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Abstract

We investigate the Minimum Eccentricity Shortest Path problem in
some structured graph classes. It asks for a given graph to find a shortest
path with minimum eccentricity. Although it is NP-hard in general graphs,
we demonstrate that a minimum eccentricity shortest path can be found
in linear time for distance-hereditary graphs (generalizing the previous
result for trees) and give a generalised approach which allows to solve
the problem in polynomial time for other graph classes. This includes
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and graphs with bounded hyperbolicity. Additionally, we give a simple
algorithm to compute an additive approximation for graphs with bounded
tree-length and graphs with bounded hyperbolicity.
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1 Introduction

The Minimum Eccentricity Shortest Path problem asks for a given graph G =
(V,E) to find a shortest path P such that for each other shortest path Q,
ecc(P ) ≤ ecc(Q) holds. Here, the eccentricity of a set S ⊆ V in G is ecc(S) =
maxu∈V dG(u, S). This problem was introduced in [12]. It may arise in deter-
mining a “most accessible” speedy linear route in a network and can find ap-
plications in communication networks, transportation planning, water resource
management and fluid transportation. It was also shown in [11, 12] that a min-
imum eccentricity shortest path plays a crucial role in obtaining the best to
date approximation algorithm for a minimum distortion embedding of a graph
into the line. Specifically, every graph G with a shortest path of eccentricity r
admits an embedding f of G into the line with distortion at most (8r+2) ld(G),
where ld(G) is the minimum line-distortion of G (see [12] for details). Further-
more, if a shortest path of G of eccentricity r is given in advance, then such
an embedding f can be found in linear time. Note also that every graph has a
shortest path of eccentricity at most ⌊ld(G)/2⌋.

Those applications motivate investigation of the Minimum Eccentricity Short-
est Path problem in general graphs and in particular graph classes. Fast algo-
rithms for it will imply fast approximation algorithms for the minimum line
distortion problem. Existence of low eccentricity shortest paths in structured
graph classes will imply low approximation bounds for those classes. For ex-
ample, all AT-free graphs (hence, all interval, permutation, cocomparability
graphs) enjoy a shortest path of eccentricity at most 1 [7], all convex bipartite
graphs enjoy a shortest path of eccentricity at most 2 [11].

In [12], the Minimum Eccentricity Shortest Path problem was investigated in
general graphs. It was shown that its decision version is NP-complete (even for
graphs with vertex degree at most 3). However, there are efficient approximation
algorithms: a 2-approximation, a 3-approximation, and an 8-approximation for
the problem can be computed in O(n3) time, in O(nm) time, and in linear time,
respectively. Furthermore, a shortest path of minimum eccentricity r in general
graphs can be computed in O(n2r+2m) time. Paper [12] initiated also the study
of the Minimum Eccentricity Shortest Path problem in special graph classes
by showing that a minimum eccentricity shortest path in trees can be found in
linear time. In fact, every diametral path of a tree is a minimum eccentricity
shortest path.

In this paper, we design efficient algorithms for the Minimum Eccentricity
Shortest Path problem in distance-hereditary graphs, in chordal graphs, in du-
ally chordal graphs, and in more general graphs with bounded tree-length or
with bounded hyperbolicity. Additionally, we give a simple algorithm to com-
pute an additive approximation for graphs with bounded tree-length and graphs
with bounded hyperbolicity. Table 1 gives an overview of our results.

Note that our Minimum Eccentricity Shortest Path problem is close but
different from the Central Path problem in graphs introduced in [21]. It asks for
a given graph G to find a path P (not necessarily shortest) such that any other
path of G has eccentricity at least ecc(P ). The Central Path problem generalizes
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Graph class Runtime Approx.

distance-hereditary linear
chordal O(n2m)

linear +2
dually chordal O(n3m)

tree-length λ O(n3λ+3)
O(λm) +2.5λ

tree-breadth ρ O(n6ρ+3)

δ-hyperbolic O(n4δ+4)
O(δm) +O(δ logn)

Table 1: Runtime for solving the Minimum Eccentricity Shortest Path prob-
lem for some graph classes. Also, if the solution is not optimal, the maximal
difference to an optimal solution is shown.

the Hamiltonian Path problem and therefore is NP-hard even for chordal graphs
[19]. Our problem is polynomial time solvable for chordal graphs.

2 Notions and Notations

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. For a graph G = (V,E), we use n = |V |
and m = |E| to denote the cardinality of the vertex set and the edge set of G.
G[S] denotes the induced subgraph of G with the vertex set S.

The length of a path from a vertex v to a vertex u is the number of edges in
the path. The distance dG(u, v) of two vertices u and v is the length of a shortest
path connecting u and v. The distance between a vertex v and a set S ⊆ V is
defined as dG(v, S) = minu∈S dG(u, v). The eccentricity ecc(v) of a vertex v is
maxu∈V dG(u, v). For a set S ⊆ V , its eccentricity is ecc(S) = maxu∈V dG(u, S).
For a vertex pair s, t, a shortest (s, t)-path P has minimal eccentricity, if there is
no shortest (s, t)-path Q with ecc(Q) < ecc(P ). Two vertices x and y are called
mutually furthest if dG(x, y) = ecc(x) = ecc(y). A vertex u is k-dominated by a
vertex v (by a set S ⊂ V ), if dG(u, v) ≤ k (dG(u, S) ≤ k, respectively).

The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diame-
ter diamG(S) of a set S ⊆ V is defined as maxu,v∈S dG(u, v). A pair of vertices
x, y of G is called a diametral pair if dG(x, y) = diam(G). In this case, every
shortest path connecting x and y is called a diametral path.

For a vertex v ∈ V , N(v) = { u ∈ V | uv ∈ E} is called the open neigh-
borhood, and N [v] = N(v) ∪ {v} the closed neighborhood of v. N r[v] = { u ∈
V | dG(u, v) ≤ r} denotes the disk of radius r around vertex v. Additionally,

L
(v)
r = { u ∈ V | dG(u, v) = r} denotes the vertices with distance r from v.

For two vertices u and v, I(u, v) = {w | dG(u, v) = dG(u,w) + dG(w, v)}

is the interval between u and v. The set Si(s, t) = L
(s)
i ∩ I(u, v) is called

a slice of the interval from u to v. For any set S ⊆ V and a vertex v,



302 F.F. Dragan and A. Leitert MESPs in some Structured Graph Classes

Pr(v, S) = { u ∈ S | dG(u, v) = dG(v, S)} denotes the projection of v on S.
A chord in a path is an edge connecting two non-consecutive vertices of the

path. A set of vertices S is a clique if all vertices in S are pairwise adjacent. A
graph is chordal if every cycle with at least four vertices has a chord. A graph
is distance-hereditary if the distances in any connected induced subgraph are
the same as they are in the original graph. A graph is dually chordal if it is the
intersection graph of maximal cliques of a chordal graph. For more definitions
of these classes and relations between them see [4].

3 A Linear-Time Algorithm for Distance-Heredi-

tary Graphs

Distance-hereditary graphs can be defined as graphs where each chordless path is
a shortest path [16]. Several interesting characterizations of distance-hereditary
graphs in terms of metric and neighborhood properties, and forbidden config-
urations were provided by Bandelt and Mulder [1], and by D’Atri and
Moscarini [8]. The following proposition lists the basic information on distance-
hereditary graphs that is needed in what follows.

Proposition 1 ([1, 8]) For a graph G the following conditions are equivalent:

(1) G is distance-hereditary;

(2) The house, domino, gem (see Fig. 1) and the cycles Ck of length k ≥ 5 are
not induced subgraphs of G;

(3) For an arbitrary vertex x of G and every pair of vertices u, v ∈ L
(x)
k , that

are in the same connected component of the graph G[V \ L
(x)
k−1], we have

N(v) ∩ L
(x)
k−1 = N(u) ∩ L

(x)
k−1.

(4) (4-point condition) For any four vertices u, v, w, x of G at least two of the
following distance sums are equal: dG(u, v)+ dG(w, x); dG(u,w)+ dG(v, x);
dG(u, x) + dG(v, w). If the smaller sums are equal, then the largest one
exceeds the smaller ones at most by 2.

House Domino Gem

Figure 1: Forbidden induced subgraphs in a distance-hereditary graph.

As a consequence of statement (3) of Proposition 1 we get.
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Corollary 1 Let P := P (s, t) be a shortest path in a distance-hereditary graph G
connecting vertices s and t, and w be an arbitrary vertex of G. Let a be a vertex
of Pr(w,P ) that is closest to s, and let b be a vertex of Pr(w,P ) that is closest
to t. Then dG(a, b) ≤ 2 and there must be a vertex w′ in G adjacent to both a
and b and at distance dG(w,P ) − 1 from w.

As a consequence of statement (4) of Proposition 1 we get.

Corollary 2 Let x, y, v, u be arbitrary vertices of a distance-hereditary graph G
with v ∈ I(x, u), u ∈ I(y, v), and dG(u, v) > 1, then dG(x, y) = dG(x, v) +
dG(v, u)+dG(u, y). That is, if two shortest paths share ends of length at least 2,
then their union is a shortest path.

Proof: Consider distance sums S1 := dG(x, v) + dG(u, y), S2 := dG(x, y) +
dG(u, v) and S3 := dG(x, u) + dG(v, y). Since dG(x, u) + dG(v, y) = dG(x, v) +
dG(u, y) + 2 dG(u, v), we have S3 > S1. Then, either S2 = S3 or S1 = S2 and
S3 − S1 ≤ 2. If the latter is true, then 2 ≥ S3 − S1 = dG(x, v) + dG(u, y) +
2 dG(u, v)−dG(x, v)−dG(u, y) = 2 dG(v, u) > 2 and a contradiction arises. Thus,
S2 = S3 and we get dG(x, y) = dG(x, v) + dG(v, u) + dG(u, y). �

Lemma 1 Let x, y be a diametral pair of vertices of a distance-hereditary graph G,
and k be the minimum eccentricity of a shortest path in G. If for some short-
est path P = P (x, y), connecting x and y, ecc(P ) > k holds, then diam(G) =
dG(x, y) ≥ 2k. Furthermore, if dG(x, y) = 2k then there is a shortest path P ∗

between x and y with ecc(P ∗) = k.

Proof: Consider a vertex v with dG(v, P ) > k. Let x′ be a vertex of Pr(v, P )
closest to x, and y′ be a vertex of Pr(v, P ) closest to y. By Corollary 1,
dG(x

′, y′) ≤ 2 and there must be a vertex v′ in G adjacent to both x′ and
y′ and at distance dG(v, P ) − 1 from v. Let P (x, x′) and P (y′, y) be subpaths
of P connecting vertices x, x′ and vertices y, y′, respectively. Consider also an
arbitrary shortest path Q(v, v′) connecting v and v′ in G. By choices of x′

and y′, no chords in G exist in paths P (x, x′) ∪Q(v′, v) and P (y, y′) ∪Q(v′, v).
Hence, those paths are shortest in G. Since x, y is a diametral pair, we have
dG(x, x

′) + dG(x
′, y′) + dG(y

′, y) = dG(x, y) ≥ dG(x, v) = dG(x, x
′) + 1 +

dG(v
′, v). That is, dG(y

′, y) ≥ dG(v
′, v) + 1 − dG(x

′, y′). Similarly, dG(x
′, x) ≥

dG(v
′, v) + 1 − dG(x

′, y′). Combining both inequalities and taking into ac-
count that dG(v, v

′) ≥ k, we get dG(x, y) = dG(x, x
′) + dG(x

′, y′) + dG(y
′, y) ≥

2k+2−dG(x′, y′) ≥ 2k. Furthermore, we have dG(x, y) ≥ 2k+1 if dG(x
′, y′) = 1

and dG(x, y) ≥ 2k+2 if dG(x
′, y′) = 0. Also, if dG(x, y) = 2k then dG(x

′, y′) = 2,
dG(v, v

′) = k, dG(x, x
′) = dG(y, y

′) = k − 1 and dG(v, x) = dG(v, y) = 2k.
Now assume that dG(x, y) = 2k. Consider sets S = {w ∈ V | dG(x,w) =

dG(y, w) = k} and Fx,y = { u ∈ V | dG(u, x) = dG(u, y) = 2k}. Let c ∈ S be a
vertex of S that k-dominates the maximum number of vertices in Fx,y. Consider
a shortest path P ∗ connecting vertices x and y and passing through vertex c.
We will show that ecc(P ∗) = k. Let x′ (y′) be the neighbor of c in subpath of
P ∗ connecting c with x (with y, respectively).
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Assume there is a vertex v in G such that dG(v, P
∗) > k. As in the first

part of the proof, one can show that dG(v, x
′) = dG(v, y

′) = k + 1, i. e., x′, y′ ∈
Pr(v, P ∗) and dG(v, P

∗) = k + 1. Furthermore, dG(v, x) = dG(v, y) = 2k, i. e.,
v ∈ Fx,y. Also, vertex v′, that is adjacent to x′, y′ and at distance k from v,
must belong to S. Since dG(v, c) > k but dG(v, v

′) = k, by choice of c, there
must exist a vertex u ∈ Fx,y such that dG(u, c) ≤ k and dG(u, v

′) > k. Since
dG(u, y) = dG(u, x) = 2k, dG(u, c) must equal k and both dG(u, x

′) and dG(u, y
′)

must equal k + 1.
Since dG(v, u) ≤ diam(G) = 2k and dG(v, y

′) = dG(v, x
′) = k + 1 =

dG(u, x
′) = dG(u, y

′), we must have a chord between vertices of a shortest path
P (v, v′) connecting v with v′ and vertices of a shortest path P (u, c) connecting
u with c. If no chords exist or only chord cv′ is present, then dG(v, u) ≥ 2k+1,
contradicting with diam(G) = 2k. So, consider a chord ab with a ∈ P (v, v′),
b ∈ P (u, c), ab 6= cv′, and dG(a, v

′) + dG(b, c) is minimum. We know that
dG(a, v

′) = dG(b, c) must hold since dG(u, v
′) > k = dG(u, c) and dG(v, c) >

k = dG(v, v
′). To avoid induced cycles of length k ≥ 5, dG(a, v

′) = dG(b, c) = 1
must hold. But then, vertices a, b, c, x′, v′ form either an induced cycle C5,
when c and v′ are not adjacent, or a house, otherwise. Note that, by distance
requirements, edges bv′, ca, bx′, and ax′ are not possible.

Contradictions obtained show that such a vertex v with dG(v, P
∗) > k is not

possible, i. e., ecc(P ∗) = k. �

Lemma 2 In every distance-hereditary graph there is a minimum eccentricity
shortest path P (s, t) where s and t are two mutually furthest vertices.

Proof: Let k be the minimum eccentricity of a shortest path in G. Let
Q := Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of G of ec-
centricity k with maximum q, that is, among all shortest paths with eccentric-
ity k, Q is a longest one. Assume, without loss of generality, that t is not a
vertex most distant from s. Let i ≤ q be the smallest index such that sub-
path Q(s, vi) = (v0, v1, . . . , vi) of Q has also the eccentricity k. By choice of
i, there must exist a vertex v in G which is k-dominated only by vertex vi of
Q(s, vi), i. e., Pr(v,Q(s, vi)) = {vi} and dG(v,Q(s, vi)) = k. Let P (v, vi) be an
arbitrary shortest path of G connecting v with vi. By choice of i, no vertex of
P (v, vi)\ {vi} is adjacent to a vertex of Q(s, vi)\ {vi}. Hence, path obtained by
concatenating Q(s, vi) with P (vi, v) is chordless and, therefore, shortest in G,
and has eccentricity k, too. Note that v is now a most distant vertex from s, i. e.,
dG(s, v) = ecc(s). Since dG(s, v) > dG(s, t), a contradiction with maximality of
q arises. �

The main result of this section is the following.

Theorem 1 Let x, y be a diametral pair of vertices of a distance-hereditary
graph G, and k be the minimum eccentricity of a shortest path in G. Then,
there is a shortest path P between x and y with ecc(P ) = k.

Proof: We may assume that for some shortest path P ′ connecting x and y,
ecc(P ′) > k holds (otherwise, there is nothing to prove). Then, by Lemma 1,
we have dG(x, y) ≥ 2k.
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Let Q := Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of
G of eccentricity k such that s and t are two mutually furthest vertices (see
Lemma 2). Consider projections of x and y to Q. We distinguish between
three cases: Pr(x,Q) is completely on the left of Pr(y,Q) in Q; Pr(x,Q) and
Pr(y,Q) have a common vertex w; and the remaining case (see Corollary 1)
when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for some index i.

Case 1: Pr(x,Q) is completely on the left of Pr(y,Q) in Q.

Let x′ be a vertex of Pr(x,Q) closest to t and y′ a vertex of Pr(y,Q) closest to
s. Consider an arbitrary shortest path P (x, x′) of G connecting vertices x and
x′, an arbitrary shortest path P (y′, y) of G connecting vertices y′ and y, and a
subpath Q(x′, y′) of Q(s, t) between vertices x′ and y′. We claim that the path
P of G obtained by concatenating P (x, x′) with Q(x′, y′) and then with P (y′, y)
is a shortest path of eccentricity k.

Indeed, by choice of x′, no edge connecting a vertex in P (x, x′) \ {x′} with a
vertex in Q(x′, y′)\{x′} can exist in G. Similarly, no edge connecting a vertex in
P (y′, y)\{y′} with a vertex in Q(x′, y′)\{y′} can exist in G. Since we also have
dG(x, y) ≥ 2k, dG(x,Q) ≤ k and dG(y,Q) ≤ k, no edge connecting a vertex in
P (y′, y) \ {y′} with a vertex in P (x, x′) \ {x′} can exist in G. Hence, chordless
path P = P (x, x′) ∪Q(x′, y′) ∪ P (y′, y) is a shortest path of G.

Consider now an arbitrary vertex v of G. We want to show that dG(v, P ) ≤ k.
Since ecc(Q) = k, dG(v,Q) ≤ k. Consider the projection of v to Q. We may
assume that Pr(v,Q)∩Q(x′, y′) = ∅ and, without loss of generality, that vertices
of Pr(v,Q) are closer to s than vertex x′. Let v′ be a vertex of Pr(v,Q) closest
to x′. As before, by choices of v′ and y′, paths P (y, y′)∪Q(y′, v′) and P (v, v′)∪
Q(y′, v′) are chordless and, therefore, are shortest paths of G (here P (v, v′) is
an arbitrary shortest path of G connecting v with v′). Since dG(v

′, y′) ≥ 2, by
Corollary 2, dG(v, y) = dG(v, v

′)+dG(v
′, y′)+dG(y

′, y). Hence, from dG(x, y) ≥
dG(y, v), dG(x, y) = dG(x, x

′) + dG(x
′, y) and dG(v, y) = dG(v, x

′) + dG(x
′, y),

we obtain dG(v, x
′) ≤ dG(x, x

′) ≤ k.

Case 2: Pr(x,Q) and Pr(y,Q) have a common vertex w.

In this case, we have dG(x, y) ≤ dG(x,w) + dG(y, w) ≤ k + k = 2k. Earlier
we assumed also that dG(x, y) ≥ 2k. Hence, diam(G) = dG(x, y) = 2k and the
statement of the theorem follows from Lemma 1.

Case 3: Remaining case when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for
some index i.

In this case, we have dG(x, y) ≤ dG(x, vi−1) + 1 + dG(vi, y) ≤ 2k + 1. By
Lemma 1, we can assume that diam(G) = dG(x, y) = 2k+1, i. e., dG(x, vi−1) =
dG(x, vi+1) = dG(vi, y) = k.

Let Q(s, vi−1) and Q(t, vi+1) be subpaths of Q connecting vertices s and vi−1

and vertices t and vi+1, respectively. Pick an arbitrary shortest path P (y, vi)
connecting y with vi. Since no chords are possible between Q(s, vi) \ {vi} and
P (y, vi)\{vi} and between Q(t, vi)\{vi} and P (y, vi)\{vi}, we have dG(y, t) =
dG(y, vi) + dG(vi, t) = k + dG(vi, t) and dG(y, s) = dG(y, vi) + dG(vi, s) =
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k + dG(vi, s). Inequalities dG(x, y) ≥ dG(y, t) and dG(x, y) ≥ dG(y, s) imply
dG(vi+1, t) ≤ dG(vi+1, x) = k and dG(vi−1, s) ≤ dG(vi−1, x) = k. If both
dG(vi+1, t) and dG(vi−1, s) equal k, then dG(s, t) = 2k + 2 contradicting with
diam(G) = 2k + 1. Hence, we may assume, without loss of generality, that
dG(vi−1, s) ≤ k − 1. We will show that shortest path P := P (x, vi+1) ∪ P (vi, y)
has eccentricity k (here, P (x, vi+1) is an arbitrary shortest path of G connecting
x with vi+1).

Consider a vertex v in G and assume that Pr(v,Q) is strictly contained in
Q(t, vi+1). Denote by v′ the vertex of Pr(v,Q) that is closest to s. Let P (v, v′)
be an arbitrary shortest path connecting v and v′. As before, P (v, v′)∪Q(v′, s)
is a chordless path and therefore dG(v, s) = dG(v, vi+1) + dG(vi+1, s). Since
t is a most distant vertex from s, dG(s, v) ≤ dG(s, t). Hence, dG(v, vi+1) +
dG(vi+1, s) = dG(s, v) ≤ dG(s, t) = dG(s, vi+1) + dG(vi+1, t), i. e., dG(v, vi+1) ≤
dG(vi+1, t) ≤ k.

Consider a vertex v in G and assume now that Pr(v,Q) is strictly contained
in Q(s, vi−1). Denote by v′ the vertex of Pr(v,Q) that is closest to t. Let P (v, v′)
be an arbitrary shortest path connecting v and v′. Again, P (v, v′) ∪ Q(v′, t) is
a chordless path and therefore dG(v, t) = dG(v, vi) + dG(vi, t). Since s is a
most distant vertex from t, dG(t, v) ≤ dG(s, t). Hence, dG(v, vi) + dG(vi, t) =
dG(t, v) ≤ dG(s, t) = dG(s, vi) + dG(vi, t), i. e., dG(v, vi) ≤ dG(vi, s) ≤ k.

Thus, all vertices of G are k-dominated by P (x, vi+1) ∪ P (vi, y). �

It is known [13] that a diametral pair of a distance-hereditary graph can be
found in linear time. Hence, according to Theorem 1, to find a shortest path of
minimum eccentricity in a distance-hereditary graph in linear time, one needs
to efficiently extract a best eccentricity shortest path for a given pair of end-
vertices. In what follows, we demonstrate that, for a distance-hereditary graph,
such an extraction can be done in linear time as well.

We will need few auxiliary lemmas.

Lemma 3 In a distance-hereditary graph G, for each pair of vertices s and t,
if x is on a shortest path from v to Πv = Pr(v, I(s, t)) and dG(x,Πv) = 1, then
Πv ⊆ N(x).

Proof: Let p and q be two vertices in Πv and dG(v,Πv) = r. By statement (3)

of Proposition 1, N(p)∩L
(v)
r−1 = N(q)∩L

(v)
r−1. Thus, each vertex x on a shortest

path from v to Πv with dG(x,Πv) = 1 (which is in N(p) ∩ L
(v)
r−1 by definition)

is adjacent to all vertices in Πv, i. e., Πv ⊆ N(x). �

Lemma 4 In a distance-hereditary graph G, let Si(s, t) and Si+1(s, t) be two
consecutive slices of an interval I(s, t). Each vertex in Si(s, t) is adjacent to
each vertex in Si+1(s, t).

Proof: Consider statement (3) of Proposition 1 from perspective of t. Thus,
Si(s, t) ⊆ N(v) for each vertex v ∈ Si+1(s, t). Additionally, from perspective of
s, Si+1(s, t) ⊆ N(u) for each vertex u ∈ Si(s, t). �
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Lemma 5 In a distance-hereditary graph G, if a projection Πv = Pr(v, I(s, t))
intersects two slices of an interval I(s, t), each shortest (s, t)-path intersects Πv.

Proof: Because of Lemma 3, there is a vertex x with N(x) ⊇ Πv and dG(v, x) =
dG(v,Πv) − 1. Thus, Πv intersects at most two slices of interval I(s, t) and
those slices have to be consecutive, otherwise x would be a part of the interval.
Let Si(s, t) and Si+1(s, t) be these slices. Note that dG(s, x) = i + 1. Thus,
by statement (3) of Proposition 1, N(x) ∩ Si(s, t) = N(u) ∩ Si(s, t) for each
u ∈ Si+1(s, t). Therefore, Si(s, t) ⊆ Πv, i. e., each shortest path from s to t
intersects Πv. �

From the lemmas above, we can conclude that, for determining a shortest
(s, t)-path with minimal eccentricity, a vertex v is only relevant if dG(v, I(s, t)) =
ecc(I(s, t)) and the projection of v on the interval I(s, t) only intersects one slice.
Algorithm 1 uses this.

Algorithm 1: Computes a shortest (s, t)-path P with minimal eccentric-
ity for a given distance-hereditary graph G and a vertex pair s, t.

Input: A distance-hereditary graph G = (V,E) and two distinct vertices
s and t.

Output: A shortest path P from s to t with minimal eccentricity.
1 Compute the sets Vi = { v | dG(v, I(s, t)) = i} for 1 ≤ i ≤ ecc(I(s, t)).
2 Each vertex v /∈ I(s, t) gets a pointer g(v) initialised with g(v) := v if
v ∈ V1, and g(v) := ∅ otherwise.

3 for i := 2 to ecc(I(s, t)) do
4 For each v ∈ Vi, select a vertex u ∈ Vi−1 ∩N(v) and set g(v) := g(u).

5 foreach v ∈ Vecc(I(s,t)) do
6 If N(g(v)) intersects only one slice of I(s, t), flag g(v) as relevant.

7 Set P := {s, t}.
8 for i := 1 to dG(s, t)− 1 do
9 Find a vertex v ∈ Si(s, t) for which the number of relevant vertices in

N(v) is maximal.
10 Add v to P .

Lemma 6 For a distance-hereditary graph G and an arbitrary vertex pair s, t,
Algorithm 1 computes a shortest (s, t)-path with minimal eccentricity in linear
time.

Proof: The loop in line 3 determines a gate vertex g(v) for each vertex v out-
side of the interval I(s, t) such that N(g(v)) ⊇ Pr(v, I(s, t)) and dG(v, I(s, t)) =
dG(v, g(v)) + 1 (see Lemma 3). From Lemma 5 and Lemma 4, it follows that
for a vertex v which is not in Vecc(I(s,t)) or its projection to I(s, t) is intersecting
two slices of I(s, t), dG(v, P (s, t)) ≤ ecc(I(s, t)) for every shortest path P (s, t)
between s and t. Therefore, line 6 only marks g(v) if v ∈ Vecc(I(s,t)) and its
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projection Pr(v, I(s, t)) intersects only one slice. Because only one slice is inter-
sected and each vertex in a slice is adjacent to all vertices in the consecutive slice
(see Lemma 4), in each slice the vertex of an optimal (of minimum eccentricity)
path P can be selected independently from the preceding vertex. If a vertex x
of a slice Si(s, t) has the maximum number of relevant vertices in N(x), then
x is good to put in P . Indeed, if x dominates all relevant vertices adjacent to
vertices of Si(s, t), then x is a perfect choice to put in P . Else, any vertex y of
a slice Si(s, t) is a good vertex to put in P . Hence, P is optimal if the number
of relevant vertices adjacent to P is maximal. Thus, the path selected in line 8
to line 10 is optimal. �

Running Algorithm 1 for a diametral pair of vertices of a distance-hereditary
graph G, by Theorem 1, we get a shortest path of G with minimum eccentricity.
Thus, we have proven the following result.

Theorem 2 A shortest path with minimum eccentricity of a distance-hereditary
graph G = (V,E) can be computed in O(|V |+ |E|) time.

4 A Polynomial-Time Algorithm for Tree-Struc-

tured Graphs

4.1 Projection Gap

In a graph G, consider a shortest path P which starts in a vertex s. Each
vertex x has a projection Πx = Pr(x, P ). In case of a tree this is a single vertex.
However, in general, Πx can contain multiple vertices and does not necessarily
induce a connected subgraph. In this case, there are two vertices u and w in
Πx such that all vertices v in the subpath Q between u and w are not in Πx.
Formally, u,w ∈ Πx, Q = { v ∈ P | dG(s, u) < dG(s, v) < dG(s, w)}, and
Q ∩ Πx = ∅.

Now, assume the cardinality of Q is at most γ, i. e., dG(u,w) ≤ γ + 1 for
each P , x, u and w. We refer to γ as the projection gap of G.

Definition 1 (Projection Gap) In a graph G, let P = {v0, . . . , vl} be a short-
est path with dG(v0, vi) = i. The projection gap of G is γ, pg(G) = γ for
short, if, for every vertex x of G and every two vertices vi, vk ∈ Pr(x, P ),
dG(vi, vk) > γ + 1 implies that there is a vertex vj ∈ Pr(x, P ) with i < j < k.

Based on this definition, we can make the following observation.

Lemma 7 In a graph G with pg(G) = γ, let P be a shortest path starting
in s, Q be a subpath of P , |Q| > γ, u and w be two vertices in P \ Q such
that dG(s, u) < dG(s,Q) < dG(s, w), and x be an arbitrary vertex in G. If
dG(x, u) < dG(x,Q), then dG(x,w) ≥ dG(x,Q).

Proof: Assume that dG(x, u) < dG(x,Q) and dG(x,w) < dG(x,Q). With-
out loss of generality, let dG(x, u) = dG(x,w) < dG(x, v) for all v ∈ P with
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dG(s, u) < dG(s, v) < dG(s, w). Let P ′ be the subpath of P from u to w. Note
that Pr(x, P ′) = {u,w} and Q ⊂ P ′. Thus, dG(u,w) ≥ |Q| + 1 > γ + 1. This
contradicts with pg(G) = γ. �

Informally, Lemma 7 says that, when exploring a shortest path P , if the
distance to a vertex x did not decrease during the last γ + 1 vertices of P , it
will not decrease when exploring the remaining subpath. Based on this, we will
show that a minimum eccentricity shortest path can be found in polynomial
time if pg(G) is bounded by some constant.

For the rest of this section, we assume we are given a graphG with pg(G) = γ
containing a vertex s. We will need the following notions and notations:

• Qi and Qj are subpaths of length γ of some shortest paths starting in s.
They do not need to be subpath of the same shortest path. Let vi ∈ Qi

and vj ∈ Qj be the two vertices such that dG(s,Qi) = dG(s, vi) and
dG(s,Qj) = dG(s, vj). Without loss of generality, let dG(s, vi) ≤ dG(s, vj).
We say, Qi is compatible with Qj (with respect to s) if |Qi ∩Qj| = γ − 1,
vi is adjacent to vj , and dG(s, vi) < dG(s, vj). Let Cs(Qj) denote the set
of subpaths compatible with Qj.

• Rs(Qj) = {w | Qj ⊆ I(s, w)} ∪Qj is the set of vertices w such that there
is a shortest path from s to w containing Qj (or w ∈ Qj).

• I(s,Qj) = I(s, vj) ∪Qj are the vertices that are on a shortest path from
s to Qj (or in Qj).

• V ↓
s (Qj) = { x | dG(x,Qj) = dG(x,Rs(Qj))} is the set of vertices x which

are closer to Qj than to all other vertices in Rs(Qj). Thus, given a shortest
path P containing Qj and starting in s, expanding P beyond Qj will not
decrease the distance from x to P .

Note that Qj ⊆ V ↓
s (Qj) and Qj = I(s,Qj) ∩Rs(Qj).

4.2 Algorithm

Lemma 8 For each vertex x in G, dG(x,Qj) = dG(x, I(s,Qj)) or dG(x,Qj) =
dG(x,Rs(Qj)).

Proof: Assume, dG(x,Qj) > dG(x, I(s,Qj)) and dG(x,Qj) > dG(x,Rs(Qj)).
Then, there is a vertex ui ∈ I(s,Qj) and a vertex ur ∈ Rs(Qj) with dG(x, ui) <
dG(x,Qj) and dG(x,Qj) > dG(x, ur). Because ui, Qj , and ur are on a shortest
path starting in s and |Qj | > γ, this contradicts Lemma 7. �

Lemma 9 If Qi is compatible with Qj, then V
↓
s (Qi) ⊆ V ↓

s (Qj).

Proof: Assume that V ↓
s (Qi) * V ↓

s (Qj), i. e., there is a vertex x ∈ V ↓
s (Qi) \

V ↓
s (Qj). Then, dG(x,Qj) > dG(x,Rs(Qj)). Thus, by Lemma 8, dG(x,Qj) =
dG(x, I(s,Qj)). BecauseQi ⊆ I(s,Qj), dG(x,Qi) ≥ dG(x, I(s,Qj)) = dG(x,Qj).
Since x ∈ V ↓

s (Qi), dG(x,Qi) = dG(x,Rs(Qi)). Also, because x /∈ V ↓
s (Qi),
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dG(x,Qj) > dG(x,Rs(Qj)). Thus, dG(x,Rs(Qi)) > dG(x,Rs(Qj)). On the
other hand, because Rs(Qi) ⊇ Rs(Qj), dG(x,Rs(Qi)) ≤ dG(x,Rs(Qj)), and a
contradiction arises. �

For a subpath Qj, let Ps(Qj) denote the set of shortest paths P which start
in s such that Qj ⊆ P ⊆ I(s,Qj). Then, we define εs(Qj) as follows:

εs(Qj) = min
P∈Ps(Qj)

max
x∈V

↓
s (Qj)

dG(x, P )

Consider a subpath Qj for which Rs(Qj) = Qj , i. e., a shortest path containing
Qj cannot be extended any more. Then, V ↓

s (Qj) = V . Therefore, for any path
P ∈ Ps(Qj), max

x∈V
↓
s (Qj)

dG(x, P ) = ecc(P ).

Lemma 10 If Cs(Qj) is not empty, then

εs(Qj) = min
Qi∈Cs(Qj)

max

[

max
x∈V

↓
s (Qj)\V

↓
s (Qi)

min
(

dG(x,Qi), dG(x,Qj)
)

, εs(Qi)

]

.

Proof: By definition,

εs(Qj) = min
P∈Ps(Qj)

max
x∈V

↓
s (Qj)

dG(x, P ).

Let Qi be compatible with Qj. Because, by Lemma 9, V ↓
s (Qi) ⊆ V ↓

s (Qj), we
can partition V ↓

s (Qj) into V
↓
s (Qj) \ V ↓

s (Qi) and V
↓
s (Qi). For simplicity, we will

write V ↓
s (Qj) \ V ↓

s (Qi) as V
↓
s [Qj |Qi]. Thus, εs(Qj) =

min
Qi∈Cs(Qj)

min
P∈Ps(Qi)

max

[

max
x∈V

↓
s [Qj |Qi]

dG(x, P ∪Qj), max
x∈V

↓
s (Qi)

dG(x, P ∪Qj)

]

.

Note that we changed the definition of P from P ∈ Ps(Qj) to P ∈ Ps(Qi), i. e.,
P may not contain the last vertex of Qj any more.

If x ∈ V ↓
s [Qj |Qi], then dG(x,Qi) > dG(x,Rs(Qi)). Thus, by Lemma 8,

dG(x,Qi) = dG(x, I(s,Qi)). By definition of P , dG(x,Qi) ≥ dG(x, P ) ≥
dG(x, I(s,Qi)). Therefore, dG(x, P ) = dG(x,Qi) and

max
x∈V

↓
s [Qj |Qi]

dG(x, P ∪Qj) = max
x∈V

↓
s [Qj |Qi]

min
(

dG(x,Qi), dG(x,Qj)
)

.

For simplicity, we define

εs(Qi, Qj) := max
x∈V

↓
s [Qj |Qi]

min
(

dG(x,Qi), dG(x,Qj)
)

.

Note that εs(Qi, Qj) does not depend on P . Thus, because minu max[c, f(u)] =
max[c,minu f(u)],

εs(Qj) = min
Qi∈Cs(Qj)

max

[

εs(Qi, Qj), min
P∈Ps(Qi)

max
x∈V

↓
s (Qi)

dG(x, P ∪Qj)

]

.
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If x ∈ V ↓
s (Qi), then dG(x,Qi) = dG(x,Rs(Qi)) ≤ dG(x,Rs(Qj)) = dG(x,Qj).

Therefore,

min
P∈Ps(Qi)

max
x∈V

↓
s (Qi)

dG(x, P ∪Qj) = min
P∈Ps(Qi)

max
x∈V

↓
s (Qi)

dG(x, P ) = εs(Qi).

Thus,

εs(Qj) = min
Qi∈Cs(Qj)

max

[

max
x∈V

↓
s (Qj)\V

↓
s (Qi)

min
(

dG(x,Qi), dG(x,Qj)
)

, εs(Qi)

]

.

�

Based on Lemma 10, Algorithm 2 computes a shortest path starting in s
with minimal eccentricity. The algorithm has two parts. First, it computes the
pairwise distance of all vertices and dG(x,Rs(v)) for each vertex pair x and v
where, similarly to Rs(Qj), Rs(v) = { z ∈ V | v ∈ I(s, z)}. This allows to
easily determine if a vertex x is in V ↓

s (Qj). Second, it computes εs(Qj) for
each subpath Qj . For this, the algorithm uses dynamic programming. After
calculating εs(Qi) for all subpaths with distance i to s, the algorithm uses
Lemma 10 to calculate εs(Qj) for all subpaths Qj which Qi is compatible with.

Theorem 3 For a given graph G with pg(G) = γ and a vertex s, Algorithm 2
computes a shortest path starting in s with minimal eccentricity. It runs in
O(nγ+3) time if γ ≥ 2, in O(n2m) time if γ = 1, and in O(nm) time if γ = 0.

Proof: [Correctness] The algorithm has two parts. The first part (line 1 to
line 8) is a preprocessing which computes dG(x,Rs(v)) for each vertex pair x
and v. The second part computes εs(Qj) which is then used to determine a
path with minimal eccentricity.

For the first part, without loss of generality, let dG(s, v) = i, N↑
s (v) =

N(v) ∩ L
(s)
i+1, and let x be an arbitrary vertex. By definition of Rs, N

↑
s (v) = ∅

implies Rs(v) = {v}, i. e., dG(x,Rs(v)) = dG(x, v). Therefore, dG(x,Rs(v))
is correct for all vertices v with N↑

s (v) = ∅ after line 3. By induction, as-
sume that dG(x,Rs(w)) is correct for all vertices w ∈ N↑

s (v). Because Rs(v) =
⋃

w∈N
↑
s (v)

Rs(w) ∪ {v}, dG(x,Rs(v)) = min(min
w∈N

↑
s (v)

dG(x,Rs(w)), dG(x, v)).

Therefore, line 8 correctly computes dG(x,Rs(v)).
The second part of Algorithm 2 iterates over all subpaths Qj in increasing

distance to s. Line 12 checks if a given vertex x is in V ↓
s (Qj). By definition,

Rs(Qj) = Qj ∪ Rs(zj) where zj is the vertex in Qj with the largest distance
to s. Thus, dG(x,Rs(Qj)) = min(dG(x,Rs(zj)), dG(x,Qj)). By definition of V ↓

s ,
x ∈ V ↓

s (Qj) if and only if dG(x,Qj) = dG(x,Rs(Qj)). Therefore, x ∈ V ↓
s (Qj) if

and only if dG(x,Qj) ≤ dG(x,Rs(zj)), i. e., line 12 computes V ↓
s (Qj) correctly.

Recall the definition of εs(Qj):

εs(Qj) = min
P∈Ps(Qj)

max
x∈V

↓
s (Qj)

dG(x, P )
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Algorithm 2: Determines, for a given graph G with pg(G) ≤ γ and a
vertex s, a minimal eccentricity shortest path starting in s.

Input: A graph G = (V,E), an integer γ, and a vertex s ∈ V .
Output: A shortest path P starting in s with minimal eccentricity.

1 Determine the pairwise distances of all vertices.
2 foreach v, x ∈ V do
3 Set dG(x,Rs(v)) := dG(x, v).

4 for i = ecc(s)− 1 downto 0 do

5 foreach v ∈ L
(s)
i do

6 foreach w ∈ N(v) ∩ L
(s)
i+1 do

7 foreach x ∈ V do
8 Set dG(x,Rs(v)) := min

[

dG(x,Rs(v)), dG(x,Rs(w))
]

.

9 for j = 0 to ecc(s)− γ do
10 foreach Qj with dG(s,Qj) = j do
11 foreach x ∈ V do
12 Let zj be the vertex in Qj with the largest distance to s. If

dG(x,Qj) ≤ dG(x,Rs(zj)), add x to V ↓
s (Qj) and store

dG(x,Qj).

13 if j = 0 then
14 εs(Qj) := max

x∈V
↓
s (Qj)

dG(x,Qj)

15 else
16 εs(Qj) := ∞

17 foreach Qi ∈ Cs(Qj) do
18 ε′s(Qj) :=

max

[

max
x∈V

↓
s (Qj)\V

↓
s (Qi)

min
(

dG(x,Qi), dG(x,Qj)
)

, εs(Qi)

]

19 if ε′s(Qj) < εs(Qj) then
20 Set εs(Qj) := ε′s(Qj) and p(Qj) := Qi.

21 Find a subpath Qj such that a shortest path containing Qj cannot be
extended any more and for which εs(Qj) is minimal.

22 Construct a path P from Qj to s using the p()-pointers and output it.

If dG(s,Qj) = 0, dG(x, P ) = dG(x,Qj). Thus, εs(Qj) = max
x∈V

↓
s (Qj)

dG(x,Qj)

as computed in line 14. Note that there is no subpath Qi which is compatible
with Qj, if dG(s,Qj) = 0. Therefore, the loop starting in line 17 is skipped for
these Qj . Thus, the algorithm correctly computes εs(Qj), if dG(s,Qj) = 0.

By induction, assume that εs(Qi) is correct for each Qi ∈ C(Qj). Thus,
Lemma 10 can be used to compute εs(Qj). This is done in the loop starting in
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line 17. Therefore, at the beginning of line 21, εs(Qj) is computed correctly for
each subpath Qj .

Recall, if P ∈ P(Qj) and Rs(Qj) = Qj , then V ↓
s (Qj) = V and, therefore,

max
x∈V

↓
s (Qj)

dG(x, P ) = ecc(P ). Thus, Rs(Qj) = Qj implies that εs(Qj) is

the minimal eccentricity of all shortest paths starting in s and containing Qj .
Therefore, if Qj is picked by line 21, then εs(Qj) is the minimal eccentricity of
all shortest paths starting in s. �

Proof: [Complexity] First, we will analyse line 1 to line 8. Line 1 runs in O(nm)
time. This allows to access the distance between two vertices in constant time.
Thus, the total running time for line 3 is O(n). Because line 8 is called at most
once for each vertex x and edge vw, implementing line 4 to line 8 can be done
in O(nm) time.

For the second part of the algorithm (starting in line 9), if γ ≥ 2, let all
subpaths be stored in a trie as follows: There are γ + 1 layers of internal nodes.
Each internal node is an array of size n (one entry for each vertex) and each
entry points to an internal node of the next layer representing n subtrees. This
requires O(nγ+1) memory. Leafs are objects representing a subpath.

If γ = 1, a subpath is a single edge, and, if γ = 0, a subpath is a single
vertex. Thus, no extra data structure is needed for these cases. In all three
cases, a subpath can be accessed in O(γ) time.

Next, we analyse the runtime of line 11 to line 16 for a single subpath Qj .
Accessing Qj can be done in O(γ) time. Line 12 requires at most O(γ) time for
a single call and is called at most O(n) times. Line 14 requires O(nγ) time and
line 16 runs in constant time. Therefore, for a given subpath, line 11 to line 16
require O(γn+ n) time.

For line 18 to line 20, consider a given pair of compatible subpaths Qi and Qj .
Accessing both subpaths can be done in O(γ) time. Assuming the vertices in
V ↓
s (Qi) and V ↓

s (Qj) are sorted and stored with their distance to Qi and Qj,
line 18 requires at most O(n) time. Note that Qi and Qj intersect in γ − 1
vertices. Thus, min

(

dG(x,Qi), dG(x,Qj)
)

= min
(

dG(x, vi), dG(x,Qj)
)

where
vi is the vertex in Qi closest to s. Line 19 and line 20 run in constant time.
Therefore, for a given pair of compatible subpaths, line 18 to line 20 require
O(n) time.

Let φ be the number of subpaths and ψ be the number of pairs of compatible
subpaths. Then, the overall runtime for line 9 to line 20 is O(φ(γn + n) + ψn)
time, O(φ) time for line 21, and O(n) time for line 22. Together with the first
part of the algorithm, the total runtime of Algorithm 2 isO(mn+φ(γn+n)+ψn).

Because a subpath contains γ+1 vertices, there are up to O(nγ+1) subpaths
and up to O(nγ+2) compatible pairs if γ ≥ 2, i. e., φ ≤ nγ+1 and ψ ≤ nγ+2.
Therefore, if γ ≥ 2, Algorithm 2 runs in O(nγ+3) time.

If γ = 1, a subpath is a single edge and there are at most mn compatible
pairs of subpaths, i. e., φ ≤ m and ψ ≤ nm. For the case when γ = 0, a subpath
is a single vertex (φ ≤ n) and a pair of compatible subpaths is an edge (ψ ≤ m).
Therefore, Algorithm 2 runs in O(n2m) time if γ = 1, and in O(nm) time if
γ = 0. �
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Note that Algorithm 2 computes a shortest path starting in a given vertex s.
Thus, a shortest path with minimum eccentricity among all shortest paths in G
can be determined by running Algorithm 2 for all start vertices s, resulting in
the following:

Theorem 4 For a given graph G with pg(G) = γ, a minimum eccentricity
shortest path can be found in O(nγ+4) time if γ ≥ 2, in O(n3m) time if γ = 1,
and O(n2m) time if γ = 0.

4.3 Projection Gap for some Graph Classes

Above, we have shown that a minimum eccentricity shortest path can be found
in polynomial time if the projection gap is bounded by a constant. In this
subsection, we will determine the projection gap for some graph classes.

4.3.1 Chordal Graphs and Dually Chordal Graphs.

The class of chordal graphs is a well known class which can be recognised in
linear time [22]. Due to the strong tree structure of chordal graphs, they have
the following property known as m-convexity:

Lemma 11 ([14]) Let G be a chordal graph. If, for two distinct vertices u, v
in a disk N r[x], there is a path P connecting them with P ∩N r[x] = {u, v}, then
u and v are adjacent.

Lemma 12 If G is a chordal graph, then pg(G) = 0.

Proof: Assume pg(G) ≥ 1. Then, there is a shortest path P = {u, . . . , w} and
a vertex x with Pr(x, P ) = {u,w} and dG(u,w) > 1. By Lemma 11, u and w
are adjacent. This contradicts with dG(u,w) > 1. �

Corollary 3 For chordal graphs, a minimum eccentricity shortest path can be
found in O(n2m) time.

Dually chordal graphs where introduced in [3]. They are closely related to
chordal graphs.

Lemma 13 If G is a dually chordal graph, then pg(G) ≤ 1.

Proof: Assume there is a shortest path P = {u, v1, . . . , vi, w} and a vertex x
with Pr(x, P ) ⊇ {u,w}. To show that pg(G) ≤ 1, we will show that dG(u,w) =
i+ 1 > 2 implies there is a vertex vk ∈ Pr(x, P ) with 1 ≤ k ≤ i.

Consider a family of disks D =
{

N [u], N [v1], . . . , N [vi], N [w], N r[x]
}

where
r = dG(x, P ) − 1. Let H be the intersection graph of D, a be the vertex in H
representing N [u], bk representing N [vk] (for 1 ≤ k ≤ i), c representing N [w],
and z representing N r[x]. Because the intersection graph of disks of a dually
chordal graph is chordal [3], H is chordal, too. H contains the edges za and zc,
ab1, cbi, and bkbk+1 for all 1 ≤ k < i. Note that, if dG(u,w) > 2, a and c are not
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adjacent in H . However, the path {a, b1, . . . , bk, c} connects a and c. Therefore,
because H is chordal and by Lemma 11, there is a k with 1 ≤ k ≤ i such that
z is adjacent to bk in H . Thus, dG(x, vk) ≤ r + 1, i. e., vk ∈ Pr(x, P ). �

Corollary 4 For dually chordal graphs, a minimum eccentricity shortest path
can be found in O(n3m) time.

4.3.2 Graphs with bounded Tree-Length or Tree-Breadth.

As defined by Robertson and Seymour [20], a tree-decomposition of a graph
G = (V,E) is a tree T with the vertex set B where each vertex of T , called bag,
is a subset of V such that: (i) V =

⋃

B∈B B, (ii) for each edge uv ∈ E, there is
a bag B ∈ B with u, v ∈ B, and (iii) for each vertex v ∈ V , the bags containing
v induce a subtree of T .

The length of a tree decomposition is smaller than or equal to λ if for each
bag B, diamG(B) ≤ λ. A graph G has tree-length λ, if there exist a tree-
decomposition T for G such that T has length λ. Similarly, the breadth of a
tree decomposition is smaller than or equal to ρ if for each bag B there is a
vertex v ∈ V with Nρ[v] ⊇ B. A graph G has tree-breadth ρ, if there exist a
tree-decomposition T for G such that T has breadth λ.

For these graphs, we use a concept called layering partition. It was intro-
duced in [2, 5]. The idea is to first partition the vertices of a given graph in

distance layers L
(x)
i with respect to a given vertex x. Second, partition each

layer L
(x)
i into clusters in such a way that two vertices u and v are in the same

cluster if they are connected by a path P such that dG(x, P ) = dG(x, u), i. e., P
does not contain vertices of layers closer to x than u and v.

Unfortunately, computing the tree-length of a graph is an NP-hard prob-
lem [18]. However, for our needs, an approximation of it would suffice.

Lemma 14 If G has tree-length λ or tree-breadth ρ, a factor γ ≥ pg(G) can be
computed in O(n3) time such that γ ≤ 3λ− 1 or γ ≤ 6ρ− 1, respectively.

Proof: To compute γ, first determine the pairwise distances of all vertices.
Then, compute a layering partition for each vertex x. Let γ+1 be the maximum
diameter of all clusters of all layering partitions.

The diameter of each cluster is at most 3λ if G has tree-length λ and at
most 6ρ if G has tree-breadth ρ [9, 10]. Therefore, for each shortest path P ,
diam(Pr(x, P )) ≤ 3λ and diam(Pr(x, P )) ≤ 6ρ, respectively. Thus, pg(G) ≤
γ ≤ 3λ− 1 and pg(G) ≤ γ ≤ 6ρ− 1.

Computing the pairwise distances of all vertices can be done in O(nm) time.
A layering partition can be computed in linear time [5]. For a given layering
partition, the diameter of each cluster can be computed in O(n2) time if the
pairwise distances of all vertices are known. Thus, γ can be computed in O(n3)
time. �

Note that it is not necessary to know the tree-length or tree-breath of G
to compute γ. Thus, by computing γ and then running Algorithm 2 for each
vertex in G, we get:
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Corollary 5 For graphs with tree-length λ or tree-breadth ρ, a minimum eccen-
tricity shortest path can be found in O(n3λ+3) time or O(n6ρ+3) time, respec-
tively.

4.3.3 δ-Hyperbolic Graphs.

A graph has hyperbolicity δ if for any four vertices u, v, w, and x, the two larger
of the sums dG(u, v) + dG(w, x), dG(u,w) + dG(v, x), and dG(u, x) + dG(v, w)
differ by at most 2δ.

Lemma 15 ([6]) Let u, v, w, and x be four vertices in a δ-hyperbolic graph. If
dG(u,w) > max{dG(u, v), dG(v, w)} + 2δ, dG(v, x) < max{dG(x, u), dG(x,w)}.

Lemma 16 If G is δ-hyperbolic, then pg(G) ≤ 4δ.

Proof: Consider two vertices u and w such that u,w ∈ Pr(x, P ) for some
vertex x and shortest path P . Let v ∈ P be a vertex such that dG(u, v) −
dG(v, w) ≤ 1 and dG(u, v) ≥ dG(v, w), i. e., v is a middle vertex on the subpath
from u to w.

Assume, dG(u,w) > 4δ + 1. Thus, dG(u, v) ≥ dG(v, w) ≥ 2δ + 1 and
dG(u,w) > dG(u, v) + 2δ. Therefore, by Lemma 15, dG(v, x) < max{dG(x, u),
dG(x,w)}. This contradicts that u,w ∈ Pr(x, P ). Hence, the diameter of a
projection is at most 4δ + 1 and, therefore, pg(G) ≤ 4δ. �

Corollary 6 For δ-hyperbolic graphs, a minimum eccentricity shortest path can
be found in O(n4δ+4) time.

5 Approximation for Graphs with Bounded Hy-

perbolicity and Bounded Tree-Length

In the last sections, we have shown how to find a shortest path with minimum
eccentricity k for several graph classes. For graphs with tree-length λ, this can
require up to O(n3λ+3) time. In this section, we will show that, for graphs with
tree-length λ, we can find a shortest path with eccentricity at most k + 2.5λ in
at most O(λm) time and, for graphs with hyperbolicity δ, we can find a shortest
path with eccentricity at most k +O(δ logn) in at most O(δm) time.

Lemma 17 Let G be a graph with hyperbolicity δ. Two vertices x and y in G
with ecc(x) = ecc(y) = dG(x, y) can be found in O(δm) time.

Proof: Let u and v be two vertices in G such that dG(u, v) = diam(G). For
an arbitrary vertex x0 and for i ≥ 0, let yi = xi+1 be vertices in G such that
dG(xi, yi) = ecc(xi) and dG(xi, yi) < dG(xi+1, yi+1). To prove Lemma 17, we
will show that there is no vertex y2δ+1.

Because dG(x0, y0) = ecc(x0), dG(x0, y0) ≥ max{dG(x0, u), dG(x0, v)}. Thus,
by Lemma 15, dG(u, v) ≤ max{dG(u, y0), dG(v, y0)}+2δ and, hence, diam(G) ≤
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ecc(x1) + 2δ. Since dG(xi, yi) < dG(xi+1, yi+1), there is no vertex yj with
j ≥ 2δ + 1, otherwise dG(xj , yj) > diam(G). Therefore, a vertex pair x, y with
ecc(x) = ecc(y) = dG(x, y) can be found in O(δm) time as follows: Pick an
arbitrary vertex x0 and find a vertex x1 with dG(x0, x1) = ecc(x0) using a BFS.
Next, find a vertex x2 such that dG(x1, x2) = ecc(x1). Repeat this (at most 2δ
times) until dG(xi, xi+1) = ecc(xi) = ecc(xi+1). �

Note that, if a graph has tree-length λ, its hyperbolicity is at most λ [6].
Thus, it follows:

Corollary 7 Let G be a graph with tree-length λ. Two vertices x and y in G
with ecc(x) = ecc(y) = dG(x, y) can be found in O(λm) time.

The next lemma will show that, in a graph with bounded tree-length, a
shortest path between two mutually furthest vertices gives an approximation
for the MESP-problem.

Lemma 18 Let G be a graph with tree-length λ having a shortest path with
eccentricity k. Also, let x and y be two mutually furthest vertices, i. e., ecc(x) =
ecc(y) = dG(x, y). Each shortest path from x to y has eccentricity less than or
equal to k + 2.5λ.

Proof: Let P be a shortest path from s to t with eccentricity k and Q be a
shortest path from x to y. Consider a tree-decomposition T for G with length λ.
We distinguish between two cases: (1) There is a bag in T containing a vertex
of P and a vertex of Q and (2) there is no such bag in T .

Case 1: There is a bag in T containing a vertex of P and a vertex
of Q. We define bags Bx and By as follows: Both contain a vertex of P and
a vertex of Q, Bx is a bag closest to a bag containing x, By is a bag closest
to a bag containing y, and the distance between Bx and By in T is maximal.
Let {B0, B1, . . . , Bl} be a subpath of the shortest path from Bx to By in T
such that B0 is a bag closest to a bag containing s, Bl is a bag closest to a bag
containing t, Bi is adjacent to Bi+1 in T (0 ≤ i < l), and the distance l between
B0 and Bl is maximal. Without loss of generality, let dT (Bx, B0) ≤ dT (Bx, Bl).
Let ps be the vertex in B0∩P which is closest to s in G and let pt be the vertex
in Bl ∩ P which is closest to t in G. Figure 2 gives an illustration.

Claim. For each vertex p ∈ P with dG(s, ps) ≤ dG(s, p) ≤ dG(s, pt), dG(p,Q) ≤
1.5λ.

Proof (Claim): There is a vertex set {ps = p0, p1, . . . , pl, pl+1 = pt} ⊆ P , where
pi ∈ Bi−1 ∩ Bi for all positive i ≤ l. Because pi, pi+1 ∈ Bi for 0 ≤ i ≤ l,
dG(pi, pi+1) ≤ λ. Thus, because P is a shortest path, for all p′ ∈ P with
dG(s, ps) ≤ dG(s, p

′) ≤ dG(s, pt) there is a vertex pi with 0 ≤ i ≤ l + 1 such
that dG(pi, p

′) ≤ 0.5λ. By definition of T , each bag Bi (0 ≤ i ≤ l) contains a
vertex q ∈ Q, i. e., dG(pi, Q) ≤ λ (0 ≤ i ≤ l + 1). Therefore, for all p′ ∈ P with
dG(s, ps) ≤ dG(s, p

′) ≤ dG(s, pt) there is a vertex pi with 0 ≤ i ≤ l+1 such that
dG(p

′, Q) ≤ dG(pi, p
′) + dG(pi, Q) ≤ 1.5λ. ♦
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Bx = B0 Bl By

s t

x y

Figure 2: Example for a possible tree-decomposition.

Consider an arbitrary vertex v in G. Let v′ be a vertex in P closest to v and
let Pv be a shortest path from v to v′. If v′ is between ps and pt, i. e., dG(s, ps) ≤
dG(s, v

′) ≤ dG(s, pt), by the claim above, dG(v,Q) ≤ dG(v, v
′) + dG(v

′, Q) ≤
k + 1.5λ. If Pv intersects a bag containing a vertex q ∈ Q, dG(v,Q) ≤ k + λ.

Next, consider the case when Pv does not intersect a bag containing a vertex
of Q and (without loss of generality) dG(s, v

′) > dG(s, pt). In this case, each
path from x to v intersects Bl.

Claim. There is a vertex u ∈ Bl such that dG(u, y) ≤ k + 0.5λ.

Proof (Claim): Let y′ be a vertex in P that is closest to y and let Py be a
shortest path from y to y′. If Py intersects Bl, there is a vertex u ∈ Py ∩ Bl

with dG(y, u) ≤ k.
If Py does not intersect Bl, there is a subpath of P starting at pt, contain-

ing y′, and ending in a vertex pl ∈ Bl. Because dG(pt, pl) ≤ λ, dG(y
′, {pt, pl}) ≤

0.5λ. Therefore, dG(y, {pt, pl}) ≤ dG(y, y
′) + dG(y

′, {pt, pl}) ≤ k + 0.5λ. ♦

Let u, v′, and z be vertices in Bl such that dG(u, y) ≤ k + 0.5λ, v′ is on a
shortest path from x to v, and z ∈ Q. Because dG(x, y) = ecc(x), dG(x, v

′) +
dG(v

′, v) ≤ dG(x, y). Also, by the triangle inequality, dG(x, y) ≤ dG(x, v
′) +

dG(v
′, y) and dG(v

′, y) ≤ dG(v
′, u) + dG(u, y). Because {u, v′, z} ⊆ Bl and

dG(u, y) ≤ k + 0.5λ, dG(v
′, v) ≤ k + 1.5λ and therefore dG(z, v) ≤ k + 2.5λ.

Thus, if there is a bag in T containing a vertex of P and a vertex of Q,
dG(v,Q) ≤ k + 2.5λ for all vertices v in G.

Case 2: There is no bag in T containing vertices of P and Q. Because
there is no such bag, T contains a bag B such that each path from x and y to P
intersects B and there is a vertex z ∈ B ∩Q.

Consider an arbitrary vertex v. If there is a shortest path Pv from v to P
which intersects B, then dG(z, v) ≤ k + λ. If there is no such path, each path
from x to v intersects B. Let v′ ∈ B be a vertex on a shortest path from x
to v and let u ∈ B be a vertex on a shortest path from y to P . Note that
dG(u, y) ≤ k.
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Because dG(x, y) = ecc(x), dG(x, v
′) + dG(v

′, v) ≤ dG(x, y). Also, by the
triangle inequality, dG(x, y) ≤ dG(x, v

′) + dG(v
′, y) and dG(v

′, y) ≤ dG(v
′, u) +

dG(u, y). Because {u, v′, z} ⊆ B and dG(u, y) < k, dG(v
′, v) < k + λ and

therefore dG(z, v) < k + 2λ.
Thus, if there is no bag in T containing vertices of P andQ, dG(v,Q) < k+2λ

for all vertices v in G. �

In [6], it was shown that an n-vertex δ-hyperbolic graph has tree-length at
most O(δ logn).

Corollary 8 Let G be a graph with hyperbolicity δ having a shortest path with
eccentricity k. Also, let x and y be two mutually furthest vertices, i. e., ecc(x) =
ecc(y) = dG(x, y). Each shortest path from x to y has eccentricity less than or
equal to k +O(δ log n).

Lemma 17, Lemma 18, Corollary 7, and Corollary 8 imply our main result
of this section:

Theorem 5 Let G be a graph having a shortest path with eccentricity k. If G
has tree-length λ, a shortest path with eccentricity at most k+2.5λ can be found
in O(λm) time. If G has hyperbolicity δ, a shortest path with eccentricity at
most k +O(δ logn) can be found in O(δm) time.

A graph is chordal if and only if it has tree-length 1 [15].

Corollary 9 If G is a chordal graph and has a shortest path with eccentricity k,
a shortest path in G with eccentricity at most k+ 2 can be found in linear time.

Figure 3 gives an example that, for chordal graphs, k + 2 is a tight upper
bound for the eccentricity of the determined shortest path.

uu
′

vv
′

ws

Figure 3: A chordal graph G. A shortest path from s to v passing v′ has
eccentricity 2 which is the minimum for all shortest paths in G. The diametral
path from s to u passing u′ has eccentricity 4 because of its distance to w.

6 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for some
structured graph classes. For these classes, we were able to present linear or
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polynomial time algorithms. Additionally, we presented a simple algorithm
which gives an additive approximation in linear time for chordal graphs, in
O(λm) time for graphs with tree-length λ, and in O(δm) time for graphs with
hyperbolicity δ.

One reason why the runtime to find an optimal path for distance-hereditary
graphs is linear is that we can determine the start and end vertices of an optimal
path in linear time for these graphs. For the other classes, the algorithm iterates
over all possible start vertices s. We know that, for general graphs, the problem
remains NP-complete even if a start-end vertex pair is given (see the reduction
in [12]). Also, we have shown that there is a shortest path with minimum
eccentricity between every diametral pair of vertices of a distance-hereditary
graph (Theorem 1). This leads to the following question: How hard is it to
determine the start and end vertices of an optimal path? This question applies
to general graphs as well as to special graph classes like chordal graphs.

Another interesting question is, for which other graph classes the problem re-
mains NP-complete or can be solved in polynomial time. The NP-completeness
proof in [12] uses a reduction from SAT. There is a planar version of 3-SAT
(see [17]). Does this imply that the problem remains NP-complete for planar
graphs?
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[4] A. Brandstädt, V. Le, and J. Spinrad. Graph Classes: A
Survey. Society for Industrial and Applied Mathematics, 1999.
doi:10.1137/1.9780898719796.

[5] V. Chepoi and F. Dragan. A note on distance approximating trees
in graphs. European Journal of Combinatorics, 21(6):761–766, 2000.
doi:10.1006/eujc.1999.0381.

[6] V. Chepoi, F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters,
centers, and approximating trees of delta-hyperbolicgeodesic spaces and
graphs. In Proceedings of the Twenty-fourth Annual Symposium on Com-
putational Geometry, SCG ’08, pages 59–68, New York, NY, USA, 2008.
ACM. doi:10.1145/1377676.1377687.

[7] D. G. Corneil, S. Olariu, and L. Stewart. Linear time algorithms for domi-
nating pairs in asteroidal triple-free graphs. SIAM Journal on Computing,
28(4):1284–1297, 1999. doi:10.1137/S0097539795282377.

[8] A. D’Atri and M. Moscarini. Distance-hereditary graphs, steiner trees, and
connected domination. SIAM Journal on Computing, 17(3):521–538, 1988.
doi:10.1137/0217032.

[9] Y. Dourisboure, F. F. Dragan, C. Gavoille, and C. Yan. Spanners for
bounded tree-length graphs. Theoretical Computer Science, 383(1):34–44,
2007. doi:10.1016/j.tcs.2007.03.058.
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