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Abstract

The visual analysis of complex networks is a challenging task in many
fields, such as systems biology or social sciences. Often, various domain
experts work together to improve the analysis time or the quality of the
analysis results. Collaborative visualization tools can facilitate the analy-
sis process in such situations. We propose a new web-based visualization
environment which supports distributed, synchronous and asynchronous
collaboration. In addition to standard collaboration features like event
tracking or synchronizing, our client/server-based system provides a rich
set of visualization and interaction techniques for better navigation and
overview of the input network. Changes made by specific analysts or
even just visited network elements are highlighted on demand by heat
maps. They enable us to visualize user behavior data without affecting
the original graph visualization, are robust against layout changes, and are
user-sensitive in a sense that the current analyst is able to perceive which
changes were made by others in asynchronous collaboration. In case of
synchronous collaboration, an analyst can see where and what others are
currently analyzing in the network visualization. Thus, our approach ad-
dresses critical collaborative visualization challenges, for instance, aware-
ness and coordination of user activities or pointing to interesting objects.
We evaluated the usability of the heat map approach against two alterna-
tives in a controlled user experiment. In addition, the results of a domain
expert review are described in this article.
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1 Introduction

With the growing size and availability of large and complex data, the cooperative
analysis of such data sets is becoming an important new method for many
data analysts as cooperation might improve the quality of the analysis process
[25] and help to analyze data sets efficiently. One crucial observation is that
collaborators—who are often spread across the globe—would like to seamlessly
drop in and out of ongoing work [18]. On the one hand, the collaborative
analysis process can take place in a joint online session where everybody is
working simultaneously on one data set, discussing and changing it together in
real-time to create better analysis results. Here, different experts might want to
see what the others are doing, and if there are possibilities to coordinate their
efforts and find a common ground [5, 11]. On the other hand, the experts work
on the data set whenever they find the time (i.e., asynchronously) to avoid
having to schedule and organize a virtual or physical meeting with a larger
group of colleagues. Both situations cause specific problems that should be
handled by tools which support collaborative work. For instance, while working
independently, it would be helpful to see changes of the data performed by
other analysts. Another interesting issue is to see which part of the data set
has already been explored by others. Here, it is also interesting to know who
changed the data: was an established expert working on a specific part of the
data, or a new staff member who might not have the same experience as the
expert?

To tackle the aforementioned problems in the context of collaborative net-
work analyses, we have developed the visualization tool OnGraX [39, 40, 42].
Our system was designed for the distributed asynchronous and synchronous col-
laborative exploration of graphs in a modern web browser. Web-based visual-
ization systems have the advantage of being accessible on the fly by just opening
an URL in a browser and thus do not require the installation of additional soft-
ware. This is a fundamental property for collaborative sensemaking, as analysts
want to work together without too much setup overhead. One drawback of web-
based visualizations is the performance while analyzing huge data sets. In such
cases, native desktop applications are still the better choice. However, mod-
ern web browsers facilitate hardware accelerated rendering and, consequently,
an increasing number of visualizations are implemented as web-based applica-
tions and published online. Note that we give a detailed explanation about
the engineering aspects and technical challenges of implementing OnGraX as a
web-based application in paper [42]. In contrast, we here propose interactive
visualization techniques that

• help to coordinate work in a collaborative setting for node-link diagrams
which may change their topology during the analysis process (referred to
as dynamic graphs in the following) and

• assist analysts to identify previous activities performed by former users on
these networks.
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We exemplify our visualization approaches with the help of the collaborative
analysis of metabolic networks from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway database [23] due to our long lasting research collabo-
rations with biologists/bioinformaticians at several research institutions [1, 19,
20, 21]. Building such biological networks is often based on complex exper-
iments. In consequence, biologists of different domains and experience levels
want to explore the resulting networks and check them for wrong entries or
missing data and revise the networks wherever it is necessary. Usually, they
only check parts of a network that are specific to their own field of expertise
or interest. In this case it is important to know, what part of the network has
already been checked and what part still needs attention. This can also be used
as a kind of quality check: an area which has been investigated by many dif-
ferent experts is likely to have a higher quality than an area only investigated
by one scientist. OnGraX supports such analysis tasks by providing methods
for data awareness and coordination. Note that we retain this usage scenario in
the rest of the paper except in the heat map evaluation (cf. Subsection 5.1) in
order to attract a higher number of test subjects.

The remainder of this article is organized as follows. In the next section,
we discuss related work in collaborative graph visualization. We describe our
design decisions in Section 3 and explain OnGraX’ interaction and visualization
techniques for displaying user behavior in Section 4. A user experiment to eval-
uate our heat map approach for identifying previous user activities is discussed
in Section 5 together with a domain expert review. We conclude our article in
Section 6.

This article is an extended version of a paper presented at the 23rd Interna-
tional Symposium on Graph Drawing & Network Visualization (GD ’15) [41]. In
this version, we added a short summary of the technical aspects of OnGraX in
Subsection 3.2, as well as a discussion about an alternative coloring approach for
the heat map visualization in Subsection 4.2. Figures 5 and 6 have been added
to clarify features discussed in Section 4. Additionally, Section 5 has been ex-
tended by an expert review to assess our collaboration requirements (cf. Section
3) during a distributed synchronous analysis session in the domain of metabolic
network analysis.

2 Related Work

Isenberg et al. [16] give a good overview of definitions, tasks and sample visu-
alizations in the field of collaborative visualization. The authors define collab-
orative visualization as “the shared use of computer-supported, (interactive,)
visual representations of data by more than one person with the common goal
of contribution to joint information processing activities”. They also provide
an excellent summary of ongoing challenges in this field. The benefits of col-
laborative work were also discussed in an article on social navigation presented
by Dieberger et al. [8]. Being able to see the usage history and annotations of
former users might help analysts to filter and find relevant information more
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quickly. In order to be able to work together during a synchronous session,
users have to know each other’s interactions and views on the data set, usually
referred to as “common ground” [5, 11]. To find a common ground in node-link
visualizations, we apply the techniques from the work of Gutwin and Green-
berg [9]. They used secondary viewports and radar views to indicate other
users’ view areas and mouse cursor positions. We use a similar approach and
show the viewports of other users as rectangles in the background of the graph
visualization. Another work by Isenberg et al. [17] introduced the concept of
collaborative brushing and linking, which “allows users to communicate implic-
itly, by sharing activities and progress between visualizations”. The authors
considered sharing activities during synchronous collaborations on a tabletop
visualization for document collections. We adapt the concept and utilize it in
node-link diagrams with the help of a heat map visualization for the exploration
of interaction information in both asynchronous and synchronous, distributed
sessions. An earlier article from Isenberg et al. [15] considers retrofitting existing
visualization systems to enable co-located collaboration. They complemented
the single-user graph visualization system NodeTrix [12] to support multiple
mice inputs and one keyboard to host a collaborative session for multiple users
in one room. However, they had to remove some of the features of the original
system, since they were not designed to support multiple user input. Another
tool for co-located collaboration was introduced by Mahyar and Tory [24]. Their
tool CLIP supports collaborative work by sharing findings among a team of
analysts in a co-located environment. Both systems are not suitable for our
collaborative analysis problems, since they do not support asynchronous col-
laboration. There are other web-based developments such as ManyEyes [32] or
Dashiki [27], which enable users to share data sets and analysis results online,
but they do not support the interactive visualization of node-link diagrams in
a web browser with real-time interactions for co-located as well as distributed
collaboration.

During asynchronous sessions, users might want to share their thoughts,
findings, or questions with subsequent collaborators while they explore a data
set. Providing the possibility to add graphical and textual annotations is an im-
portant feature to communicate interesting parts of a data set directly within an
existing visualization [4, 14]. These annotations should also keep their context
if the data that they are referring to changes over time. Our tool OnGraX sup-
ports textual annotations that are tied to objects in node-link diagrams and can
still be explored in context if the structure or the topology of a graph changes
over time.

We utilize heat maps to analyze and identify highly frequented or edited
parts of the graph based on user behavior. Patina [26] uses a similar approach
but focuses on visualizing the usage of user interfaces, whereas our tool facilitates
heat maps to visualize interactions of users with the data itself. To the best
of our knowledge, heat map visualizations for representing data in combination
with node-link diagrams are seldomly considered. Usually, they are used to
visualize quantitative data in geovisualizations [30], as cluster heat maps [36],
or for the visualization of eye tracking data to illustrate the quality of web site
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designs, user interfaces, or graph layouts [28, 34], i.e., for evaluation purposes.
One of the very few examples where heat maps are used in node-link diagrams
is PLATO [35] which employs heat maps to visualize gameplay data.

3 Design Decisions

We carefully designed our system in terms of visual representations, interaction
techniques, and analysis processes to support biologists/bioinformaticians in
exploring and curating graphs from the KEGG pathway database. We decided
to focus our work on node-link diagrams, since this is still the most accepted
and preferred graph drawing metaphor, and our users are familiar with this kind
of visualization.

3.1 Requirements

Our overall goal was to develop a visualization system that allows analysts spa-
tially spread across multiple research labs or even countries to quickly start an
analysis session and to work on large and complex networks together. A special
problem that arises during the distributed analysis of graphs is that topology
and structure of a graph are independent to the layout. Analysts might change
the layout drastically during the analysis process, which complicates the task
of keeping track of the graph objects and areas that users were most interested
in. We also want our tool to support tracking and subsequent visualizing of all
actions and graph changes performed by the users. This includes to keep track
of the users’ camera positions and use this data later to assist users in finding
parts of a graph that were interesting to other analysts or have been edited a
lot. The reason behind this is that users in a collaborative working environment
do not always find the time to work together simultaneously. They would prefer
to work on the data set whenever it is convenient for them. And in such a case,
they would like to review changes that have been performed on the data set by
other analysts in the past. Maybe, they also want to find out which part of the
data set another analyst was looking at, since he/she might be an expert in the
underlying application field and has another exploration pattern compared to
less experienced users. Showing this data—the camera and mouse positions, the
logged user views, and changes to specific objects—in the graph without chang-
ing the original node-link visualization was an important requirement for our
users. Biologists are accustomed to existing layouts and drawing conventions of
graphs from the KEGG pathway database. Thus, changing positions, color, or
the shape of nodes to show the data which is collected during collaborations is
not an option for our analysis tasks.

During their work, analysts would also like to share their thoughts, insights,
and questions about specific nodes, edges or regions with other users. This
could happen during a synchronous session where collaborators want to discuss
their findings, or in an asynchronous session where users would like to share
messages and pointers on specific nodes. Heer and Agrawala discuss these ideas
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as “Common Ground and Awareness” and “Reference and Deixis” in their work
on collaborative visual analytics [11]. In case of graphs that change their topol-
ogy during the analysis process, single nodes or complete graph regions could
be deleted from a graph, rendering old user annotations useless without the
possibility to view them in their historical context. Thus, analysts need a way
to quickly view the graph in a state when the annotation was originally written.
Based on this discussion, we categorize our requirements as described in the
following.

Collaboration Requirements (C-R)

1. Users should be aware of the position of other users in the same syn-
chronous session.

2. Users should have possibilities to establish and keep a common ground
with other users. Everyone should be aware of performed changes on the
graph during a session.

3. They should have an option to discuss ongoing work through persistent
chat channels and annotations.

Visualization Requirements (V-R)

1. Annotations should be viewable in their historical context. Thus, it should
be possible for users to review old graph states.

2. Provide an easy and intuitive way for analysts to find out which regions
of a graph were viewed and/or changed by former users.

3. Additionally, the visualization of this data should not interfere with the
original node-link diagram.

3.2 General Setup and Technology

This subsection gives a brief overview of the technical aspects of OnGraX; a
detailed discussion is available in [42]. OnGraX is based on a client-server ar-
chitecture. The client is responsible for rendering the visualizations, providing
the user interface, and sending action events and the user’s current viewing
area and mouse position to the server, which handles the data storage and dis-
tributes the events among all connected clients. Due to recent developments
in web-based technologies, we decided to implement the client side by using
HTML5 and JavaScript. The rendering of the node-link diagrams is achieved
with WebGL [22]. WebGL is a JavaScript API for rendering 3D graphics on a
GPU natively in a modern web browser without the need of additional plug-
ins. In order to avoid low-level OpenGL programming, we use three.js [29]: a
JavaScript library that builds on top of the WebGL specification.
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The server is implemented in Java and runs as a web application on an
Apache Tomcat server. It handles the real-time connections with WebSock-
ets [37], stores the graphs, and keeps track of all performed user actions. This
enables us to leave all computationally intensive parts on the server without
affecting the visualization performance of the clients. One example of such a
computationally expensive part is the heat map calculation which is described
in Section 4. Whenever a user performs an action—such as joining or leaving
a graph analysis session, or editing the graph—an action event is sent to the
server. The server stores this action in a database and also forwards it to every
connected client of this analysis session. All clients update their local graph
visualization with the latest changes and add new actions to a list of recent
events. Using a web application to store the graphs and all related data in a
central place enables our users to start an analysis session whenever they want
and also to seamlessly drop in and out of ongoing sessions.

4 Interaction and Visualization Techniques

Figure 1 shows an overview of OnGraX right after joining an ongoing graph
analysis session. In this case, the user has joined a session where two other
users, Bob and Sue, are already working in. Their viewports are represented
as two dashed rectangles: Bob’s view is shown in blue (bottom left) and Sue’s
view is shown in green (bottom right). All users in a session are listed as small
icons at the left hand side of the screen. By clicking on one of the user icons, the
camera moves to his/her current position in the graph. This feature provides
a quick way to join and discuss another user’s viewing area. Visualizing the
viewports of other users helps us to tackle our first collaboration requirement
(cf. C-R 1). An overview of the graph is rendered in the bottom right corner of
the screen. Here, the user’s camera position is shown as a blue rectangle. As in
many other standard visualizations that use overview+detail [6], this rectangle
can be dragged to another position in the overview in order to modify the detail
view (the same can be done by clicking on the new position in the overview).

We use a standard node-link metaphor to visualize graphs in our system. The
visualization uses tapered edges for directed graphs, as suggested by Holten and
van Wijk [13], since they provide users with a faster way to find connected nodes
as opposed to arrowhead edges. If another user selects one or more nodes, this
will be visible to all other participants of the analysis session. An outline in the
respective user color is added to a selected node; thereby the system adapts the
outline shape to the corresponding node shape.

With the help of OnGraX, analysts are able to explore static graphs, and
they can also edit the structure and topology of a graph. There are different
kinds of use cases during the exploration and analysis of networks. Depending on
the data, an analyst might want to keep the topology of a graph but completely
change its layout, in order to find specific structures, hubs, or communities in
the data. Also, mapping data attributes to the colors and size of nodes, or to
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the width and length of edges could change the layout of a graph. In another
situation, analysts could actually alter the topology of a graph by adding or
removing edges and nodes. This could encompass a few nodes or edges, but
it could also affect the graph on a bigger scale, for instance, if a complete
subgraph is removed or added. And then, if the topology of a graph is altered
on a huge scale, its layout could also change drastically. Comparing different
states of a graph and keeping track of changes in such cases is a challenge which
is addressed by Hascoët and Dragicevic [10]. Our use case in this work still
includes altering the structure and layout of graphs, but on a smaller scale.
The metabolic networks, which are analyzed and revised with OnGraX, already
have an existing, handcrafted layout which is not changed by mapping different
data attributes to the graph objects. Tasks for which OnGraX is used, usually
only require adding or removing a few nodes and edges and/or changing their
label, size or color manually. To make such graph changes more obvious—when
they are performed by other users during a synchronous session, and to address
the second collaboration requirement (cf. C-R 2)—we use short animations on
the affected objects, similarly to the work of Gutwin and Greenberg [9]. For
instance, the outlines for other users’ node selections are animated shortly while
they are added or removed, nodes are slowly moved to new positions instead of
just jumping there after being moved by another user, and deleted nodes slowly
vanish instead of just disappearing.

4.1 Annotations and Chat Links

In order to improve the communication among collaborators, our tool has a
persistent chat channel for every graph session and offers the possibility to
link chat messages to a position or a node in the graph. Users can use those
chat links to move the camera to the linked object or position. A link to an
arbitrary position might become obsolete after changes to the graph layout, but
a message linked to a node or edge will always be valid as long as the object is not
deleted. In addition, users can attach textual annotations directly to nodes or
edges (cf. Figure 1, (e+f)). These annotations work as pointers from the graph
visualization to text and vice versa. Clicking on an annotation in the graph
visualization opens the annotation dialog and highlights the linked message. A
click on an annotation in the dialog moves the camera to the object’s position
in the graph visualization. With the chat and annotation features, we address
our last collaboration requirement (cf. C-R 3).

One problem with textual annotations and chat messages linked to objects
is, that the original context in which an annotation or message was initially
written could get lost if the respective graph region—where the link is pointing
to—is changed during the course of a session or if the object with this link is
deleted. We solve this problem by enabling analysts to temporarily revert the
complete graph to an old state (similar to the timeline feature, see Section 4.3)
by right clicking on a chat link or an annotation, giving them the possibility to
view the graph in a state in which the annotation was originally written. This
feature addresses our first visualization requirement (cf. V-R 1).
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4.2 Visualizing User Behavior Data with Heat Maps

In order to provide users with a way to quickly find out which nodes or regions of
a graph were viewed and/or changed by others (cf. V-R 2), we considered several
options. It would be possible to map the corresponding data to the colors or the
size of the nodes. Another option would be to use additional glyphs on/around
the nodes which represent this data. Using glyphs would also allow us to show
both the viewport data and the data for graph changes at the same time, as
small bar charts for instance. The third option is a heat map-based visualization
in the background of the graph visualization. We decided to omit mapping the
data to the size of nodes, as this would interfere too much with the original graph
layout and could introduce too many node overlaps. Additional options would
have been to use contour lines [2] or bubble sets [7], but for our use case the
focus usually lies on finding and marking single nodes and small groups instead
of bigger regions in a graph. We also wanted to visualize the actual numerical
values of the data, which is not possible with the aforementioned approaches.
Finally three options are left over, and we exemplify them in Figure 2.

a b c

Figure 2: Heat map visualization (a) and two alternative approaches: glyphs
(b) and node color (c). They are used to indicate which parts of the entire graph
were viewed or changed by other users.

One disadvantage of glyphs in this context is the increased clutter in the
graph visualization. Additionally, depending on the size of the glyphs, it could
be hard to see the actual data values in highly zoomed-out views of the graph.
Changing the color coding of nodes in a graph as alternative is in conflict with
our last visualization requirement (cf. V-R 3), because the color coding can be
already mapped to another attribute. Thus, heat maps could provide a good
alternative to visualize additional data without directly changing the attributes
of objects in a node-link diagram. We performed a user experiment (cf. Sec-
tion 5) to assess how the heat map approach compares against glyphs and node
colors. During the experiment, we used a three-color gradient for the heat map
visualization. After getting diverse feedback about the preferred color gradient,
we decided to give users the option to choose between three different gradient
options: the default three-color gradient with colors ranging from green over
yellow to red, a monochrome version, and a two-colored gradient for color blind
users (cf. Figure 3). We believe that the colored gradients are better at indicat-
ing the actual values that are mapped to the heat map, whereas the grayscale
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gradient could be used in cases where perceiving the original node colors is more
important. The opacity of the heat map can also be adjusted to make it easier
to perceive the actual colors of the nodes in case one of the colored heat map
versions is used.

a b c

Figure 3: Three different approaches for the visual encoding of the heat map: a
three-color gradient (a), a grayscale gradient (b), and a two-color gradient for
color blind users (c).

If the heat map visualization is selected, all calculated values are transferred
to the requesting client, where they are used to draw an alpha map on an off-
screen canvas element. For every node, a circular gradient is drawn which is
based on the size and position of the node. This creates an image with grayscale
values ranging from 0 to 255. To create the actual colors for the heat map, each
pixel value is used to lookup the color from a 1×256 pixel wide color gradient.
Based on these values, an OpenGL texture is created and put on a mesh in the
background of the graph visualization (cf. Figure 2, (a)). The actual values,
which are mapped to the glyphs, node colors or heat map, can be computed
based on two different data sources: viewports and graph changes.

Displaying Viewports In the first case, values are calculated based on the
amount of seconds that nodes have been in the viewing areas of users (visitation
rate). For aggregating this data, OnGraX stores each user’s viewport together
with the time spent on the position whenever the viewport is changed. Ad-
ditionally, each time a node is moved, the old position is logged. The server
correlates all logged user views and node positions to calculate the values, thus
making them robust against changes in the layout of the graph. Figure 4 il-
lustrates this approach. In this small example, three stored viewports of one
user and two node movements from another user—whose viewports are ignored
here—are taken into account. The user arrived at position A at exactly 10:00
AM, stayed there for 10 seconds, moved his viewport to position B for 5 seconds
and finally stayed 16 seconds at position C. In viewport A, node 1 was visible
for 10 seconds, but in viewport C, it was only visible for 12 seconds, as the
node was only moved into the viewport 4 seconds after the user arrived at the
position, resulting in a complete viewing time of 22 seconds for node 1. The
viewing time of node 2 is only 2 seconds, as it was moved into viewport B 13
seconds after 10:00 AM, and the user arrived there at 10 seconds after 10:00
AM and left 5 seconds later.
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Figure 4: Illustration for the correlation of all stored viewports with all node
move actions to create a heat map that is robust against layout changes of the
graph.

For zoomed-out views that show a lot of nodes, it is clear that the user does
not attend to all nodes in such a view. To solve this issue, users can adjust the
settings to filter out these “big views” and only use zoomed-in views to calculate
the heat map. Figure 5 illustrates this idea. In (a) and (b), all viewports are
used to calculate the values, (c) and (d) only show viewports with a high zoom
level. Views are also only tracked if the user is actively working on the graph:
if a user switches to another window or tab, then the tracking is stopped. It
is also stopped if the mouse is not moved for a while (currently 20 seconds) to
avoid tracking views of inactive users. This approach does still include nodes
in the views that might not have had attention by an active user, but it gives a
better estimate about the viewed graph regions without asking a user to mark
every inspected node manually or asking all users to use an eye tracker during
the analysis process, for instance.

Displaying Graph Changes In the second case, OnGraX calculates values
based on changes that have been performed on nodes. Seven actions (name
changed, shape changed, node moved, node added, node selected, edge added,
edge removed) are tracked and can be used to calculate the heat map values in
this case. A multiplier is specified in a configuration dialog for each individual
action type to give it more or less weight during the calculation. This enables
analysts to highlight only nodes that were moved and had their names changed,
for instance. The visualization can be configured to only show a specific user
or to show the data for all users together (the selection of user groups would
also be possible and could easily be added to the system). Furthermore, it is
possible to select a time frame, for instance, the last five minutes of the current
analysis session, or a specific start and end date. This enables an analyst to
review changes done in a collaborative session during a specific time frame or
to check the work of a single user.
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4.3 Tracking and Replaying User Actions

Actions performed by other users during a synchronous session are shown at
the right corner of the screen (cf. Figure 1, (c)) together with the name of the
user who initiated the action. A right-click is used to dismiss a recent action
and a left-click moves the camera to the location of the action in the graph.
Another left-click on the same action moves the camera back to its original
position. Thus, users can quickly check what their collaborators are doing and
then return to their own work, without having to navigate to every performed
action manually. To provide our users with the possibility to keep track of all
actions that occurred in a session, we use a scrollable timeline at the bottom
border of the screen that shows the complete action history of the graph session
(cf. Figure 1, (d)). The mouse tooltip for the symbols in the timeline shows the
action time and the name of the user who performed the action. The timeline
can also be used to revisit old graph states and replay previous actions. If a user
clicks on a symbol, all actions performed since this specific action are replayed
in reverse order. The visualization will show the graph in a state before the
action was performed. Shortly after the graph has been transformed to its old
state, the clicked action is reapplied, animating the graph to the requested point
in time.

a

a

cb

b c

ab
c

cb

Figure 6: Transition to a previous graph state. The figure shows the reverse
animation for a node delete action (a) and node move actions for the nodes
marked with (b) and (c).

Figure 6 shows an example of such a transition. This feature gives users a
tool to revisit old graph states and replay old actions allowing them to assess
what work has been done by other collaborators. Clicking on the rightmost
symbol reverts the graph back to its present state. While viewing an old graph
state, it is not possible to apply any changes to the graph. We decided against
this feature as it would open the possibility to create numerous new branches of
different graph states. This is an interesting aspect and actively researched [33],
but currently not the focus of our work.

It is also possible to inspect the complete action history of a graph session
as a list in an additional dialog. To not get overwhelmed with uninteresting
notifications in this dialog or the timeline, users are able to configure which
types of actions are tracked or filtered out.
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5 Formative Evaluation

We performed two studies: a user experiment and an expert review to get
an impression of the usability of the most important aspects of OnGraX. The
user experiment had the goal to evaluate the usefulness and acceptance of our
heat map approach to visualize user behavior data in comparison to glyphs
and node coloring. Here, the test subjects worked independently of each other,
i.e., asynchronously. In contrast, the expert review aimed to assess OnGraX’
features for collaboratively revising a graph during synchronous analysis sessions
in the domain of metabolic network analysis.

5.1 Heat Map Evaluation

We recruited 15 participants (7 undergraduate students, 7 graduate students,
and 1 post-graduate; average age = 28; 5 female, 10 male). Seven participants
had a background in computer science and eight a background in media tech-
nology. Eight participants never worked with node-link diagrams before, but
everyone was familiar with them.

All 15 sessions were recorded on video and the participants were instructed
to employ a think-aloud protocol. Before starting the actual tasks, the tool and
the three visualization approaches for user behavior data (glyphs, node color,
heat map) and their meaning were introduced by the experimenter, and each
participant could explore a sample graph to get accustomed to the tool. Each
session took about 25-30 minutes, and we asked the participants to solve each
task as quickly as possible, but the time for the tasks was not limited by us.
All participants had to solve two tasks for nine different graphs with the help
of the three visualization approaches. Both tasks were described as follows:

Task 1 – explore graph changes: Find and count all nodes that were moved
by a specific user (9-14 single marked nodes per graph).

Task 2 – explore viewports: Find all regions that a specific user was most
interested in (1-3 marked regions per graph).

The experiment was conducted following a within-subjects design, and users
were divided into three different groups. Every group explored all graphs in the
same order but with a different sequence of visualization approaches. Six graphs
were generated randomly: the first three graphs consisted of 1,000 nodes/edges
and the following three of 2,000 nodes/edges. For the last three graphs, we used
existing metabolic networks with 1,300 to 1,800 nodes/edges.

Quantitative Results We started measuring the task time in seconds for
each task as soon as the visualization of the user behavioral data was enabled
by the participants and stopped the time as soon as they reported a number. For
Task 1, we show the number of nodes that were not found by the users (mean
error rate). In Task 2, all participants found all marked regions, regardless of
the visualization approach. Therefore, we only report the error rate for Task 1.



20 B. Zimmer & A. Kerren OnGraX: Collaborative Visualization of Graphs

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

Glyphs	
   Color	
   Heat	
  Map	
  

M
ea
n	
  
Er
ro
r	
  R

at
e	
  

(a) Task 1, mean error rate

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

Glyphs	
   Color	
   Heat	
  Map	
  

Ta
sk
	
  c
om

pl
e,

on
	
  ,
m
e	
  

(b) Task 1, mean completion
time in seconds

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

Glyphs	
   Color	
   Heat	
  Map	
  

Ta
sk
	
  c
om

pl
e,

on
	
  ,
m
e	
  

(c) Task 2, mean completion
time in seconds

Figure 7: Analysis of the two tasks for the different visualization approaches.

Figure 7 shows the summarized results for all graphs. Initial Friedman tests
showed that both tasks had statistically significant differences in task completion
time. Task 1: χ2 = 34.881, p < 0.001. Task 2: χ2 = 16.812, p < 0.001.
We conducted a post hoc analysis with Wilcoxon signed-rank tests for our not
normally distributed data. For Task 1, the median interquartile range (IQR)
task completion times were 26 (Glyphs), 39 (Node Colors), and 20 (Heat Map).
Both, glyphs vs. heat maps (Z = −3.678, p < 0.001) and node colors vs. heat
maps (Z = −5.334, p < 0.001) had a significant reduction in task completion
time. For Task 2, the median (IQR) task completion times were 19 (Glyphs), 15
(Node Colors), and 13 (Heat Map). Here, the heat map approach also performed
significantly better in comparison with glyphs (Z = −3.678, p < 0.001) and node
colors (Z = −2.406, p = 0.016).

Qualitative Results We asked all participants which visualization approach
they preferred. Everyone favored the heat map visualization. For them, the heat
map was the easiest to perceive, and it also provided the most convenient way to
find single nodes with high values, even at lower zoom levels. While performing
the second task, four participants mentioned that the glyph approach introduced
too much clutter in the view, especially for the metabolic networks. They said
that glyphs were hard to distinguish from the actual nodes, because both the
nodes and glyphs sometimes had a similar shape.

5.2 Expert Review

Expert reviews are an alternative to assess interface usability and find possible
problems without having to perform a full scale user study [31]. Goal of this
expert review was to get informal feedback about the usability of OnGraX’ fea-
tures for synchronous sessions from a small group of experts, who use the tool
to revise metabolic networks collaboratively. More precisely, we wanted to get a
first impression if OnGraX could address our three collaboration requirements
(cf. C-R 1-3), i.e., (1) if the participants could keep track of each other’s view
position in the graph, (2) if they could keep a common ground while working
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on the graph, and (3) if they could coordinate their work by using the chat
and annotation features of OnGraX. The review was performed with an earlier
prototype of our tool. Please note that this review has an informal character
and is by no means a full scale user study, which would require more detailed
preparation (cf. the work of Carpendale on evaluating information visualiza-
tions [3]).

Participants and Review Setup We asked three experts from the Bioinfor-
matics research group at Monash University, Australia, to collaboratively work
on a network in a synchronous session. All three experts were male. One of
the experts was a full professor of Bioinformatics (45 years of age), and the two
others were research fellows (one postdoctoral researcher, one very experienced
research assistant; both around 30 years old) with degrees in Bioinformatics as
well. The professor already knew OnGraX, because we asked him to provide
some general feedback related to specifics in Bioinformatics (e.g., typical shapes
of nodes or use of color) before the review took place. Consequently, he also in-
troduced the task for the review to the two other experts. We asked the experts
to revise the graph shown in Figure 1. All experts worked with this graph previ-
ously. For this expert review, however, a small part of the network was removed
by the experimenters, and the experts had to manually edit and add the missing
nodes and edges together. Every expert was sitting alone in his own office and
was not supervised by us directly. Before they started, the participants had to
watch a six minute introduction video for OnGraX and afterwards opened a web
browser on their computers to join the graph session in OnGraX at the same
time. The heat map visualization was turned off by default, as we did not aim
to assess the heat map features in this review, but the feature was mentioned
in the introduction video. We did not specify a time limit for the review, and
the experts worked for about one hour on the graph. One experimenter also
joined the session remotely to observe the experts during the review. His own
viewport (zoomed out completely) was visible to the expert reviewers, and he
could answer urgent questions via the online chat.

Results After the experiment, we asked the participants to write down their
thoughts about the tool and if the available features helped to fulfill our three
collaboration requirements. The first participant found it very easy to follow the
work and positions of the other online users with the help of the viewports and
tracking possibility of the mouse cursor, while the other two experts thought
that the symbol for displaying the center of the other users’ viewports together
with all mouse cursors was a bit confusing. For them, it would have been
enough to only show the colored rectangles and mouse cursors of specific users.
Additionally, when clicking on a user icon in the top left corner of the screen
(see Figure 1, (c)), they would have preferred to move to the respective user’s
mouse cursor rather than to the center of his view. We fixed these issues in
the current version of OnGraX and also added the possibility to automatically
follow another user’s mouse and/or camera position in real time. The experts
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thought that this would be a useful feature to allow collaborators to just follow
one user’s work on a graph while they discuss possible changes with each other.

All participants found the tool quite interesting, but they missed some fea-
tures. In particular, everyone asked for an “undo” function, and they would
have liked to be able to hide the timeline at the bottom of the screen. Both fea-
tures have already been added in the current version of OnGraX. Even though
the experts found the chat window helpful, they would have preferred to talk
directly via an in-browser voice chat. They said it was easy to follow and track
applied changes during the session, but discussing the changes that should ac-
tually be performed was quite cumbersome as they had to write down every
question in the chat window. Alternatively, collaborators could use tools like
Skype or Google Hangouts, but this would require more time during the start
of a collaborative session. It would be more convenient if a voice chat func-
tionality could be archived in the browser without having to rely on external
programs or additional plugins. This could be addressed in a future version of
OnGraX with the help of the new WebRTC standard [38] for build-in real-time
communications in browsers.

The feedback which we got from this review indicated that being able to see
the viewports and mouse cursors of a selection of users, helps analysts to keep
a common ground in a synchronous session (cf. C-R 1). The experts also found
the short animations when nodes and edges are added, deleted or modified
to be helpful for following ongoing changes of other users (cf. C-R 2). Even
though we did not ask them to use the heat map feature, two of the experts
actually turned on this functionality and used it to track the nodes down that
were added during the course of the review. The experts evaluated the heat
map and chat feature as helpful, whereas the functions to replay user actions
and add annotations were a bit less important for them. This is likely because
they worked in a synchronous session and did not need to replay former actions
or read old annotations (cf. C-R 3), since they could use the chat window to
communicate with each other directly.

6 Conclusions

In this article, we presented a web-based collaborative system for visualizing
graphs with several thousands of nodes and edges, see [42] for a more detailed
discussion on performance and scalability. Our tool OnGraX provides visualiza-
tion and interaction techniques for analyzing data sets synchronously and asyn-
chronously in a distributed environment. Additionally, all actions performed
during a session as well as the users’ camera positions are tracked and can be
visualized along with the graph data by using heat map representations.

We propose using heat maps to efficiently show additional data without af-
fecting the original graph visualization. Based on a user experiment, we show
that the heat map-based approach compares better against glyphs or changing
the background color of nodes. As future work, we plan to evaluate the other
aspects of OnGraX—such as those described in Sections 4.1 and 4.3—and to use
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the tool in other contexts and application domains. For instance, some collab-
orators from biology want to use OnGraX for the education of their students.
The idea is to give students existing metabolic pathways and ask to revise and
edit those graphs. Afterwards, the docents could join the online session and
discuss those changes with the students. We will use this opportunity to test
our tool in another authentic environment and perform a detailed user study
during collaborative work in an educational setting.

In our specific use case, graph changes are usually limited to a couple of
nodes, thus the tracking of all actions and visualizing this data is not an issue
here. This could become problematic if a graph or a subgraph is changed dras-
tically. In this case, additional options to set the granularity for tracked events
and alternative visualization techniques would be required including a newly
designed evaluation.
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