
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 20, no. 2, pp. 217–246 (2016)
DOI: 10.7155/jgaa.00391

Algorithms and Bounds for
Overloaded Orthogonal Drawings

Evgenios M. Kornaropoulos 1 Ioannis G. Tollis 2

1Computer Science Department, Brown University, Providence, RI, USA
2Computer Science Department, University of Crete, Heraklion, Crete, Greece

Abstract

Orthogonal drawings are widely used for graph visualization due to
their high clarity and ease of representation. But when it comes to high-
degree and massive graphs, even orthogonal drawings have difficulties pro-
ducing a clean and simple visualization. In this paper we present a tech-
nique called Overloaded Orthogonal Drawing that greatly improves the
readability by proposing a new vertex placement and reframing the or-
thogonal edge routing approach. We first place the vertices on grid points
following a relaxed version of dominance drawing, called weak dominance
condition. Edge routing is implied automatically by the vertex coordi-
nates. In order to simplify these drawings we use an overloading tech-
nique of the edges. All algorithms are simple and easy to implement and
can be applied to directed acyclic graphs, planar, non-planar and undi-
rected graphs. We also present bounds on the number of bends and the
area. Overloaded orthogonal drawings present several interesting prop-
erties such as efficient visual edge confirmation as well as clarity of the
drawing.

Submitted:
December 2014

Reviewed:
May 2015

Revised:
October 2015

Accepted:
December 2015

Final:
January 2016

Published:
February 2016

Article type:
Regular paper

Communicated by:
G. Liotta

E-mail addresses: evgenios@cs.brown.edu (Evgenios M. Kornaropoulos) tollis@csd.uoc.gr (Ioan-

nis G. Tollis)

http://dx.doi.org/10.7155/jgaa.00391
mailto:evgenios@cs.brown.edu
mailto:tollis@csd.uoc.gr

218 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

1 Introduction

The visualization of graphs is important in many application areas in computer
science, telecommunications, biology, social networks, finance, transportation,
etc. In order to produce nice and readable drawings various aesthetic criteria
have been devised. From a human readability point of view, orthogonal draw-
ings, where each edge is drawn as a polygonal chain of alternating horizontal
and vertical segments, have received a lot of attention, see for example [6]. Un-
fortunately, due to the fact that a 2-dimensional grid-point is adjacent to four
half-lines, most techniques for orthogonal drawings limit the maximum degree
of the vertices of the input graph to four [3, 36, 37, 38]. In this paper we in-
troduce a new model, called overloaded orthogonal drawing, where vertices are
represented by points and edges are allowed to overlap in their corresponding
rows and/or columns.

An orthogonal grid drawing is an orthogonal drawing such that vertices and
bends along the edges have integer coordinates. Drawings in this style are useful
in many applications due to the high clarity of the model. The problems of
constructing an orthogonal drawing while minimizing several aesthetic criteria
such as area, bends, maximum edge length and total edge length are NP-hard [6].
Therefore most algorithms employ heuristics that try to layout the graph in a
manner which is good for some set of aesthetics.

Various algorithms have been presented to produce orthogonal grid drawings
of planar and non-planar graphs of maximum degree four [3, 6, 13, 29, 36, 37, 38].
A necessary and sufficient condition for a plane graph with maximum degree
three to have an orthogonal drawing without bends was presented in [33]. An-
other interesting result is that an outerplanar graph G with maximum degree at
most three has an orthogonal drawing with no bends if and only if G contains no
triangles [28]. Bertolazzi et al. presented [2] a branch and bound algorithm that
computes an orthogonal representation with the minimum number of bends of a
biconnected planar graph. For drawings of general (i.e., non-planar) undirected
graphs of maximum degree four, the required area can be as little as 0.76n2 [29],
the total number of bends is no more than 2n + 2 [3, 29], and each edge has
at most two bends. Experimental studies have been conducted where various
proposed algorithms were tested on their performance on area, bends, crossings,
edge length, and time [39].

In order to extend the possibility of constructing orthogonal representations,
some techniques draw the nodes as rectangles that occupy bigger area and hence
they have several available grid points to attach to their incident edges. To
name a few, the Kandinsky model [1, 5, 12, 13], the three-phase method [4]
and others [30] propose heuristics to fit a high-degree undirected graph to the
orthogonal drawing framework.

Besides the orthogonal drawing technique, the proposed new model of this
work is inspired in part by the so-called dominance drawings which is a widely
used technique for visualizing planar st-graphs (planar graphs with one source
and one sink, see Section 2). The vertex placement in the dominance drawing
technique assigns grid locations to nodes such that a vertex v has coordinates X

JGAA, 20(2) 217–246 (2016) 219

and Y greater than (or equal to) any other vertex u if and only if there exists a
directed path from u to v. Dominance drawings have numerous useful features
such as small number of bends, small area, linear-time complexity, detection
and display of symmetries [6, 7].

In this paper we introduce the overloaded orthogonal drawing model for di-
rected acyclic graphs (DAGs) which combines the useful characteristics of the
dominance drawing technique with row and/or column reuse for the edges. We
introduce the concept of relaxed dominance or weak dominance for vertex coor-
dinate assignment, by placing a vertex v in the top right (northeast) quadrant
defined by vertex u if there is a path from u to v. Notice that in the weak
dominance placement the reverse cannot be guaranteed, i.e., a node w could be
placed in the northeast quadrant defined by node u, even if there is no path
from u to w. After the computation of such a placement the edges are natu-
rally routed in the orthogonal grid by reusing rows and columns, which we call
overloaded use of rows/columns for edge routing. Figure 1 shows a comparison
between an orthogonal grid drawing and an overloaded orthogonal drawing of
the same DAG.

Figure 1: A directed acyclic graph with 13 nodes and 26 edges taken from [6]
visualized using the orthogonal grid drawing (left) and the overloaded orthogo-
nal technique (right). In the overloaded orthogonal model a directed edge from
u to v corresponds to a 1-bend poly-line from the point (X(u), Y (u)) to the
point (X(v), Y (v)) of the underlying grid. In order to point out the existence of
an edge, if there is no bend, we place a small black dot called e-point at point
(X(u), Y (v)).

This type of routing has been used extensively in VLSI layout [26]. The
concept of merging together groups of edges has also been used in the confluent
drawing framework [8, 10] in order to facilitate the readability of the graph
drawing. Confluent drawings can also be applied to both planar and non-planar
graphs without any maximum degree limitation. Another model that explores

220 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

the potential of simplifying the drawing by grouping the edges is the so-called
edge-bundling technique [14, 17, 18, 25, 35]. The underlying idea in this approach
is that edges merge into bundles on the common joint paths and fan out again
when they reach their destination.

The presented algorithms for overloaded drawings produce drawings with at
most n− 1 bends, O(n2) area, they run in linear O(n+m) time, where n is the
number of vertices and m is the number of edges. Although a direct comparison
with the bounds of traditional orthogonal drawings is a bit unfair (due to the
reuse of rows and columns) the low number of required bends makes the resulting
drawings very readable. Furthermore, if the given directed graph is acyclic, we
can compute its transitive closure and we can use a point notation (i.e., p-
point) in order to signify the existence of a path without creating significant
extra load and confusion on the drawing, or altering the mental map of the
user. Therefore, every overloaded orthogonal drawing simplifies tremendously
the visual confirmation of the existence of an edge and/or path between any
two vertices.

This paper is organized as follows: In Section 2 we present some preliminary
definitions. In Section 3 we present the weak dominance condition. In Section
4 we present the framework for constructing overloaded orthogonal drawings of
directed acyclic graphs and discuss how to augment an overloaded orthogonal
drawing in order to show its transitive closure. In Section 5 we prove some
properties of the proposed model. In Section 6 we describe how to compact
the resulting drawing. Section 7 describes how to apply the proposed model to
undirected graphs, and directed graphs with cycles, and finally Section 8 gives
conclusions and summarizes the properties of our framework.

2 Preliminaries

In this section we give some preliminary definitions that will be used later in
the paper. A graph is planar if it can be drawn in a plane without any two
edges crossing, except at common endpoints. A planar st-graph G = (V,E) is
a planar directed acyclic graph with exactly one source vertex s (i.e., in-degree
zero) and exactly one sink t (i.e., out-degree zero) such that it can be embedded
in the plane with both s and t on the boundary of the external face of the
embedding of G. Let G = (V,E) be a directed acyclic graph (DAG), then an
edge (u, v) ∈ E is transitive if there is another directed path in G from u to v.
A DAG is said to be reduced if there are no transitive edges in E. A topological
sorting of a DAG G = (V,E) is a linear ordering of its vertices such that vertex
u comes before v in the ordering if there exists a path from u to v in G. A
transitive closure of a DAG G = (V,E) is a DAG G′ = (V,E′) such that for all
u, v ∈ V there is an edge in E′ if and only if there is a path from u to v in G. We
say that a graph G′′ = (V ′′, E′′) is an induced subgraph of a graph G = (V,E)
if G′′ is isomorphic to a graph whose vertex set V ′′ is a subset of the vertex set
V , and whose edge set E′′ consists of all the edges of G with both end vertices
in V ′′. A feedback arc set of a directed graph G = (V,E) is a subset A′ of edges

JGAA, 20(2) 217–246 (2016) 221

of G such that removing A′ from G results in a directed acyclic graph, that is
G′ = (V,E − A′) is a DAG. The work of Karp [15, 19] shows that finding a
minimum feedback arc set in a directed graph is NP-hard. In this work we use
heuristic algorithms, such as the Greedy-Cycle-Removal algorithm [6], in order
to compute a minimal feedback arc set.

Let G = (V,E) be a DAG with a single source s ∈ V . We say that vertex
w ∈ V dominates a vertex v ∈ V if every path from s to v passes through w.
The dominance relation in G can be represented in compact form as a tree T ,
called the dominator tree of G, in which the dominators of a vertex v are its
ancestors. Vertex w is the immediate dominator [16] of v if w is the parent of
v in T . The post-dominators of G are defined as the dominators in the graph
obtained from G by reversing all directed edges and assuming that all vertices
are reachable from a (possibly artificial sink) vertex t.

A rotation system [27] of a directed graph G is a mapping φ that assigns to
each vertex v a cyclic permutation φv of the directed edges incident to v. The
cyclic permutation φv is also called the rotation at vertex v.

3 Weak Dominance

In this framework, we propose to place the vertices of a graph in the grid so that
edges flow from bottom-to-top and from left-to-right. Each vertex u is placed
on a point in the grid with coordinates X(u) and Y (u). A dominance drawing Γ
of a planar st-graph G is a straight-line drawing, such that for any two vertices
u and v there is a directed path from u to v in G if and only if X(u) ≤ X(v) and
Y (u) ≤ Y (v) in Γ. A technique that produces dominance drawings of planar
st-graphs can be found in [6, 7].

Dominance drawings have many important aesthetic properties, including
small number of bends, good vertex placement, and symmetry display [7]. More
interestingly, this technique encapsulates the aspect of characterizing the tran-
sitive closure of the digraph by means of a geometric dominance relation among
the vertices. It would be useful to obtain such drawings not only for planar
st-graphs but also for general directed acyclic graphs.

So, naturally the question arises: can we produce a similar dominance draw-
ing Γ of any directed acyclic graph G, if it is not planar? That is, can we
compute X,Y coordinates for a (non-planar) directed acyclic graph G such
that for any two vertices u and v of G there is a directed path from u to v in
G if and only if X(u) ≤ X(v) and Y (u) ≤ Y (v) in Γ. Unfortunately, not every
directed acyclic graph admits a dominance drawing. A simple graph that does
not admit a dominance drawing is the “crown graph” with 6 vertices, depicted
in Figure 2.

The notion of dominance drawing dimension of a directed acyclic graph ex-
plains the fundamental limitations of the problem. The dimension of a directed
acyclic graphG is defined as the value of the smallest k for which a k-dimensional
dominance drawing of G can be obtained [9]. The family of planar st-graphs is
a subclass of directed acyclic graphs that have dominance drawing dimension

222 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Figure 2: The “crown graph” with 6 vertices does not admit a dominance
drawing. Both drawings respect the weak dominance condition. Falsely implied
paths are denoted with a red dashed edge.

2. If a graph G has dimension greater than 2, then in any drawing Γ in the
plane there is at least one pair of vertices u, v ∈ V such that X(u) ≤ X(v) and
Y (u) ≤ Y (v) in Γ, while neither u can reach v, nor v can reach u. Hence, we
need to redefine the condition of the dominance drawing technique in order to
allow all directed acyclic graphs to be visualized in the two-dimensional grid.

We propose a relaxed condition, called weak dominance condition, that can
be applied to any directed acyclic graph (DAG):

Weak Dominance Condition: Let G = (V,E) be a directed acyclic graph.
For any two vertices u, v ∈ V if there is a directed path from u to v in G, then
X(u) ≤ X(v) and Y (u) ≤ Y (v).

Thus, if v is in the upper-right quadrant of u, then v is not necessarily
reachable from u. In other words, the dominance position between two vertices u
and v is not supported by the existence of a real path. Such a path that is implied
by the vertex coordinates but does not exist in G is called a falsely implied path
(or fip). The problem of minimizing the number of falsely implied paths was
introduced in [21, 22, 24], where it is shown that the corresponding decision
problem is NP-complete. Heuristic approaches for minimizing the number of
fips are presented in [20].

It turns out that weak dominance has many applications. For example, the
fact that weak dominance can be applied to general directed acyclic graphs
inspired techniques such as the one in [34] in order to answer efficiently reacha-
bility queries in very large graphs. In the work of Veloso et al. [34], X- and Y -
coordinates are built according to the weak dominance condition. The benefit
of such an approach is twofold; first in case the computed coordinates indicate
that there is no path from u to v then the reachability query can be answered
correctly with a computation that takes constant time (two comparisons be-
tween integers). Second, in case the computed coordinates indicate that there
is a path between u and v then part of the graph can be traversed on the fly to
investigate whether it is a falsely implied path. One other benefit of using the

JGAA, 20(2) 217–246 (2016) 223

weak dominance condition is that the search space of the traversal that looks
for v can be significantly reduced in the majority of the queries since there is
no point on visiting vertices that have coordinates beyond thresholds X(v) and
Y (v) if one is looking for v. So instead of storing a complete reachability ex-
pression for a large graph which takes quadratic space, the authors use a linear
amount of space and perform computations on the fly if it is needed. Com-
bined with other heuristics that prune the search space even further, the system
of [34] that utilizes the weak dominance condition outperforms the state of the
art indexing algorithms with respect to the query time, the construction time,
and the total size of the index in benchmarks with graphs of millions of nodes.

4 Overloaded Orthogonal Framework

The weak dominance condition lies in the core of the proposed framework for
obtaining overloaded orthogonal drawings. The weak dominance condition gives
us the flexibility to express all directed acyclic graphs (DAGs).

Following the footsteps of the algorithm for dominance drawing for reduced
planar st-graphs presented in [7], we formulate an algorithm for vertex place-
ment that respects the weak dominance condition and is applicable to any DAG.
The main algorithm for planar st-graphs described in [7] consists of three phases.
In the first phase, called “Preprocessing Phase”, a linked data structure is con-
structed in order to efficiently calculate coordinates. During the second phase
called “Preliminary Layout” distinct X,Y coordinates are assigned to each ver-
tex. In the third and final phase, a compaction procedure is applied to reduce
the area of the drawing.

We construct a similar data structure as in “Preprocessing Step”, but for gen-
eral directed acyclic graphs. Let W be a rotation system of a DAG G = (V,E)
such that for every u ∈ V the rotation at u contains the outgoing edges of u in
consecutive order. Representation W is called a representation in consecutive
form. The representation in consecutive form is a way to force a left-to-right
order in the outgoing edges of every vertex of G. Without loss of generality we
assume that there is only one source, s. If not then we insert an artificial super-
source s and connect it to all the sources of G. The algorithm performs two
topological sortings on the vertices of G. Successors of each vertex are scanned
in clockwise order for the X-coordinate assignment, and in counterclockwise
order for the Y -coordinate assignment. The order is imposed according to the
representation in consecutive form that is given as an input. We present the
algorithm for clockwise scan, that computes the X-coordinate assignment.

224 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Algorithm 1: Topological-Sorting(W)

1 for each vertex v ∈ V do
2 X[v]←∞;
3 end
4 X[s]← 0;
5 counter ← 1;
6 Visit-CW(s);
7 return X;

Algorithm 2: Visit-CW(u)

1 for each vertex v ∈ V such that (u, v) is the leftmost outgoing edge of u
do

2 if in-degree(v) = 1 then
3 X[v]← counter;
4 counter ← counter + 1;
5 remove edge (u, v);
6 Visit-CW(v);

7 else
8 remove edge (u, v);
9 end

10 end

Algorithm Topological-Sorting scans the outgoing edges of a vertex u in clock-
wise order with respect to W (leftmost outgoing edge first) and visits a direct
successor v only if v has in-degree one. Otherwise, it removes edge (u, v) from
the list. Analogously, we formulate an algorithm for the Y -coordinate assign-
ment that performs a counterclockwise scan with respect to W , by replacing
Visit-CW with Visit-CCW. The difference between Visit-CW and Visit-CCW al-
gorithms is Line 1, where instead of leftmost outgoing edge we have rightmost
outgoing edge. Note that Algorithm Topological-Sorting assigns distinct num-
bers to the vertices of G.

Observation: The linear ordering resulting from any topological sorting of
a DAG is such that for every directed edge (u, v), vertex u comes before v in the
ordering. Thus every pair of topological sortings satisfies the weak dominance
condition of Section 3 using strict inequalities for the relation of the coordinates.

The topological sortings resulting from Algorithm 1 are used by WDP algo-
rithm for assigning X- and Y -coordinates to the vertices of G.

Algorithm 3: (WDP) Weak Dominance Placement(W)

1 X-coordinates ← Topological-Sorting(W) using Visit-CW;
2 Y -coordinates ← Topological-Sorting(W) using Visit-CCW;

We denote the number of vertices in G by n, and the number of edges in G
by m. Since both topological sorting algorithms run in linear O(n + m) time,
algorithm WDP also runs in O(n+m) time.

JGAA, 20(2) 217–246 (2016) 225

Figure 3: Examples of edges: (a) the vertical segment of edge (u, v) is overloaded
(reused) by the vertical segment of edge (u,w). To visualize the edge from u
to w, an e-point is placed at (X(u), Y (w)). (b) the horizontal segment of edge
(v, w) is overloaded (reused) by the horizontal segment of (u,w). To visualize
the edge from u to w, an e-point is placed at point (X(u), Y (w)). (c) the
absence of an e-point shows that (w, v)/∈ E, (d) the existence of an e-point in
(X(w),Y (v)) shows that (w, v)∈ E.

After the coordinates of the vertices have been computed, either using our
WDP algorithm or any algorithm that computes the coordinates respecting the
weak dominance condition, the next step is to draw the edges in a way that
simplifies the drawing while clarifying information such as the existence of an
edge and/or path. In order to do so, we use to our advantage the fact that each
node has a unique X-coordinate and the property that all nodes that can be
reached from a node u are placed in the upper-right quadrant for which u is a
center. In particular all outgoing edges of a vertex use the same column in order
to reach the row of their corresponding destination vertex, we illustrate this fact
by using the term “overloaded” in the name of the model. We first discuss how
a single edge is routed, and then we focus on unambiguously visualizing the
edges of the drawing.

Edge routing is naturally implied by the coordinates of the vertices. Each
edge (u, v) consists of a vertical edge segment from (X(u), Y (u)) to (X(u), Y (v))
and a horizontal segment from (X(u), Y (v)) to (X(v), Y (v)). Because various
edges reuse various segments of rows and columns we introduce e-points to
resolve ambiguities, see Figure 3. We define an e-point as an unlabeled point
that is placed on (X(u), Y (v)) in order to indicate a direct connection from u
to v that corresponds to edge (u, v) ∈ E. Even though bends and e-points are
related, we consider them to be different. Given X- and Y -coordinates there
is a systematic way to describe whether a bend exists in any given point (see
Lemma 1).

With this in mind we describe an algorithm that receives the vertex coordi-
nates as input, and computes the overloaded orthogonal drawing. It routes the
edges according to the given coordinates and places e-points where needed.

In order to construct an overloaded orthogonal drawing a linked data struc-
ture for G is constructed. Each vertex u ∈ V points to the list u.decrY of
its direct successors sorted in decreasing order according to their Y -coordinate.
This single linked list decrY of u can be traversed by means of the operation
u.decrY.next(v) which returns the vertex after v in the sorted list of direct suc-

226 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Figure 4: The overloaded orthogonal drawing of the graph of Figure 1 and its
compacted version.

cessors of u. The operation u.decrY.getFirst() returns u’s direct successor with
the highest Y -coordinate (hence first in the list).

Algorithm 4: (OOD) Overloaded Orthogonal Drawing(G, X(), Y ())

1 for each vertex u ∈ V do
2 visited[u]← 0
3 end
4 for each vertex u ∈ V in increasing order of X-coordinate do
5 v ← u.decrY.getF irst();
6 while v 6= null do
7 Draw edge segment from (X(u), Y (u)) to (X(u), Y (v));
8 Draw edge segment from (X(u), Y (v)) to (X(v), Y (v));
9 if u.decrY.getF irst() 6= v ∨ visited[v] 6= 0 then

10 New e-point ← (X(u), Y (v));
11 end
12 visited[v] ← 1;
13 v ← u.decrY.next(v);

14 end

15 end

We assume that the coordinates of each vertex are accessed in constant time
(e.g., this can be achieved by using local fields for each vertex, such as u.X,
and u.Y). It is clear that given a vertex placement, Algorithm 4 constructs an
overloaded orthogonal drawing in linear time. In case Algorithm OOD follows
the vertex placement of WDP, the obtained drawing has height n−1 and width
n− 1, and has at most n− 1 bends, i.e., at most one bend for each row except
for the first row.

Theorem 1 Let G = (V,E) be a directed acyclic graph where n = |V | and
m = |E|. Algorithm OOD produces an overloaded orthogonal drawing Γ of G

JGAA, 20(2) 217–246 (2016) 227

with vertex coordinates computed by algorithm WDP. Γ has at most n−1 bends,
O(n2) area, and is constructed in O(n+m) time.

4.1 Transitive Closure

An interesting extension of the overloaded orthogonal drawing occurs when we
include the information of the transitive closure of a directed acyclic graph in
the drawing. Due to the construction of the drawing, all the reachable vertices
from vertex u are located in the upper right (NE) quadrant that has the point
of vertex u as a center. Therefore in case we want to extend the OOD and also
depict the reachability relations among all pairs of vertices we don’t have to
alter the placement of the vertices of G. Specifically we can draw the additional
transitive edges, that now correspond to paths, on top of an OOD, and illustrate
this difference by coloring the corresponding e-point with grey color that we
define as p-point (p stands for path). Note that due to the additional edges
drawn in the T-OOD, some bends of the original OOD may become e-points
in the T-OOD. This extension is called a Transitive Overloaded Orthogonal
Drawing, or T-OOD, and it is possible due to the fact that the transitive closure
of a DAG is still a DAG that preserves the reachability relations between the
vertices of the original graph. In a T-OOD we can check if vertex v is reachable
from vertex u by simply examining point (X(u), Y (v)) in the drawing. The next
theorems highlight this property.

Theorem 2 Let Γ be any Overloaded Orthogonal Drawing of graph G where
the weak dominance condition holds with strict inequalities. Then there is an
edge (u, v) in G if and only if there is either an e-point or a bend at the point
(X(u), Y (v)).

Theorem 3 Let Γ be any Transitive Overloaded Orthogonal Drawing of graph
G = (V,E) where the weak dominance condition holds with strict inequalities.
Then there is a path from u ∈ V to v ∈ V if and only if there is either a p-point
(including e-points) or a bend at point (X(u), Y (v)).

In case we have equalities between coordinates then the theorems still holds
with the only difference that at point (X(u), Y (v)) there might be vertex u or
vertex v.

As shown in Figure 5, the transitive edges have grey colored p-points. No-
tice also that there is no e-point at (X(4), Y (9)), despite the fact that the
coordinates of vertex 9 dominate the coordinates of vertex 4. In this context,
a crossing indicates the existence of a falsely implied path. We can generalize
this observation and prove the following theorem about the relation of falsely
implied paths and crossings in a T-OOD of a directed acyclic st-graph.

Theorem 4 Let G = (V,E) be a directed acyclic st-graph. Given a vertex
placement X,Y that respects the weak dominance condition there is a falsely
implied path from u to v if and only if there exists a crossing at (X(u), Y (v)) in
the Transitive Overloaded Orthogonal Drawing of G that is based on X,Y .

228 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Figure 5: A transitive overloaded orthogonal drawing (right) of the graph in
Figure 1. The reachability u v of any pair of vertices can be confirmed by
looking at point (X(u), Y (v)). By the color of the point we can determine if
there is an edge (e-point) or a path (p-point) between the vertices.

Proof: Assume w.l.o.g. that X(u) ≤ X(v) and Y (u) ≤ Y (v). If there is a
crossing at point (X(u), Y (v)) then, since there is neither an e-point to denote
a direct connection, nor a p-point to denote a transitive edge, we conclude that
vertex u cannot reach vertex v which implies that (u, v) is a falsely implied path.

For the converse, assume there is a falsely implied path from a vertex u to a
vertex v, that is, X(u) < X(v) and Y (u) < Y (v). Since G is a directed acyclic
st-graph there must be a path (or edge) from the source s to u. Furthermore,
there must be a path (or edge) from s to v which implies that in the T-OOD
there exists a horizontal segment from (X(s), Y (v)) to (X(v), Y (v)) that is part
of the (transitive or direct) edge (s, v). Since t is the only sink of the graph
there must be a path from u to t and a path from v to t. This implies that
in a T-OOD there exists a vertical segment from (X(u), Y (u)) to (X(u), Y (t))
that is a part of the (transitive or direct) edge (u, t). Therefore the horizontal
segment (X(s), Y (v)) to (X(v), Y (v)) and the vertical segment (X(u), Y (u)) to
(X(u), Y (t)) form a crossing at point (X(u), Y (v)). �

Notice that the above theorem is general in the sense that it holds for every
vertex placement algorithm that respects the weak dominance condition. The
above relation between a falsely implied path and a crossing does not necessar-
ily hold for every vertex placement when we are dealing with directed acyclic
graphs with multiple sources and multiple sinks. An easy counterexample can
be constructed in the following way: Let G = (V,E) be a DAG with a set
of sources S = {s1, . . . , sk}. Let also X,Y be a vertex placement such that
X(si) < X(sj) and Y (si) < Y (sj), where i, j ∈ {1, ..., k}. Notice that no vertex
with X-coordinate less than X(sj) has an outgoing edge to source sj . Thus,
there is no horizontal edge segment on row Y (sj) that extends to column X(sj).
Therefore there exists a falsely implied path from si to sj but there is no crossing

JGAA, 20(2) 217–246 (2016) 229

on point (X(si), Y (sj)) of the corresponding T-OOD.
In general, a falsely implied path (u, v) does not correspond to a crossing in

a T-OOD if any of the following holds:

• There is no path from vertex u to any of the vertices that have Y -
coordinate greater than Y (v).

• There is no path from vertices that have X-coordinate less than X(u) to v.

5 Properties of the Drawing

In this section we discuss properties and bounds of overloaded orthogonal draw-
ings for directed acyclic graphs. Certain conditions must hold in order to form
a bend.

Lemma 1 Let G = (V,E) be a directed acyclic graph and (u, v) ∈ E where
u, v ∈ V . Edge (u, v) yields a bend in any OOD Γ of G with coordinate assign-
ment (X,Y), if and only if all the following three conditions hold:

• u is the predecessor of v with the minimum X-coordinate
• v is the successor of u with the maximum Y -coordinate
• X(u) 6= X(v) and Y (u) 6= Y (v)

Proof: For the ’if’ part, let us assume that the above three conditions hold.
Then according to the third condition, u cannot be on the same vertical line (i.e.,
column) as v due to X(u) 6= X(v). Also, u cannot be on the same horizontal line
(i.e., row) as v due to Y (u) 6= Y (v). Thus, point (X(u), Y (v)) contains either
a bend or an e-point. If there was an e-point on (X(u), Y (v)) there would be
either a predecessor of v namely w such that X(w) < X(u), or a successor of
u namely z such that Y (v) < Y (z), or both. But that contradicts the first two
conditions. Thus, edge (u, v) yields a bend.

For the ’only if’ part, let’s assume that edge (u, v) yields a bend, we prove
that the above three conditions hold. Vertex u is the direct predecessor of v
with the minimum X-coordinate, or else there would be an e-point instead of
a bend in (X(u), Y (v)). Similarly, vertex v is the direct successor of u with the
maximum Y -coordinate, or else there would be an e-point instead of a bend
in (X(u), Y (v)). Finally, since there is a bend we have X(u) 6= X(v) and
Y (u) 6= Y (v). Therefore, the above three conditions hold. �

Thus, if X(u) 6= X(v) and Y (u) 6= Y (v) for every pair of vertices u, v ∈ V ,
we conclude that every edge has a “step-like” form and consequently produces
either a bend or an e-point. Therefore we have the following:

Lemma 2 Let Γ be an overloaded orthogonal drawing of a directed acyclic graph
G with m edges, where each vertex is placed in distinct X-, Y - coordinates. Then
the following holds: bends(Γ) + ePoints(Γ) = m.

230 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Figure 6: An illustration for the construction in the proof of Theorem 5.

Every vertex v ∈ G can have at most one bend on its row Y (v). That bend is
produced from the direct predecessor of v with the lowest X-coordinate. Taking
into consideration that sources do not have incoming edges, we immediately have
the following lemma:

Lemma 3 Let Γ be any overloaded orthogonal drawing of a DAG G with n
vertices and m edges. Let also ns be the number of sources of G. Then
bends(Γ) ≤ n− ns.

Proof: Among the incoming edges of a vertex only one can have a bend in
Γ. Taking into consideration that sources do not have incoming edges, every
overloaded orthogonal drawing has at most n− ns bends. �

The upper bound of the above lemma is tight as shown by the following
theorem.

Theorem 5 There exists a family of planar n-vertex graphs Gn, for n ≥ 3,
such that any overloaded orthogonal drawing Γ of Gn requires at least n − 2
bends, and (n− 2)× (n− 2) area.

Proof: Consider the graph Gn shown in Figure 6. Each vertex ui has two
outgoing edges (ui, ui+2) and (ui, ui+1), where i < n− 1. The transitive closure
of each graph in this family is a DAG in which there is a directed edge for every
unordered pair of vertices, therefore there is only one possible topological sorting
and is used for both X- and Y -coordinates. According to our assumption there
are no empty rows and columns, thus, there is only one possible OOD Γ with
distinct X-, Y -coordinates for the graph Gn. If one considers the possibility
of compacting the drawing, then the drawing admits a single compaction in
Y -coordinate between vertex u1 and vertex u2, and a single compaction in X-
coordinate between vertex un−1 and vertex un. The allowable compactions for
any OOD, as well as a proposed algorithm, are discussed in detail in Section 6.

JGAA, 20(2) 217–246 (2016) 231

Therefore an overloaded orthogonal drawing of this family of graphs has optimal
area (n− 2)× (n− 2), and has at least n− 2 bends. �

Figure 7: An illustration of a pq-component of a single-source single-sink DAG.
Every path from the source to a grey node passes through p, and every path
from a grey node to the sink passes through q.

In the rest of this section we discuss a property of the suggested vertex place-
ment algorithm WDP. Specifically, the vertex placement by Algorithm WDP
creates a natural separation between pq-components in single-source single-sink
DAGs. A pq-component Gpq = (V ′, E′) is an induced subgraph of a single-
source single-sink DAG G for which the following properties hold: 1) it contains
at least two edges, 2) vertex p ∈ V ′ is a dominator of every vertex v ∈ V ′ and
q ∈ V ′ is a post-dominator of every vertex v ∈ V ′, 3) for every outgoing edge
(p, v) ∈ E of p, we have v ∈ V ′ and 4) for every incoming edge (u, q) ∈ E of q,
we have u ∈ V ′. An illustration of a pq-component is presented in Figure 7.

The term dominator, correspondingly post-dominator, is capturing a com-
pletely different notion of dominance compared to the dominance drawings (see
also Section 2). The dominator of a node u is an intermediate node that par-
ticipates in all the paths that connect the source of the graph with u. On the
other hand when v dominates u in a dominance drawing, the following relation
holds for their coordinates X(u) ≤ X(v) and Y (u) ≤ Y (v). In this case the
dominance notion refers to their coordinate comparison.

Lemma 4 Let G = (V,E) be a directed acyclic graph with a single-source and a
single-sink that includes a pq-component Gpq = (V ′, E′). Let X,Y be the vertex
placement resulting from WDP. Then for every w ∈ V ′ the following inequalities
hold: X(p) ≤ X(w) ≤ X(p) + |V ′| − 1 and Y (p) ≤ Y (w) ≤ Y (p) + |V ′| − 1.

Proof: Vertex q is reachable from p, because q is reachable from all the vertices
in V ′ and vertex p can reach all the vertices in V ′. From the fact that vertex p is a
dominator of every vertex in V ′ we can derive that there are no edges (u, v) such
that u ∈ V −V ′ and v ∈ V ′−{p}. This implies that for every w ∈ V ′−{p} the
incoming edges of w have a vertex in V ′ as an origin. Furthermore, considering

232 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

the fact that vertex q is a post-dominator of every vertex in V ′ we can derive
that there are no edges (u, v) such that u ∈ V ′−{q} and v ∈ V −V ′. Thus, for
all u ∈ V ′ − {q} the outgoing edges of u have a vertex in V ′ as a destination.
Using the above arguments we can see that during the iteration in which the
algorithm WDP visits vertex p, all |V ′|−1 vertices of G′ are visited consecutively
within the next |V ′|−1 calls of method Visit-CW. Thus, for every vertex w ∈ V ′,
X(p) ≤ X(w) ≤ X(p) + |V ′| − 1. The same line of reasoning can be followed to
prove that all |V ′| − 1 vertices of G′ are visited within the next |V ′| − 1 calls of
method Visit-CCW from the time the algorithm WDP visits p. It follows that
for every w ∈ V ′, Y (p) ≤ Y (w) ≤ Y (p) + |V ′| − 1. �

Let X() and Y () be coordinates that respect the weak dominance condition.
Also let G′ = (V ′, E′) be a component where V ′ ⊆ V and E′ ⊆ E. A component
G′ is said to be separated with respect to X() and Y(), if the following property
holds for X() and Y ():

∀u ∈ V ′, v ∈ V − V ′ ⇒ (X(u) ≤ X(v) ∧ Y (u) ≤ Y (v)) ∨
(X(u) ≥ X(v) ∧ Y (u) ≥ Y (v))

This property is a guarantee that every vertex v ∈ V − V ′ that is not a
member of a component G′ will not appear between the vertices of G′. We refer
to this as the separation property. We focus on pq-components and their proper-
ties but depending on the application area one can propose different component
definitions and placement algorithms that highlight their structural properties.

Theorem 6 The vertex placement X() and Y () constructed by algorithm Weak
Dominance Placement respects the separation property for every pq-component.

Proof: Let G′ = (V ′, E′) ⊆ G be a pq-component. According to Lemma
4 algorithm WDP for G returns a numbering of vertices of G′ from X(p) to
X(p) + |V ′| − 1. This also holds for Y -coordinates, i.e., numbers vertices of G′

from Y (p) to Y (p) + |V ′| − 1. Thus, for every vertex u such that u ∈ V −V ′ we
have X(u) /∈ [X(p), X(q)] and Y (u) /∈ [Y (p), Y (q)]. �

Let Gpq = (V ′, E′) be a pq-component, in case V ′ contains another pq-
component(s) algorithm WDP respects the separation property for the internal
pq-component(s). In other words the separation property holds recursively for
all sub-components.

6 Compaction

Our approach is to apply a post-processing compaction step to an overloaded
orthogonal drawing. A different approach would be to design a vertex placement
algorithm that respects the weak dominance condition while optimizing the area,
as opposed to compacting as a post-processing step (which is done here). This
approach is not explored in this work.

In this section we discuss how to reduce the area of a drawing by allowing
vertices to share the same X- or Y -coordinate, i.e., allowing equality between

JGAA, 20(2) 217–246 (2016) 233

the coordinates of two vertices. The proposed compaction algorithm can be
deployed as an independent post-processing step that is not related to the vertex
placement algorithm that was used as long as the coordinate assignment satisfies
the weak dominance condition. Without loss of generality we assume that there
are no empty rows and columns, if there are any we simply remove them. Our
compaction follows the steps of the compaction algorithm in [6, 7]. However
since our graphs are not planar, and therefore we do not have planar embeddings,
we need to make some adjustments in order to produce a valid drawing.

We proceed by describing the intuition of the compaction algorithm. Given
an overloaded orthogonal drawing our algorithm visits the vertices in increasing
order of X-coordinate. Let u be the vertex that is currently visited, then the
algorithm checks whether vertex v with the next highest X-coordinate can be
“pushed” to the left in order for u and v to share the same column X(u). If
the X-coordinate of v is changed to X(u), all the e-points and bends of column
X(v) should be pushed to the left too. Notice that if we stored the exact
coordinates of an e-point/bend we would need constant time for the move of
each e-point/bend. Instead, if we store a reference to the corresponding node
of the column for each e-point/bend, then we can move all the e-points/bends
of a column in constant time by just changing the coordinates of the node in
that column. A similar procedure is followed for the Y -coordinate. Roughly
speaking, the compaction step “straightens” a set of 1-bend polyline edges. An
example is shown in Figure 4.

Compaction Invariant Conditions: More formally, let Γ be an OOD of
a directed acyclic graph G then for the X- and Y -coordinate assignment the
following conditions hold:
1) Vertices u, v have the same X-coordinate (resp. Y -coordinate) only if (u, v)∈
E.
2) No vertices u, v coincide at the same point of the grid.
3) No vertex has coordinates that are within the range of a horizontal/vertical
segment of an edge. That is, there is no (u, v)∈ E and w ∈ V −{u, v} such that
((X(u) = X(w))∧(Y (u) < Y (w) ≤ Y (v)) or (X(u) ≤ X(w) < X(v))∧(Y (w) =
Y (v)).

The last condition prohibits the scenarios where a compaction step forces
an edge to “pass over” a vertex. It is easy to see that if the weak dominance
condition holds with strict inequalities, i.e., distinct X-, Y -coordinates, then
the compaction invariant conditions hold. Also notice that if compaction is
performed on Γ with respect to the compaction invariant conditions, then the
sum bends(Γ) + ePoints(Γ) would be less than the number of edges.

We note here that the coordinate assignment that is given as an input to X-
compaction (resp. Y -compaction) algorithm should have distinct X-coordinates
(resp. Y -coordinates). Let incListX be a linked list of vertices such that vertices
are arranged in the list in increasing order of X-coordinate. The linked list
incListY is defined in a similar manner.

234 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Algorithm 5: X-compaction(G, X(), Y ())

1 u← incListX.firstNode();
2 while incListX.next(u) 6= null do
3 v ← incListX.next(u);
4 if successorHighestY(u)=v ∧ (u, v) ∈ E ∧ Y (v) 6= Y (u) then
5 if indegree(v) > 1 then
6 remove the e-point in (X(u), Y (v));
7 else
8 remove the bend in (X(u), Y (v));
9 end

10 X(v)← X(v);
11 Move e-points and bends of column X(v) to column X(u);

12 else
13 X(v)← X(u) + 1;
14 Move e-points and bends of column X(v) to column X(u) + 1;

15 end
16 u←incListX.next(u);

17 end

Lemma 5 Let X(), Y () be the coordinate assignment of an overloaded orthog-
onal drawing of a DAG G such that (a) every vertex has distinct X-coordinates
and (b) X() and Y () respect the coordinate invariant conditions. Then Algo-
rithm X-compaction(G,X(), Y ()) returns a coordinate assignment that respects
the compaction invariant conditions.

Proof: It is straight-forward to show that conditions 1) and 2) hold for the out-
put of X-compaction. Therefore we prove that if a compaction in X-coordinate
is performed between vertices u, v then no vertex has coordinates that are within
the range of a horizontal/vertical segment of an edge (we refer to this event as
“edge passing over a vertex”). According to our assumption in the beginning
of the section (w.l.o.g.) there are no empty rows and columns. Suppose for
the sake of contradiction that the first event of an edge passing over a vertex
takes place after the compaction in X-coordinate between u, v, which we call
compaction u− v for brevity. We call e′ ∈ E the edge that passes over a vertex,
call it z ∈ V . Notice that the steps in Lines 10, 11 during compaction u − v
do not move the vertices that have X-coordinate smaller than X(u) and the
vertices that have X-coordinate greater than X(v). Thus z should be either in
column X(u) (i.e., X(z) = X(u)) or column X(v) (i.e., X(z) = X(v)).

Case X(z) = X(u): If vertex z were already in column X(u) before com-
paction u−v it must be the case that by moving e′ to column X(u) we forced e′

to pass over z. It is not hard to show that if there are more than one vertices in
column X(u), due to previous compaction steps of the algorithm, then u is the
vertex with the highest Y -coordinate. From the above observation Y (z) should
be smaller than Y (u) (see Figure 8 (a)). But then in order for e′ to pass over
z the origin of e′ should be in column X(v). This contradicts the assumption
that the X-coordinates of the input are distinct.

Case X(z) = X(v): If vertex z were in column X(v) before compaction

JGAA, 20(2) 217–246 (2016) 235

Figure 8: Illustration of the Proof of Lemma 5. Figure (a) illustrates the case
where X(z) = X(u) and Figure (b) the case where X(z) = X(v).

u− v it must be the case that the vertical segment of e′ was already in column
X(u) before compaction u − v. Thus by moving z to column X(u) we forced
the vertical segment of e′ to pass over z. We continue with a case analysis on
the Y -coordinate of z. The case where Y (z) is less than Y (v) (see Figure 8
(b)) implies that z and v are in the same column since u and v are consecutive
on the X-axis. This contradicts the assumption that the X-coordinates of the
input are distinct. So we focus on the case where Y (z) is greater than Y (v). In
order for e′ to pass over z it must be the case that orig(e′) = u. But if u can
reach a vertex that has Y -coordinate greater than v we contradict the condition
of Line 4 that requires successorHighestY(u)=v.

Both of the above cases reach a contradiction which shows that there is no
e′ that passes over a vertex z in the output of X-compaction. �

Using a symmetric argument one can prove that the output of Algorithm
Y -compaction respects the compaction invariant conditions.

Algorithm 6: Y -compaction(G, X(), Y ())

1 u← incListY.firstNode();
2 while incListY.next(u) 6= null do
3 v ← incListY.next(u);
4 if predecessorLowestX(v) = u ∧ (u, v) ∈ E ∧ X(v) 6= X(u) then
5 if outdegree(u) > 1 then
6 remove the e-point in (X(u), Y (v));
7 else
8 remove the bend in (X(u), Y (v));
9 end

10 Y (v)← Y (u);
11 Move all e-points and bends from row Y (v) to row Y (u);

12 else
13 Y (v)← Y (u) + 1;
14 Move all e-points and bends from row Y (v) to row Y (u) + 1;

15 end
16 u←incListY.next(u);

17 end

236 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

Figure 9: In the left figure we have the straight-line dominance drawing of
a reduced planar st-graph as described in [6]. In the right figure there is a
compacted overloaded orthogonal drawing of the same graph with zero bends.

Lemma 6 Let X(), Y () be the coordinate assignment of an overloaded orthog-
onal drawing of a DAG G such that (a) every vertex has distinct Y -coordinates
and (b) X() and Y () respect the coordinate invariant conditions. Then Algo-
rithm Y -compaction(G,X(), Y ()) returns a coordinate assignment that respects
the compaction invariant conditions.

By combining the regular dominance drawing technique (vertex placement)
applied to reduced planar st-graphs as presented in [7], and the overloaded edge
routing technique of this work we obtain an overloaded orthogonal drawing with
zero bends, an example is depicted in Figure 9.

Theorem 7 Given a reduced planar st-graph G = (V,E) with n vertices, an
overloaded orthogonal drawing Γ of G with zero bends can be constructed in
O(n) time.

Proof: Consider a reduced planar st-graph G. Assume that the coordinates
of the vertices are obtained by the dominance drawing algorithm in [7] which
implies that the drawing Γ has no falsely implied paths. Then a vertex v is
reachable from u if and only if X(u) ≤ X(v) and Y (u) ≤ Y (v). For the sake
of contradiction we assume that there is an edge (u,w) ∈ E such that it has a
bend that cannot be removed during the compaction phase. In order to have a
bend all three conditions of Lemma 1 must hold. Recall that G is embedded in
the plane with s and t on the external face. We denote as u→ v the existence of
a path from u to v. By following the above assumptions, we will conclude that
there cannot be any edge (u,w) that forms a bend which we cannot remove.

Let us assume that all conditions of Lemma 1 hold for edge (u,w). According
to the third condition X(u) 6= X(w) and Y (u) 6= Y (w). If vertices u,w were
consecutive in X-coordinate or Y -coordinate, then we could eliminate the bend
performing a compaction step on X,Y respectively. But this contradicts the

JGAA, 20(2) 217–246 (2016) 237

Figure 10: Proof of Theorem 7. The left figure illustrates the assumptions about
the relation of the involved vertices prior to the analysis of c1-case and c2-case.
The right figure shows a drawing of a K3,3 that results from c2-case.

assumption that the bend cannot be removed during the compaction phase.
Thus, vertices u,w cannot be consecutive neither in X- nor in Y -coordinate.
We are going to use this fact in the rest of the proof. Notice also that the
set of direct predecessors of w must contain more than one vertex, otherwise
the vertex placement algorithm would have assigned consecutive coordinates to
vertices u,w.

Let v ∈ V be a direct predecessor of w such that v 6= u, we reason about
the properties that hold for the coordinates of v. Taking into consideration
that the first condition of Lemma 1 holds for the bend (u,w), the inequality
X(u) < X(v) ≤ X(w) must hold. As for the Y -coordinate, Y (v) cannot be
in the range [Y (u), Y (w)] because in that case edge (u,w) would be transitive,
contradiction. Therefore we have Y (v) ≤ Y (u). We have shown that vertices
u,w are not consecutive in X-coordinate, but we haven’t argued yet about the
relation of the two vertices in the Y -coordinate. Since they can’t be consecutive
(otherwise we would remove the bend), there must be a vertex z such that
Y (u) < Y (z) ≤ Y (w). Then vertex z cannot be in the range X(u) < X(z) <
X(w), because in that case the edge (u,w) is a transitive edge, contradiction.
Thus, we have two cases to consider, let c1 be the case where X(z) < X(u) and
c2 the case where X(z) > X(w). The left picture of Figure 10 illustrates the
assumptions made up to this point about the relation of the involved vertices.

Case c1 (X(z) < X(u)): In this case we have X(z) < X(w) and Y (z) <
Y (w), therefore vertex w is reachable from vertex z, z → w. But, in order to
follow the first condition of Lemma 1, we have already assumed that vertex u is
the direct predecessor of w with the minimum X-coordinate. Hence, z can not
be a direct predecessor of w since this would contradict the assumption that u
is the direct predecessor of w with the minimum X-coordinate. Also z cannot
reach u due to the fact that Y (u) < Y (z) and that would violate the weak
dominance condition. Since we showed that z → w but z can not be a direct
predecessor of w, there must be another direct predecessor of w namely q that
is reachable from z, that is z → q and (q, w) ∈ E. As for the coordinates of q,

238 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

X(z) < X(u) < X(q) ≤ X(w) and Y (u) < Y (z) < Y (q) < Y (w). Taking into
consideration the fact that we have zero falsely implied paths and X(u) < X(q)
and Y (u) < Y (q), vertex q must also be reachable from u, u → q. But q is a
direct predecessor of w, so from the fact that u → q and the existence of edge
(q, w) we can conclude that edge (u,w) is transitive, contradiction.

Case c2 (X(z) > X(w)): In this case vertex z is reachable from u, since
X(z) > X(w) > X(v) > X(u) and Y (w) > Y (z) > Y (u) > Y (v). From the
domination of the coordinates, vertex z is also reachable from v. Consider paths
s → u and s → v, and let s′ be the last (farthest from s) vertex common to
both paths. Likewise, let t′ be the first (farthest from t) vertex common to
paths w → t and z → t. By the above definitions and the dominance property,
G has the following paths:

s′ → u , s′ → v , w → t′ , z → t′ ,

u→ w , u→ z , v → w , v → z .

Since s and t are on the external face, we can add the edge (s, t) to G, while
preserving planarity of the embedding. One can easily verify that the paths
listed above, plus edge (s, t) form a graph that is homomorphic to K3,3. This
fact contradicts the planarity of G. �

7 Other Graphs

In this section we discuss methods that extend the proposed overloaded orthogo-
nal model in order to handle undirected graphs and directed graphs with cycles.
A visualization framework based on the following extensions was originally pro-
posed in [23].

7.1 Undirected Graphs

Let G be an undirected graph and s, t be two distinct vertices of G. An st-
numbering for G is a numbering v1, v2, . . . , vn of the vertices of G such that
s = v1, t = vn, and every vertex vj , other than s and t, is adjacent to at least
two vertices vi and vk with i < j < k. Such a numbering can be constructed
in linear time [11]. Given an st-numbering we orient the edges of E from the
low-numbered vertex to the high numbered one. We name the resulting digraph
D. The algorithm for st-orientation proposed in [31, 32], parametrically controls
the length of the longest path of the final st-oriented graph. Specifically, the
parameter 0 ≤ p ≤ 1 is given as an input to the algorithm in order to control
the length of the longest path. For p = 1 the algorithm produces st-oriented
graphs of long longest path whereas for p = 0 the algorithm produces st-oriented
graphs of small longest path. As it was expected, different values of parameter p
yield overloaded orthogonal drawings with different characteristics. We can ap-
ply the vertex placement algorithm to D, and then route the edges as described
in Algorithm OOD. A compaction step can also be performed. For the undi-
rected graph of Figure 11 the st-orientation with p = 0 results in a compacted

JGAA, 20(2) 217–246 (2016) 239

overloaded orthogonal drawing with area 11× 11, while the st-orientation with
p = 1 results in a compacted overloaded orthogonal drawing with optimal area
2× 11.

(a)

(b)

Figure 11: Overloaded orthogonal drawings of an originally undirected planar
graph are shown. In (a) the st-orientation was produced by algorithm [31] with
parameter p = 1. In (b) the st-orientation was produced with parameter p = 0.
As one can see from the third drawing of (a) & (b) the value of p affects the
compacted OOD.

7.2 Directed Graphs with Cycles

A cycle is clearly not representable in a drawing that respects the weak domi-
nance property. Therefore, we follow a well known technique that temporarily
inverts the direction of a set of edges such that the graph becomes a directed
acyclic graph. This set of edges is also known as a feedback arc set and as
described in Section 2, minimizing the feedback arc set is NP-hard. In the rest
of the section we deploy a heuristic algorithm [6] that computes a minimal feed-
back arc set. The better the approximation algorithm for the minimization of
the feedback arc set, the smaller the number of inverted edges (see description
later).

First we compute the minimal feedback arc set and denote it as E′. Next,
the direction of the edges in E′ is inverted (or the edges in E′ can be even

240 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

removed if there are no connectivity issues). The OOD algorithm can be used
now to visualize the resulting directed acyclic graph since it contains no cycles.
We denote as Γ the resulting drawing of the DAG. We focus on how to visualize
an edge (v, u) ∈ E′ that belongs to the feedback arc set. Notice that even
though u is reachable from v, node u is placed in the lower-left quadrant of v.

Figure 12: An overloaded orthogonal drawing of a directed graph with 79 nodes
and 335 edges. The feedback arc set is colored red.

Also note that all the incoming edges of node u in Γ are assembled in the
row Y (u) of the grid. Thus, the Y (u) row has no edge segment to the right of
point (X(u), Y (u)). Similarly, all the outgoing edges of node v are assembled in
the column X(v), above the point of node v of the grid. Thus, column X(v) has
no edge segment below point (X(v), Y (v)). We use these “empty” segments (1)
to the right of u and (2) below v, to draw the feedback arc (v, u). But with this
edge visualization of (v, u) we violate the weak dominance property. In order

JGAA, 20(2) 217–246 (2016) 241

to highlight this violation, the edges in E′ are colored red and are oriented
from top-to-bottom and from right-to-left. Formally, each edge e′ = (v, u) ∈ E′
has a vertical segment from point (X(v), Y (v)) to point (X(v), Y (u)), and a
horizontal segment from point (X(v), Y (u)) to point (X(u), Y (u)). Given a
feedback arc (v, u) the corresponding e-point is defined as an unlabeled red
point that is placed on point (X(v), Y (u)) to indicate a direct connection from
v to u. Figure 12 shows an illustration of an overloaded orthogonal drawing of
a directed graph with cycles.

8 Conclusions: Clarity and Readability of the
Model and Open Problems

We presented algorithms that produce overloaded orthogonal drawings of any
directed acyclic graph G = (V,E) with at most n− 1 bends, O(n2) area, where
n = |V | and m = |E|. Our algorithms run in linear O(n + m) time, and are
easy to implement. In particular, we outline some advantages of the overloaded
orthogonal drawing model.

• Meaningful relation between vertex coordinates: The weak dominance con-
dition implies that if there is a path from u to v then vertex v appears in the
upper right quadrant of vertex u.

• Works for any pair of topological sortings as X,Y coordinates: Since ev-
ery pair of topological sortings respects the weak dominance condition, we can
choose any pair of topological sortings as X,Y coordinates.

• Universality of the model : The overloaded orthogonal model handles the
same way graphs with maximum degree four and graphs with higher degree.
Furthermore, it can be efficiently applied to planar and to non-planar graphs.
The overloaded orthogonal model can also be applied to undirected graphs by
computing an st-numbering as a pre-processing step. Different st-numberings
result in different OODs. This allows the visualization of interesting character-
istics of the graph (i.e., longest paths [31, 32]).

• Efficient Visual Confirmation of an Edge: We can visually confirm the
existence of an edge (u, v) by checking if there is an e-point or a bend on point
(X(u), Y (v)). If a compaction is performed u or v could replace the e-point at
the location (X(u), Y (v)). In contrast, in the regular orthogonal model we have
to visually follow every outgoing edge of u successively, until we find the one
that reaches v. Consequently, the size of a graph does not affect the readability
of an overloaded orthogonal drawing, as we can check if any two vertices are
connected by inspecting only a single point.

• Efficient Visual Confirmation of Reachability : An interesting extension
of this graph drawing technique occurs by including the information of the
transitive closure of a graph. In that case every possible path along the original
directed acyclic graph G = (V,E) is represented by an e-point that can be
colored with either black (if it corresponds to an edge) or grey (if it corresponds
to a path). By applying the overloaded orthogonal model we can check if a

242 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

vertex v is reachable from a vertex u by examining point (X(u), Y (v)) in the
drawing. In this context, crossings indicate the existence of falsely implied
paths.

There are several interesting open problems remaining: (1) propose better
heuristics and approximation algorithms for reducing the number of falsely im-
plied paths; (2) propose algorithms for weak dominance placement that provide
upper bounds on the number of crossings in an overloaded orthogonal draw-
ing of the transitive closure; (3) use the weak dominance condition in order
to construct enhanced data structures than can improve reachability queries in
very large graphs where the computation and storage of the complete transitive
closure might be practically impossible.

Acknowledgements

We would like to thank the two anonymous reviewers whose comments and
suggestions improved our paper.

JGAA, 20(2) 217–246 (2016) 243

References

[1] W. Barth, P. Mutzel, and C. Yildiz. A new approximation algorithm
for bend minimization in the Kandinsky model. In Proc. 14th Interna-
tional Symposium on Graph Drawing (GD’06), pages 343–354. LNCS 4372,
Springer-Verlag, 2006. doi:10.1007/978-3-540-70904-6_33.

[2] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal draw-
ings with the minimum number of bends. IEEE Transactions on Comput-
ers, 49(8):826–840, 2000. doi:10.1109/12.868028.

[3] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.
Computational Geometry: Theory and Applications, 9(3):159–180, 1998.
doi:10.1016/S0925-7721(97)00026-6.

[4] T. C. Biedl, B. P. Madden, and I. G. Tollis. The three-phase method:
A unified approach to orthogonal graph drawing. International Journal
of Computational Geometry and Applications, 10(6):553–580, 2000. doi:

10.1142/S0218195900000310.

[5] T. Bläsius, G. Brückner, and I. Rutter. Complexity of higher-degree orthog-
onal graph embedding in the Kandinsky model. In Proc. 22nd European
Symposium on Algorithms (ESA’14), pages 161–172. LNCS 8737, Springer
Berlin Heidelberg, 2014. doi:10.1007/978-3-662-44777-2_14.

[6] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of graphs. Prentice - Hall, New Jersey,
U.S.A., 1998.

[7] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and sym-
metry display of planar upward drawings. Discrete and Computational
Geometry, 7(4):381–401, 1992. doi:10.1007/BF02187850.

[8] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent
drawings: Visualizing non-planar diagrams in a planar way. Journal of
Graph Algorithms and Applications, 9(1):31–52, 2005. doi:10.7155/jgaa.
00099.

[9] P. Eades, H. ElGindy, M. Houle, B. L. M. Miller, D. Rappaport, and
S. Whitesides. Dominance drawings of bipartite graphs. Technical report,
1994.

[10] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered drawings.
Algorithmica, 47(4):439–452, 2007. doi:10.1007/s00453-006-0159-8.

[11] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Com-
puter Science, 2(3):339–344, 1976. doi:10.1016/0304-3975(76)90086-4.

http://dx.doi.org/10.1007/978-3-540-70904-6_33
http://dx.doi.org/10.1109/12.868028
http://dx.doi.org/10.1016/S0925-7721(97)00026-6
http://dx.doi.org/10.1142/S0218195900000310
http://dx.doi.org/10.1142/S0218195900000310
http://dx.doi.org/10.1007/978-3-662-44777-2_14
http://dx.doi.org/10.1007/BF02187850
http://dx.doi.org/10.7155/jgaa.00099
http://dx.doi.org/10.7155/jgaa.00099
http://dx.doi.org/10.1007/s00453-006-0159-8
http://dx.doi.org/10.1016/0304-3975(76)90086-4

244 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

[12] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low
bend numbers. In Proc. 4th International Symposium on Graph Draw-
ing (GD’96), pages 254–266. LNCS 1190, Springer, 1996. doi:10.1007/

BFb0021809.

[13] U. Fößmeier and M. Kaufmann. Algorithms and area bounds for non-
planar orthogonal drawings. In Proc. 5th International Symposium on
Graph Drawing (GD’97), pages 134–145. LNCS 1353, Springer-Verlag,
1997. doi:10.1007/3-540-63938-1_57.

[14] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomer-
ative edge bundling for visualizing large graphs. In Proc. of the 2011 IEEE
Pacific Visualization Symposium (PACIFICVIS ’11), pages 187–194. IEEE
Computer Society, 2011. doi:10.1109/PACIFICVIS.2011.5742389.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
U.S.A., 1979.

[16] L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in
practice. Journal of Graph Algorithms and Applications, 10(1):69–94, 2006.
doi:10.7155/jgaa.00119.

[17] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):741–748, 2006. doi:10.1109/TVCG.2006.147.

[18] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum (Proc. EuroVis), 28(3):983–990,
2009. doi:10.1111/j.1467-8659.2009.01450.x.

[19] R. M. Karp. Reducibility among combinatorial problems. In Proc. of a
Symposium on the Complexity of Computer Computations, pages 85–103.
1972. doi:10.1007/978-1-4684-2001-2_9.

[20] E. M. Kornaropoulos. Dominance drawing of non-planar graphs. M.Sc.
Thesis, Computer Science Department, University of Crete, Greece, 2012.

[21] E. M. Kornaropoulos and I. G. Tollis. Overloaded orthogonal draw-
ings. In Proc. 19th International Symposium on Graph Drawing (GD’11),
pages 242–253. LNCS 7034, Springer-Verlag, 2011. doi:10.1007/

978-3-642-25878-7_24.

[22] E. M. Kornaropoulos and I. G. Tollis. Weak dominance drawings and linear
extension diameter. arXiv:1108.1439, 2011.

[23] E. M. Kornaropoulos and I. G. Tollis. Dagview: An approach for visualizing
large graphs. In Proc. 20th International Symposium on Graph Drawing
(GD’12), pages 499–510. LNCS 7704, Springer-Verlag, 2012. doi:10.1007/
978-3-642-36763-2_44.

http://dx.doi.org/10.1007/BFb0021809
http://dx.doi.org/10.1007/BFb0021809
http://dx.doi.org/10.1007/3-540-63938-1_57
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742389
http://dx.doi.org/10.7155/jgaa.00119
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-3-642-25878-7_24
http://dx.doi.org/10.1007/978-3-642-25878-7_24
http://dx.doi.org/10.1007/978-3-642-36763-2_44
http://dx.doi.org/10.1007/978-3-642-36763-2_44

JGAA, 20(2) 217–246 (2016) 245

[24] E. M. Kornaropoulos and I. G. Tollis. Weak dominance drawings for di-
rected acyclic graphs. In Proc. 20th International Symposium on Graph
Drawing (GD’12), pages 559–560. LNCS 7704, Springer-Verlag, 2012.
doi:10.1007/978-3-642-36763-2_52.

[25] A. Lambert, R. Bourqui, and D. Auber. Winding roads: routing edges
into bundles. In Computer Graphics Forum, pages 853–862. 29(3), 2010.
doi:10.1111/j.1467-8659.2009.01700.x.

[26] T. Lengauer. Combinatorial algorithms for integrated circuit layout. John
Wiley & Sons, Inc., New York, NY, 1990.

[27] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Series
in the Mathematical Sciences, Johns Hopkins University Press, 2001.

[28] K. Nomura, S. Tayu, and S. Ueno. On the orthogonal drawing of outer-
planar graphs. Journal IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E88-A(6):1583–1588, 2005.
doi:10.1093/ietfec/e88-a.6.1583.

[29] A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal
drawings. Computational Geometry Theory and Applications, 9(1-2):83–
110, 1998. doi:10.1016/S0925-7721(97)00017-5.

[30] A. Papakostas and I. G. Tollis. Efficient orthogonal drawings of high degree
graphs. Algorithmica, 26(1):100–125, 2000. doi:10.1007/s004539910006.

[31] C. Papamanthou and I. G. Tollis. Algorithms for computing a parameter-
ized st-orientation. Theoretical Computer Science, 408(2-3):224–240, 2008.
doi:10.1016/j.tcs.2008.08.012.

[32] C. Papamanthou and I. G. Tollis. Applications of parameterized st-
orientations. Journal of Graph Algorithms and Applications, 14(2):337–365,
2010. doi:10.7155/jgaa.00210.

[33] M. S. Rahman, T. Nishizeki, and M. Naznin. Orthogonal drawings of
plane graphs without bends. Journal of Graph Algorithms and Applications,
7(4):335–362, 2003. doi:10.7155/jgaa.00074.

[34] R. Rodrigues Veloso, L. Cerf, W. Meira, Jr., and M. J. Zaki. Reachability
queries in very large graphs: A fast refined online search approach. In
Proc. 17th International Conference on Extending Database Technologies
(EDBT’14), pages 511–522. 2014. doi:10.5441/002/edbt.2014.46.

[35] D. Selassie, B. Heller, and J. Heer. Divided edge bundling for directional
network data. IEEE Transactions on Visualization & Computer Graphics,
vol.17, no.12:2354–2363, 2011. doi:10.1109/TVCG.2011.190.

[36] J. Storer. On minimal node-cost planar embeddings. Networks, 14(2):181–
212, 1984. doi:10.1002/net.3230140202.

http://dx.doi.org/10.1007/978-3-642-36763-2_52
http://dx.doi.org/10.1111/j.1467-8659.2009.01700.x
http://dx.doi.org/10.1093/ietfec/e88-a.6.1583
http://dx.doi.org/10.1016/S0925-7721(97)00017-5
http://dx.doi.org/10.1007/s004539910006
http://dx.doi.org/10.1016/j.tcs.2008.08.012
http://dx.doi.org/10.7155/jgaa.00210
http://dx.doi.org/10.7155/jgaa.00074
http://dx.doi.org/10.5441/002/edbt.2014.46
http://dx.doi.org/10.1109/TVCG.2011.190
http://dx.doi.org/10.1002/net.3230140202

246 Kornaropoulos, Tollis Algorithms for Overloaded Orthogonal Drawings

[37] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal on Computing, 16(3):421–444, 1987. doi:10.

1137/0216030.

[38] R. Tamassia and I. G. Tollis. Planar grid embeddings in linear time. IEEE
Transactions on Circuits and Systems, 36(9):1230–1234, 1989. doi:10.

1109/31.34669.

[39] L. Vismara, G. Di Battista, A. Garg, G. Liotta, R. Tamassia, and F. Vargiu.
Experimental studies on graph drawing algorithms. Software: Practice and
Experience, 30(11):1235–1284, 2000. doi:10.1002/1097-024X(200009)

30:11$<$1235::AID-SPE339$>$3.0.CO$;$2-B.

http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1109/31.34669
http://dx.doi.org/10.1109/31.34669
http://dx.doi.org/10.1002/1097-024X(200009)30:11$<$1235::AID-SPE339$>$3.0.CO$;$2-B
http://dx.doi.org/10.1002/1097-024X(200009)30:11$<$1235::AID-SPE339$>$3.0.CO$;$2-B

	Introduction
	Preliminaries
	Weak Dominance
	Overloaded Orthogonal Framework
	Transitive Closure

	Properties of the Drawing
	Compaction
	Other Graphs
	Undirected Graphs
	Directed Graphs with Cycles

	Conclusions: Clarity and Readability of the Model and Open Problems

