
{2|xi − xw|, 2|yi − yw|}}
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where tr and bl are the top right and bottom left corners of W , respectively. It
follows that the nodes in a drawing D are more evenly distributed than those
in D′ under the CP model if ΞCP (S) > ΞCP (S′).

The cost of computing ΞCP (S) for a drawing D with n nodes is O(n) time
given the Voronoi diagram of the nodes, which can be computed in O(n log n)
time [28].

3.2 Measuring Similarity

Criterion CB3 states that the general shape of D′ should be the same as D.
In [11] and [25], several mathematical models of the user’s mental map of a
drawing D are defined, and D′ is said to have the same shape as D if D′ and D
are the same according to one of the models. Since this condition is relaxed in
cluster busting in anchored graph drawing, we must have a way of measuring
difference or similarity between D and D′ according to a given model. In this
section, we present measures of difference between two sets of points based on
two models of a user’s mental map. Each of the models described in this section
quantifies similarity between two sets of node positions and does not consider
edges of the input graph. For a given mental map model M , we define δM (S, S′)
as the number of changes in S′ from S under the model M , and let UBM (n) be
an upper bound on the number of changes in a drawing with n nodes under the
model M . The upper bound is set to the maximum value when the maximum
is known; otherwise, the lowest known upper bound is used. The measure of
difference according to the model M is given by

DM (S, S′) =
δM (S, S′)
UBM (n)

In this way, we ensure that 0.0 ≤ DM (S, S′) ≤ 1.0. If DM (S, S′) = 0.0, then
there is no difference between the drawings D and D′ according to the model M
and the transformation from D to D′ preserves the mental map under M . We
say two drawings D and D′ are not very different or are similar under a model
M if DM (S, S′) is small, and the two drawings are as different as they can be
according to measure M if DM (S, S′) = 1.0.

It is important to note that the values of DM (S, S′) are normalized between
0.0 and 1.0 in order to compare values of DM (S, S′) for different-sized drawings
produced by different layout programs under the same model M . It is inappro-
priate to compare DM1(S, S′) and DM2(S, S′) on the same drawing for different
models M1 and M2.

The similarity models presented in this section have been chosen based on
ideas and results borrowed from the fields of psychology and pattern recognition,
and because of their geometric nature, efficiency of computation, and ease of
implementation. According to Gregson [19], under the normative definition
of similarity a declaration is made that a certain operation is being used to
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measure similarity between two objects but no presupposition is made about
how accurate that operation is as an actual judge of similarity.

3.2.1 λ-Matrix (λM) Model

In [18], Goodman and Pollack introduce a process called geometric sorting,
which defines an ordering on n points in d > 1 dimensions. Their idea of sorting
generalizes from the one-dimensional case where a set of n numbers is given.
Consider these numbers as n points on a horizontal line L. Two sets of points
S and S′ on a line are in the same order (have the same order type) if for every
pair of points, pi < pj if and only if p′i < p′j.

According to Goodman and Pollack, two sets of points S and S′ in the plane
have the same order type (are in the same order) if for every triple of points,
(pi, pj, pk) are oriented counterclockwise if and only if (p′i, p

′
j , p

′
k) are oriented

counterclockwise [18]. Their method of determining if two sets of points have
the same order type without having to compare every triple by defining the λ-
matrix of a set of points is a follows: Given a set of points S, let λ(pi, pj) be the
number of points to the left of the directed line from pi to pj . We define λ(pi, pi)
to equal n. The n× n matrix containing λ(pi, pj), for i = 0, 1, 2, . . . , n− 1 and
j = 0, 1, 2, . . . , n − 1 is called the λ-matrix of S. The set Λ(pi, pj) is the set
of points to the left of the directed line from pi to pj . It is shown in [18] that
the sets Λ(pi, pj) can be determined given the sets λ(pi, pj), and an algorithm is
presented for computing the λ-matrix of a set of n points in O(n2 log n) time. In
[12], an algorithm is presented that computes the λ-matrix of a set of n points
in the plane in O(n2) time. Two sets of points have the same order type if their
λ-matricies are the same.

Several possible applications of this technique are presented in [18], including
pattern recognition in which new images can be compared to a given image by
comparing their λ-matrices. We use λ-matrices to compare two drawings D
and D′ of n nodes by computing the sum of the differences in entries in the
λ-matrices of S and S′:

δλM (S, S′) =
n−1∑
i=0

n−1∑
j=0

|λ(pi, pj)− λ(p′i, p
′
j)|

In [22], it is shown that the upper bound on δλM (S, S′) for n nodes is:

UBλM (n) = n

⌊
(n− 1)2

2

⌋

therefore,

DλM (S, S′) =
δλM (S, S′)
UBλM (n)

The upper bound is achieved when the set of points are all on the convex hull
and the ordering around the convex hull is reversed [22].
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3.2.2 Distances Moved (DM) Model

A natural measure of difference between two sets of points is the distance that
each point has moved. The value of δDM (S, S′) is computed by summing the
distance between pi and p′i for i = 0, 1, 2, . . . , n− 1:

δDM (S, S′) =
n−1∑
i=0

dist(pi, p
′
i)

The time required to compute δDM (S, S′) is O(n) since there are n distances.
Each distance is at most

√
2 since the sets S and S′ are within the unit square;

therefore, we define the upper bound on δDM (S, S′) for n nodes as:

UBDM (n) =
√

2n

and let

DDM (S, S′) =
δDM (S, S′)
UBDM (n)

The upper bound is achieved when all the points move from some corner of W
to a diagonal corner.

4 The Layout Algorithms

Both the algorithms presented in this paper are iterative, and at each iteration
heuristics are used to determine where to move the nodes. We restrict the
movement of the nodes to inside the drawing window, which guarantees that
criterion CB1 is satisfied. In Section 5 we evaluate and compare the algorithms
according to criteria CB2 and CB3.

Let S = S0 be the input positions of the nodes, and let St = {pt
0, p

t
1, . . . , p

t
n−1}

be the positions of the nodes after iteration t. The output positions of the nodes
are given by the set S′. After each iteration t, tests can be performed to measure
the distribution of the points in St and the differences between S and St. The
algorithms iterate until a specified distribution or similarity measure exceeds a
given threshold. If the thresholds are not reached, the algorithms iterate Imax

times. When the algorithm returns, the user is presented with the resulting
layout, and is given the option of changing the thresholds and continuing or
accepting the layout the way it is. The similarity and distribution models to be
used, the value Imax, and the threshold values can be given as part of the input
(for experienced users) or defaults can be used.

4.1 The Voronoi Diagram Cluster Buster (VDCB) Algo-
rithm

The VDCB algorithm is based on the well-studied Voronoi diagram. Given a
set S = {p0, p1, . . . , pn−1} of n points, the Voronoi diagram of S, VD(S) is a
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partition of the plane into n convex (not necessarily bounded) regions such that
the region or polygon Vor(pi) associated with the point pi is the set of points
that are closer1 to pi than to any other point in S [28, 35]. An implementa-
tion by Kenny Wong [36] of Fortune’s sweep-line algorithm [16] is used by the
implementations of our algorithms.

The Clipped Voronoi Diagram of a set S of n points, CVD(S), is VD(S)
clipped within W and can be computed in O(n log n) time. The idea of using
the Voronoi diagram of the set S to constrain the movement of the nodes came
about while trying to determine how to satisfy criterion CB3. Restricting the
nodes to move within their Voronoi regions guarantees that p′i is closer to pi

than to any pj ∈ S, j 6= i. However, in small Voronoi regions that are close
together, the allowable movement is too restricted to more evenly distribute
the nodes. To allow the nodes in these small regions to become more evenly
distributed, the process is iterated. At each iteration, the nodes move to a point
that is inside their Voronoi region, and the Voronoi diagram of the new layout
is computed. We can no longer guarantee that p′i is closer to pi than to any
other pj ∈ S, j 6= i.

To more evenly distribute the nodes, the nodes should move away from
Voronoi edges they are close to and move closer to the Voronoi edges they are
further from; therefore, it was decided to move each node to the centroid of the
Voronoi region. Given a node pi, the centroid of Vor(pi) is defined as:

cdi =

(∫
Vor(pi)

x,
∫
Vor(pi)

y
)

Area(Vor(pi))

The n centroids can be computed in O(n) time [22].
The VDCB algorithm is presented in Figure 1. The VDCB algorithm runs

in O(t ∗ (n log n + T (n))) time, where t ≤ Imax is the number of iterations and
T (n) is the time taken to perform the measurements.

4.2 The GeoForce Algorithm

The Geographic Force or GeoForce algorithm is based on the idea of using
forces and springs to model interactions between nodes in a drawing of a graph
[7, 9, 15, 17, 20, 29, 30]. The basic idea in each of the spring-based or force-
based algorithms is the same: Nodes with no edge between them are repelled
from each other by a force that depends on the distance between them and
nodes connected by an edge are attracted to each other by a force that depends
on the distance between them. The initial layout is usually created arbitrarily.
At each iteration of the algorithm, forces are computed on the nodes, and one
or all of the nodes are moved to a position according to the acting forces.

1The distance between two points is the Euclidean distance.
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algorithm VDCB(D)

initialize: stop iterating ← FALSE; t← 0; St ← S
while t < Imax and not stop iterating

Compute CVD(St)
for each i

find cdt
i

pt+1
i ← cdt

i

t← t + 1
for each distribution measure E

if ΞE(St) ≥ the defined threshold for E then
stop iterating ← TRUE
S′ ← St

for each similarity measure M
if DM (St) ≥ the defined threshold for M then

stop iterating ← TRUE
S′ ← St−1

output: D′

Figure 1: The VDCB algorithm.
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The GeoForce algorithm came about by adapting the idea of the force-based
algorithms with the hopes of achieving their success in practise. Criterion CB3
states that the general shape of the drawing should be similar to the shape of
the original drawing; therefore, attractive forces are applied between each node
and its position in the original layout. Since the second goal of cluster busting
in anchored graph drawing is to more evenly distribute the nodes in the drawing
window, repelling forces are applied between every pair of nodes and between
each node and the sides of the drawing window.

The forces applied, constants used, and techniques for dealing with the
boundary of W have been chosen by implementing different methods, trying
a few values in combination with other values, and observing the effect on sam-
ple layouts. There are n + 3 forces repelling each node and one force attracting
each node. Therefore, we take the average repelling force and subtract the
attractive force. The total force applied to pi at iteration t is given by:

f t
i =

FS(pt
i) + FR(pt

i)
n + 3

− fA(dist(pt
i − pi))

where FS(pt
i) is the repelling force between pt

i and each of the sides of W , FR(pt
i)

is the repelling force between pt
i and pt

j , j = 0, 1, . . . , n− 1, j 6= i, and fA is the
attractive force between pt

i and its original position pi.
FS(pt

i) and FR(pt
i) are computed as:

FS(pt
i) =

∑
w∈{bl,tr}

(fS(|xt
i − xw|) + fS(|yt

i − yw|))

and
FR(pt

i) =
∑
j 6=i

fR(dist(pt
i, p

t
j))

The force functions, fR(d), fA(d), and fS(d) are computed as follows. The
repelling force should move the nodes to some ideal distance away from one
another. Fruchterman and Reingold define the ideal distance between nodes as
dI =

√
area/n, where area is the area of the drawing window [17]. We have

found that bounding the amount of force applied when d = 0.0 and applying
no force when d > dI results in a smooth behaviour. We let fR(d) be the linear
function passing through (0, C1) and (dI , 0), where C1 is a constant representing
the maximum force applied. This function is easy to compute, and in practise
gives good results for C1 = 100.0 and dI =

√
area/n.

The attractive force is applied to pull each node towards its original position.
We found that the following function gives good results: fA(d) = C2d, where
C2 = 1.0 is a constant.

Each side of W exerts a repelling force on each of the nodes. We let fS(d) be
a linear function passing through (0, MF ) and (dI , 0), where MF is the maximum
force exerted. We found that good results were obtained with MF = 10.0 ∗ n.
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As Eades does in [9] and Fruchterman and Reingold do in [17], the acting
forces are computed for all nodes in the given layout and then the nodes are
moved according to the forces, rather than dealing with the nodes one at a time
as in [7] and [20].

The GeoForce algorithm differs from other force-directed algorithms because
we limit the movement of a node pi within a region that takes into consideration
its proximity to the other nodes. The nodes are only allowed to move within a
specified percentage of the distance to their Voronoi edges. Let f t

i be the total
force acting on pt

i at iteration t such that pt
i +f t

i is the point that pt
i would move

to according to the force f t
i . Extend the ray from pt

i to pt
i + f t

i if necessary until
it intersects an edge of Vor(pt

i). Let Ii be that intersection point. We set the
step-size for the node pt

i to be st
i = C4 ∗ dist(pt

i, Ii) where C4 is a constant. We
then set either pt+1

i = pt
i + f t

i or pt+1
i = pt

i + st
i∗ft

i

|ft
i
| , whichever is closer to pt

i. By
experimentation, we found that C4 = 0.25 works well.

The GeoForce algorithm operates like a “smart” VDCB algorithm: The
nodes are moved to a location inside their Voronoi regions, but the heuristic
used to choose that location is based on forces acting on the nodes rather than
just blindly choosing the centroid of the regions. The GeoForce algorithm is
presented in Figure 2. It runs in O(t∗ (n2 +T (n))) time where t ≤ Imax is the
number of iterations and T (n) is the time taken to perform the measurements.

5 Results

In this section, we evaluate and compare the VDCB and GeoForce algorithms.
To do this, we execute each algorithm on a variety of random input layouts and
measure the layouts after a differing number of iterations. We generate layouts
with K clusters of k points each inside W such that n = Kk. The region W can
be evenly divided into K square regions with area 1

K . We want to evaluate our
layout algorithms on layouts with clusters of nodes such that the interactions
between the nodes are hard to read; that is, we want each region that contains
a cluster of nodes to be small. Therefore, we let each cluster occupy a square
region with O( 1

K2 ) area. We first compute K cluster centres by generating K
random points inside W : {c0, c1, . . . , cK−1}. Let si be the square with centre ci

and area C
K2 where C is a constant. The squares are clipped within W , and k

random points are generated uniformly inside each clipped si. The result is a set
of K clusters in the unit square. When K = n, we let pi = ci, i = 0, 1, . . .K− 1.

Executing the algorithms on a variety of random layouts gives a measure of
the goodness of the algorithms with respect to random layouts. For each type
of initial layout, we generated 1000 random layouts of that type and took the
average value for each of the measurements. Let the average value of ΞE(S) be
ΞE(S) for the distribution model E , and let the average value of DM (S, S′) be
DM (S, S′) for the similarity model M . The measurements were performed after
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algorithm GeoForce(D)

initialize: stop iterating ← FALSE; t← 0; St ← S
while t < Imax and not stop iterating

for each i
Compute the force f t

i acting on pt
i

Compute CVD(St)
for each i

if dist(pt
i, p

t
i + f t

i ) < dist(pt
i, p

t
i + st

i∗ft
i

|ft
i
| ) then

pt+1
i ← pt

i + f t
i

else

pt+1
i ← st

i∗ft
i

|ft
i
|

t← t + 1
for each distribution measure E

if ΞE(St) ≥ the defined threshold for E then
stop iterating ← TRUE
S′ ← St

for each similarity measure M
if DM (St) ≥ the defined threshold for M then

stop iterating ← TRUE
S′ ← St−1

output: D′

Figure 2: The GeoForce algorithm.
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t = 1, 2, . . . , 10, 20, . . . , 100 iterations of each of the algorithms.
Table 1 shows values of ΞCP (S) for different types of layouts and for both

layout algorithms.

n K n/K ΞCP (S) ΞCP (S1) ΞCP (S1) ΞCP (S10) ΞCP (S10) ΞCP (S100) ΞCP (S100)

GeoForce VDCB GeoForce VDCB GeoForce VDCB

25 25 1 0.0297158 0.0594681 0.0867467 0.1045789 0.1274640 0.1188087 0.1702646

1 25 0.0124560 0.0286982 0.0428854 0.0785006 0.0901596 0.1096014 0.1662676

5 5 0.0069397 0.0215777 0.0375028 0.0873186 0.1107191 0.1153616 0.1678225

50 50 1 0.0142302 0.0324772 0.0548724 0.0652549 0.0883792 0.0857881 0.1214667

1 50 0.0061505 0.0150611 0.0258729 0.0425497 0.0529996 0.0620407 0.1141157

2 25 0.0047297 0.0109252 0.0199791 0.0392802 0.0513587 0.0644586 0.1156817

5 10 0.0032214 0.0078346 0.0153701 0.0403736 0.0643745 0.0709301 0.1180011

10 5 0.0024422 0.0077468 0.0180950 0.0442022 0.0732051 0.0768871 0.1195598

25 2 0.0020711 0.0154545 0.0412309 0.0578902 0.0841695 0.0821875 0.1206015

100 100 1 0.0071465 0.0192338 0.0351218 0.0397486 0.0614420 0.0583786 0.0853836

1 100 0.0029802 0.0083215 0.0159633 0.0242627 0.0336719 0.0330132 0.0666534

2 50 0.0022414 0.0056704 0.0119749 0.0201109 0.0277523 0.0344893 0.0716336

4 25 0.0017113 0.0039890 0.0091445 0.0170900 0.0293285 0.0377601 0.0756969

10 10 0.0011238 0.0030085 0.0069926 0.0163230 0.0405262 0.0436906 0.0798743

25 4 0.0008172 0.0028873 0.0124229 0.0195724 0.0514290 0.0502511 0.0829412

50 2 0.0007292 0.0070734 0.0244130 0.0326964 0.0573149 0.0544592 0.0840577

Table 1: ΞCP (S1), ΞCP (S10), and ΞCP (S100) for several initial layouts and

both layout algorithms.

Tables 2 and 3 give values of DλM (S, S′) and DDM (S, S′) for different n and
for both layout algorithms. According to the similarity model M , the average
difference between two random layouts is DM (S, P ).

The experiments show that, on average, the GeoForce and VDCB algorithms
more evenly distribute the nodes in a drawing according to the CP model of
distribution. In all cases, ΞCP (S1) > ΞCP (S), and ΞCP (St+1) > ΞCP (St) for
all types of input for both layout algorithms.
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Worst Worst
n DλM (S, P ) DλM (S, S1) DλM (S, S1)

GeoForce VDCB
25 0.5645142 0.0696986 0.1397622
50 0.5571432 0.0583581 0.1188550
100 0.5525959 0.0439622 0.0966927

Table 2: DλM (S, P ) and DλM (S, S1) after one iteration of the VDCB and Ge-

oForce algorithms.

Worst Worst
n DDM(S, P ) DDM (S, S1) DDM(S, S1)

GeoForce VDCB
25 0.3671019 0.0275942 0.0790956
50 0.3721420 0.0183423 0.0701698
100 0.3690213 0.0125748 0.0419749

Table 3: DDM(S, P ) and DDM(S, S1) after one iteration of the VDCB and

GeoForce algorithms.
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Layouts with roughly the same number of clusters as nodes in each cluster are
the most different after several iterations according to the λM model. However,
layouts that start out the most evenly distributed according to the CP model
change the least according to the λM measure after several iterations of the
layout algorithms.

According to the DM model of similarity, layouts with one or two clusters
are most different after several iterations, because as the nodes become spread
out they move further from where they started than in layouts with more clus-
ters. As with the λM model, layouts that start out the most evenly distributed
according to the CP model change the least according to the DM model after
several iterations of the layout algorithms.

The VDCB algorithm more evenly distributes the nodes after fewer iterations
than the GeoForce algorithm; therefore, we compare the difference between S
and S′ for layouts S′ with the same distribution level. Let S′

A be the layout S
after adjustment by the algorithm A ∈ {VDCB ,GeoForce}. We say that the
algorithm A1 performs better than the algorithm A2 on specific types of layouts
if the difference levels are smaller between S and S′

A1
than between S and S′

A2

when the distribution levels of S′
A1

and S′
A2

are roughly the same.
The type of initial layout has a significant effect on which layout algorithm

performs better. On average, the GeoForce algorithm performs better for lay-
outs with a small number of clusters, and the VDCB algorithm performs better
for layouts with a large number of clusters. In the GeoForce algorithm the nodes
move less far at each iteration than in the VDCB algorithm for all types of lay-
outs, because of the forces acting on the nodes. In layouts with a small number
of big clusters, small Voronoi regions constrain the movement of the nodes in
the VDCB algorithm as well; therefore, the number of iterations necessary for
the VDCB algorithm to reach a given level of distribution is greater for these
types of layouts. For layouts with a large number of small clusters, the VDCB
algorithm distributes the nodes evenly after very few iterations where the Ge-
oForce algorithm requires a greater number of iterations to achieve the same
level of distribution. During the extra iterations needed, the repelling forces act
on the nodes, causing the layouts to become more different from the original
layout than those produced by the VDCB algorithm.

For layouts with one cluster uniformly distributed in W initially, one to
three iterations of either algorithm is sufficient to distribute the nodes such
that their interactions are readable. After one or two iterations, the VDCB
algorithm distributes the nodes more evenly than the GeoForce algorithm but
the VDCB algorithm moves the nodes further than necessary. The layouts are
more similar to the original layout according to each of the measures with the
GeoForce algorithm. Figure 3 shows such a layout with n = 25 nodes and the
layout after one iteration of the GeoForce algorithm. Figure 4 shows the same
layout after one iteration of the VDCB algorithm.

Figure 5 shows a layout with K = 25 clusters of size 4 each and the layout
after 20 iterations of the GeoForce algorithm. Figure 6 shows the same layout
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Figure 3: A layout with K = 25 clusters of size 1 each, and that layout after

one iteration of the GeoForce algorithm.

Figure 4: A layout with K = 25 clusters of size 1 each, and that layout after

one iteration of the VDCB algorithm.
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Figure 5: A layout with K = 25 clusters of size 4 each, and that layout after 20

iterations of the GeoForce algorithm.

after 11 iterations of the VDCB algorithm. The layout produced by the VDCB
algorithm is more evenly distributed according to the CP model, and is more
similar to the original layout according to the similarity measures presented
in this paper. Human observers may judge the GeoForce layout to be more
similar to its original layout than the VDCB layout. This is partly because the
notion of clustered nodes seems to be completely removed in the VDCB layout.
The notion of clustering is an important model of a user’s mental map [11, 25];
however, the similarity measures presented in this paper do not adequately
capture the notion of clustering. In [22], the number of changes in the Delaunay
triangulation of the node positions is used as a measure of similarity that better
represents the clusters. The layout produced by the VDCB algorithm in Figure
6 was less similar than that produced by the GeoForce algorithm according to
the number of changes in the Delaunay triangulation.

Although the GeoForce algorithm was designed to perform cluster busting
in anchored graph drawing in a “smarter” way than the VDCB algorithm, we
have seen that it does not always do so. In fact, we would recommend using the
VDCB algorithm over the GeoForce algorithm in most cases. The possibility re-
mains that a different choice of force functions and/or constants in the GeoForce
algorithm might result in an algorithm that consistently performs better than
the VDCB algorithm. This possibility is discussed further in the next section.
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Figure 6: A layout with K = 25 clusters of size 4 each, and that layout after 11

iterations of the VDCB algorithm.

6 Conclusions and Future Work

In this paper, we identified a new approach to drawing graphs with an existing
layout that we call cluster busting in anchored graph drawing. We presented
two heuristic algorithms for solving this problem. We provided measurements
for evaluating layouts produced by the algorithms based on the stated goals.
These measurements were used to evaluate and compare the algorithms.

We found that using heuristics is a good approach to drawing graphs in
general and for cluster busting in anchored graph drawing in particular. Using
quantitative measurements is useful for understanding the behaviour of heuris-
tic algorithms. The measurements allow the algorithms to be tested on a larger
number of layouts than if evaluations are based solely on visually judging ex-
ample layouts.

There are several areas for further research. It remains a difficult problem to
use the quantitative measurements to determine stopping conditions, because of
the large number of factors involved. Possible enhancements are to allow more
user input during the layout process or to use animation. The user watches
the layout change at each iteration, and stops the algorithm manually when the
resulting layout is satisfactory.

We support the conclusion of Messinger et al. in [23] that more research
is needed into subjective issues that users find important for “good” drawings
of graphs. This is particularly true in the case when the aesthetic factor is
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something as subjective as similarity.
Different force functions and constants might result in a GeoForce algorithm

that consistently performs better than the VDCB algorithm. The forces and
constants in the current GeoForce algorithm were determined by trying a few
values and viewing sample layouts produced by an algorithm using those values.
Subjective judgements were made as to which choices gave better layouts by one
or two people observing the layouts. It would be interesting to use the quantita-
tive measures to judge several layouts after each choice of forces and constants.
This way many more layouts could be judged on different combinations of the
forces and constants.

An important area for future work in layout adjustment algorithms is to
take the edges of the graphs into consideration. This is a difficult problem that
was also not addressed in algorithms for preserving the mental map [10]. There
are a couple of ways that edges can be incorporated into layout adjustment
algorithms. First, similarity measures can include changes in the edges in the
drawing. Second, layout adjustment algorithms can optimize edge criteria such
as keeping the number of edge crossings small in the new layout while retaining
similarity in the node positions.

A model of the mental map that takes the positions of the edges in a layout
into consideration is presented in [25]. Figure 7(a) taken from [25] shows a
drawing of a graph of n = 6 nodes and m = 7 edges. The edges and nodes in the
drawing divide the plane into regions called faces. The outside face is bounded
by edges and nodes listed in clockwise order: f1 = AbBcCgFdeDfEfDa. Three
other faces are given by f2 = AdeDa, f3 = CgFde, and f4 = AbBcCed. A
dual graph is defined such that there is a node in the dual graph for each face
defined above, and there is an edge between two nodes in the dual graph whose
faces share a boundary. Figure 7(b) shows the dual graph of the layout in
Figure 7(a). Two layouts have the same topology if they have the same dual
graph. An adjustment algorithm preserves the topology of a drawing if the new
drawing has the same topology as the original drawing. The difference between
two topologies (such as the number of edge changes in the dual graph) could be
used as a measure of difference between two drawings that includes the edges
of the graph. This measure could be used to evaluate our algorithms and other
cluster busting in anchored graph drawing algorithms according to the topology
model of a user’s mental map.

Since both algorithms are iterative, it would be interesting if we could prove
that the algorithms converge. In [22], it is shown that in the VDCB algorithm,
n = st nodes at vertices of an isothetic grid of size s by t do converge. A
discussion of the convergence of the VDCB algorithm for the case of n points
in general is also presented. It is an open problem to prove that the VDCB
algorithm converges for general input.
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Figure 7: A layout and the dual graph representing its topology.
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