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Abstract

Given a complete directed graph G with weights on the vertices and on
the arcs, a θ-improper k-coloring is an assignment of at most k different
colors to the vertices of G such that the weight of every vertex v is greater,
by a given factor 1

θ
, than the sum of the weights on the arcs (u, v) entering

v with the tail u of the same color as v. For a given real number θ and
an integer k, the Partial Directed Weigthed Improper Coloring Problem
(PDWICP) is to determine the order of the largest induced subgraph G′

of G such that G′ admits a θ-improper k-coloring. This problem is moti-
vated by a practical channel assignment application where the objective
is to maximize the number of simultaneously communicating mobiles in a
wireless network. We consider three constructive algorithms for the stan-
dard vertex coloring problem, and adapt them to the PDWICP. We show
that they perform better than today’s phone operator systems based on
decentralized channel assignment strategies such as fractional frequency
reuse.
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Montagné) francois.gagnon@etsmtl.ca (François Gagnon)

http://dx.doi.org/10.7155/jgaa.00389
mailto:alain.hertz@gerad.ca
mailto:romain.montagne@gerad.ca
mailto:francois.gagnon@etsmtl.ca


160 A. Hertz et al. Constructive algorithms for the PDWICP

1 Introduction

Let M = {m1, · · · ,mn} be a set of mobiles and S = {s1, · · · , st} be a set of base
stations in a wireless communication network. Let Pip denote the received power
at sp of a signal from mi. We denote by a(i) the index of the base station to
which mobile mi is assigned (i.e., mi is assigned to sa(i)), and by c(i) the channel
assigned to mi. Let M` be the subset of mobiles using any given channel `, i.e.,
mi ∈M` if and only if c(i) = `. An admissible channel assignment scheme would
require that the power of all received signals at their assigned base stations are
greater, by a given factor 1

θ , than the sum of interfering powers received from
mobiles which are assigned the same channel. More precisely, we have the
following constraints:∑

mj∈Mc(i),j 6=i

Pja(i) ≤ θ Pia(i) ∀i = 1, · · · , n. (1)

where 1
θ is the minimal admissible Signal-to-Interference Ratio (SIR). The cur-

rent technology can easily deal with an SIR = 6 dB (i.e. 1
θ = 8), and sometimes

with an SIR < 3 dB (i.e. 1
θ < 2).

The optimization problem we are interested in can be formulated as follows:
given a set of channels and a set of mobiles assigned to their base stations, which
channel should each mobile be assigned to, in order to maximize the number of
mobiles respecting constraints (1)? This problem, posed by the wireless com-
munications industry (see [5]), can be modeled as a coloring problem. More
precisely, let G = (V,A,W, ω) be a directed graph with vertex set V , arc set A,
and with two functions W and ω that associate a weight W (v) to every vertex
v ∈ V and a weight ω(u, v) to every arc in G. Given any real number θ and any
integer k, a function c : V → {1, · · · , k} is a θ-improper k-coloring of G if the
following constraints are satisfied:∑

(u,v)∈A | c(v)=c(u)

ω(u, v) ≤ θW (v) ∀v ∈ V. (2)

For a real number θ, the Directed Weighted Improper Coloring Problem (DWICP)
is to determine the minimum integer k such that G has a θ-improper k-coloring.
Since the addition of zero weight arcs does not change the problem, we can as-
sume without loss of generality that G is complete. The DWICP was studied in
[5] for the minimization of the number of channels needed to satisfy the demand
of all users in a wireless network. Araujo et al. [3] have studied the DWICP in
the particular case where W (v) = 1 for all vertices v in G and ω(u, v) = ω(v, u)
for all pairs {u, v} of vertices.

The decision version of this problem, denoted k-DWICP, is to determine
whether G admits a θ-improper k-coloring, where k and θ are given. The link
between the above uplink channel assignment problem and the DWICP is the
following. For a set M = {m1, · · · ,mn} of n mobiles and a set S = {s1, · · · , st}
of t base stations, we can construct a complete directed graph G = (V,A,W, ω)
with vertex set V = M , with an arc in both directions between each pair of
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mobiles, and with W (mi) = Pia(i) and ω(mj ,mi) = Pja(i). The construction of
G is illustrated in Figure 1. It follows from these weight definitions that equa-
tions (1) and (2) are equivalent, which means that finding a channel assignment
satisfying (1) is equivalent to determining a θ-improper k-coloring of G.

base station sa(j) 

base station sa(i) 

mobile mi

Pia(j)

Pja(j)
Pja(i)

Pia(i)

mi 

mj

ωij=Pia(j) ωji=Pja(i)

mobile mj

Wi=Pia(i)

Wj=Pja(j)

Figure 1 – Construction of a directed weighted graph from a channel assignment
problem.

Three important remarks arise from this transformation. First of all, by
observing Figure 1, it is possible to model the downlink version of the problem
by simply reversing the direction of the arcs. Second, one could take into account
the power of thermal noise by adding its value P0 to the left of inequation (1),
which corresponds to adding k dummy nodes x1, · · · , xk with weight W (xi) = 0,
with arcs to and from every vertex u ∈ V −{x1, · · · , xk} such that ω(xi, u) = P0,
ω(u, xi) = 0, and arcs between each pair of dummy nodes with any strictly
positive weight. Last but not least, in modern cellular systems, channels are
shared in time-frequency blocks; this can be taken into account by multiplying
k by the number of blocks. In such a case, the word resource would be more
appropriate than channel. In summary, our model could therefore be adapted to
reflect more precisely current mobile standards, but this paper aims at validating
a simplified version of the model with algorithms from a graph theory point of
view.

We study here a slightly different problem, called Partial Directed Weighted
Improper Coloring Problem (PDWICP). It is defined on the same directed com-
plete graph G = (M,A,W,ω). The number k of available colors is given as well
as θ, and the objective is to color as many vertices as possible while satisfying
constraints (2). Consider for example the graph in Figure 2 with 3 vertices,
where the numbers on the vertices and on the edges are their weights. If only
one color is available (i.e., k = 1) and θ = 1

2 , than only two vertices (a and
b or a and c) can be colored. Indeed, if b and c receive the same color, then
the sum of the weights of the arcs entering b is at least 3 which is larger than
θ W (b) = 5

2 .

Figure 2 – At most two vertices can be colored in a 1
2 -improper 1-coloring of G.
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Note that the k-DWICP is equivalent to determining whether the optimal
value of the PDWICP is equal to the number |M | of vertices in G. Since the
k-DWICP is NP−complete ([5]), we conclude that the PDWICP is NP−hard.

2 Preliminaries

A region Cp called Voronoi cell is defined for each base station sp. It contains
all mobiles closer to that base station than to any other. The union of the
Voronoi cells defines a Voronoi diagram [6] that divides the geographical area
into t regions (where t is the number of base stations). As already mentioned,
we denote by a(i) the index of the base station that is the closest to mobile mi

(i.e. mobile mi belongs to cell Ca(i)). Also, we denote by b(i) the index of the
second closest base station to mi. Each cell has a center and a border defined
as follows, where τ ∈ [0, 1] is a fixed parameter.

Definition 1 A mobile mi is in the center of Ca(i) if and only if
Pib(i)

Pia(i)
≤ τ ;

otherwise, mobile mi is at the border of Ca(i).

The algorithms considered in this paper for the PDWICP are all sequen-
tial. More precisely, starting from a graph with no colored vertex (mobile), we
iteratively choose an uncolored vertex and assign a color (channel) to it, until
no more vertices can be colored. The assignment of a color ` to a mobile must
be done without creating too much interference neither for mobile mi, nor for
any other mobile mj using channel `. Available channels for mi are defined
as follows, where M` denotes the set of mobiles to which channel ` is already
assigned.

Definition 2 A channel ` is considered as available for mi /∈M` if the following
constraints are satisfied: ∑

mj∈M`

Pja(i) ≤ θ Pia(i); (3)

∑
mh∈M`, h 6=j

Pha(j) + Pia(j) ≤ θ Pja(j) ∀mj ∈M`. (4)

Constraints (3) enforce the requirement that the received power at sa(i) of

a signal from mi be greater, by a factor 1
θ , than the sum of interfering powers

received from mobiles having channel `. Constraints (4) make sure that the
inclusion of mi in M` will not create any violation of constraints (1).

The value of the solutions produced by the proposed heuristic coloring al-
gorithms will be compared with the optimal value of the PDWICP. Such an
optimal value can be obtained by solving a Boolean linear programming prob-
lem. Indeed, let xvi be a binary variable that equals 1 if and only if vertex v
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takes color i. The PDWICP is equivalent to the following problem:

max
∑
v∈V

k∑
i=1

xvi (5)

s.t.

k∑
i=1

xvi ≤ 1 ∀v ∈ V (6)∑
u6=v

ω(u, v) xui ≤ θ W (v) + α (1− xvi) ∀v ∈ V, ∀i ∈ {1, ..., k} (7)

xvi,∈ {0, 1} ∀v ∈ V, ∀i ∈ {1, ..., k} (8)

The objective (5) is to maximize the number of colored vertices. Con-
straints (6) make sure that at most one color is assigned to every vertex.
Constraints (7) are equivalent to (2), where α is a large integer (for exam-
ple, α = nmaxu,v ω(u, v)) that avoids imposing any restriction if v does not
have color i (i.e., if xvi = 0).

The optimal solution of this Boolean linear program can only be obtained for
relatively small instances. However, most mathematical programming solvers
provide bounds on the optimal value when stopped before the end of the opti-
mization process. We will use the CPLEX optimizer in order to obtain upper
and lower bounds on the optimal solution value. Note that we could also solve
the above Boolean linear model using a branch-and-price algorithm similar to
the one proposed in [5], but this could be the subject of another paper. We
focus here on fast heuristic algorithms that can be used for real-time channel
assignment.

The rest of the paper is organized as follows. Section 3 is devoted to the
description of a popular decentralized channel assignment strategy that will
serve as a basis for comparison with the proposed algorithms. In Section 4, we
show how to adapt three among the most popular constructive algorithms for
the standard vertex coloring problem to the PDWICP. Improvements of these
basic algorithms are proposed in Section 5. Computational experiments are
reported in Section 6.

3 Fractional Frequency Reuse

Analyzing the way mobile operators currently perform channel assignment pro-
vides a lower bound for the PDWICP. Orthogonal Frequency-Division Multiple
Access (OFDMA) is a multi-user version of the popular Orthogonal Frequency-
Division Multiplexing (OFDM) digital modulation scheme. The latest OFDMA
mobile standards such as WiMAX and LTE allocate channels using a technique
called Fractional Frequency Reuse (FFR) [7]. We consider FFR as a term of
comparison, as we have found it is often the case in literature (see for example
[9, 10, 18]). Practical implementations of FFR in OFDMA-based systems, such
as LTE networks are discussed in papers such as [21] or [11].
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As the name suggests, FFR implies using the same frequencies over different
geographical areas. Every channel can however be used at most once in each
cell, which can be written as follows, where F = {1, · · · , k} is the set of channels:

| Cp ∩M` | ≤ 1 ∀p = 1, · · · , t,∀` ∈ F. (9)

If a mobile is in the center (see Definition 1) of its cell Cp, then any available
channel (see Definition 2) in F can be assigned to it. In order to limit co-channel
interference, only a subset Fp of frequencies can be used by mobiles located at

the border of Cp. The subsets Fp are typically chosen so that | Fp |= |F |
3 and

two mobiles in the borders of two adjacent cells do not have access to the same
channels. This is possible, for example, if the geographical area is divided into
hexagonal cells (see Figure 3). However, when the positions of the base stations
are not as regular as in Figure 3, it can happen that the number of frequencies in

Fp is strictly smaller than |F |3 . An example is shown in Figure 4 with four base
stations so that all pairs of Voronoi cells have adjacent borders. The four color
theorem [2] however states that, given any separation of a plane into contiguous
regions, no more than four colors are required to color the regions so that no
two adjacent regions have the same color. This means that it is always possible

to set | Fp |= |F |
4 for all cells Cp.

B C

A BC

B C

Figure 3 – F = A∪B∪C; every Fp equals A, B or C; A∩B = A∩C = B∩C = ∅,
| A |=| B |=| C |= |F |

3 .

C1

C2 C3

C4

s1

s4

s2 s3

Figure 4 – A base station layout where at least one Fp has at most |F |4 frequen-
cies.

Taking into account the above constraints, it is not difficult to derive an
upper bound on the number of users that can communicate when using the
FFR technique.
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Proposition 1 Consider a network with t base stations s1, · · · , st and n mo-
biles m1, · · · ,mn. Let xp and yp denote the number of users in the center and
at the border of Cp, respectively. The following value is an upper bound on
the number of simultaneously communicating mobiles when using the FFR tech-
nique:

t∑
p=1

(min {xp, |F |}+ min {|Fp|, yp,max {0, |F | − xp}}) (10)

Proof: Consider any channel assignment that satisfies constraints (1) and (9).
If no channel is available for a mobile mi in the center of Cp while a channel
` is assigned to at least one mobile mj at the border of Cp, then we can keep
the number of simultaneously communicating mobiles constant by assigning
channel ` to mobile mi instead of mj . As a consequence, without modifying the
number of communicating mobiles, one can reach a channel assignment so that
a mobile in the center of a cell Cp has no available channel only if no mobile
at the border of Cp is communicating. Hence, for such an assignment, at most
min {xp, |F |} among the xp users in the center of Cp are communicating. Also,
at most |F | − xp channels are available for the mobiles at the border of Cp,
which means that at most min {|Fp|, yp,max {0, |F | − xp}} among the yp users
at the border of Cp are communicating. �

4 Constructive algorithms for the PDWICP

The standard vertex coloring problem (VCP) is to color the vertices of an undi-
rected graph so that no two adjacent vertices receive the same color. Many
heuristics have been proposed for this problem and we show in this section how
to adapt the most popular ones to the PDWICP. These algorithms are sequential
and have thus relatively short execution-times, which is an important criteria
for real time wireless networks.

Assume some vertices of G are already colored, and let V` (` = 1, · · · , k)
denote the set of vertices having color `. Suppose we want to assign color ` to
an uncolored vertex v. In the standard VCP, such an assignment is possible
only if V` does not contain any vertex adjacent to v. For the PDWICP, the
coloring has to remain θ-improper when assigning color ` to v. In order not
to violate constraints (2), we have to impose constraints similar to (3) and (4).
This justifies the following definition of an available color for v.

Definition 3 A color ` is considered as available for an uncolored vertex v if
the following constraints are satisfied:∑

u∈V`

ω(u, v) ≤ θW (v) (11)

ω(v, u) +
∑

x∈V` x 6=u

ω(x, u) ≤ θW (u) ∀u ∈ V`. (12)
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Constraint (11) ensures that giving color ` to v will not create a violation of
constraint (2) for v, while constraints (12) avoid such a violation for the vertices
u already having color `.

Given any partial coloring of G, we consider the following value I`(v) which
is defined for every vertex v and every color `:

I`(v) =
∑

u∈V`,u 6=v

ω(u, v).

When no vertex is colored (i.e., V` = ∅ for every color `), we have I`(v) = 0 for
all v ∈ V and all ` ∈ {1 · · · , k}. When assigning color ` to an uncolored vertex
v (i.e., adding v to V`), the values I`(u) can be updated in O(n) time by setting

I`(u)← I`(u) + ω(v, u) ∀u ∈ V, u 6= v.

Also, for an uncolored vertex v, it takes O(|V`|) time to check whether color `
is available for v since it is sufficient to verify the following constraints:

I`(v) ≤ θW (v), I`(u) + ω(v, u) ≤ θW (u) ∀u ∈ V`.

For a vertex v and a set X of vertices, let degX(v) denote the number of
vertices in X adjacent to v. When selecting the next vertex v to be colored, most
sequential algorithms for the VCP use decision rules based on the value degX(v)
computed with a specific set X. For example, the Welsh-Powell algorithm ([20])
chooses an uncolored vertex v with largest value degV (v) as next vertex to be
colored. For the PDWICP, we use the following measure µX(v), defined for all
v ∈ V and for all subset X of vertices (not necessarily including v):

µX(v) =

∑
u∈X,u 6=v ω(u, v)

W (v)
.

Note that µX(v) = degX(v) when all weights (on the vertices and the edges)
are equal to 1. In the sequential algorithms of the following sections, we will
assume that the values µV (v) are computed in a pre-processing phase, and that
the values I`(v) are available at any time (i.e., they are updated each time a
vertex is colored). According to the above discussion, these initializations and
updates take O(n2) time and do not increase the overall complexity of any
proposed algorithm since reading the input file, including the weights on all
arcs, already takes O(n2) time.

4.1 Adaptation of the Welsh-Powell algorithm

The Welsh-Powell algorithm ([20]) is a greedy heuristic for the VCP based on
a static order of the vertices. It works as follows: the vertices are first ordered
by non-increasing values degV (v); the algorithm then considers the vertices in
that order and gives to each one the smallest color (integer) not already used by
at least one of its neighbors. We propose a similar algorithm for the PDWICP.
More precisely, the vertices are first ordered by non increasing values µV (v).
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Each vertex v then receives the smallest available color ` ∈ {1, · · · , k} for v. If
no color ` is available for v, then v is not colored. This algorithm, called WP1,
can be implemented as shown in Table 1.

Table 1 – First adaptation of the Welsh-Powell algorithm

Algorithm 1: WP1

1 INITIALIZATION:
2 Determine an ordered list L = (v1, · · · , vn) of the vertices of G so that vi

appears earlier than vj whenever µV (vi) > µV (vj); set V` = ∅ for
` = 1, · · · , k;

3 COLORING:
4 for ` = 1 to k do
5 for i = 1 to n do
6 If vi is not colored and color ` is available for vi, then add vi to V`;
7 end

8 end

Proposition 2 The WP1 algorithm runs in O(n2) time.
Proof: The ordered list L can be obtained in O(n log n) time, since we assume
that µV (v) was computed in a pre-processing phase for every vertex v ∈ V . As
already mentioned, testing whether color ` is available for vi requires O(|V`|)
time, which means that the final set V` is obtained in O(n|V`|) time. Hence, the

WP1 algorithms runs in O(n
∑k
`=1 |V`|) ⊆ O(n2) time. �

4.2 Adaptation of the Dsatur algorithm

Given a partial solution of the VCP, the saturation degree of a vertex v is
defined as the number of different colors appearing on vertices adjacent to v.
The DSATUR algorithm, proposed by Brélaz [8], colors the vertices sequentially,
choosing at each step the uncolored vertex with highest saturation degree. If
several vertices maximize this value, the algorithm chooses one with a maximum
number of uncolored adjacent vertices. The color assigned to the selected vertex
is then the smallest color not appearing on an adjacent vertex.

In order to adapt DSATUR to the PDWICP, we define A(v) as the set of
available colors for an uncolored vertex v and we consider the set U of uncolored
vertices v with A(v) 6= ∅. At the beginning of the algorithm, U is therefore set
equal to the vertex set V , and A(v) = {1, · · · , k} for all v ∈ V . Then, at each
step of the algorithm, we consider a vertex v ∈ U with minimum number |A(v)|
of available colors. In case of ties, we choose one with maximum value µU (v).
We then remove v from U and assign to v the smallest color in A(v). The sets
A(u) are then updated for all uncolored vertices u ∈ U with ` ∈ A(u) and we
remove from U the vertices u for which A(u) becomes empty. The adaptation of
DSATUR to the PDWICP, called DSAT1, is summarized in Table 2. Although
this is not explicitly mentioned, each time a vertex is removed from U , the
values µU (x) are updated for all vertices x remaining in U .
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Table 2 – First adaptation of the DSATUR algorithm

Algorithm 2: DSAT1

1 INITIALIZATION:
2 Set U = V and V` = ∅ for all colors ` = 1, · · · , k;
3 Set µU (v) = µV (v), and A(v) = {1, · · · , k} for all v ∈ V ;
4 COLORING:
5 while U 6= ∅ do
6 Determine a vertex v ∈ U with minimum value |A(v)|. In case of ties,

choose one with maximum value µU (v);
7 Choose the smallest color ` ∈ A(v) and move v to V`;
8 Update the sets A(u) for all u ∈ U with ` ∈ A(u), and remove from U

all vertices u for which A(u) = ∅;
9 end

Proposition 3 The DSAT1 algorithm runs in O(n3) time.

Proof: Since we assume that µV (v) is computed in a pre-processing phase for
all v ∈ V , the initialization phase takes O(nk) time. Each time a vertex w is

removed from U , we can update µU (u) for all u ∈ U by substracting ω(w,u)
W (u) .

Hence, the total time needed by DSAT1 to perform these updates is in O(n2).
Steps 6 and 7 clearly require O(n + k) time. When assigning color ` to v, we
have to test whether color ` remains available for the uncolored vertices with
` ∈ A(u) (Step 8). Each such test requires O(|V`|) operations, which means
that the sets A(u) can be updated in O(n|V`|) ⊆ O(n2) time. Since there are n
vertices to be colored, DSAT1 runs in O(n3) time. �

4.3 Adaptation of the RLF algorithm

The Recursive Largest First algorithm (RLF), proposed by Leighton [16] for the
VCP, builds a sequence V1, · · · , Vk of color classes. Consider the construction
of one color class V`, let U denote the set of uncolored vertices, and let W be
the set (initially empty) of uncolored vertices with at least one neighbor in V`.
Every time a vertex in U is chosen to be moved to V`, all its neighbors in U are
moved from U to W . The first vertex v ∈ U to be included in V` is the one with
the largest number degU (v) of adjacent vertices in U . The rest of V` is built
as follows: while U is not empty, the next vertex to be moved from U to V` is
one having the largest number degW (v) of neighbors in W . Ties are, if possible,
broken by choosing a vertex with the smallest number degU (v) of neighbors in
U .
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Table 3 – FirstAdaptation of the RLF algorithm

Algorithm 3: RLF1

1 INITIALIZATION:
2 Set V` = ∅ for ` = 1, · · · , k;
3 COLORING:
4 for ` = 1 to k do
5 Let U be the set of uncolored vertices; compute µU (u) for all u ∈ U .

Set W = ∅ and µW (u) = 0 for all u ∈ U ;
6 Choose a vertex v ∈ U with largest value µU (v);
7 Move v to V` and move to W all vertices in U for which color ` is no

more available;
8 while U 6= ∅ do
9 Choose a vertex u ∈ U with largest value µW (u). In case of ties,

choose one with smallest value µU (u);
10 Move u to V`, and move to W all vertices in U for which color ` is

no more available;
11 end

12 end

The adaptation of the RLF algorithm to the PDWICP is done as follows.
When constructing V`, W is defined as the set of uncolored vertices v for which
color ` is not available (i.e., at least one of constraints (11) and (12) is violated
if color ` is assigned to v). Moreover, we use µU (v) and µW (v) instead of
degU (v) and degW (v). The adaptation of RLF to the PDWICP, called RLF1, is
summarized in Table 3. Although this is not explicitly mentioned, each time a
vertex is moved from U to V` or to W , the values µU (x) and µW (x) are updated
for all vertices x remaining in U .

Proposition 4 This RLF1 algorithm runs in O(n3) time.

Proof: Consider the construction of a color class V`. The initial values µU (u)
for all u ∈ U can easily be obtained in O(n2) time, while the rest of Steps 5 and 6
can clearly be performed in O(n) time. Step 7 requires O(n) time since a vertex
u is moved from U to W if and only if ω(u, v) > θW (v) or ω(v, u) > θW (u)
(where v is the vertex chosen at Step 6).

We now analyze the time needed to update µU (u) and µW (u) for u ∈ U
when vertices are moved from U to W or to V`. Each time a vertex w is moved
from U to W , µW (x) is incremented by ω(w,x)

W (x) and µU (x) is decreased by ω(w,x)
W (x)

for all x ∈ U . Also, when a vertex v ∈ U is moved from U to V`, µU (x) is

decreased by ω(v,x)
W (x) for all x ∈ U . Since all vertices of U are moved either to

W or to V` until U becomes empty, there are O(n2) such updates, each being
performed in constant time. When assiging color ` to a vertex, we have to check
in Step 10 whether color ` remains available for the vertices in U . As already
mentioned, this can be done in O(|U ||V`|) ⊆ O(n|V`|). Hence, the total time
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needed to perform these tests when constructing V` is in O(n|V`|2). In summary,
the construction of V` is done in O(n2 + n|V`|2), which means that RLF1 runs

in O(kn2 + n
∑k
`=1 |V`|2) ⊆ O(n3) time. �

5 Improved algorithms

Experiments reported in Section 6 will show that WP1, DSAT1 and RLF1 often
assign the same color to two vertices u and v for which ω(u, v) or ω(v, u) has a
large value when compared to θW (v) or to θW (u), respectively. This creates
high interference at u or v, which implies that very few other vertices are then
added to the color class shared by u and v. We offer two ways to avoid this
problem.

5.1 Improvement based on the Voronoi diagram

The first improvement technique assumes that G is built from a given set S =
{s1, · · · , st} of base stations and a given set M = {m1, · · · ,mn} of mobiles, as
explained in Section 1. This implies that every vertex in G has a geographical
location. As mentioned in Section 3, the FFR technique is based on a partition
of the geographical area into cells. Users at the center of a cell Cp have access
to the whole frequency band F , while only a subset Fp of the frequencies can
be used by mobiles located at the border of Cp. We propose to partially imitate
such a strategy by considering the frequencies in Fp as preferred channels for
mobiles at the center of Cp. This is now described in more detail.

The Voronoi cell Cp associated with every base station sp contains all mobiles
closer to sp than to any other base station. The dual of the Voronoi diagram
is a graph H = (VH , EH) with vertex set VH = S (i.e., every base station is
a vertex), and edge set EH = {(sp, sq)|Cp and Cq are adjacent Voronoi cells}.
Let dpq denote the Euclidian distance between sp and sq. We first color the
vertices of H with as few colors as possible, trying to maximize the minimum
distance between two vertices with the same color. This can be achieved by
solving a Boolean linear program. Indeed, let D = max1≤p,q≤t dpq. Also let xpi
be a binary variable that equals 1 if and only if vertex sp receives color i, let
ypq be a binary variable that equals 1 if and only if vertices sp and sq share the
same color, and let zi is a binary variable that equals 1 if and only if color i is
used. We consider the following problem.

min D

4∑
i=1

zi − δ (13)

s.t.

4∑
i=1

xpi = 1 ∀sp ∈ VH (14)

xpi + xqi ≤ zi ∀(sp, sq) ∈ EH , ∀i = 1, · · · , 4 (15)

xpi + xqi − 1 ≤ ypq ∀sp, sq ∈ VH , p 6= q, ∀i = 1, · · · , 4 (16)

δ ≤ dpq +D(1− ypq) ∀(sp, sq) /∈ EH (17)

xpi, ypq, zi ∈ {0, 1} ∀sp, sq ∈ VH , ∀i = 1, · · · , 4 (18)
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As already mentioned in Section 3, the four color theorem [2] states that
no more than four colors are required to color the vertices of H. Constraints
(14) enforce the use of exactly one of the four colors for every vertex of H.
Constraints (15) express the fact that adjacent vertices in H cannot have the
same color, and relate the x variables to the z variables. Constraints (16) relate
the x variables to the y variables. Constraints (17) enforce δ to be at most as
large as the minimum distance between two vertices with the same color. The
objective (13) is to use as few colors as possible, and among such colorings, to
find one with maximum value δ.

An optimal solution of this linear program is possibly difficult to obtain for
large instances since it contains binary variables. The number of base stations
is however typically not too large which makes it possible to obtain an optimal
solution in a reasonable computing time. If this not the case, it is then possible
to simply build a 4-coloring of H, which is equivalent to finding a feasible
solution to the above linear program. The Four Color Theorem gives an O(n2)
algorithm to determine such a coloring of the vertices of the planar graph H
[19].

So, assume we have found a coloring of the vertices of H, whichever method
was used to obtain such a coloring. Let χ ≤ 4 be the number of colors used,
and let c(p) ∈ {1, · · · , χ} denote the color assigned to vertex sp. Assume the
number k of available colors is a multiple of 12. To each region Cp, we associate
a subset Fp of colors so that Fp ∩ Fq = ∅ if Cp is adjacent to Cq, and all
sets Fp contain k

χ colors. This is done as follows. For every p = 1, · · · , t, we

define Fp = { (c(p)−1)kχ + 1, · · · , c(p)kχ }. For example, if k = 120 channels are

available, χ = 3 and c(p) = 2, then Fp = {41, · · · , 80}, while if k = 120, χ = 4
and c(p) = 2, then Fp = {31, · · · , 60}. These sets are used to define priority
rules. More precisely, for every mobile mi, we define the following set S(mi)
of preferred channels for mi: if mi is at the border of Cp, we set S(mi) = Fp,
while if mi is in the center of Cp, we set S(mi) = {1, · · · , k}.

Remember that according to Definition 1, a mobile mi is in the center of

its cell if and only if
Pib(i)

Pia(i)
≤ τ , where τ is a given parameter. Hence, the sets

S(mi) of preferred channels depend on τ . For example, if τ = 0, then all mobiles
are at the border of their cell and thus all have a preference for a subset of k

χ
channels; if τ = 1, all mobiles are in the center of their cells, and no priority rule
is applied. We will run our algorithms with 11 different values for τ , namely
0, 0.1, 0.2, · · · , 1, and keep the best solution.

For the rest of this section, we assume that each vertex v of G has a set S(v)
of preferred colors. WP2, DSAT2 and RLF2 are modified versions of WP1,
DSAT1 and RLF1, that take into account these preferences by first assigning a
preferred color ` ∈ S(v) to every vertex v, and then completing the coloring by
using non-preferred colors. The three algorithms appear in Tables 4, 5 and 6.
It is not difficult to observe that WP2, DSAT2, and RLF2 have the same time
complexity as WP1, DSAT1 and RLF1, respectively.
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Table 4 – Second adaptation of the Welsh-Powell algorithm

Algorithm 4: WP2

1 INITIALIZATION:
2 Determine an ordered list L = (v1, · · · , vn) of the vertices of G so that vi

appears earlier than vj whenever µV (vi) > µV (vj); set V` = ∅ for
` = 1, · · · , k;

3 Apply the following COLORING procedure using τ = 0, 0.1, 0.2, · · · , 1 for
defining the sets of preferred colors, and keep the best result;

4 Procedure COLORING:
5 for ` = 1 to k do
6 for i = 1 to n do
7 If vi is not already colored, ` ∈ S(vi), and ` is available for vi,

then add vi to V`;
8 end
9 for i = 1 to n do

10 If vi is not already colored and ` is available for vi, then add vi to
V`;

11 end

12 end

Table 5 – Second Adaptation of the DSATUR algorithm

Algorithm 5: DSAT2

1 INITIALIZATION:
2 Set U = V and V` = ∅ for all colors ` = 1, · · · , k;
3 Set µU (v) = µV (v), and A(v) = {1, · · · , k} for all vertices v;
4 Apply the following COLORING procedure using τ = 0, 0.1, 0.2, · · · , 1 for

defining the sets of preferred colors, and keep the best result;
5 Procedure COLORING:
6 while U 6= ∅ do
7 Determine a vertex v ∈ U with minimum value |A(v)|. In case of ties,

choose one with maximum value µU (v);
8 If A(v) ∩ S(v) contains at least one color, then choose the smallest

one `; othwerwise, choose the smallest color ` ∈ A(v);
9 Move v to V`, update the sets A(u) for all u ∈ U with ` ∈ A(u), and

remove from U all vertices u for which A(u) = ∅;
10 end
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Table 6 – Second Adaptation of the RLF algorithm

Algorithm 6: RLF2

1 INITIALIZATION:
2 Set V` = ∅ for ` = 1, · · · , k;
3 Apply the following COLORING procedure using τ = 0, 0.1, 0.2, · · · , 1 for

defining the sets of preferred colors, and keep the best result;
4 Procedure COLORING:
5 for ` = 1 to k do
6 Let U be the set of uncolored vertices, and let U ′ ⊆ U be the subset

of uncolored vertices v with ` ∈ S(v); compute µU (u) for all u ∈ U
and µU ′(u) for all u ∈ U ′. Set W = ∅ and µW (u) = 0 for all u ∈ U ;

7 If U ′ 6= ∅, choose a vertex v ∈ U ′ with largest value µU ′(v); otherwise
choose a vertex v ∈ U with largest value µU (v);

8 Move v to V` and move to W all vertices in U (hence also those in U ′)
for which color ` is no more available;

9 while U ′ 6= ∅ do
10 Choose a vertex u ∈ U ′ with largest value µW (u). In case of ties,

choose one with smallest value µU ′(u);
11 Move u from U ′ to V`, and move to W all vertices in U for which

color ` is no more available;
12 end
13 while U 6= ∅ do
14 Choose a vertex u ∈ U with largest value µW (u). In case of ties,

choose one with smallest value µU (u);
15 Move u from U to V`, and move to W all vertices in U for which

color ` is no more available;
16 end

17 end

5.2 Super-available colors

The use of preferred colors proposed in the previous section is not always suffi-
cient to avoid assigning the same color to two vertices u and v for which ω(u, v)
or ω(v, u) has a large value when compared to θW (v) or θW (u), respectively.
We present here another way to avoid this problem. It is based on the following
definition that depends on a real parameter ρ ∈ [0, 1].

Definition 4 A color ` is super-available for a vertex v if in addition to con-
straints (11), (12), the following ones are also satisfied:

ω(u, v) ≤ ρ(θW (v)) and ω(v, u) ≤ ρ(θW (u)) ∀u ∈ V`.

Algorithms WP3, DSAT3, and RLF3 described here below first try to color
the vertices using only super-available colors. The coloring process is then re-
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peated with the uncolored vertices, by considering all available colors. It is
not difficult to observe that the proposed changes do not affect the algorithms’
complexity. We will run our algorithms with 11 different values for ρ, namely
0, 0.1, 0.2, · · · , 1, and keep the best solution.

Table 7 – Third adaptation of the Welsh-Powell algorithm

Algorithm 7: WP3

1 INITIALIZATION:
2 Determine an ordered list L = (v1, · · · , vn) of the vertices of G so that vi

appears earlier than vj whenever µV (vi) > µV (vj); Set V` = ∅ for
` = 1, · · · , k;

3 Apply the following COLORING procedure using ρ = 0, 0.1, 0.2, · · · , 1 for
the definition of super-available colors, and keep the best result;

4 Procedure COLORING:
5 for ` = 1 to k do
6 for i = 1 to n do
7 If vi is not already colored and color ` is super-available for vi,

then add vi to V`;
8 end
9 for i = 1 to n do

10 If vi is not already colored and color ` is available for vi, then add
vi to V`;

11 end

12 end

Table 8 – Third Adaptation of the DSATUR algorithm

Algorithm 8: DSAT3

1 INITIALIZATION:
2 Set U = V and V` = ∅ for all colors ` = 1, · · · , k;
3 Set µU (v) = µV (v), and A(v) = {1, · · · , k}for all vertices v;
4 Apply the following COLORING procedure using ρ = 0, 0.1, 0.2, · · · , 1 for

the definition of super-available colors, and keep the best result;
5 Procedure COLORING:
6 while U 6= ∅ do
7 Determine a vertex v ∈ U with minimum value |A(v)|. In case of ties,

choose one with maximum value µU (v);
8 If A(v) contains at least one super-available color for v, choose the

smallest one ` and move v to V`; otherwise, choose the smallest color
` ∈ A(v) and move v to V`;

9 Update the sets A(u) for all u ∈ U with ` ∈ A(u), and remove from U
all vertices u for which A(u) = ∅;

10 end
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Table 9 – Third Adaptation of the RLF algorithm

Algorithm 9: RLF3

1 INITIALIZATION:
2 Set V` = ∅ for ` = 1, · · · , k;
3 Apply the following COLORING procedure using ρ = 0, 0.1, 0.2, · · · , 1 for

the definition of super-available colors, and keep the best result;
4 Procedure COLORING:
5 for ` = 1 to k do
6 Let U be the set of uncolored vertices; let U1 ⊆ U be the subset of

uncolored vertices v for which ` is super-available, and let
U2 = U \ U1; compute µU (u) for all u ∈ U and µU1

(u) for all u ∈ U1.
Set W = ∅ and µW (u) = 0 for all u ∈ U ;

7 If U1 6= ∅, choose a vertex v ∈ U1 with largest value µU1
(v); otherwise,

choose a vertex v ∈ U with largest value µU (v);
8 Move v to V`; move to W all vertices in U for which color ` is no

more available; move to U2 all vertices in U1 for which color ` is no
more super-available;

9 while U1 6= ∅ do
10 Choose a vertex u ∈ U1 with largest value µW (u). In case of ties,

choose one with smallest value µU1
(u);

11 Move u to V`; move to W all vertices in U for which color ` is no
more available; move to U2 all vertices in U1 for which color ` is
no more super-available;

12 end
13 while U 6= ∅ do
14 Choose a vertex u ∈ U with largest value µW (u). In case of ties,

choose one with smallest value µU (u);
15 Move u to V`; move to W all vertices in U for which color ` is no

more available;
16 end

17 end

6 Numerical results

In this section, we compare the optimal value provided by the Boolean linear
programming model of Section 2 with the values produced by the proposed
heuristics. Such a comparison is only possible for instances of relatively small
size. For larger instances, we compare the results of our heuristics with an upper
bound on the performance of the Fractional Frequency Reuse (FFR) technique.

All algorithms are tested on random instances generated in the same way as
in [5], namely according to standards of the WINNER channel [15] often used
for benchmarks in wireless communications. The positions of the mobiles and
of the base stations are randomly generated according to a uniform distribution
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in the Euclidian plane, forbidding situations where base stations are too close
to one another. The received power Pip at sp of a signal from mobile mi is
computed as follows:

Pip =
α rip
dip

γ

where

• α is a constant summarizing the effects of antenna configuration and po-
sition,

• rip is a random variable synthesizing the desired channel models: it is the
product of an exponential random variable to denote short term fading
and a log-normal random variable for shadowing,

• γ is the attenuation factor which typically varies from 2 in free-space to 4
for Non-Line Of Sight (NLOS) in urban areas. Our instances have been
generated with γ = 4.

Current technology can easily deal with an SIR = 6 dB (i.e. θ = 0.125), and
even a value of θ = 0.25 is a little conservative. The greater θ is, the more the
model will allow an effective spectral efficiency. In our experiments, we have
used θ = 0.25.

Numerical simulations based on data from real-life cellular network deploy-
ment scenarios in several cities are performed in [10]. One can observe that on
a metropolitan scale, phone operators typically use a few dozen base stations.
Our instances have t = 10, 15 and 25 base stations.

According to [12], in LTE, 1024 subcarriers, out of which only 600 support
data, are typically used. Twelve of these subcarriers over 14 OFDM symbols
are grouped into resource elements for a total of 168 of resource elements. Out
of those 168 resource elements, some are used for layer 1 and 2 control messages
and therefore do not support data. In our tests, we have used 120, which is of
the same order of magnitude.

For more details about how these instances were generated, the reader is
invited to consult [5].

6.1 Comparisons with optimal solutions

We denote by OPT the optimal value provided by the Boolean linear program-
ming model of Section 2, and compare it with the values produced by the nine
proposed heuristics WP1, WP2, WP3, DSAT1, DSAT2, DSAT3, RLF1, RLF2
and RLF3. Since OPT can only be computed for instances of relatively small
size, we have limited these comparisons to instances with t = 10 base stations,
n = 25, 30, 35, 40 mobiles, k = 12 channels and (θ, γ) = (0.25.4). For each com-
bination of parameters t, n, k, θ, γ, we have generated 25 instances, for a total of
100 instances. Average results are shown in Figure 5. In abscissa, we consider
various maximum allowed gaps (expressed in percentage) between OPT and the
value produced by the heuristics, while the ordinate indicates the percentage of



JGAA, 20(2) 159–188 (2016) 177

instances for which the given gap was not exceeded. For example, considering
WP1, we can read that 88% of the instances were solved to optimality, while
the maximum gap between OPT and the obtained value has never exceeded 6%
for 99% of the instances, and 96% of the instances were solved with a maximum
gap of 4%.
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Figure 5 – Comparisons between exact and heuristic algorithms.

It clearly appears that WP2 performs better than WP1, and WP3 outper-
forms WP1 and WP2, producing 94% optimal solutions. The maximum gap
between OPT and the WP3 value has never exceeded 6%. The analysis is sim-
ilar for the other heuristics: DSAT3 outperforms DSAT1 and DSAT2 with a
total of 95% optimal solutions and a maximum gap of 3%. Finally, RLF3 pro-
duces 94% optimal solutions in comparison with 90% for RLF1 and 95% for
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RLF2. The maximum gap between OPT and the RLF3 value is always below
6%.

In the three other performance profiles of Figure 5, WPi, DSATi and RLFi,
(i = 1, 2, 3) are compared with each other. It turns out that DSAT1 performs
better than WP1 and RLF1, while RLF2 is better than DSAT2 and WP2, and
DSAT3 is better than WP3 and RLF3. We also notice that the maximum
gap between OPT and the DSATi value is always smaller than the same gap
computed with WPi or RLFi : it is equal to 6% for DSAT1 and DSAT2, and
to only 3% for DSAT3.

These performance profiles clearly show that the proposed heuristics are able
to reach optimality for a large number of small instances. Indeed, all heuristics,
except WP1, have produced at least 90% optimal solutions. Also, the proposed
improvements of Section 5 are clearly effective since versions 2 and 3 of the
proposed heuristics perform better than version 1.

While DSAT3 could appear as the winner of this comparison, it is important
to mention that WP3 is also attractive as it runs in O(n2) time while DSAT3
and RLF3 run in O(n3) time. This can clearly be observed in Table 10 where
we report computing times (in seconds) for realistic networks having n = 500 to
1100 mobiles, k = 120 channels, t = 25 base stations, and (θ, γ) =(0.25,4). The
tests were run on a 3.4 GHz Intel(R) Core(TM) i7-2600 CPU machine with 16
GB of RAM.

Table 10 – Average CPU time (in seconds) with (θ, γ) = (0.25, 4), t = 25 base
stations, k = 120 channels

n WP1 WP2 WP3 DSAT1 DSAT2 DSAT3 RLF1 RLF2 RLF3

500 0.20 0.22 0.30 0.78 0.83 0.85 7.10 7.10 8.22
550 0.30 0.30 0.40 0.98 1.00 1.03 9.40 9.40 11.52
600 0.33 0.42 0.48 1.28 1.32 1.37 13.65 13.65 16.28
650 0.37 0.43 0.58 1.52 1.50 1.62 16.28 16.28 19.68
700 0.42 0.43 0.60 1.53 1.65 1.62 20.05 20.05 22.30
750 0.50 0.57 0.68 1.88 1.80 1.87 23.15 23.15 28.45
800 0.58 0.67 0.83 2.27 2.32 2.48 32.23 32.23 34.93
850 0.70 0.75 0.95 2.68 2.60 2.72 38.33 38.33 36.63
900 0.73 0.73 0.92 2.67 2.62 2.90 40.87 40.87 38.63
950 0.77 0.82 1.02 2.63 2.50 2.78 55.35 55.35 48.33

1000 0.90 0.87 1.03 3.05 3.13 3.37 59.75 59.75 45.78
1050 0.95 1.00 1.20 3.67 3.58 3.97 66.20 66.20 45.22
1100 1.10 1.12 1.32 3.97 4.03 4.58 79.75 79.75 53.63

Note that even if versions 2 and 3 of our algorithms run the COLORING
procedure 11 times, the total time needed for these 11 runs is comparable with
one run of version 1. The reason is that the selection of the color to assign to a
vertex is much faster in versions 2 and 3 since we limit our choices to preferred
or super-available colors.
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6.2 Parameter adjustments

Versions 2 and 3 of the proposed heuristics depend on parameters τ ∈ [0, 1] and
ρ ∈ [0, 1], respectively. We have performed tests to see if specific values of these
parameters should be preferred to others. As in the previous section, we have
considered instances with t = 10, n = 25, 30, 35, 40, k = 12, θ = 0.25 and γ = 4,
and we have generated 25 instances for each combination of t, n, k, θ, γ, for a
total of 100 instances. Average results produced by WP2 and WP3 are given in
Figures 6 and 7, for τ and ρ equal to 0, 0.25, 0.5, 0.75 and 1. Hence, instead of
reporting the best among 11 runs of the COLORING procedure, with different
values of τ or ρ (as was the case in Figure 5), we report here the individual
results produced by the COLORING procedure with each of the 5 considered
values of τ or ρ.
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Figure 6 – Performance profile of WP2 with different values of τ .

We observe that about 80% optimal solution are obtained with τ ≥ 0.75
while 73% of them are found with τ = 0.5, and about 70% with τ ≤ 0.25.
However, additional tests on larger instances have shown that there seems to be
no general rule for choosing a good value for τ . For example, these additional
tests have shown that τ = 0.75 should be preferred to τ = 0.5 27% of the time,
while preference should be given to τ = 0.5 over τ = 0.75 13% of the time. This
explains why we have chosen to run version 2 of our algorithms with different
values of τ , and to return the best result of these runs. Notice that even if
the COLORING procedure is run 11 times in WP2, the total computing time
remains very attractive since it is below 1 second for a network with n = 1000
mobiles (see Table 10).

Concerning parameter ρ, the performance profile in Figure 7 leads to the
same conclusion: there seems to be no optimal setting for ρ, which explains
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Figure 7 – Performance profile of WP3 with different values of ρ.

why we run version 3 of our algorithms with eleven different values.

6.3 Comparisons with the FFR technique

We next compare the performance of the proposed heuristics with the Fractional
Frequency Reuse (FFR) technique. It follows from Corollary 10 that the follow-
ing value is an upper bound on the percentage of simultaneously communicating
mobiles, when using the FFR technique:

100

n

t∑
p=1

(min {xp, |F |}+ min {|Fp|, yp,max {0, |F | − xp}}) .

We denote by FFR3 the value of this upper bound obtained by setting

| Fp |= |F |
3 , and τ = θ

2 for the definition of the center and the border of a
cell (i.e., for determining xp and yp in each cell Cp). We find it important to
mention that FFR3 is a very optimistic upper bound on the performance of the
FFR technique, not only because it assumes that mobiles in the center of a cell
do not interfere with mobiles in adjacent cells, but also because real base station

layouts do not permit to fix | Fp |= |F |
3 (see Figure 4).

Computational results for different pairs (t, k) are reported in Tables 11, 12,
13, 14, and 15. Each entry in these tables corresponds to the average coverage
ratio (i.e., the percentage of mobiles to which a channel could be assigned) taken
over 30 instances. Bounds on the optimal value OPT are given for instances
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Table 11 – Coverage ratio with (θ, γ) = (0.25, 4), t = 10 base stations, k = 12
channels

n z z FFR3 WP1 WP2 WP3 DSAT1 DSAT2 DSAT3 RLF1 RLF2 RLF3

15 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 97.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 99.7 99.7 96.3 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.7 99.7
35 99.1 99.1 93.3 97.6 98.3 98.1 98.6 98.7 98.7 98.1 98.4 98.6
40 98.5 98.9 90.5 95.9 96.5 96.9 96.5 97.1 96.9 96.0 97.8 97.3
45 96.7 97.0 88.8 88.2 89.7 90.9 91.3 92.2 92.0 89.0 92.2 91.9
50 96.5 96.8 89.2 90.2 91.6 92.8 93.2 94.1 93.8 90.8 93.1 92.8

Table 12 – Coverage ratio with (θ, γ) = (0.25, 4), t = 10 base stations, k = 24
channels

n z z FFR3 WP1 WP2 WP3 DSAT1 DSAT2 DSAT3 RLF1 RLF2 RLF3

60 99.7 99.8 95.1 99.3 99.4 99.5 99.4 99.6 99.7 99.2 99.4 99.3
65 99.8 99.8 95.6 99.5 99.5 99.5 99.7 99.7 99.7 99.4 99.5 99.5
70 100.0 100.0 96.2 99.8 100.0 100.0 99.9 100.0 100.0 99.9 100.0 100.0
75 99.5 99.7 96.3 98.1 98.6 99.0 98.9 99.3 99.3 98.5 98.9 98.9
80 99.6 99.8 94.9 97.8 98.1 98.4 98.8 98.9 99.1 98.3 99.0 98.9
85 98.9 99.5 93.6 97.0 97.3 97.8 97.3 97.8 97.6 97.4 97.9 98.1
90 98.4 99.0 91.3 94.0 94.6 95.4 95.3 96.1 96.4 94.3 96.2 96.3
95 97.3 98.5 90.1 92.7 94.1 94.9 94.9 96.0 96.1 93.2 95.2 95.2

100 97.2 98.6 89.7 91.3 92.9 94.7 94.3 95.7 96.0 91.8 94.5 95.1
105 92.9 96.3 89.4 84.2 85.9 88.5 88.8 90.2 89.8 85.2 88.6 88.7

Table 13 – Coverage ratio with (θ, γ) = (0.25, 4), t = 15 base stations, k = 36
channels

n z z FFR3 WP1 WP2 WP3 DSAT1 DSAT2 DSAT3 RLF1 RLF2 RLF3

75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
125 99.9 100.0 98.7 99.9 99.9 99.9 100.0 100.0 100.0 99.9 99.9 100.0
150 99.2 99.8 94.8 98.5 98.9 99.2 99.1 99.6 99.5 99.0 99.2 99.3
175 98.3 99.4 94.2 96.0 96.5 97.2 97.0 97.8 98.0 96.3 98.0 97.6
200 95.0 99.9 93.2 92.6 93.4 94.9 92.7 94.5 95.3 93.3 95.3 95.7
225 88.7 100.0 89.6 80.4 82.6 88.1 84.9 87.2 88.6 81.1 85.7 89.4

having less than t = 15 base stations and k = 48 channels. More specifically,
z and z are the best solution value and the best upper bound computed by
CPLEX with a running time of 30 seconds. If z = z, it means that the CPLEX
solver was able to reach optimality. Figure 8 shows the statistical distribution
of these results for the triplets (n, t, k)=(30,10,12), (80,10,24), (175,15,36) and
(225,15,48), with standard conventions for box-and-whisker plots.

For networks having t = 10 base stations and k = 12 available channels, we
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Table 14 – Coverage ratio with (θ, γ) = (0.25, 4), t = 15 base stations, k = 48
channels

n z z FFR3 WP1 WP2 WP3 DSAT1 DSAT2 DSAT3 RLF1 RLF2 RLF3

75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
125 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
150 100.0 100.0 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
175 100.0 100.0 98.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 99.7 100.0 97.9 99.6 99.7 99.8 99.8 99.9 99.9 99.8 99.8 99.8
225 95.0 100.0 95.2 95.3 96.0 97.1 96.7 97.0 97.1 96.2 97.5 97.2
250 0.0 100.0 93.2 92.1 92.8 94.1 93.7 94.3 94.8 92.7 94.7 94.4

Table 15 – Coverage ratio with (θ, γ) = (0.25, 4), t = 25 base stations, k = 120
channels

n FFR3 WP1 WP2 WP3 DSAT1 DSAT2 DSAT3 RLF1 RLF2 RLF3

500 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
550 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
600 99.4 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
650 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
700 98.9 99.5 99.7 99.8 99.8 99.9 99.9 99.4 99.7 99.9
750 99.0 99.7 99.8 99.9 99.7 99.9 100.0 99.8 99.9 100.0
800 97.9 98.1 98.7 99.5 98.2 98.9 99.9 98.2 99.0 99.7
850 98.1 98.4 98.6 99.5 98.2 98.6 99.2 98.2 98.7 99.6
900 97.0 95.8 96.5 98.9 95.1 96.4 98.3 95.9 96.9 99.2
950 96.9 93.8 94.8 98.5 92.5 94.7 98.9 93.1 95.8 98.8

1000 95.5 90.2 91.3 97.4 90.3 92.5 97.1 88.2 91.5 98.0
1050 94.2 83.5 84.7 93.9 83.6 85.9 90.8 82.0 87.6 94.6
1100 92.8 78.8 80.2 91.6 79.5 82.2 87.9 76.8 81.0 92.9

observe in Table 11 that WPi, DSATi and RLFi (i = 1, 2, 3) not only produce
a better coverage ratio than the optimistic upper bound FFR3, but are also
close to optimality. For example, with n = 30 mobiles, the optimistic upper
bound FFR3 gives a coverage ratio of 96.3%, while the heuristics all produce a
solution with at least 99.5% of communicating users, the optimal value being
equal to99.7%. For n = 200 mobiles and (t, k) = (15, 48) (see Table 14), all
the heuristics increase the coverage ratio FFR3 of 97.9% by approximately 2%,
which corresponds to 4 additional mobiles that can communicate simultaneously.
Similar conclusions hold for larger instances. For example, with n = 800 mobiles
and (t, k) = (25, 120) (see Table 15), FFR3 produces a coverage ratio of 97.9%,
while the heuristics give coverage ratios ranging from 98.1% (WP1) to 99.9%
(DSAT3), i.e. up to 16 additional mobiles that can communicate simultaneously.
The statistical distributions in Figure 8 show that these results are stable.

A more visual comparison is given in Figure 9. For better readability, only
the third versions WP3, DSAT3 and RLF3 of our algorithms are plotted. The
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(t,k,n)=(10,12,30) (t,k,n)=(10,24,80)

(t,k,n)=(15,36,175) (t,k,n)=(15,48,225)

Figure 8 – Boxplots of the coverage ratio with (θ, γ) = (0.25, 4).

best upper bound z̄ is omitted when it remains close to 100%. Since a coverage
ratio of 98% corresponds to the typical accepted call-blocking probability (CBP)
of 2%, we represent it with a horizontal line.

For (t, k) = (10, 12), we observe that the CBP of 2% is reached by the FFR
technique with 25 users, while more than 10 additional users can communicate
with WP3, DSAT3 and RLF3. For (t, k) = (15, 48), the number of communi-
cating users with the CBP of 2% increases from 200 with the FFR technique to
220 with the three proposed heurisitcs.

The results obtained for realistic wireless networks with up to t = 25 base
stations an k = 120 channels lead to interesting observations (see Table 15 and
Figure 9). We first note that the coverage ratio of 98% is out of reach by the FFR
technique with more than 850 mobiles, while at least 100 additional mobiles can

communicate using heuristics WP3, DSAT3, or RLF3. If we replace | Fp |= |F |
3

by | Fp |= |F |
4 , we get a more realistic upper bound for the FFR technique. The

advantage or our heuristics is then even more impressive since the coverage ratio
of 98% is out of reach by the FFR technique with more than 650 mobiles, while
1000 mobiles can communicate using RLF3, which corresponds to an increase
of more than 50%.
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Figure 9 – Evolution of the coverage ratio with (θ, γ) = (0.25, 4).

Observe that versions 1 and 2 of our algorithms are not as efficient as version
3 when the optimal coverage ratio draws away from 100%. For example, while
the coverage ratio of WP3 for 1000 users is 91.6%, it lies between 78.8% and
80.2% for WP1 and WP2. Such a decrease of more than 10% represents more
than 100 users. This can be explained as follows. When the optimal coverage
ratio is strictly smaller than 100%, it seems reasonable to remove from the
network those users having high interference with other mobiles. By keeping
these users in the network, one takes the risk of assigning to them the same
channel, thus preventing many other users from communicating. Heuristics
WP3, DSAT3, and RLF3 were implemented so that users that interfere much
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with each other have a smaller chance to get the same channel.

7 The PDWICP in modern wireless networks

An excellent survey on spectrum management can be found in [14], in which the
authors describe different assignment strategies, which fall into two categories:
static schemes and dynamic schemes. Dynamic schemes suppose a centralized
entity is able to manage the different access points and allocate resources ac-
cordingly. Many references of such algorithms are given. Our scheme clearly
falls into this category. Although the LTE frame does not work this way, we
strongly believe that with the rise of virtualization technologies, such frames
will converge towards dynamic schemes, in which all cells within a real-time
controllable physical region would be managed at the DSP level by a server. In
this context, we believe it is worth considering dynamic centralized algorithms
such as the ones we propose. In summary, the LTE frame as it is today cannot
make use of the proposed algorithms; we hope that 5G networks will.

Decentralized vertex coloring does exist (see for example [13]), each vertex of
a graph is an independent entity responsible for choosing its own color. More-
over, the only information available to each vertex is who its neighbours are,
and what their colors are. This would be a promising view to explore in order
for our model to reflect the current LTE frame more faithfully, but it is beyond
the scope of this paper.

The PDWICP can be used to solve other problems. Although weighted
improper coloring is a new problem, it has received attention recently. For
example, Alcatel Space Technologies and INRIA are currenlty working on the
design of MFTDMA multispot resource allocation in satellite networks [1, 4]. In
this technology, satellites transmit signals to areas on the ground called spots.
Satellites and spots are the equivalent of base stations and mobiles, respectively.
Araujo et al. have called this problem the Improper Weighted Coloring Problem
(IWCP), which is a varation of the PDWICP, and have developped algorithms
in which they consider that satellites can cooperate (which supposes there is a
centralized entity). Numerical tests are performed with up to 2 000 vertices and
5 colors (or frequencies).

As another example, Mishra et al. [17] have developed a similar model
for WLAN networks with approximately 20 Access Points (APs) (equivalent
of base stations here) and 14 frequencies. Specifically, they model the 802.11b
protocol with weighted improper coloring, which gives rise to a variant of the
PDWICP (specifically, a minimum cost improper weighted coloring problem).
Moreover, they mention that the IAPP protocol enables cooperation of the APs
and therefore develop a centralized allocation strategy as well.
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8 Conclusion

Today’s wireless networks should allow as many users as possible to communi-
cate simultaneously, without compromising the quality of the signals. We have
shown that such a goal can be achieved in an efficient way by solving the Partial
Directed Weigthed Improper Coloring Problem (PDWICP). Wireless networks
must ensure a call blocking probability (CBP) below 2% (i.e., a coverage ratio
of 98%) to satisfy the current mobile standards. We have adapted three stan-
dard graph coloring algorithms to the PDWICP, with three versions for each
algorithm. All proposed heuristics meet the CBP requirement of 2% with more
users than the standard FFR technique. In summary, the proposed heuristics
perform better than today’s phone operator systems that mostly use decen-
tralized channel assignment strategies. In particular the low complexity of the
WP3 algorithm, when compared to DST3 or RLF3, makes it very attractive for
real-time channel assignments.

We have also noticed that the performance of the proposed algorithms de-
creases when the optimal coverage ratio draws away from 100%. This can be
explained by the fact that our heuristics make the implicit assumption that all
vertices will be colored. Indeed, in their original form, the WP, DSAT and RLF
algorithms aim at finding the chromatic number of a graph. For example the
WP algorithm sequentially colors the vertices by non increasing degree, in order
to give priority to vertices having many neighbors. If it is known in advance that
the size of the largest induced k-colorable subgraph is much smaller than n, it
then seems reasonable to sort the vertices in non decreasing degree to exclude in
priority vertices that are likely to saturate color classes. Solving the PDWICP
in situations where the optimal coverage ratio is much below 100% would there-
fore probably require readapting the order in which vertices are considered for
a sequential coloring.

Note finally that the algorithms were implemented in Python, which is a very
high level programming language, typically used for developing prototypes. It is
clear that an implementation in a lower level language would decrease execution
times. Since this paper aims more at exploring new algorithms (rather than
usage in operation in detail), emphasis was not put on this feature. Moreover,
we have studied the theoretical complexity of the algorithms in order to have
an idea of how the algorithms perform in general, independently from their
implementation and the programming language used. Also, our final objective
is to extend this model on a rolling horizon, with vertices (mobiles) arriving
and disappearing in an online fashion. In this context, it is clear that allocation
cannot be done from scratch every time there is an update in the network. More
likely, we believe quick local search around the new vertex will be more efficient.
Therefore the CPU times are not to be considered for usage in practice, although
the quickest ones are acceptable.
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