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Propagation Rules for Graph Partitioning
Constraints
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Abstract

We review existing methods and present a generic propagation mecha-
nism for graph partitioning constraints based on directed matchings. The
task is also to give a set of several propagation rules according to specific
partition properties. Every solution of the global constraint corresponds
to a subgraph of the corresponding digraph associated with the constraint.
The filtering identifies the arcs of the digraph that do not belong to a so-
lution. We illustrate this principle on some common global constraints.
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1 Introduction

Graphs are often used to model different various computational problems. A
number of combinatorial problems rely on the partitioning of a graph into a set
of components. The usual graph partitioning problem comprises of dividing a
graph into smaller subgraphs with specific properties, such that the subgraphs
are isomorphic and each vertex of the graph belongs to exactly one of these
components. Important applications of graph partitioning problems include
many areas of mathematics and computer science.

Typically, graph partitioning problems fall under the category of intractable
problems. Even for special graph classes it can be shown that no reasonable
fully polynomial algorithms exist for these graphs. Solutions to these problems
are generally derived using heuristics and approximation algorithms. One com-
petitive approach to solving such problems is constraint programming (CP).
The main motivation for this work is to expand the results of constraint pro-
gramming to graph partitioning problems by proposing more effective filtering
algorithm for the graph partitioning constraints.

Recently, the graph partitioning problem was gained importance due to its
application in constraint programming. Some works about global constraints
and constraint programming have appeared in the journals of operations re-
search [31],[47],[61],[16]. In papers [15, 17] filtering algorithms were introduced
that use the semantic of the constraint in terms of maximum matching. In this
paper, we extend this concept to global constraints representable by directed
graphs. We present a paradigm based on a directed matching. We illustrate
our method with a complete study of specific global constraints.

Constraints that describe partitions of the vertices in a given initial graph
have been considered from an early stage of constraint programming research.
Some examples include the proper forest [8], tour [17], clique [23],[51]
(modeled using undirected graphs), circuit [38],[37], cycle [5], tree [6],[22],
path [9] (modeled as directed graphs), and cost tour [16], shorter path [55],
weighted spanning tree [52],[53] (modeled by weighted graphs) constraints.
Most of the problems involving these constraints are intractable in general. This
work goes one step further by introducing a set of specific propagation rules for
global constraints on directed graphs.

The paper provides a new constraint programming technique to solve graph
partitioning problems on digraphs. It is based on a combination of a new method
to decompose a digraph into subgraphs by exploiting strongly connected com-
ponents and dominators, and algorithms for solving the maximum matching
problem. In principle this gives a somehow generic method to filter these global
constraints.

This work describes a unified approach to propagating graph partitioning
constraints such as circuit, cycle, derangement (and its soft version),
tree, binary tree, path and map. Our goal is to show that a solution to
one of them can be used to solve them all. The method is based on the re-
duction of some digraph matching problem (called directed matching) to the
maximum matching problem on a bipartite graph. Decomposition theory for
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bipartite graphs is then used to come up with specific algorithms for filtering
the arcs of the respective digraph representing the partition.

The approach consists of two steps. First, a solution representing a given
partition in a digraph is constructed. This can be done by using a directed
matching and any standard algorithm for finding a matching in a bipartite
graph. Next, a set of allowed, forbidden and mandatory arcs is determined. The
results provide a general algorithm for solving any graph partitioning problem.
In all these situations the problem of interest can be formulated as the matching
problem defined over the appropriate bipartite graph.

We want to point out that our goal is not to partition a given digraph
D associated with a global constraint, but rather to find out whether it is
possible to make and detect those arcs of D that do not belong to any partition
corresponding to a specific pattern.

This paper is organized as follows. In Section 2 we first present the neces-
sary formal background on constraint programming and graph theory. Section 3
deals with an algorithmic method based on the decomposition theory of directed
graphs. We present an alternative way of computing strongly connected com-
ponents in a directed graph, suited for our technique detailed later. Section 4 is
the central part of the paper. A general tool is first presented (based on match-
ing theory) which is then used to give new filtering algorithms for several graph
partitioning constraints. The studied problems are formulated as a matching
problem on a suitable bipartite graph associated with the input digraph cor-
responding to the constraint. In this section examples are given and filtering
algorithms are developed. We demonstrate how decomposition theory applies
to such problems. We also describe a well-known decomposition method which
uses the strong components of D and present a more powerful decomposition
method based on the dominators of D. Finally, in Section 5 we review related
results, discuss future work and conclude.

The following tables summarize all the theoretical results for graph partition-
ing constraints we will deal with in this paper. The first table gives an overview
of complexities. Here n denotes the number of vertices and m is the number of
edges. The second table gives an exhaustive list of the basic properties for all
graph partitioning constraints discussed in this paper.

global checking hyper-arc
constraint model complexity feasibility consistency Section
circuit digraph/graph NP-hard − − 4.1
cycle digraph/bigraph NP-hard − − 4.2
derangement digraph/bigraph polynomial O(

√
n ·m) O(m+ n) 4.3

soft derangement var digraph/bigraph polynomial O(
√
n ·m) O(m+ n) 4.4

tree digraph linear O(m+ n) O(m+ n) 4.5
binary tree digraph/bigraph NP-hard − − 4.6

DAG/bigraph polynomial O(
√
n ·m) O(m+ n)

path digraph/bigraph NP-hard − − 4.7
DAG/bigraph polynomial O(

√
n ·m) O(m+ n)

map digraph NP-hard − − 4.8

Table 1: Summary of results for graph partitioning constraints (complexities)
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global count lower upper continuity
constraint pattern variable bound bound property
circuit cycle factor −
cycle cycle factor ncycle non-sharp non-sharp -
derangement cycle factor −
soft derangement var cycle factor −
tree anti-arborescence ntree sharp sharp +
binary tree anti-arborescence ntree non-sharp sharp +
path path factor npath non-sharp sharp +
map functional graph nbcycle sharp non-sharp +

nbtree non-sharp non-sharp +

Table 2: Summary of results for graph partitioning constraints (properties)

2 Preliminaries

We start with formal definitions of the central concepts. We first recall some
necessary terminology of the theory of digraphs, matching theory and constraint
programming that we will use in the rest of the paper. We assume that the
reader is familiar with the essentials of complexity theory (for a review, see [25],
[39, Chapter 3] or [14, Chapter 34]).

2.1 Theory of Digraphs

We use standard terminology but for the sake of clarity we repeat the most
important definitions and notations from [28]:

A digraph (directed graph) D is a pair (V,E), where V is a finite set of
elements, called vertices (or nodes), and E ⊆ V × V is a set of ordered pairs
(vi, vj) of vertices, called arcs (or directed edges). The number of vertices n =
|V | is the order of D. The number of arcs m = |E| is the size of D.

A digraph H is a subdigraph of D if V (H) ⊆ V (D) and E(H) ⊆ E(D). If
V (H) = V (D), then H is called a spanning subdigraph (or a factor) of D.

If (vi, vj) is an arc of D, then vi is called the head (or initial endpoint) and
vj is called the tail (or terminal endpoint). Graphically, the vertices can be
represented by points, and (vi, vj) will be represented by an arrow connecting
the points vi and vj , vj being at the tip of the arrow.

An arc whose endpoints coincide is called a loop. Two arcs, or edges, are
called adjacent if they have at least one endpoint in common. We consider
graphs without multiple (parallel) edges but which may contain loops.

Vertex u is called a successor of vertex v if there is an arc with v as its
initial endpoint and u as its terminal endpoint. The set of all successors of v is
denoted by

Γ+(v) = {u ∈ V : (v, u) ∈ E}.
Similarly, vertex u is called a predecessor of vertex v if there exists an arc of

the form (u, v). The set of all predecessors of vertex v is denoted by

Γ−(v) = {u ∈ V : (u, v) ∈ E}.
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The set of all neighbors of v is denoted by

Γ(v) = Γ+(v) ∪ Γ−(v).

For a set X ⊆ V , we let

Γ+(X) =
⋃
x∈X

Γ+(x) and Γ−(X) =
⋃
x∈X

Γ−(x).

The outward degree (or out-degree for short) of a vertex v in D, denoted
by d+(v), is the number of arcs starting at (leaving) v and the inward degree
(or in-degree for short) of a vertex v, denoted by d−(v), is the number of arcs
terminating at (entering) v. The total degree (or just degree) of a vertex v,
denoted by d(v), is defined by

d(v) = d+(v) + d−(v).

Clearly, we have:

d+(v) =
∣∣Γ+(v)

∣∣ and d−(v) =
∣∣Γ−(v)

∣∣ .
It is easy to see that the sum of in-degrees of all vertices equals the sum

of out-degrees of all vertices and both are equal to the number of arcs in the
digraph: ∑

v∈V
d+(v) =

∑
v∈V

d−(v) = m.

If d+(v) = d−(v) = 0, the vertex v is said to be an isolated node; if d+(v) 6= 0
and d−(v) = 0, the vertex v is called a source; if d+(v) = 0 and d−(v) 6= 0, the
vertex v is called a sink. We use subscripts (e.g. d+

D(v)) to specify the digraph
D if the usage is not clear from the context.

A directed path P of length k is a sequence of k+1 distinct vertices v0, v1, . . . , vk
together with the k distinct arcs (v0, v1), (v1, v2), . . . , (vk−1, vk). The vertex v0

is the initial endpoint (or source) of the path P , the vertex vk is the terminal
endpoint (or target) of the path P , and the remaining vertices are the internal
nodes of the path P . A directed circuit is a (directed) path that begins and
ends at the same vertex.

A digraph is called strongly connected (or strong) if, for any two vertices vi
and vj , there exists a path from vi to vj and a path from vj to vi. Finding the
strong components in a directed graph has a variety of applications. Tarjan was
the first to obtain an elegant linear time algorithm with complexity O(m+n) to
compute the strong components of a digraph [58]. His algorithm utilizes depth
first search in a clever way. Tarjan’s algorithm, its complexity and correctness,
is presented in the textbook [14].

A strong component of a digraph D is a maximal strongly connected sub-
digraph of D. We assume that the trivial digraph, consisting of exactly one
vertex is vacuously strong since it does not contain two distinct vertices. Cor-
responding to any digraph D, there is a new digraph whose definition is based
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on the strong components of D. Let S1, S2, . . . , Sp be the strong components
of a digraph D. The strong component graph (also called the condensation) of
D, is the simple digraph SC(D) with vertex set V (SC(D)) = {s1, s2, . . . , sp},
such that there is an arc in digraph SC(D) from vertex si to vertex sj if and
only if there is an arc in digraph D from a vertex in strong component Si to a
vertex in strong component Sj . Multiple arcs from a given strongly connected
component to another strongly connected component are merged.

Notice that the strong component graph of any digraph (some authors use
the term reduced digraph to describe such digraphs) is a directed acyclic graph,
that is, it contains no directed cycles. Note that at this point we allow acyclic
digraphs to contain loops. An acyclic digraph is often referred to by its abbre-
viation, DAG. The term DAG is typically pronounced as a word, not spelled
out as an acronym.

A topological ordering of a directed graph D is a total order ≺ on the nodes
such that u ≺ v for every arc (u, v). Less formally, a topological ordering
arranges the nodes horizontally or vertically so that all arcs point from one
item to the next. A topological ordering is not possible if the digraph D has
a cycle, since for two nodes v and w on the cycle, both v ≺ w and w ≺ v.
Furthermore, the topological ordering is not necessarily unique. Any DAG has
at least one topological ordering, which can be found in linear time [14, Section
22.4].

Acyclic digraphs play a very important role in both theory and applications
of digraphs and form a well-studied family of digraphs, in particular, due to the
following important properties:

• In every directed acyclic graph there is at least one source (a vertex with
no incoming edges: d−(v) = 0) as well as at least one sink (a vertex of
out-degree zero: d+(v) = 0).

• Every acyclic digraph has a topological ordering of its vertices.

• For every vertex v there is a source s such that there is a path from s to
v, and there is a sink t such that there is a path from v to t.

Clearly, in any digraph all the vertices on a cycle belong to the same strongly
connected component. A strongly connected component will be called a source
component if it corresponds to a source vertex in a strong component graph.
Analogously, a strongly connected component of D that corresponds to a sink
of SC(D) is called a sink component. A strongly connected component is trivial
if it consists of one vertex without a loop, and is non-trivial otherwise.

In order to obtain short proofs of various results on subdigraphs or efficiently
solve many problems dealing with directed graphs the following transformation
of a directed graph D to a bipartite graph is extremely useful [28, page 411].

Let D be a directed graph of order n and size m. Associated with D is
a bipartite graph BR(D) with two color classes V1 = {v′1, . . . , v′n} and V2 =
{v′′1 , . . . , v′′n}. The elements of V1 are called outward, and the elements of V2 are
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called inward. A pair {v′i, v′′j } is an edge of BR(D) if there exists an arc of the
form (vi, vj) in D. We call BR(D) the bipartite representation of D.

The augmented bipartite graph corresponding to the directed graph D is
graph BR∗(D) defined as the graph with the same vertex sets V1 and V2 as
BR(D). Every edge of BR(D) is an edge of BR∗(D) and in addition the n
unordered pairs {v′i, v′′i }, i = 1, 2, . . . , n are edges of BR∗(D).

2.2 Matching Theory

Recall that a matching in an undirected graph G = (V,E) is a set of edges from
E, no two of which share a vertex, a maximum matching of G is a matching
of maximal cardinality among all matchings of G and a perfect matching is a
set of pairwise disjoint edges that cover all the vertices of G. For arbitrary
graphs finding a maximum matching fast is quite complicated and it was a
great breakthrough when Edmonds [20] found a polynomial algorithm. For
both bipartite and general graphs the perfect matching problem is solvable in
time O(

√
n ·m) [33],[46].

The notion of a matching is sometimes too restrictive and so we define a
more general concept, a degree-matching. A degree-matching is a set of edges
M where, for each vertex x of the graph, we restrict the number of edges of
M incident with x to be within a given interval. More formally, let g and f be
integer-valued functions, called degree conditions, such that 0 ≤ g(x) ≤ f(x) ≤
d(x). A perfect f -matching is a degree-matching such that the number of edges
belonging to M incident with vertex x equals f(x). Analogously, a perfect (g, f)-
matching is a degree-matching such that the number of matched edges incident
with x has to be between g(x) and f(x). Naturally, if g(x) = 0 and f(x) = 1
for every vertex x then a degree-matching becomes a standard matching. Note
that a perfect 2-matching is a collection of vertex-disjoint cycles, and an acyclic
(1,2)-matching is a collection of vertex-disjoint paths.

An elementary graph is a graph such that the union of perfect matchings
forms a connected spanning subgraph. An elementary bipartite graph is a graph
in which every edge is contained in some perfect matching. The similar defini-
tions can be given for graphs with degree-matchings.

Let D = (V,E) be a digraph with vertex set V (D) and arc set E(D).

Further, let ~g = (g−, g+) and ~f = (f−, f+) be pairs of non-negative integer-
valued functions defined on V (D) such that 0 ≤ g−(x) ≤ f−(x) ≤ d−D(x) and
0 ≤ g+(x) ≤ f+(x) ≤ d+

D(x) for every x ∈ V (D). We say that the digraph D

has a directed perfect ~f -matching if there exists a spanning subdigraph F ⊆ D
such that d−F (x) = f−(x) and d+

F (x) = f+(x) for all x ∈ V (D). Analogously,

a directed perfect (~g, ~f)-matching of D is defined to be a spanning subdigraph
H ⊆ D such that g−(x) ≤ d−H(x) ≤ f−(x) and g+(x) ≤ d+

H(x) ≤ f+(x) for all
x ∈ V (D).

The existence of a directed perfect matching in a digraph is equivalent to
the existence of a perfect matching in its corresponding bipartite representation.
For given pairs of functions ~g = (g−, g+) and ~f = (f−, f+) defined on V (D),
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we define two functions g, f : V (BR(D))→ Z+ by

g(x) =

{
g+(x), if x ∈ V1

g−(x), if x ∈ V2

and

f(x) =

{
f+(x), if x ∈ V1

f−(x), if x ∈ V2.

Then it is easy to see that D has a directed perfect ~f -matching if and only
if BR(D) has a perfect f -matching, and that D has a directed perfect (~g, ~f)-
matching if and only if BR(D) has a perfect (g, f)-matching.

The following necessary and sufficient conditions for the existence of a di-
rected perfect (~g, ~f)-matching are easily verified using matching theory (for bi-
partite graphs).

Theorem 1 Let D = (V,E) be a digraph with non-negative integer-valued func-

tions ~g = (g−, g+) and ~f = (f−, f+) defined on V (D). If D has a directed

perfect (~g, ~f)-matching then∑
x∈X

g+(x) ≤
∑

x∈Γ+(X)

f−(x)

and ∑
x∈X

g−(x) ≤
∑

x∈Γ−(X)

f+(x)

for all X ⊆ V .

Proof: The proof of this theorem is analogous as for Theorem 2.4.5 in [44]. �

A cycle cover of an undirected graph is a spanning subgraph that consists
solely of single cycles in which every vertex is a part of exactly one cycle. Cycle
covers are also known as 2-factors since every vertex has degree two in a cycle
cover.

A cycle factor in a directed graph D = (V,E) is a spanning subdigraph of
D in which the inward and outward degree of every vertex v is equal to 1:

d+(v) = d−(v) = 1.

Observe that a strongly connected digraph needs not necessarily have a cycle
factor. We can use matching theory to find a cycle factor in a given digraph
or to prove that none exists. We now begin with the necessary and sufficient
condition for the existence of a cycle factor in a digraph.

Theorem 2 A directed graph D = (V,E) has a cycle factor if and only if

|X| ≤

∣∣∣∣∣ ⋃
x∈X

Γ+(x)

∣∣∣∣∣
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and

|X| ≤

∣∣∣∣∣ ⋃
x∈X

Γ−(x)

∣∣∣∣∣
for each X ⊆ V .

This looks, in fact, very much like a translation of Hall’s Theorem [30] into
the language of directed graphs. Indeed, it is practically the same result. It can
be proven by applying the Hall’s Theorem to a bipartite representation BR(D)
constructed from digraph D. It is easy to see that D has a cycle factor if and
only if the bipartite graph BR(D) contains a perfect matching.

A path factor of a digraph D is a spanning subdigraph, each of whose compo-
nents is a path. Note that a directed matching does not exclude cycles, whereas
a path factor is acyclic. It is obvious that if a digraph has a cycle factor, then
it also has a path factor. The converse is not true.

2.3 Constraint Programming

We will assume that the reader is familiar with the basic results of constraint
programming, which we briefly review now and state some useful terminology
to make the notation clear. For a thorough explanation of this area we refer the
reader to the monographs [2], [18] and [62].

A domain variable x is a variable ranging over a finite set of integers denoted
by Dx. The minimum and maximum values of Dx are denoted by min(Dx) and
max(Dx), respectively.

A constraint network (CN) consists of a set {x1, . . . , xn} of variables, a set
{Dx1

, . . . , Dxn
} of domains which represent the set of possible values that each

variable can take, and a set of constraints C ⊆ Dx1
× . . . × Dxn

which link
up the variables and define the set of combination of values that are allowed.
The search for an instantiation of all variables that satisfy all the constraints
is called a Constraint Satisfaction Problem (CSP), and such an instantiation is
called a solution to a CSP.

A filtering algorithm for the constraint satisfaction problem removes values
from domains that do not participate in a solution to it. A propagation algo-
rithm helps to identify and detect values that cannot be taken by the variables
of the constraints in any solution of the problem.

The pruning is a task which shrinks the domain of each variable without
changing the set of solutions. We say that the pruning is incomplete if it removes
some inconsistent values but not every inconsistent value. A pruning is complete
if the removal of any additional value from any domain would change the set of
solutions.

Many constraints that appear in modeling, and for which specialized domain
reduction propagation algorithms have been developed, are called global con-
straints. Very often a global constraint can be modeled by a graph and a solution
can be represented as some type of a degree-matching problem. Several exam-
ples are given of encodings of global constraints where values (or rather assign-
ments) in the constraints correspond to edges (see, for example, [19], [15, 17]).
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Moreover, it is shown that one can generalize the techniques used in standard
matching to find out which edges belong to all degree-matchings, some degree-
matchings or no degree-matching. With respect to a specified degree-matching
such edges will be, respectively, called mandatory, allowed or forbidden.

Classification of the edges is performed by applying the so-called alternating
depth-first search on the graph G associated with the global constraint. The
fundamental tool used in this method is the Dulmage-Mendelsohn (DM) and
Gallai-Edmonds (GE) Decomposition, which are canonical decompositions of
bipartite and general graphs based on the notion of matching. We need to tra-
verse the edges of the graph with respect to an initial matching. An alternating
depth-first search simulates the traversing on a directed graph and constructs
layers that alternately use matched and free edges. Clearly, an alternating
depth-first search maintains alternating cycles (for more details, see [15]). The
algorithm can also be used to maintain the strongly connected components.

Analogously to the classical depth-first search the alternating depth-first
search induces two numberings of the vertices of the traversed graph G, one in
the order in which the vertices are reached by a search and one in the order in
which the vertex exploration is completed. The two numbers associated with
the vertex are usually called its discovery and finishing time number. The core
of a strongly connected component is the vertex with the smallest discovery
number.

Throughout this paper we will use the convention that in figures the solid
lines indicate the edges of the graph, the thick solid lines denote matched edges
and the dashed lines shown the forbidden edges. The edges marked by crosses
x are forbidden, as well. The degree conditions of every vertex are shown in the
brackets near the vertex in the auxiliary bipartite graph.

3 Canonical Decomposition

In this section we consider the canonical decomposition of directed graphs with
respect to strong connectivity. As a consequence, we give a new linear time
algorithm for the detection of strongly connected components in a directed
graph. We will see that the strong components of a directed graph become the
elementary subgraphs of an associated bipartite graph. The results presented
in this section are mainly based on the joint work of Johnson, Dulmage and
Mendelsohn [35].

Pruning consists of classifying the arcs of the digraph into three mutually
exclusive sets: forbidden arcs – those arcs which cannot be in any strongly
connected component, mandatory arcs – those arcs which are required and must
be in any strongly connected component, and the remaining, allowed arcs – those
arcs which may be in some strongly connected component, but its removal has
no effect on the component.

Theorem 3 If BR∗(D) is the augmented bipartite graph corresponding to the
directed graph D, then D is strongly connected if and only if BR∗(D) is elemen-
tary.
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Proof: See Theorem 4 in [35]. �

The last property gives us immediately a simple filtering algorithm with re-
spect to the constraint strongly connected [4]. A brute force approach with
complexity of O(m2) has been described in [19]. A filtering algorithm according
to a strong connectivity looks as follows. First, we create graph BR∗(D). Next,
we start with an initial empty matching and iterate over i = 1, . . . , n. We add
to the initial matching the edge {v′i, v′′i }. Then, the application of the alternat-
ing depth-first search to the initial matching M results in hyper-arc consistency
with respect to the strongly connected constraint (Figure 1).

x3

x2

x1

2'’
D(x1) = {2,4}

D(x2) = {1,4}
D(x3) = {5}

D’(x1) = {2}

D’(x2) = {1}
D’(x3) = {5}

D(x4) = {3}
D(x5) = {3,4}

D’(x4) = {3}
D’(x5) = {3,4}

x4

x5

3'’ 4'’

2' 3' 4' 5'

5'’1'’

1'

×

×

Figure 1: Pruning according to a strong connectivity

Let us explain our approach in some technical detail. A filtering algorithm
for strong connectivity can be derived from properties of a perfect matching. It
is based on the fact that an arc (i, j) belongs to a strongly connected component
if the corresponding edge {i′, j′′} is part of some perfect matching.

Consider the example in Figure 1. The problem is modeled as follows. On
the left side of the figure a directed graph D in which we want to find strongly
connected components is depicted. On the right side of the figure the augmented
bipartite graph BR∗(D) is presented. The bold edges in the graph denote an
initial perfect matching.

The alternating depth-first search applied to this problem instance decom-
poses the graph into two elementary bipartite graphs. According to their proper-
ties the edge connecting two distinct elementary bipartite graphs are forbidden.
Thus, since the edges {1′, 4′′} and {2′, 4′′} are forbidden in BR∗(D), the cor-
responding arcs (x1, x4) and (x2, x4) don’t belong to any strongly connected
component of D.

Theorem 4 For any directed graph D, let G1, . . . , Gk be the canonical decom-
position of BR∗(D) into elementary subgraphs. If Di, i = 1, . . . , k, is the subdi-
graph of D such that BR∗(Di) = Gi, then D1, . . . , Dk are the strongly connected
components of D.

Proof: See Theorem 6 in [35]. �

Observe that our filtering routine which is used simultaneously with the
method to find all strongly connected components does not detect mandatory
arcs. Such arcs that are necessary for the strong connectivity of the digraph are
called strong bridges. The strong bridges can be detected in linear time [34].

It is well-known (see, for example, Theorem 4 in [15]) that elementary sub-
graphs of a bipartite graph G = (V1 ∪ V2, E) with a perfect matching can be
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labeled in such a way that every edge in G from a subgraph Gi to a subgraph
Gj with i < j has one endpoint in V2 and the other one in V1. This property
applies to the augmented bipartite graph BR∗(D). In other words, the elemen-
tary subgraphs of BR∗(D) encode the strongly connected components of the
digraph D and moreover induce a topological ordering of the strong component
graph SC(D).

We now prove the theorem, which guarantees that the alternating depth-
first search can be also used on BR∗(D) in order to determine the topological
ordering of SC(D).

Theorem 5 Let Si and Sj be two strongly connected components of a directed
graph D. If there is an arc (u, v) such that u ∈ Si and v ∈ Sj, then the core of
Si will have a higher finishing time than the core of Sj and be sorted first.

Proof: There are two cases to consider. If alternating depth-first search visits
any node in Si before Sj , then clearly all of Si and Sj will be explored before
alternating depth-first search terminates. Therefore, the core of the strongly
connected component Si (the first node visited in Si) will have a larger finishing
time than any other node in Sj . On the other hand, if Sj is explored first, then
alternating depth-first search will terminate after visiting all nodes of Sj but
before visiting any node in Si, in which case the property also holds. �

According to this theorem, a node with the largest finishing time must be
in a source component. However, note that the theorem does not imply that
a node with the smallest finishing time must be in a sink component. As a
counterexample consider a digraph given by V (D) = {v1, v2, v3} with E(D) =
{(v1, v2), (v2, v1), (v1, v3)}. Then {v1, v2} is the source component, but v2 will
finish first.

The algorithm looks as follows. All steps can be performed in linear time.

Algorithm 1 Computing the strongly connected components

Require: Digraph D
Ensure: Strongly connected components of D, partition of arcs, and topologi-

cal ordering of the nodes of SC(D)
Construct the augmented bipartite graph BR∗(D) associated with the di-
graph D
Start with an initial perfect matching in BR∗(D)
Perform an alternating depth-first search starting from some vertex of V ′′

(see Algorithm 2 in [15])
Find the partition of mandatory (strong bridges), allowed and forbidden arcs
Let the number of strongly connected components be the number of core
vertices in the depth-first forest
For every strongly connected component of D determine its topological or-
dering number

Although decomposition using strong components is efficient and useful in
practice, many graph partitioning problems have one or only a few strong com-
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ponents. Therefore, in the subsequent section of this paper we develop a more
powerful decomposition technique based on dominators.

4 Graph Partitioning Constraints

In this section we present a graph-theoretic analysis of a directed matching,
using matching theory. We show a direct reduction of the directed matching
problem on a digraph to the maximum matching problem on a bigraph. This
reduction yields an algorithm to determine the partition of edges in the directed
matching making use of decomposition theory for bipartite graphs. In this
section examples are given and filtering algorithms are developed.

In order to investigate global constraints we first introduce the digraph as-
sociated with any instance of these constraints1. Let X = {x1, x2, . . . , xn}
be a set of n variables with respective finite domains Dxi

⊆ {1, 2, . . . , n} for
i = 1, 2, . . . , n. To these variables we can associate the digraph D = (V,E) with
vertex set V = {vi : 1 ≤ i ≤ n} and arc set E = {(vi, vj) : j ∈ Dxi , 1 ≤ i, j ≤ n}.
Observe that the number of vertices is equal to the number of variables, and
the number of arcs equals the sum of domain cardinalities. Thus, n = |V | and
m = |E| =

∑
|Dxi
| for all xi ∈ X.

Further, we have

d+(vi) = |Dxi
|,

d−(vi) = |D−1
xi
| = |{j : i ∈ Dxj}|.

Hence, a directed edge (vi, vj) exists if and only if j is in the domain of
variable xi. Moreover, elimination of an arc (vi, vj) from the associated digraph
during the pruning means removing of the value j from the domain of xi.

A digraph associated with a global constraint can be viewed as an undirected
graph by forgetting the orientation of its arcs, removing loops and merging all
multiple resulting edges. We call this graph the underlying graph associated
with the global constraint. Clearly, elimination of an edge {vi, vj} from the
underlying graph during the pruning is equivalent both to the removing of the
value j from the domain of variable xi (if it exists) and the removing of the
value i from the domain of variable xj (if it exists).

Our algorithm to find a partition of edges is based on the following simple
observation.

Theorem 6 Let D be a digraph associated with the global constraint and as-
sume that there exists a one-to-one correspondence between the solution of the
constraint and the directed perfect (~g, ~f)-matching in D. Further, let BR(D)
denotes the bipartite representation of D. Then, the necessary condition to sat-
isfiability of the constraint is that BR(D) must have a perfect (g, f)-matching.
Moreover, the mandatory (or forbidden) edges in a perfect (g, f)-matching of

BR(D) are mandatory (or forbidden) arcs in a directed perfect (~g, ~f)-matching
of the digraph D.

1We assume that the variables and their domain values represent the same set of elements.
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Proof: Suppose that BR(D) has a perfect (g, f)-matching M consisting of

the edges e1, . . . , e|M |. Then the arcs form a directed perfect (~g, ~f)-matching.
Indeed, in the subdigraph D′ induced by these arcs every vertex vi has an out-
degree and an in-degree equal to the number of matched edges incident to xi
on the outward side and to yi on the inward side of BR(D), respectively, and,
according to the definition, such a subdigraph is precisely a directed perfect
(~g, ~f)-matching in D. �

To illustrate this theorem, consider Figure 2.
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Figure 2: Pruning according to a directed matching

On the left side of the figure a directed graph D in which we wish to find a
cycle factor is presented. In the middle of the figure the bipartite representation
BR(D) is depicted and a perfect matching M is shown. Observe that the perfect
matching in BR(D) corresponds to a cycle factor 1→ 2→ 1 ∪ 3→ 4→ 5→
6 → 3 in D. In order to obtain the desired partition of edges we need only to
apply an alternating depth-first search on BR(D) with respect to M (for more
details, see [15, Section 4]). The alternating depth-first forest (computed by the
algorithm devised in [15]) is shown on the right side of the figure. Since edge
{1′, 3} in BR(D) is forbidden and edge {3, 4′} is mandatory, arc (3, 1) in D is
forbidden (drawn as a dashed arrow), and arc (3, 4) is mandatory (drawn as a
bold arrow).

A graph partitioning constraint can be seen as a problem for finding a partial
graph of a given digraph associated with the constraint. Graph partitioning
constraints are the main subject of the thesis written by Lorca [42]. From an
interpretation point of view the subdigraphs so obtained are called functional
graphs and they have the characteristic property that the out-degree of each
vertex is equal to 1 (i.e. every vertex of the partition has exactly one successor).
Thus, we will always have g+(v) = f+(v) = 1 for all vertices of D which
corresponds to g(v) = f(v) = 1 for all vertices on the outward side of the
corresponding bipartite graph BR(D).

The graph partitioning constraint can be formally defined as follows. The
constraint can be written

pattern(npattern, nodes)

where npattern is a count variable specifying the number of components in
the graph partition, and nodes is a collection of n variables {x1, . . . , xn}, whose
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domains consist of elements of {1, . . . , n}, i.e. Dxi ⊆ {1, . . . , n} for each i. An
associated directed graph D contains an arc (xi, xj) if and only if j belongs to
the domain of xi. An arc (xi, xj) of D is selected when xi = j and the constraint
enforces that the selected arcs form a satisfactory partition.

The constraint partitions a given associated digraph D described by the
nodes collection into a set of vertex-disjoint components. The constraint re-
quires that in the digraph D there are exactly npattern components, such
that every vertex of D belongs to exactly one component. The constraint holds
if the associated digraph D is covered by a set npattern functional graphs in
such a way that each vertex of D belongs to one distinct component (to a single
component).

By the continuity property for the count variable of a graph partitioning
constraint we mean that if a digraph associated with the constraint can be
decomposed into r and s connected components, where r ≤ s, then it can be
decomposed into k components for all k such that r ≤ k ≤ s.

In the following we will demonstrate the reduction technique on some graph
partitioning constraints. The method is composed of two main phases. The
first one focuses on checking if a constraint has a solution. The second phase
makes it possible to find some arcs that do not participate in any solution. This
phase can be split into three steps: bounds filtering of count variable(s), pruning
forbidden arcs when the count variable is instantiated to one of its extrema, and
structural filtering. The bounds filtering concentrates on the cardinality of the
expected partition. It consists of removing the values of count variable that are
out of range. The structural filtering detects the arcs that do not belong to the
expected partition and reduces the domain variables of constraint. All steps are
complementary and together form a (partial) filtering for a graph partitioning
constraint.

It is now time to demonstrate our idea on concrete examples. For every
global constraint we first give its formal definition and some applications, then
we derive a transformation to the matching problem, and finally we discuss
some related problems. All definitions are taken from the Global Constraint
Catalog [4].

Some of the examples are illustrated by figures. On the left side of the figure
the domains of the variables are given. In the middle of the figure, digraph asso-
ciated with the global constraint and its corresponding bipartite representation
are depicted and the partition of edges is highlighted. The thick edges indicate
a matching, while the vertical dashed lines show forbidden edges. On the right
side of the figure the reduced domains after pruning are presented.

4.1 The CIRCUIT constraint

The circuit constraint was first formulated by Laurière [38]. It can be viewed
as describing a Hamiltonian circuit2 on a directed graph D associated with the

2A digraph is Hamiltonian if it contains a directed circuit that visits each vertex once
without touching any vertex more than once.
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constraint. The constraint is defined as circuit(nodes), where nodes is a
collection of variables {x1, . . . , xn} whose domains are subsets of {1, . . . , n}. It
requires that a tuple (d1, . . . , dn) be a cyclic permutation of (1, . . . , n), where
each di+1 = xdi

and xdn
= d1.

For the global constraint circuit there is a very immediate reduction from
the Hamiltonian circuit, which demonstrates that reasoning with this constraint
is generally intractable. For this reason, it is perhaps not surprising that, in the
past, there has been little comment on it. Therefore, we now formally prove its
computational intractability.

Theorem 7 Deciding whether the circuit constraint has a solution is NP-
complete.

Proof: We use a transformation from DIRECTED HAMILTONIAN CIR-
CUIT [25, Problem GT38] into the circuit constraint. Given a digraph D =
(V,E) with n = |V | vertices and m = |E| edges. We construct a circuit con-
straint, circuit(x1, . . . , xn) in which Dxi

= {j : (vi, vj) ∈ E}. The constructed
circuit constraint has a solution if and only if the original DIRECTED HAMIL-
TONIAN CIRCUIT problem has a solution. �

A famous combinatorial problem that can be modeled with the circuit con-
straint is the Traveling Salesperson Problem (abbreviated as TSP) [39]. Many
other problems can be expressed in terms of Hamiltonian cycles, such as the
Euler Knight’s Tour Problem on a chessboard, or the Chinese Postman Prob-
lem [44, Section 6.5].

Clearly, checking a circuit constraint for satisfiability is equivalent to check-
ing if an associated digraph has a Hamiltonian circuit, which is an NP-complete
problem [36]. There exist, however, several necessary conditions that can be
verified in polynomial time.

An obvious necessary condition for a digraph to be Hamiltonian is that the
graph must be strongly connected. However, this condition is not sufficient.
Another obvious and quite powerful necessary condition for a digraph to be
Hamiltonian is the existence of a cycle factor. Clearly, a Hamiltonian circuit is
a cycle factor but the converse is not necessarily true because some cycle factors
may consist of several disjoint circuits.

We know that achieving hyper-arc consistency for circuit is NP-hard.
Therefore, we will now describe some useful incomplete filtering methods, that
run in polynomial time, which are only partially related to those presented
in [12],[37] and [57].

One of the elementary filtering methods for circuit is based on the alld-
ifferent constraint [49]. The alldifferent filtering method can be applied
because all the variables of the nodes collection have to take distinct values. A
further necessary condition to satisfiability of this constraint is to have at most
one single strongly connected component.

The filter removes inconsistent values by eliminating non-Hamiltonian arcs
from the associated digraph, that is, arcs that belong to no Hamiltonian circuit.
Filtering can also be based on sufficient conditions for non-Hamiltonicity of a
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digraph, some of which appear in [39, Chapter 11]. Most of the known sufficient
conditions for a digraph D to be Hamiltonian assert that if the degrees of the
vertices of D are sufficiently large [3],[45],[64], or D has enough arcs [41], then
D is Hamiltonian. Unfortunately, the number of arcs must be nearly as large
as the number of edges in a complete graph with n vertices.

We have taken care of many sufficient conditions for a digraph to have a
Hamiltonian circuit. However, none of these are necessary conditions. For
example, the oriented cycle Cn, the simplest Hamiltonian digraph of all, does
not satisfy any of these conditions when n is large.

Kaya and Hooker presented in [37] a recursive algorithm that eliminates non-
Hamiltonian arcs from the graph via vertex separators. Their filter is based on
an idea put forward by Chvátal that every Hamiltonian graph is 1-tough3 (for
details, see [39, page 405]). Their algorithm identifies almost all unsatisfiable
instances and eliminates about one-third of the inconsistent values from the
variable domains. The authors give a filtering algorithm for the circuit con-
straint but its description in the book by Hooker [32] contains some flaws which
can be confusing. For example, the filtering based on the alldifferent con-
straint will remove the dashed arcs from the sample graphs depicted in Figure
3.15, contrary to the claim stated for two examples that the both situations are
independent.

In fact, the alldiff filtering seems to be stronger than the vertex-degree fil-
tering described in [32, Section 3.11.2]. Indeed, alldifferent requires all
variables to take distinct values. It corresponds to a cycle factor, since the
variables and their domains represent the same set of elements. Therefore, to
resolve the problem we state it in the terms of a directed matching.

Suppose that S separates D into p connected components denoted by C =
{C1, . . . , Cp}. The digraph DS induced by the separator S is defined as follows.
The node set of DS is V (DS) = S ∪ C. The arc set E(DS) is obtained by
the following rules: DS contains an arc e if e ∈ E(D), as well as an arc (v, w)
whenever (v, ci) and (cj , w) are arcs of D for some pair of nodes ci and cj in
Ck ∈ C (possibly ci = cj , or ci and cj need not be joined by an arc).

We set then the degree conditions as follows: f−(x) = f+(x) = 1 for all
x ∈ S, f−(Ck) = f+(Ck) = min{d−(Ck), d+(Ck)} for every Ck ∈ C. Obviously,
we could set g−(x) = g+(x) = 1 and f−(x) = f+(x) = min{d−(x), d+(x)}
with an additional condition that d−M (x) = d+

M (x) in a directed perfect (g, f)-
matching, but we give a construction which guarantees that the incoming and
outgoing degree of each node in the directed matching M is the same. To this
end, we attach f+(x) − 1 loops for every x ∈ C. This guarantees that the
number of ingoing and outgoing arcs in every directed perfect matching will be
identical, i.e. d−F (x) = d+

F (x) for every directed ~f -factor F .

The following theorem classifies arcs of a digraph as non-Hamiltonian by
looking for a certain kind of a directed degree-matching in a much smaller
digraph.

3A graph G is called t-tough if the deletion of an arbitrary set S of vertices leaves the rest
of the graph either connected or else broken into no more than |S|/t connected components.
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Theorem 8 Suppose S is a vertex separator of a digraph D which separates
D into p connected components. Let DS be a digraph induced by S with degree
conditions as described in the text. If D has a Hamiltonian circuit then DS has
a directed perfect ~f -matching. Moreover, if an arc e connecting nodes of DS

is non-Hamiltonian then this arc is non-Hamiltonian in D. In summary, the
following conditions hold:

1. If |S| < p then D is non-Hamiltonian,

2. If |S| = p then every arc connecting nodes of S is forbidden in D,

3. If |S| > p then every arc forbidden in DS is forbidden in D.

Proof: The proof of this theorem is an easy consequence of Theorem 1, Corol-
lary 1 and Corollary 2 of [37] adapted for directed graphs. �

According to this theorem a vertex separator induces a strongly connected
digraph and a much smaller partial digraph is constructed from a vertex sep-
arator of the original graph. Then, by applying a filtering algorithm for the
alldifferent constraint, a cycle factor of a subdigraph is found, so that the
forbidden arcs can be identified and eliminated from the digraph. The construc-
tion guarantees that every cycle factor of DS will have at least one incoming
and at least one outgoing arc joining S with each connected component Ck.

We now demonstrate a partial filtering method which explicitly uses the
properties of the Gallai-Edmonds Canonical Decomposition and the results pre-
sented in [17, Theorem 9]. Our idea is based on identifying a perfect 2-matching
in the underlying graph associated with the constraint. This follows from the
fact that every Hamiltonian circuit is a 2-factor and each 2-factor can be con-
sidered as a generalization of a Hamiltonian circuit. Our routine looks for a
perfect 2-matching in the underlying graph and the corresponding edge not be-
longing to it will be removed from the associated digraph (together with an
opposite arc, if it exists). This will result in deleting some 2-cycles from the
associated digraph, which cannot be a part of any Hamiltonian circuit. Note
that the problem of removing all cycles of length two from the Hamiltonian
digraph is NP-hard [25, Problem GT13]. However, our method coupled with
the alldifferent constraint gives a more effective pruning.

Observe that neither filtering method is redundant of the other, but both
combined together improve the propagation behavior in some cases, as can be
seen in the following example. Let circuit(x1, . . . , x8) constraint have the
following domains Dx1

= {3, 4, 5}, Dx2
= {4, 7, 8}, Dx3

= {2, 7}, Dx4
= {1, 5},

Dx5
= {6}, Dx6

= {3, 5}, Dx7
= {2} and Dx8

= {1, 4}. Then pruning based on
alldifferent removes values 4 and 7 from Dx2 and value 2 from the domain
of variable x3. But filtering based on our method removes first value 3 from
Dx1

and value 2 from the domain of variable x3 (see Figure 3). Then the next
step with the alldifferent constraint removes values 4 and 7 from Dx2

and
value 5 from the domain of variable x6. Hence, the filter has deleted 2-cycle
6→ 5→ 6 from the associated digraph, as belonging to no Hamiltonian circuit.
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The domains after two steps of the algorithm look as follows: Dx1 = {4, 5},
Dx2 = {8}, Dx3 = {7}, Dx4 = {1, 5}, Dx5 = {6}, Dx6 = {3}, Dx7 = {2} and
Dx8

= {1, 4}.
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Figure 3: Pruning of the CIRCUIT constraint

A stronger propagation mechanism can also be implemented if we observe
that circuit corresponds to a connection relationship. We can thus discard
situations where it is impossible to build a strongly connected pattern. Pruning
for imposing this condition can be done by choosing all strong bridges to belong
to the solution, since otherwise the strongly connected component would be
broken down. Computing the forbidden arcs can be then done in linear time,
since the strong bridges can be computed in linear time [34].

We give a summary of our algorithm:

Algorithm 2 Partial filtering algorithm for the circuit constraint

Require: Digraph D associated with circuit(nodes)
Ensure: Incomplete pruning

Remove all loops from the associated digraph D
Check the necessary condition whether D is strongly connected
If D has more than one strongly connected component, then the constraint
is inconsistent
If any of the sufficient conditions holds, then the constraint is satisfiable
Pruning associated with the alldifferent(nodes) constraint (using perfect
matching on BR(D))
If the underlying graph has no perfect 2-matching, then the constraint is
unsatisfiable
Pruning according to the Gallai-Edmonds Canonical Decomposition
Pruning according to a vertex separator

All steps have a polynomial complexity. The removal of all loops takes O(n)
time. Finding the strongly connected components of D requires O(m+n) time
and space (see Section 3). The checking of any the sufficient conditions takes
minimal O(1) [41] and maximal O(n3) time [45]. A directed perfect matching
M can be computed from scratch in time O(

√
n ·m) [33]. A perfect 2-matching

of the underlying graph can then be found from M in time O(
√
k ·m), where
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k is the number of exposed vertices in G. Pruning according to the Gallai-
Edmonds Canonical Decomposition can be performed in O(p · m) time [17],
where p denotes the number of maximal extreme sets in the underlying graph.
Pruning according to the Dulmage-Mendelsohn Canonical Decomposition can be
realized in linear time [15]. The complexity of the procedure for each separator
|S| is approximately O(|S|5) [37].

The last four steps of the algorithm must be repeated until no more arcs
are pruned. Our experiments indicate that the directed matching connected
with the method based on the Gallai-Edmonds decomposition of the underlying
graph provides a better filtering. Additionally, approach DM +GE requires a
smaller number of iterations than GE +DM .

In our implementation, we have set the step of computing the strong com-
ponents immediately after the pruning with respect to a directed matching
(alldifferent constraint), since strong connectivity in a given strongly con-
nected digraph can be broken by removing the forbidden arcs.

4.2 The CYCLE constraint

The cycle is a useful constraint that was introduced in CHIP [5] in order to
tackle hard combinatorial problems. The constraint specifies the number of
cycles that must cover a directed graph. It can be used for modeling various
problems such as the multiple traveling salesmen problem [39, pages 23-25 and
169-170], the vehicle routing problem [39, Chapter 12], [5], and the balanced
Euler knight problem [11]. A thesis dealing with the cycle constraint is written
by Bourreau [11].

The constraint has the form cycle(ncycle, nodes), where ncycle is a
domain variable and nodes is a collection {x1, . . . , xn} of domain variables with
Dxi ⊆ {1, . . . , n} for each i.

The cycle constraint partitions a given associated digraph described by
the nodes collection into a set of vertex-disjoint cycles. The constraint requires
that in the digraph there are exactly ncycle directed circuits, such that every
vertex belongs to exactly one cycle.

As the first interpretation, the cycle(ncycle, nodes) constraint can be
seen as the problem of finding ncycle distinct cycles in a directed graph in such
a way that each vertex is visited exactly once. In the second interpretation, this
constraint can be considered as the number of ncycle cycles of a permutation
〈x1, . . . , xn〉.

Both observations are equivalent to the formulation of the alldifferent
constraint. This can be seen from the fact that a cycle in a directed graph D
is a spanning subdigraph of D in which the in-degree and out-degree of every
vertex v is equal to 1:

d+(v) = d−(v) = 1.

Note that the global constraint circuit is a special case of the global con-
straint cycle in which the first parameter ncycle is fixed to 1. Thus, the
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elementary filtering methods for the circuit constraint presented in the last
example can be simply adapted to the cycle constraint.

Beldiceanu, within his Global Constraint Catalog [4], proposes the following
algorithm: Since all variables in nodes have to take distinct values one can
reuse the algorithms associated with the alldifferent constraint. A second
necessary condition is to have no more than max(Dncycle) strongly connected
components. Since all the vertices of a circuit belong to the same strongly
connected component, an arc going from one strongly connected component to
another strongly connected component has to be removed.

This method is redundant. We will prove that an arc going from one strongly
connected component to another one will be detected during pruning according
to a directed matching.

Theorem 9 Let D = (V,E) be a directed graph associated with the global con-
straint cycle, a bipartite graph BR(D) be the bipartite representation of D,
and let M be a perfect matching in BR(D). Then an edge (vi, vj) belongs to
some perfect matching in BR(D) if and only if vertices vi and vj belong to the
same strongly connected component of D.

Proof: Since bipartite representation BR(D) contains a perfect matching if and
only if a digraph D has a cycle factor, thus when we take an arc e going from
a strongly connected component Si to another strongly connected component
Sj , then we can never return to Si in order to create a cycle involving the arc
e. Hence, all such connecting arcs do not belong to any perfect matching. �

Moreover, a lower bound on the number of vertex-disjoint cycles in a di-
graph D is equal to the number of strongly connected components. Clearly, if
the number of strongly connected components equals ncycle, then, for each
connected component, we can enforce pruning according to the global constraint
circuit, as discussed earlier.

However, the problem of finding an upper bound on the number of vertex-
disjoint cycles in a given digraph D is NP-hard to compute. We will see that
the maximum number of vertex-disjoint cycles in a digraph D is related to the
minimum number of vertices in D needed to eliminate all cycles of D.

An upper bound on the number of the disjoint cycles can be obtained by
solving the feedback vertex set problem. We will use some additional notation
and terminology. Given a directed graph D = (V,E), a feedback vertex set
(abbreviated as FVS) is a set of vertices whose removal leaves an acyclic digraph.
The problem is to find such a set with minimum cardinality. Obviously, forests
and acyclic digraphs have a value of 0 since they have no cycles. In the literature,
the term cycle cutset (or cutset in the short) has appeared as a synonym for
feedback vertex set.

For a digraph D we denote by ν(D) the maximum number of vertex-disjoint
cycles, and by τ(D) the minimum number of elements in a feedback vertex set
of D. Clearly, we have ν(D) ≤ τ(D) and it is easy to construct an infinite
family of digraphs such that only inequalities hold. Indeed, let D = (V,E)
be a digraph with vertex set V (D) = {x1, x2, x3, x4, y1, y2, y3, y4} and arc set
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E(D) = {(yi, xi) : 1 ≤ i ≤ 4} ∪ {(xi, yj) : 1 ≤ i 6= j ≤ 4}. Then ν(D) = 2, but
τ(D) = 3.

In summary, we have the following results:

Theorem 10 A lower bound on the number of cycles in the digraph D associ-
ated with the global constraint cycle equals the number of strongly connected
components in D.

Theorem 11 The problem of determining the minimum number of cycles in
the digraph D associated with the global constraint cycle is NP-hard.

Proof: The problem is clearly NP-hard as the answer is 1 if the digraph D has
a Hamiltonian circuit, which is known to be an NP-complete task. �

Theorem 12 The problem of determining the maximum number of cycles in
the digraph D associated with the global constraint cycle is NP-hard.

A natural greedy algorithm for finding the maximum number of vertex-
disjoint cycles is to, repeatedly, find and remove the vertices belonging to the
smallest cycle in the current digraph, until there are no more cycles left.

Karp [36] was the first to prove that the FVS problem is NP-complete (see
also [25, Problem GT7]). It is thus not surprising that the above mentioned
decision problem for the maximum number of vertex-disjoint cycles is also NP-
complete.

Notice that the computing of the maximal number of vertices such that the
corresponding induced subdigraph forms a directed acyclic graph is equivalent
to enforcing satisfiability of the global constraint cutset [21], which holds if
its corresponding digraph possesses no vertex-disjoint cycles. Because it is an
NP-complete problem, recent research in this area has been concentrated on
designing algorithms finding a minimum cutset for a restricted class of digraphs
and a relatively small cutset for general digraphs. The algorithm described
in [21] returns two vertex sets, S1 and S2, such that S1 ∩ S2 = ∅, S1 ∪ S2 is
a cutset of a digraph D and such that |S1| ≤ τ(D) ≤ |S1 ∪ S2|. Note that if
S2 = ∅ then S1 is guaranteed to be a minimum cutset.

Theorem 13 Enforcing hyper-arc consistency on the count variable ncycle
of the global constraint cycle is NP-hard.

Proof: It is easy to see that the problem is equivalent to the cycle cover prob-
lem. This employs a reduction from the PARTITION INTO HAMILTONIAN
SUBGRAPHS problem [25, Problem GT13], originally shown NP-complete by
Leslie G. Valiant [63]. �

Moreover, the count variable ncycle does not have the continuity property.
As a counterexample, consider a directed cycle C3 with a loop attached to every
node. Then this digraph contains one or three cycles, but a cycle cover consisting
of two cycles does not exist in it.



JGAA, 20(2) 363–410 (2016) 385

When we impose the additional condition that each cycle has only two ver-
tices, then the cycle constraint can be expressed by means of the constraint
symmetric alldifferent. This constraint can be then interpreted as cover-
ing the associated graph with disjoint circuits of length two. Clearly, there exists
in this case no solution of the cycle constraint when the number of variables is
odd or ncycle 6= {n2 }. A complete filtering algorithm achieving hyper-arc con-
sistency for the symmetric alldifferent constraint was proposed by Régin
in [50]. Its running time is O(n · m). This complexity has been improved to
O(p ·m) by making use of decomposition theory, where p denotes the number
of maximal extreme sets in the underlying graph (for more details, see [17]).

We now give a summary of the algorithm:

Algorithm 3 Partial filtering algorithm for the cycle constraint

Require: Digraph D associated with cycle(ncycle, nodes)
Ensure: Incomplete pruning

If ncycle = {1} then the constraint is equivalent to circuit(nodes)
Pruning according to the perfect matching onBR(D) (global constraint alld-
ifferent(nodes))
Compute mincycle as the number of strongly connected components of D
Estimate maxcycle (global constraint cutset(ncycle, nodes))
Update variable ncycle according to mincycle and maxcycle values
If there are no loops in D and min(ncycle) = n

2 then the constraint is
equivalent to symmetric alldifferent(nodes)
If ncycle = {mincycle} then for each strong component Si pruning asso-
ciated with the circuit(Si) constraint

All steps have a polynomial complexity. Finding the strongly connected
components of D requires O(m+ n) time and space (see Section 3). The exis-
tence of a cycle factor in a digraph can be checked and a cycle factor found, if it
exists, in time O(

√
n ·m) [33]. The incomplete filtering algorithm for a cutset

constraint has O(m+n · log n) time complexity [21]. Hyper-arc consistency for a
symmetric alldifferent constraint can be achieved in polynomial time [17].

4.3 The DERANGEMENT constraint

The derangement constraint is a special case of the cycle constraint. This
constraint enforces the covering of an associated digraph by a set of vertex-
disjoint proper cycles. In another interpretation it is required to have a permu-
tation with no fixed points.

The pruning for achieving hyper-arc consistency is simple. It is based on the
fact that xi can take the value j if and only if the arc (xi, j) belongs to a cycle
factor. From a digraph D associated with the global constraint derangement
just remove all loops in an iterative way to obtain a reduced digraph D′. This
step corresponds to the normalization of the domains of the variables. Then
construct an auxiliary bipartite graph BR(D′) and compute a perfect matching
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in it. There is a one-to-one correspondence between the solution of the con-
straint and the existence of the perfect matching. Checking the feasibility can
be realized in O(

√
n ·m) time, hyper-arc consistency can be established in O(m)

time [15].
From an interpretation point of view this constraint is related to alldif-

ferent with unary constraints xi 6= i for all i, since the number of cycles is
free, and the variables and their domains represent the same set of elements.
Observe that the bipartite graph associated with the directed perfect matching
is equivalent to the value graph associated with the alldifferent constraint.

4.4 The SOFT DERANGEMENT VAR constraint

A problem is over-constrained when no assignment of values to variables is pos-
sible to satisfy the constraint. In this situation the goal is to find a compromise
which allows some constraints to be violated and search for solutions that violate
as few constraints as possible. The cost of the violation can be defined as the
number of assigned values that should change in order to satisfy the constraint.
This measure is represented by the cost variable z which is to be minimized.

In this section we apply our method to the soft version of the derangement
constraint by introducing the notion of deficiency to directed graphs.

Some preliminary terminology is needed. Recall that in the maximum
matching of G the number of exposed vertices is called the deficiency of G
and is denoted by δ(G). Let the deficiency of D be the number of exposed
vertices on the outward side of its bipartite representation BR(D). Clearly,
the inward side has the same number of exposed vertices if a directed perfect
matching does not exist in D.

We aim at computing a lower bound of z in order to check the consistency of
the global constraint. The following result is a direct consequence of Theorem
16 from [15].

Theorem 14 Assume that a global constraint can be represented by a directed
graph D and there exists a one-to-one correspondence between the solution of
the constraint and the directed perfect matching in D. Then a lower bound of
the cost variable z equals the deficiency of D. Further, if δ(D) < max(Dz) then
all the values of domains of variables are consistent with the global constraint. If
δ(D) = max(Dz) then values of the domains which are represented by forbidden
arcs can be removed. Otherwise, if δ(D) > max(Dz) then the constraint is
inconsistent.

Proof: Recall that a directed perfect matching on a digraph D with n nodes
and m arcs can be reduced to a perfect matching on a bipartite graph BR(D)
with 2n vertices and m edges. The existence of an instantiation of variables
such that a global constraint can become satisfied by changing the value of k
variables implies the existence of a maximum matching with 2k exposed vertices
(k exposed vertices on the outward side and k exposed vertices on the inward side
of the bipartite representation). By definition of the deficiency, 2k = δ(BR(D)),
thus k = δ(D). �
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Using the above result, we can formulate the following filtering algorithm
that enforces hyper-arc consistency on the soft derangement var constraint
(cf. Algorithm 5 in [15]):

Algorithm 4 Filtering algorithm for the soft derangement var constraint

Require: Digraph D associated with soft derangement var(z, nodes)
Ensure: Hyper-arc consistency or constraint not satisfied

Remove all loops from the associated digraph D
Compute a maximum matching in the bipartite graph BR(D)
Compute the Dulmage-Mendelsohn Canonical Decomposition
Determine subgraphs GO, GU and GW

Determine the partition of edges
Let δ denote the deficiency of the subgraph GO

If δ > max(Dz) then the constraint is inconsistent
If δ = max(Dz) then all forbidden arcs must be removed from the digraph D
If δ < max(Dz) then all arcs in D are allowed
Update the domain of the cost variable z

The algorithm first removes iteratively all the loops from the digraph D
associated with the global constraint. Next, it computes a maximum matching
in the bipartite graph BR(D). This takes O(

√
n ·m) time. The next two steps,

computing the Dulmage-Mendelsohn decomposition and partition of edges, are
of linear complexity. The remaining lines take constant time each.

The proof of Theorem 14 applies to any constraint whose graph representa-
tion resembles D and a solution corresponds to a directed perfect matching. For
all such constraints that are consistent, hyper-arc consistency can be achieved
in linear time, assuming that the maximum matching in BR(D) is known. Note
that this is equal to the complexity of achieving hyper-arc consistency on the
hard version of these constraints.
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Figure 4: Pruning of the SOFT DERANGEMENT VAR constraint

Let us demonstrate our algorithm with an example illustrated in Figure 4.
On the left side of the figure the directed graph D corresponding to the con-
straint is depicted; the loop (x4, x4) has been already removed from D in the
normalization phase of the filtering algorithm.

The consistency of the constraint can be verified as follows. We first con-
struct the bipartite graph BR(D) associated with D, shown on the right side
of the figure, and compute a maximum matching in BR(D). The matching has
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deficiency 2, so δ(D) = 1.
The constraint soft derangement var can be made hyper-arc consistent

by applying Algorithm 4. To identify the admissible arcs we use Theorem 6.
Variable domains can be now filtered as follows. The cost variable z is equal
to the number of variables that should change their values in order to make
the constraint satisfied. If δ(D) > max(Dz) we know that the constraint is
inconsistent. We update the cost variable z to min(Dz) = δ(D) if min(Dz) <
δ(D). Since δ(D) = max(Dz) then all forbidden arcs must be removed from
the digraph D. The edge (2, 3′) is forbidden, so the value 3 is deleted from the
domain of x2. Then our constraint is hyper-arc consistent.

The variables that need to be changed in order to obtain the solution satis-
fying the constraint are allowed vertices of BR(D). These are variables x1 and
x3. Since δ(D) = 1, one variable needs to change its value in order to satisfy
the constraint. The variable x1 or x3 can take the value 4. In the first case the
digraph is covered with a cycle 1 → 4 → 3 → 2 → 1, in the second case the
cycle factor of D consists of two 2-cycles 1→ 2→ 1 and 3→ 4→ 3.

4.5 The TREE constraint

In this example we provide a quick description of the tree constraint. The
tree constraint partitions a given directed graph into a forest of vertex-disjoint
directed trees, where only certain vertices can be tree roots. More precisely, the
digraph is partitioned into a set of vertex-disjoint anti-arborescences 4.

More formally, the global constraint tree has the form tree(ntree, nodes),
where ntree is a domain variable specifying the number of trees in the tree par-
tition, and nodes is a collection of n variables whose domains consist of elements
of {1, . . . , n}. The constraint holds if the associated digraph D is covered by a
set of ntree trees in such a way that each vertex of D belongs to one distinct
tree. The arcs of the trees are directed from their leaves to their respective
roots.

A hyper-arc consistency filtering algorithm for the global constraint tree
is described in [6]. This algorithm is based on the necessary and sufficient
conditions that we now very briefly describe.

Before sketching a filtering algorithm for pruning the tree constraint, we
introduce some terminology regarding digraph D = (V,E) and strong compo-
nent graph SC(D) associated with the tree constraint. These definitions and
notations are introduced in the original version of [6]:

• A vertex v such that (v, v) ∈ E is called a potential root.

• A strongly connected component of D that contains at least one potential
root is called a rooted component.

• A vertex v is a door of the strongly connected component if there exists
an arc (v, w) ∈ E such that v and w do not belong to the same strongly

4A digraph D is an anti-arborescence with anti-root r if and only if for each vertex v in D
there is a path from v to r and the underlying undirected graph of D is a tree.
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connected component of D.

• A vertex v is a winner if v is a door or a potential root.

• An arc (v, w) ∈ E such that v and w do not belong to the same strongly
connected component is called a connecting arc.

• Similarly, an arc (v, w) ∈ E such that v and w belong to the same strongly
connected component is called a non-connecting arc.

• Enforcing an arc (v, w) of D corresponds to removing from D all arcs
(v, u) such that u 6= w.

Let D be a digraph associated with the tree(ntree, nodes) constraint
and let SC(D) be a strong component graph of D. Let mintree and maxtree
respectively denote a lower and an upper bound on the number of trees for parti-
tioning the digraph D into a set of vertex-disjoint anti-arborescences. mintree
is equal to the number of sink components in SC(D) (the number of strongly
connected components in D with no outgoing arcs) and maxtree is equal to
the number of potential roots in D. These bounds are sharp, this means that,
for every mintree ≤ ntree ≤ maxtree, we can construct the partition of
edges into ntree vertex-disjoint trees. This also shows that the variable ntree
has the continuity property. The constraint tree has at least one solution if
and only if all sink components of D contain at least one potential root and
Dntree ∩ [mintree,maxtree] 6= ∅ (see Proposition 3 in [6]).

In the original filtering algorithm proposed in [6] the constraint is propagated
according to the strong articulation points of D. Recall that a strong articula-
tion point of a strongly connected component S is such a vertex s that if we
remove it then S will be broken into at least two strongly connected components.
Equivalently, s is a strong articulation point of D if and only if D − {s} has
more strongly connected components than D. The strong articulation points
can be found in linear time [34]. However, it was shown in [22] that the concept
of strong articulation points is not practical and the authors propose a new
formulation of pruning rules based on dominators.

Recall that in a flowgraph G a vertex v dominates another vertex w with
respect to a designated start vertex s if every directed path in G from s to w
contains v. From the above definition, it can be easily seen that every vertex
dominates itself. Also, it can be seen that the initial vertex s dominates all the
vertices in the digraph. Hence, if both u and v dominates w, one of u and v
dominates the other.

Here are some properties of the dominance relation.

• For all x, x dominates itself (reflexivity).

• If x dominates y and y dominates x, then x = y (antisymmetry).

• If x dominates y and y dominates z, then x dominates z (transitivity).

• If x dominates y, then y does not dominate x (asymmetry).
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• If x and y both dominate z, then either x dominates y or conversely.

• There may exist vertices x and y such that neither x dominates y nor y
dominates x.

Hence, dominance relation is a partial order (for short, a poset). Improving
on a previous work by Tarjan [59], who discovered an O(m+n · log n)-time algo-
rithm for finding dominators in an arbitrary digraph, Lengauer and Tarjan [40]
proposed an O(m·log n)-time algorithm and a more complicated O(α(m,n)·m)-
time version, where α(m,n) is an extremely slow-growing functional inverse of
the Ackermann function [60]. An implementation of this algorithm in linear
time is presented in [1].

Theses dealing with dominators are [27] (see also [48]). An excellent general
reference to filtering algorithms for tree partitioning constraints using a flow-
based modeling is [43].

In terms of the graph partitioning constraints, dual concepts relating to
dominators can be defined and utilized. A vertex d is a dominator of v with
respect to a winner w if and only if there is no path from v to w in D − {d}.
Other variants of the notion are defined analogously.

Clearly, every dominator is a strong articulation point, but not conversely
(cf. Figure 6.8 and Figure 8.1 in [48]). Hence, using dominators instead of
strong articulation points leads to the better filtering.

In general, if vertex u dominates vertex v then arc (v, u) does not belong to
any solution. This follows from the fact that if every path from u to w requires
v, then any path from v to u has to be forbidden.

Let us consider Si, 1 ≤ i ≤ p, a strongly connected component of D, and
let Di be a set of dominators of Si defined with respect to the winners in Si.
The removal of any dominator d ∈ Di creates two kinds of strongly connected
components (for more details, see [9]):

• ∆d is the (possibly empty) set of strong components from which no winner
of Si can be reached by a path that does not contain the dominator d,

• ∆̄d is the (possibly empty) set of strong components from which at least
one winner of Si can be reached by at least one path that does not contain
the dominator d.

In addition, among the strongly connected components of ∆d three types
thereof, possibly empty, may be further distinguished:

• ∆+
d is the set of strong components corresponding to sources in SC(∆d),

• ∆−d is the set of strong components corresponding to sinks in SC(∆d),

• ∆∓d is the set of the remaining strong components (neither sources nor
sinks).

Let us consider some interesting properties of these strongly connected com-
ponents.
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• Let d be a dominator in strongly connected component Si with respect to
winners. Then d belongs to all paths from any vertex of ∆d to any vertex
of ∆̄d.

• If there exists a path factor in D then there exists a Hamiltonian path in
∆d leading from the source component ∆+

d to the sink component ∆−d ,
and finishing on the dominator d (see [9, Proposition 1]).

• Let dom(v) be the set of vertices dominated by a vertex v and let d be
a dominator in Si with respect to winners. Then d ∈ dom(v) for every
v ∈ ∆d.

Pruning is then performed according to the following rule, which prevents
the creation of (proper) cycles:

Theorem 15 An arc (d, i) of a dominator d that reaches a vertex i of ∆d is
forbidden.

Proof: The claim follows from the fact that enforcing such an arc would lead
to some strong components with no winners, and hence creating a cycle, which
is a contradiction. �

We now give a summary of the full algorithm:

Algorithm 5 Filtering algorithm for the tree constraint

Require: Digraph D associated with tree(ntree, nodes)
Ensure: Hyper-arc consistency or constraint not satisfied

Compute mintree and maxtree
Update variable ntree according to mintree and maxtree values
Check the conditions for satisfiability
If ntree = {mintree} then any potential root in a non-sink component is
forbidden
If ntree = {maxtree} then every outgoing non-loop arc of each potential
root is forbidden
Pruning according to dominators of D (see Theorem 15)

The presented filtering algorithm has a linear time complexity [22]. Com-
puting the strongly connected components of D takes O(m+ n) time (see Sec-
tion 3). Checking that each sink component of D contains at least one po-
tential root takes O(n) time. Testing whether maxtree < min(ntree) or
max(ntree) < mintree takes O(1) time. Pruning according to dominators
(Theorem 15) can be easily performed in linear time [1].

4.6 The BINARY TREE constraint

The binary tree constraint is derived from the tree constraint, which en-
forces the partitioning of an associated digraph into a set of vertex-disjoint
binary trees.
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The constraint has the form binary tree(ntree, nodes), where ntree
is a domain variable specifying the number of binary trees in the tree partition,
and nodes is a collection of n variables whose domains consist of elements of
{1, . . . , n}. The constraint holds if the associated digraph D is covered by a
set of ntree binary trees in such a way that each vertex of D belongs to one
distinct tree.

The filtering algorithm for the binary tree constraint is not known. We
show how to handle this constraint by means of the method described in this
paper. Although the proposed algorithm does not achieve hyper-arc consistency
(the problem to find a spanning tree in which no vertex has degree larger than
some given integer is NP-complete [25, Problem ND1]), it is relatively simple to
implement.

For any proper forest of binary trees the following holds:

~g(x) =


(0, 1) for leaves

(1, 1) for internal nodes

(1, 0) for roots

~f(x) =


(0, 1) for leaves

(2, 1) for internal nodes

(2, 0) for roots

We model the tree constraint by the associated digraph D in which the
vertices represent the variables and the arcs represent the successor relation
between them. Let R be the set of potential roots. In order to obtain the
digraph D′ associated with the binary tree constraint we add one dummy
vertex v0 to the input digraph D and declare that each of its predecessors is a
potential root in R.

We construct a bipartite graph associated with the global constraint as de-
scribed in the sequel with the following minor modifications. The vertices on
both sides correspond to variables and there is an edge {vi, vj} if and only if
j ∈ Dxi

and i 6= j. With every vertex we associate two functions g and f such
that for each vertex vi on the outward side we set g(vi) = f(vi) = 1 (since
every vertex must have only one successor) and for the vertex vj on the in-
ward side we set g(vj) = 1 and f(vj) = 2 for roots and internal nodes (since
every vertex can have at most two predecessors). Additionally, we connect all
the vertices representing potential roots to a single vertex labeled ntree and
set g(ntree) = min(Dntree) and f(ntree) = max(Dntree). Then, we use the
filtering algorithm described in [15] to determine the partition of edges and the
bounds of the ntree variable.
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Figure 5: Pruning of the BINARY TREE constraint
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On acyclic digraphs, it is easy to see that the feasibility can be checked in
polynomial time by computing the perfect (g, f)-matching in the bipartite graph
associated with the constraint. Hyper-arc consistency can then be achieved in
linear time by determining the partition of edges. Since there are no cycles in
the digraph D, the matched edges in the bipartite graph BR(D) will form the
partition into the forest of vertex-disjoint binary trees (see Figure 5).

Our algorithm has the following form:

Algorithm 6 Partial filtering algorithm for the binary tree constraint

Require: Digraph D associated with binary tree(ntree, nodes)
Ensure: Incomplete pruning

Pruning associated with the tree constraint
Pruning according to a directed matching

4.7 The PATH constraint

From an interpretation point of view, the path constraint is the unary tree
constraint. This constraint requires the partitioning of a directed graph D into
a set of vertex-disjoint (directed) paths.

The constraint has the form path(npath, nodes), where npath is a domain
variable specifying the number of paths, and nodes is a collection of n variables.
The constraint holds if the associated digraph D is covered by a set of npath
paths in such a way that each vertex of D belongs to a single path. The arcs of
the partition are directed from initial points to potential roots.

For this constraint there already exists a flow-based pruning algorithm to en-
force partial filtering [9]. However, the bottleneck of the propagation algorithm
relies on the detection of the arcs between two strongly connected components
that do not belong to any feasible flow. This problem is polynomial, but the
existence of an efficient algorithm, which is not based on a repetitive test of
each arc, was stated as an open problem. In this example we will demonstrate
that such approach is not well suited to practical implementations and propose
a new formulation of the pruning conditions based on directed matching. The
important point is that our technique does not need the concepts of maximum
antichains and inter-scc arcs.

A directed Hamiltonian path problem is NP-complete [25, Problem GT39].
The problem can be solved in polynomial time for acyclic digraphs. For any
proper path the following holds:

~g(x) =


(0, 1) for sources

(1, 1) for internal nodes

(1, 0) for targets

~f(x) =


(0, 1) for sources

(1, 1) for internal nodes

(1, 0) for targets

Let minpath and maxpath denote the minimum and the maximum number
of paths in a path factor of D. Clearly, maxpath is the number of potential
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roots for paths (i.e. maxpath = |{i : i ∈ Dxi}|). When the number of paths
is not fixed (i.e. |Dnpath| > 1), the key point of any approach solving the path
constraint is the evaluation of the lower bound on the number of paths for
partitioning the digraph D associated with the global constraint.

Theorem 16 Let D be a digraph associated with the path constraint. Denote
the number of source components in SC(D) by s and the number of sink compo-
nents by t. A lower bound on the number of vertex-disjoint paths for partitioning
D is estimated by max(s, t).

Proof: This follows from the fact that there is no path between two vertices
that belong to two distinct source components of D. Similarly, there is no path
between two vertices that belong to two distinct sink components of D. Thus,
the rule requires that the number of source and sink components must be less
than or equal to the minimum number of directed paths. �

However, the number of sink components in SC(D) is not a sharp lower
bound for the number of paths in D. In fact, finding a sharp lower bound
makes the problem NP-complete, since we can easily reduce the Hamiltonian
path problem to this problem. A sharper lower bound on the number of disjoint
paths is introduced by the following result.

Theorem 17 A lower bound on the number of vertex-disjoint paths in the di-
graph D associated with the path constraint is equal to max{1, δ(D)}.

Proof: According to Theorem 6, we already know that the cycle factor problem
in a digraph D is equivalent to the perfect matching problem in a bipartite graph
BR(D). We can deduce from this that if the bipartite graph contains a perfect
matching then the cycle factor becomes the path factor, since all paths which
form a solution are cycles. However, if in the bipartite graph corresponding to
the path constraint the maximum matching is not perfect then certain vertices
are exposed and the construction will then produce a partition of D in which
some of the cycles are ”broken” and become paths instead. We show that from
any maximum matching M of BR(D) we can build a partition of D consisting of
at least δ(D) vertex-disjoint paths. For this purpose consider a digraph D and
a maximum matching M in BR(D). Let k = δ(D). The maximum matching
M ensures that the partition of D consists of at least k connected components
such that each one is a cycle or a path. This follows from the fact that for each
arc eij = (vi, vj) of D, either eij ∈ M or eij /∈ M and for each vertex vi of D
there is at most one arc that belongs to a solution. Thus, the matching M in
BR(D) generates a subdigraph of D induced by |M | arcs and composed of at
least k vertex-disjoint paths. �

Theorem 18 An upper bound on the maximum number of paths for partitioning
the digraph D associated with a path constraint is the number of potential roots
of D (i.e., maxpath).



JGAA, 20(2) 363–410 (2016) 395

Proof: The proof of this theorem follows in the same manner as the proof of
Proposition 2 in [6]. Since each path has a distinct root, we cannot have more
paths than the number of potential roots. �

Both the directed perfect matching in D and the smallest possible number
minpath of paths can be found in O(

√
n · m) time [33]. Observe that in the

case of non-acyclic digraphs the non-sharp lower bound on the number of vertex-
disjoint paths introduced by Theorem 17 can be generalized to the sharp lower
bound. This follows from the fact that some matched edges in BR(D) form a
cycle in D, which reduces the minimum number of vertex-disjoint paths at the
most by 1.

We create a directed graph D associated with the path constraint as follows.
The vertices correspond to variables and there is an arc (vi, vj) if and only if
j ∈ Dxi and i 6= j. We add a new dummy vertex v0 representing count variable
npath. There is an arc from vi to v0 if and only if i ∈ Dxi . With every vertex we

associate two pairs of functions ~g = (g−, g+) and ~f = (f−, f+) such that for each
vertex vi we set g−(vi) = 0, f−(vi) = 1 and g+(vi) = f+(vi) = 1. Additionally,
we set g−(v0) = min(Dnpath), f−(v0) = max(Dnpath) and g+(v0) = f+(v0) = 0.

We construct a bipartite graph associated with the path constraint as fol-
lows. The vertices on both sides correspond to variables and there is an edge
{vi, vj} if and only if j ∈ Dxi

and i 6= j. With every vertex we associate
two functions g and f such that for each vertex vi on the outward side we set
g(vi) = f(vi) = 1 and for the vertex vj on the inward side we set g(vj) = 0
and f(vj) = 1. Additionally, we connect all the vertices representing poten-
tial roots to a single vertex labeled npath and set g(npath) = min(Dnpath) and
f(npath) = max(Dnpath). Then, we use the filtering algorithm described in [15]
to determine the partition of edges and the bounds of the npath variable (see
Figure 6).

Since a path factor in an acyclic digraph has no cycles, this implies that the
path factor for acyclic digraphs is easy to find.
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D(x6) = {3,5} D’(x6) = {3,5}

× ××

Figure 6: Pruning of the PATH constraint

Observe that the path constraint is very similar to the alldifferent con-
straint, except that the potential roots have to be handled differently. In order
to avoid cycles we have the additional restriction that each vertex on the path
is not visited more than once, initial endpoints are excluded from the set, every
element is distinct and must appear once yet the numbers representing poten-
tial roots appear exactly twice. On the bipartite representation BR(D) of D
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we use the filtering algorithm described in [15] to prune every arc of D that is
incompatible with the path constraint.

Filtering with respect to the path factor can remove significantly more arcs
than for the tree partition. In this case there are some additional important
propagation rules and according to dominators of D the pruning is performed
in the following way (see [9]):

Theorem 19 Let d be a dominator in D. Then the following arcs are forbidden
in D:

1. An arc (d, i) going from the dominator d to ∆d,

2. An arc (j, i) going from ∆̄d to ∆d such that the strong component con-
taining i is not a source,

3. An arc (i, d) going from ∆d such that the strong component containing i
is not a sink,

4. An arc (j, d) going from ∆̄d such that the strong component ∆d is not
empty.

Proof: These rules have not been proven in [9]. Thus, we formally do it.

1. Proof analogous to that of Theorem 15.

2. The claim follows from the fact that there would be no way to visit some
of the vertices of ∆d if the strong component containing i were not to be
a source.

3. The claim follows from the fact that there would be no way to visit some
of the vertices of ∆d if the strong component containing j were not to be
a sink.

4. The claim follows from the fact that there would be no way to visit all the
vertices of ∆d if the arc (j, d) were to be enforced.

�

These propagation rules prevent the creation of (proper) cycles and enforce
one single predecessor for each vertex of the strongly connected component. We
demonstrate the theorem with Figure 7:

Theorem 20 ([9, Proposition 2]) A lower bound on the number of vertex-
disjoint paths partitioning the strongly connected component Si with respect to a
dominator d is provided by the minimum number of paths partitioning ∆̄d (the
number of rooted components in ∆̄d) minus 1 if there exists an arc (u, v) ∈ Si

such that u ∈ ∆̄d and v ∈ ∆+
d .
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Figure 7: Pruning according to a dominator d

The authors of [9] do not include the filtering for arcs between two strongly
connected components because they do not know how to do this efficiently by
computing one single feasible flow. However, by means of our technique it is
possible to make it during the pruning according to a directed matching. For
example, our algorithm will detect the following mandatory arcs: (0, 1), (1, 2),
(3, 3), (7, 7), (8, 8), (9, 9), (10, 10), (11, 13), (13, 12) and the following forbidden
arcs: (2, 0), (3, 2), (3, 7), (3, 8), (4, 2), (5, 1), (6, 1), (6, 7), (6, 8), (7, 12), (8, 12),
(9, 13), (10, 13), (12, 7), (12, 8), (12, 11) (see Example 5 and Figure 6 in [9]).

This will be realized in the following way. First, according to dominator 2
of C0, the arc (2, 0), as leading to ∆0, is detected by Case 1, the arcs (5, 1)
and (6, 1) are detected by Case 2, the arcs (3, 2) and (4, 2) are detected by
Case 4. Analogously, according to dominator 13 of C1, the arc (12, 11), as
leading to ∆1, is detected by Case 1, the arcs (9, 13) and (10, 13) are detected
by Case 2, the arcs (7, 12) and (8, 12) are detected by Case 4. Next, according
to the directed matching, the arcs (3, 7), (3, 8), (6, 7), (6, 8), (12, 7), (12, 8)
are detected. Additionally, the minimum/maximum number of vertex-disjoint
paths is 5 and 7, respectively. Internal nodes are 1 and 13.

Our algorithm has the following form:

Algorithm 7 Partial filtering algorithm for the path constraint

Require: Digraph D associated with path(npath, nodes)
Ensure: Incomplete pruning

Compute minpath and maxpath
Adjust variable npath according to minpath and maxpath values
If npath = {minpath} then any potential root in a non-sink component is
forbidden
If npath = {maxpath} then all outgoing non-loop arcs for each potential
root are forbidden
If D is not acyclic then pruning according to dominators of D (see Theo-
rem 19)
Pruning according to a directed matching

We can improve our algorithm by the following result.

Theorem 21 If min(Dnpath) = maxpath then, for each potential root r, all
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the outgoing non-loop arcs (r, v) are forbidden and will be detected by pruning
with respect to a directed matching.

Proof: Observe that if npath is equal to maxpath then all the loops will be
enforced and all the outgoing non-loop arcs will be removed during the pruning
based on a directed matching. We present a very simple proof of this fact. First
of all, if the condition holds then every edge adjacent with the vertex npath
in BR(D) is mandatory. Thus, every other edge leading from some neighbor
of npath to an inward vertex, distinct from npath, is forbidden. This follows
from the fact that g(x) = f(x) = 1 holds for all vertices on the outward side of
the bipartite representation of D. �

The similar result holds for the binary tree constraint and the count vari-
able ntree.

Theorem 22 The count variable npath has the continuity property.

Proof: Consider a digraph D and a set of potential roots R. Assume that we
have found a path factor of size r < |R|. We can build a path factor of size r+1
by decomposing one of its paths with respect to its potential roots. These steps
may be continued until a path factor of size |R| is achieved. �

4.8 The MAP constraint

In this example we provide a quick description of the map constraint. Next, we
show how the propagation rules used for the constraints circuit, cycle and
tree can be implemented to generate a partial filtering algorithm.

The map constraint is a useful global constraint that can be used for covering
a graph by a set of disjoint cycles and trees, and for modeling various problems
such as random mappings [24], or graph related problems for the vertex-disjoint
partitioning of graphs. However, before we define it more formally we need the
description of the map. For a map, we take the definition from [54, page 459]:

Every map decomposes into a set of connected components, also
called connected maps. Each component consists of the set of all
points that wind up on the same cycle, with each point on the cycle
attached to a tree of all points that enter the cycle at that point.

The global constraint map has the form map(nbcycle, nbtree, nodes),
where nbcycle and nbtree are domain variables, and nodes is a collection
of vertices, which domain designates the successor vertex that will be used in
the covering. The variables nbcycle and nbtree are respectively equal to the
number of cycles and the number of trees in the partition that can be interpreted
as a map.

The map constraint was introduced within the Global Constraint Catalog [4]
but no filtering algorithm is known. The purpose of this example is to present
an incomplete filtering algorithm for the map constraint. The filter removes
inconsistent values by eliminating arcs from the associated digraph, which do
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not belong to a map. We prove the necessary condition for an arc to be part of
the map constraint, which provides the basis for eliminating arcs.

Before we more formally describe a filtering algorithm for the map constraint,
we first need to introduce some terminology that will be used throughout this
example. We will, as far as possible, use the notation introduced in [6], which
we now extend:

• A strongly connected component that has a cycle factor is called a cycle
component.

• A strongly connected component that has no cycle factor is called a tree
component.

Observe that every tree component contains at least one tree. Thus, the
number of trees in the map constraint is related to the number of sink compo-
nents that have no cycle factor. Since a path is a degenerated tree the maximum
number of paths in a map constraint is related to the number of trees.

We need to slightly modify the definition of the strong component graph
associated with the map constraint. The strong component graph SC(D) is
derived from D with the following modification: to each strongly connected
component of D that is a cycle component, we associate a vertex with a loop.
The vertices without loops represent tree components.

It can be easily shown that if D contains a tree component then it must nec-
essarily contain a tree. Thus, presence of trivial vertices in a digraph associated
with the map constraint implies the presence of at least one tree.

We now introduce a theorem that will allow us to reduce the problem of
finding the partition of a directed graph to the problem of estimating the bounds
on the minimal and the maximal number of cycles and trees.

Theorem 23 Let D = (V,E) be an arbitrary finite (not necessarily connected)
digraph such that every vertex has at least one successor. Then there exists a
partition of D consisting of cycles, possibly loops, with trees having roots on
their vertices.

Proof: One can construct the partition of D from its arcs by first selecting
an arbitrary arc among them and then successively adding a new arc in such a
way that it has at least one endpoint in common with the arcs already selected.
Since the domains are finite, each such sequence must eventually loop back on
itself. �

Hence, according to this theorem, no pruning is required for the map con-
straint when there are no given bounds on the number of cycles and the number
of trees (e.g. Dnbcycle = Dnbtree = {0, . . . , n}). Further, every map has at least
one cycle (including loops). When the above operation is repeated, starting
each time from an element not previously hit, the vertices group themselves
into components. This leads to a valuable characterization of such a partition:
a map is a set of connected components that are cycles of trees. Thus, every
connected component is a collection of rooted trees arranged in a cycle.
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Theorem 24 The minimum number of cycles in the digraph D associated with
the global constraint map equals the number of sink components in SC(D).

Proof: The claim follows from the fact that every sink component is strongly
connected; this means it contains at least one cycle, and there is no path between
two vertices that belong to two distinct sink components of D. �

Observe that the non-sharp lower bound on the number of cycles in the
cycle constraint introduced by Theorem 10 is now generalized to the sharp
lower bound on the number of cycles in the map constraint. But the results of
Theorem 12 remain still valid.

Theorem 25 The problem of determining the maximum number of cycles in
the digraph D associated with the global constraint map is NP-hard.

Proof: The problem of finding the maximum number of vertex-disjoint cycles
is related to the problem of determining a feedback vertex set of minimum
cardinality. The claim follows now from the fact that the minimum cutset
problem is an NP-hard task. �

Theorem 26 Given a digraph D associated with the map constraint, an upper
bound on the number of cycles partitioning D is given by the minimum feedback
vertex set of D.

Proof: The claim follows from the fact that the size of the minimum feedback
vertex set in a digraph D is no less than the maximum number of vertex-disjoint
cycles in D. �

It is easy to see that a map where all the variables have distinct values leads
to a set of cycles. Therefore, if digraph D associated with the map constraint
has a cycle factor then we can immediately set mintree = 0. On the other
hand, if digraph D has only cycles of length 1 (i.e. loops), we have a map that
corresponds to a forest of trees and paths, and the algorithm for the tree or
path constraint can be used.

Theorem 27 A lower bound on the number of trees in the digraph D associated
with the global constraint map is equal to the minimal number of vertex-disjoint
proper trees rooted on the sink components of SC(D) and covering all tree com-
ponents of SC(D).

Proof: According to the definition of the map constraint the number of trees
equals the number of arcs that do not belong to any cycle yet their tails are
located on a cycle. Therefore, the minimal number of trees is equal to the
minimal number of trees in D rooted at the sink components of SC(D). Thus,
the claim is trivially derived from the definition of the tree constraint. �

Recall that in a topological ordering of a given directed acyclic graph D,
each vertex v is associated with a value ord(v), such that for each arc (u, v) we
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have ord(u) < ord(v) and for each arc (v, w) we have ord(v) < ord(w). The
topological ordering can be found in linear time (see Algorithm 1).

In order to compute a lower bound on the number of trees for the map
constraint we will impose a constraint increasing nvalue(nval,variables)
with the following variables and domains. Let variables be a set of tree com-
ponents of SC(D). For every tree component si we put into the domain Dsi

the topological number ord(sj) of the sink component sj in SC(D) if there is
a directed path from si to the sink component sj . For variable nval we set
Dnval = {1, . . . , |variables|}. Since enforcing hyper-arc consistency for the
increasing nvalue constraint is O(m) [7] the computation of a lower bound
on the number of trees is of linear complexity.

According to the property of DAGs we know that from every vertex v there
exists a directed path in SC(D) to at least one of its sinks. Thus, we make sure
that we will explore a tree and all the trivial vertices of SC(D) will be visited.

We know that for the map constraint the number of trees is the number
of vertices directly connected to a cycle. According to this definition a trivial
upper bound could be computed as follows: count the number of vertices for
which at least one successor (that is not the vertex itself) is a part of a potential
cycle. This can be made faster by using the following idea: every vertex that
belongs to a strongly connected component containing more than one vertex or
having a loop is a vertex that can be on a cycle. Therefore, we should find a
vertex that has at least one successor different from those on the cycle.

It turns out that a sharper bound on the maximal number of trees can be
obtained by solving the nvalue constraint. More formally, an upper bound on
the number of trees in the map(nbcycle, nbtree, nodes) constraint equals
n minus the minimum number of distinct values in the nvalue(nval, nodes)
constraint, where n is the number of variables and Dnval = {0, . . . , n}. Since the
computing of the minimum number of distinct values for the nvalue constraint
is an NP-hard task [10] then the computing of the maximum number of trees
for the map constraint is NP-hard, as well.

Theorem 28 An upper bound on the number of trees for the global constraint
map equals n minus the minimum number of distinct values in the nvalue(nval,
nodes) constraint, where Dnval = {0, . . . , n}. More formally, mintree =
n−min(D′nval).

Proof: Let D be a directed graph associated with the map constraint. We
will use the induction on the number of trees in D. Suppose that we start
from mintree = 0. In this case digraph D has, obviously, a cycle factor. This
is the same as the nvalue constraint with Dnval = {n}, since each value in
nval must appear once, which leads to a set of cycles. Similarly, the case that
mintree = 1 is the same as the nvalue constraint with Dnval = {n− 1}. This
follows from the fact that when n− 1 variables are distinct, two variables must
take the same value. Since one value belongs to some cycle the second value is
a terminal endpoint of a directed path leading to this cycle. Other cases can
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be handled similarly. Continuing this process, by the pigeonhole principle5, we
find that a map having exactly k distinct values has at most n − k trees. A
bound is non-sharp since a vertex must not necessarily belong to a cycle. The
same argument holds for each of the 1, . . . , n distinct values in the map, so the
expected number of trees is obtained by the formula given in the theorem. Thus,
we have proven the result. �

Theorem 29 The problem of determining the maximum number of trees in the
digraph D associated with the global constraint map is NP-hard.

Proof: The claim follows from the fact that computing the lower bound on
nval variable of the nvalue constraint is NP-hard. Such a constraint is called
atmost nvalue [10]. �

Since the map constraint is satisfiable when the values nbcycle and nbtree
are of allowed range the incomplete pruning algorithm consists of detection
forbidden arcs when nbcycle and nbtree are instantiated to one of their
extrema.

We demonstrate our algorithm with the following example (the sample di-
graph is taken from [13, page 23]).

D(x1) = {2,5,6}
D(x2) = {1}
D(x3) = {2,4,5}
D(x4) = {9}
D(x5) = {1,7}
D(x6) = {5,8,10}

3 7

1

4

D(nbcycle) = {1,2}

D(x7) = {4}
D(x8) = {7,10}
D(x9) = {7}
D(x10) = {8}
D(x11) = {10,12}
D(x12) = {8,11,13}

D(x13) = {11}

13

9

D(nbtree) = {1,2}

6 10 11

2 5 8 12

s3 = {1,2,5,6} s2 = {8,10}

s4 = {3} s1 = {4,7,9}

s5 = {11,12,13}

Figure 8: Checking feasibility of the MAP constraint

Figure 8 illustrates the different terms related to the map constraint. The
map constraint is stated with the variable domains given on the left side of the
figure. In the middle of the figure the digraph D associated with the map con-
straint is depicted. On the right side of the figure the strong component graph
SC(D) is shown. To each strongly connected component Si of D corresponds

5The pigeonhole principle, called also Dirichlet drawer principle, states that if n+1 objects
(pigeons) are placed into n boxes (pigeonholes), then some box contains more than one object.
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a vertex si of SC(D). Vertices s1, s2 and s5 with loops represent cycle compo-
nents, vertices s3 and s4 represent tree components. Further, vertices s4 and s5

represent source components and vertex s1 represents a sink component.

The minimum number of cycles is 1 since there exists one sink component
S1. An upper bound on the number of cycles is 4 since τ(D) = 4. A cutset is,
for example, {1, 4, 10, 11}. Note that in our case ν(D) = τ(D). The minimum
number of trees is 1 since there exists one path leading to the sink component and
covering all tree components of SC(D). An upper bound on the number of trees
is 5(= 13 − 8), since min(D′nval) = 8 for the constraint atmost nvalue. The
constraint map holds since the values of count variables nbcycle and nbtree
lie within the computed extrema. The reader is invited to check some possible
solutions with an arbitrary number of cycles and trees from range 1 . . . 2.

We conclude this subsection with a summary of the incomplete filtering
algorithm:

Algorithm 8 Partial filtering algorithm for the map constraint

Require: Digraph D associated with map(nbcycle, nbtree, nodes)
Ensure: Incomplete pruning

If nbcycle = {1} and nbtree = {0} then the constraint specializes into
circuit(nodes)
If max(nbcycle) > 1 and nbtree = {0} then the constraint specializes into
cycle(nbcycle, nodes)
Compute mincycle and mintree
Estimate maxcycle and maxtree
If all sink components of D are loops and their number is equal to nbcycle,
and the minimum number of trees is equal to min(nbtree), and the number
of vertices in D which have a successor which is located on a sink component of
D equals max(nbtree), then the constraint is equivalent to tree(nbcycle,
nodes)
If nbcycle = {mincycle} then the pruning is equivalent to the pruning for
tree(nbtree, tc(d)), where tc(d) denotes a tree component of D, which
is created in the following way: every strong component representing sink of
SC(D) is contracted to a single vertex with a loop
If nbtree = {mintree} then the pruning is equivalent to the pruning for
tree(nbtree, tt(d)), where tt(d) denotes a tree component of D, which is
created in the following way: the tail of every arc going to a strong component
representing sink of SC(D) is replaced by a loop

Evaluating the complexity of the algorithm is done by analyzing the follow-
ing steps. In order to compute the mincycle value we need to find the strongly
connected components of D. This takes O(m + n) time with the algorithm
presented in Section 3. In order to estimate the maxcycle value we use the
algorithm for the cutset constraint that is of O(m + n · log n) time complex-
ity [21]. The existence of a cycle factor can be found in time O(

√
n ·m) [33].

The construction of the strong component graph SC(D) can be easily done in
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linear time by performing an alternating depth-first search on BR∗(D). At the
same time, the topological ordering of the vertices of SC(D) may be obtained
(see Algorithm 1). The minimum number of trees can be computed in linear
time [7]. Estimating the maximum number of trees takes O(n2) time when
we use one of the approximation algorithms described in [10]. Adjusting the
variables nbcycle and nbtree can be carried out in constant time.

We analyzed the use of the global constraint map for modeling various prob-
lems and for partitioning graphs. We have shown that the constraint can be
solved by using the other global constraints such as cutset, nvalue, circuit,
cycle, tree or even symmetric alldifferent.

5 Conclusion

In this paper we have introduced a useful filtering technique based on a directed
matching. A general method was described for solving partitioning problems on
directed graphs. Such partitioning problems include finding cycles, paths, trees
or various maps. In this paper we provided a unified setting for such problems.

Many important graph partitioning constraints are not tractable. For such
problems there is in general no algorithm to compute a solutions and no filtering
algorithm to remove all redundant values. In this case we must be satisfied
with less pruning than the tractable case provides. We have presented efficient
methods for incomplete pruning of the variable domains. Our result can be
applied to other constraints with a similar graph representation and structure.

We have studied the application of matching theory to the constraints rep-
resentable by bipartite [15], general [17], weighted [16], and directed graphs
(this paper). We have investigated several graph partitioning constraints, some
serious and others more entertaining, that can be modeled by directed graphs
and filtered by means of structures such as directed matchings, dominators or
strongly connected components.

Another natural extension of the matching problem arises when considering
weighted directed matchings in digraphs. Our approach can be easily applied
to the weighted case. The only difference is that the costs are assigned to
the bipartite graph where a directed matching is constructed. However, an
open problem would be to describe additional classes of problems that can be
modeled by weighted digraphs.

In this paper we have given a partial filtering for the circuit constraint.
Another interesting problem is to find a Hamiltonian cycle in a planar graph.
In this case we can use for pruning a necessary condition discovered by the
Latvian mathematician Emanuel Grinberg [29] in 1968 (see also [56], [65]). The
Hamiltonian cycle problem is NP-complete even for planar graphs [26].

In many practical partitioning problems, we have to cover all the vertices
of the associated digraph with connected components consisting of at least two
vertices. We can extend all the mentioned constraints with the property of a
proper partition.
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One of the interesting questions for future work would be to apply our ap-
proach to balanced constraints such as balance cycle, balance path and
balance tree, introduced in [4]. These constraints are characterized by the
additional parameter measuring the difference between the number of vertices
in the smallest pattern and the number of vertices in the largest pattern.

We have proposed an algorithm for the detection of strongly connected com-
ponents in a directed graph based on a bipartite matching. An open problem is
whether a pruning according to dominators and strong bridges can be realized
with the help of matching theory.

Finally, note that all algorithms we developed here are practicable and easy
to implement. Thus, we expect this work to be relevant for many applications
and practical approaches in the field of constraint programming. We consider
an empirical evaluation of our algorithms to be an interesting question that
deserves further study.
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