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Abstract

In this paper, we investigate the common unfolding between regular
tetrahedra and Johnson-Zalgaller solids. More precisely, we investigate
the sets of all edge developments of Johnson-Zalgaller solids that fold into
regular tetrahedra. We show that, among 92 Johnson-Zalgaller solids,
only J17 (gyroelongated square dipyramid) and J84 (snub disphenoid)
have some edge developments that fold into a regular tetrahedron, and
the remaining Johnson-Zalgaller solids do not have any such edge devel-
opment.
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1 Introduction

In 1525 the painter and printmaker Albrecht Dürer published a book, translated
as “The Painter’s Manual,” in which he explained the methods of perspective
[13]. In the book, he includes a description of many polyhedra, which he pre-
sented as surface unfoldings, are now called “nets.” An edge unfolding is defined
by a development of the surface of a polyhedron to a plane, such that the sur-
face becomes a flat polygon bounded by segments that derive from edges of the
polyhedron. We would like an unfolding to possess three characteristics. (1)
The unfolding is a single, simply connected piece. (2) The boundary of the
unfolding is composed of (whole) edges of the polyhedron, that is, the unfolding
is a union of polyhedron faces. (3) The unfolding does not self-overlap, that is,
it is a simple polygon. We call a simple polygon that satisfies these conditions
a net for the polyhedron.

Since then, nets for polyhedra have been widely investigated (rich back-
ground can be found in [5], and recent results can be found in [10]). For ex-
ample, Alexandrov’s theorem states that every metric with the global topology
and local geometry required of a convex polyhedron is in fact the intrinsic met-
ric of some convex polyhedron. Thus, if P is a net of a convex polyhedron Q,
then the shape (as a convex polyhedron) is uniquely determined. Alexandrov’s
theorem was stated in 1942, and a constructive proof was given by Bobenko and
Izmestiev in 2008 [4]. A pseudo-polynomial algorithm for Alexandrov’s theo-
rem, given by Kane et al. in 2009, runs in O(n456.5r1891/ε121) time, where r
is the ratio of the largest and smallest distances between vertices, and ε is the
coordinate relative accuracy [9]. The exponents in the time bound of the result
are remarkably huge.

Therefore, we have to restrict ourselves to smaller classes of polyhedra to
investigate from the viewpoint of efficient algorithms. In this paper, we consider
some classes of polyhedra that have common nets. In general, a polygon can be
a net of two or more convex polyhedra. Such a polygon is called a common net of
the polyhedra1. Recently, several polygons folding into two different polyhedra
have been investigated (see [12] for comprehensive list). In this context, it is
natural to ask whether there is a common net of two (or more) different Platonic
solids. This question has arisen several times independently, and it is still open
(see [5, Section 25.8.3]). In general nets, there is a polygon that can folds into a
cube and an almost regular tetrahedron with small error ε < 2.89200× 10−1796

[12]. On the other hand, when we restrict ourselves to deal with only edge
unfoldings, there are no edge unfolding of the Platonic solids except a regular
tetrahedron that can fold into a regular tetrahedron [8]. This result is not
trivial since a regular icosahedron and a regular dodecahedron have 43,380 edge
unfoldings. In fact, it is confirmed that all the edge unfolding are nets (i.e.,
without self-overlapping) rather recently [6].

In this paper, we broaden the target of research from the set of five Platonic
solids to the set of 92 Johnson-Zalgaller solids (JZ solids for short). A JZ solid is

1Note that an edge of an unfolding can passes through a flat face of the polyhedra.
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Figure 1: (Left) an edge unfolding of the JZ solid J17, and (right) an edge
unfolding of the JZ solid J84, which are also nets of a regular tetrahedron,
respectively. These polygons are also p2 tilings.

a strictly convex polyhedron, each face of which is a regular polygon, but which
is not uniform, i.e., not a Platonic solid, Archimedean solid, prism, or antiprism
(see, e.g., http://mathworld.wolfram.com/JohnsonSolid.html). Recently,
the number of edge unfoldings of the JZ solids are counted [7], however, it has
not been investigated how many nets (without self-overlapping) are there. On
the other hand, the tilings of edge unfoldings of JZ solids are classified [2]. That
is, they classified the class of the JZ solids whose edge unfoldings form tilings.
Some tilings are well investigated in the context of nets; a polygon is a net of a
regular tetrahedron if and only if it belongs to a special class of tilings [1].

In this paper, we concentrate on common nets of a regular tetrahedron and
the JZ solids. More precisely, we classify the set of edge unfoldings of the JZ
solids such that each of them is also folded into a regular tetrahedron. We first
show that there exists edge unfoldings of some JZ solids that are also nets of a
regular tetrahedra:

Theorem 1 An edge unfolding of the JZ solid J17 and an edge unfolding of the
JZ solid J84 fold into a regular tetrahedron.

We will show that Figure 1 certainly proves Theorem 1. Next we also compute
all common nets that fold into both of a JZ solid and a regular tetrahedra:2

Theorem 2 (1) Among 13,014 edge unfoldings of the JZ solid J17 [7], there
are 87 nets that fold into a regular tetrahedron, which consist of 78 nets that
have one way of folding into a regular tetrahedron, 8 nets that have two ways of
folding into a regular tetrahedron, and 1 net that has three ways of folding into
a regular tetrahedron. (2) Among 1,109 edge unfoldings of the JZ solid J84 [7],
there are 37 nets that fold into a regular tetrahedron, which consist of 32 nets

2These numbers are counted on the “unlabeled” solids, and congruent unfoldings are not
reduced. See [7] for further details.

http://mathworld.wolfram.com/JohnsonSolid.html
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Figure 2: An edge unfolding of the JZ solid J84. It has two different types of p2
tilings, and hence there are two different ways to fold into a regular tetrahedron.

that have one way of folding into a regular tetrahedron, and 5 nets that have
two ways of folding into a regular tetrahedron.

We note that some nets allow to fold into a regular tetrahedron in two or three
different ways of folding. A typical example that has two ways of folding is
shown in Figure 2. We can tile the net of the JZ solid J84 in two different ways,
hence we can fold a regular tetrahedron in two different ways according to the
tilings. The unique net that has three ways of folding is shown in Figure 3.

Among 92 JZ solids, Akiyama et al. found that 18 JZ solids have edge
unfoldings that are also tilings [2]. We will show that all of them are also p2

Figure 3: An edge unfolding of the JZ solid J17 that can be folded into a regular
tetrahedron in three different ways.
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Table 1: The JZ solids whose some edge unfoldings are nets of tetramonohedra.
Name J1 J8 J10 J12 J13 J14

Image

# of �s 1 5 1 0 0 3
# of 4s 4 4 12 6 10 6

LJi

√√
3

3
+ 1

√
5
√
3

3
+ 1

√√
3

3
+ 3

√
1.5

√
2.5

√√
3 + 3

2

= 1.255 · · · = 1.971 · · · = 1.891 · · · = 1.224 · · · = 1.581 · · · = 1.797 · · ·
Name J15 J16 J17 J49 J50 J51

Image

# of �s 4 5 0 2 1 0
# of 4s 8 10 16 6 10 14

LJi

√
4
√
3

3
+ 2

√
5
√
3

3
+ 5

2
2

√
2
√
3

3
+ 3

2

√√
3
3

+ 5
2

√
3.5

= 2.075 · · · = 2.320 · · · = 1.629 · · · = 1.754 · · · = 1.870 · · ·
Name J84 J86 J87 J88 J89 J90

Image

# of �s 0 2 1 2 3 4
# of 4s 12 12 16 16 18 20

LJi

√
3

√
2
√
3

3
+ 3

√√
3

3
+ 4

√
2
√
3 + 4

√√
3 + 9

2

√
4
√
3

3
+ 5

= 1.732 · · · = 2.038 · · · = 2.139 · · · = 2.270 · · · = 2.496 · · · = 2.703 · · ·

tiling, which imply that they can be folded into tetramonohedra. As shown in
Theorem 1, two of them can be folded into regular tetrahedra. On the other
hand, the other 16 JZ solids do not have such edge unfoldings:

Theorem 3 Except J17 and J84, there is no other JZ solid such that its edge
unfolding is a net of a regular tetrahedron.

Therefore, we classify the set of edge unfoldings of the JZ solids by the foldability
of a regular tetrahedron.

2 Preliminaries

We first show some basic results about unfolding of a polyhedron.

Lemma 1 ([5, Sec. 22.1.3]) All vertices of a polyhedron X are on the bound-
ary of any unfolding of X.

Let P be a polygon on the plane, and R be a set of four points (called rotation
centers) on the boundary of P . Then P has a tiling called symmetry group p2
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J86 J89

Figure 4: p2 tilings by (left) an edge unfolding of JZ solid J86, and (right) an
edge unfolding of JZ solid J89.

(p2 tiling, for short) if P fills the plane by the repetition of 2-fold rotations
around the points in R. The filling should contain no gaps nor overlaps. The
rotation defines an equivalence relation on the points in the plane. Two points p1
and p2 are mutually equivalent if p1 can be moved to p2 by the 2-fold rotations.
More details of p2 tiling can be found, e.g., in [11]. Based on the notion of p2
tiling, any unfolding of a tetramonohedron3 can be characterized as follows:

Theorem 4 ([1, 3]) P is an unfolding of a tetramonohedron if and only if (1)
P has a p2 tiling, (2) four of the rotation centers consist in the triangular lattice
formed by the triangular faces of the tetramonohedron, (3) the four rotation
centers are the lattice points, and (4) no two of the four rotation centers belong
to the same equivalent class on the tiling.

We can obtain the characterization of the unfolding of a regular tetrahedron if
each triangular face in Theorem 4 is a regular triangle. By Theorem 4, Theorem
1 is directly proved by Figure 1. (Of course it is not difficult to check these nets
in Figure 1 by cutting and folding directly.)

In the classification in [2], they show only p1 tilings for the JZ solids J84,
J86 and J89. However, they also have edge unfoldings that form p2 tilings as
shown in Figure 1 (J84) and Figure 4 (J86 and J89), and hence they can fold
into tetramonohedra.

Let LJi
be the length of an edge of a regular tetrahedron TJi

that has the
same surface area of the JZ solid Ji. We assume that each face of Ji is a regular
polygon that consists of edges of unit length. Thus it is easy to compute LJi

from its surface area of Ji as shown in Table 1. If an edge unfolding PJi of the JZ
solid Ji can be folded into a regular tetrahedron, the tetrahedron is congruent
to TJi

since they have the same surface area. Moreover, by Theorem 4, PJi

is a p2 tiling, and its four of the rotation centers form the regular triangular
lattice filled by regular triangles of edge length LJi

. Let c1 and c2 be any pair
of the rotation centers of distance LJi

. Then, by Lemma 1, c1 and c2 are on
boundary of PJi and P ′Ji

for some polygons PJi and P ′Ji
, respectively. By the

same extension of Theorem 25.3.1 in [5] used in [8, Lemma 8], we can assume
that c1 and c2 are on the corners or the middlepoints on some edges of regular
faces of JZ solids Ji without loss of generality. Summarizing them, we obtain
the following lemma:

3 A tetramonohedron is a tetrahedron that consists of four congruent triangular faces.
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Figure 5: (a) a spanning tree of the JZ solid J17, (b) its corresponding unfold-
ing, and (c) a p2 tiling around the rotation centers.

Lemma 2 Assume that a polygon PJi
is obtained by an edge unfolding of a JZ

solid Ji. If PJi
can be folded into a regular tetrahedron TJi

, PJi
forms a p2

tiling T . Let c1 and c2 be any two rotation centers on T such that the distance
between c1 and c2 is LJi , equal to the length of an edge of TJi . Then, the vertices
c1 and c2 are on the corners or the middlepoints on edges of unit length in T .

3 The JZ solids J17 and J84

In this section, we describe an algorithm to obtain Theorem 2. By applying the
technique in [6], we can enumerate a set of spanning trees of any polyhedron,
where a spanning tree is obtained as a set of edges. By traversing each spanning
tree, we can obtain its corresponding unfolding PJi

. Since all edges of a JZ solid
have the same length, PJi

can be represented by a cyclic list CJi
of its interior

angles aj , where vertices vj of PJi
correspond to the corners or the middlepoints

on some edges of the original JZ solid. Since a spanning tree has n − 1 edges,
each edge appears twice as the boundary of PJi , and each edge is broken into two
halves, PJi has 4(n− 1) vertices. Figure 5 illustrates (a) a spanning tree of the
JZ solid J17, and (b) its corresponding unfolding, which can be represented by
CJi

= {60, 180, 120, 180, 180, 180, 60, 180, 300, 180, 60, 180, 300, 180, 60, 180, 300,
180, 60, 180, 120, 180, 180, 180, 60, 180, 300, 180, 60, 180, 300, 180, 60, 180, 300, 180}.

Now, we use Theorem 4 and check if each edge unfolding is a p2 tiling or not.
We can use the similar idea with the algorithm for gluing borders of a polyhedron
(see [5, Chap. 25.2]): around each rotation center, check if the corresponding
points make together 360◦. If not, we dismiss this case, and otherwise, we obtain
a gluing to form a regular tetrahedron.

We first consider the JZ solid J17. In this case, we can determine the length
of each edge of the triangular lattice equals to 2, since each face of the (potential)
regular tetrahedron consists of four unit tiles. We can check if each unfolding
of the JZ solid J17 can be folded into a regular tetrahedron as follows:

1. For each pair of vj1 and vj2 , suppose they are rotation centers, and check
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if the distance between them is 2.

2. Obtain a path vj′1–vj1–vj′′1 which is glued to vj′′1 –vj1–vj′1 by a 2-fold rotation
around vj1 . So do a path vj′2–vj2–vj′′2 for vj2 .

3. Replace interior angles of aj′1 , . . . , aj1 , . . . , aj′′1 in CJi
with angle a′j1 , where

a′j1 = aj′1 + aj′′1 if j′1 6= j′′1 and a′j1 = aj1 + 180 if j′1 = j′′1 = j1. So do aj′2 ,
. . . , aj′′2 . Let C ′Ji

be the resulting cyclic list.

4. For each pair of vj3 and vj4 , suppose they are rotation centers, and check
if a path vj3–vj4 in C ′Ji

is glued to the remaining path vj4–vj3 .

5. Check if vj3 and vj4 are the lattice points of the regular triangular lattice
defined by vj1 , vj2 , and check if no two of vj1 , vj2 , vj3 and vj4 belong to
the same equivalent class.

In Step 1, since every face of the JZ solid J17 is a triangle, aj is always a
multiple of 60. The relative position of vj from v0 can be represented as a linear
combination of two unit vectors ~u and ~v that make a 60◦ angle. Thus, we check
if vector −−−→vj1vj2 is one of ±2~u, ±2~v, ±2(~u− ~v) in this step.

In Step 2, two vertices vj′1 and vj′′1 are obtained as vj1−k and vj1+k with
an integer k satisfying aj1−k + aj1+k < 360 and aj1−k′ + aj1+k′ = 360 for
all 0 ≤ k′ < k. In Figure 5, v1 and v7 are supposed to be rotation centers,
and paths v0–v1–v2 and v4–v7–v10 are glued to v2–v1–v0 and v10–v7–v4, re-
spectively. By rotating PJi around vj1 and vj2 repeatedly, we obtain a hor-
izontally infinite sequence of PJi as shown in Figure 5(c), whose upper and
lower borders are the repetition of the path denoted in double line. The list
of the interior angles along the double line is obtained as C ′Ji

in Step 3. In
Figure 5(c), C ′Ji

is {180, 180, 240, 180, 300, 180, 60, 180, 300, 180, 60, 180, 120, 180,
180, 180, 60, 180, 300, 180, 60, 180, 300, 180, 60, 180, 300, 180}.

In Step 4, we check if aj3 = aj4 = 180 holds and aj3−k + aj3+k = 360 for
other gluing of vertices vj3−k and vj3+k in C ′Ji

. If PJi
passes all checks in Steps

1–4, PJi
has a p2 tiling with rotation centers vj1 , vj2 , vj3 and vj4 . In Step 5,

we check if the four points meet Theorem 4(2)–(4) and if each triangular face
is a regular triangle. As in Step 1, this check can be done from the positions of
vertices represented as a linear combination of ~u and ~v.

For the JZ solid J84, we can check in the same way by letting the length
of the triangular lattice equal to

√
3, and thus, in Step 1, we check if vector

−−−→vj1vj2 is one of ±(~u+ ~v), ±(2~u− ~v), ±(2~v − ~u). The complete catalogue of 87
and 37 nets of the JZ solids J17 and J84, respectively, that fold into a regular
tetrahedron is given in http://www.al.ics.saitama-u.ac.jp/horiyama/res

earch/unfolding/common/.

4 The other JZ solids

In this section, we prove Theorem 3. Combining the results in [2] and the tilings
in Figure 1 and Figure 4, the set J of JZ solids whose edge unfoldings can be
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Figure 6: A simple example of the linkage for a potential edge c1c2 of a reg-
ular tetrahedron of edge length LJi

for some i. The linkage is L = (c1 =
q1, p1, q2, p2, q3, p3, . . . , q6, p6, q7 = c2). Each angle at qj is 180◦, and each angle
at pj is given by some tiles.

p2 tiling is J = {J1, J8, J10, J12, J13, J14, J15, J16, J17, J49, J50, J51, J84,
J86, J87, J88, J89, J90}. In other words, some edge unfoldings of the JZ solids
in J can be folded into tetramonohedra. Among them, J17 and J84 allow to
fold into regular tetrahedra from their edge unfoldings as shown in Figure 1.
We will show that the other JZ solids do not. Hereafter, we only consider the
JZ solids Ji in J ′ = J \ {J17, J84}. Then each face is either a unit square or
a unit triangle. We call each of them a unit tile to simplify. We consider the
rotation centers that form the regular triangular lattice of size LJi

. Let c1 and
c2 be any pair of the rotation centers of distance LJi

. We use the fact that the
distance between c1 and c2 is equal to LJi

, and show that any combination of
unit tiles cannot achieve the length.

Intuitively, two points c1 and c2 are joined by a sequence of edges of unit
length that are supported by unit tiles. Thus, by Lemma 2, we can observe that
there exists a linkage L = (p0, q1, p1, q2, p2, . . . , qk, pk) such that (1) c1 is on
either p0 or q1, (2) c2 is on either qk or pk, (3) the length of pipi+1 is 1, (4) the
length of pi−1qi and qipi is 1/2 (in other words, qi is the center point of pi−1pi),
(5) each angle at qi (1 ≤ i ≤ k) is 180◦, (6) each angle at pi (1 ≤ i ≤ k− 1) is in
{60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦}, and (7) the linkage is not self-
crossing. (See [5] for the definition of the notion of linkage.) A simple example
is given in Figure 6.

Without loss of generality, we suppose that L has the minimum length among
the linkages satisfying the conditions from (1) to (7). By the minimality, we
also assume that (8) pi 6= pj for each i 6= j, and (9) if |i− j| > 1, the distance
between pi and pj is not 1 (otherwise, we obtain a shorter linkage by replacing
the path joining pi and pj by link (pi, pj)).
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with the last unit tile Ch.

Therefore, by Theorem 4, for sufficiently large k, if all possible pairs c1 and
c2 on the linkages satisfying the conditions from (1) to (9) do not achieve the
required distance LJi , any edge unfolding of the JZ solid Ji cannot be folded
into a corresponding regular tetrahedron TJi

. We show an upper bound of k:

Theorem 5 Let J ′ be the set {J1, J8, J10, J12, J13, J14, J15, J16, J49, J50,
J51, J86, J87, J88, J89, J90} of the JZ solids that have some edge unfoldings
which are also p2 tilings. For some Ji ∈ J ′, suppose that the linkage L =
(p0, q1, p1, q2, p2, . . . , qk, pk) defined above exists. Then k ≤ 10.

Proof: By simple calculation, LJi
takes the maximum value

√
4
√

3/3 + 5 =

2.703 · · · for J90 in J ′. Thus the length of the line segment c1c2 is at most
2.703 · · · .

Now we assume that the line segment c1c2 passes through a sequence C1C2 · · ·Ch

of unit tiles in this order (see Figure 6). That is, the line segment c1c2 has
nonempty intersection with each of Ci in this order. If c1c2 passes an edge shared
by two unit tiles, we take arbitrary one of two in the sequence. We consider the
minimum length of the part of c1c2 that intersects three consecutive unit tiles
Ci−1CiCi+1 in the sequence. Since they are unit triangles or squares, three unit
tiles make greater than or equal to 180◦ at a vertex. Therefore the minimum
length is achieved by the three consecutive triangles arranged in Figure 7, and
in this case, the length is greater than

√
3/2 = 0.866 · · · . Thus, if c1c2 passes

through nine unit tiles, the intersection has length at least 3
√

3/2 = 2.598 · · · .
On the other hand, the last point c2 is on the vertex or a midpoint of an edge
of the last unit tile Ch. Then the intersection of c1c2 and Ch has at least√

3/4 = 0.433 · · · (Figure 8). Since 3
√

3/2 +
√

3/4 = 3.03 · · · > 2.703, c1c2
passes through at most 9 unit tiles.

Now we turn to the linkage L = (p0, q1, p1, q2, p2, . . . , qk, pk) supported by
the unit tiles C1C2 · · ·Ch with h ≤ 9. We consider the number of edges of a
unit tile that contributes to L. Locally, the worst case is that a unit square that
contributes three edges to L (Figure 9). However, in this case, the length of
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Figure 9: Unit square can contribute three edges to the linkage.

the intersection of the square and c1c2 has length at least 1. Therefore, further
analysis for the remaining length at most 2.703 · · · − 1 = 1.703 · · · , and we can
check that this case does not give the worst value of k. In the same reason, if
c1c2 passes through an entire edge of length 1, it does not give the worst value
of k. Next considerable case is that a unit tile Ci contributes two edges to L
independent from Ci−1 and Ci+1. That is, c1c2 passes through two vertices of
Ci. Then Ci is not a unit triangle since we can replace two edges by the third
edge and obtain a shorter linkage. Thus Ci is a unit square, and c1c2 passes
through the diagonal of Ci since two edges are not shared by Ci−1 and Ci+1.
Then the intersection of c1c2 and Ci has length

√
2 = 1.414 · · · , and hence this

case does not give the worst value of k again. Therefore, in the worst case, each
unit tile contributes exactly two edges to LJi

, and each edge is shared by two
consecutive unit tiles in the sequence C1C2 · · ·Ch, where h ≤ 9. Therefore, the
linkage consists of at most 10 unit length edges, that is, k ≤ 10. 2

Now, for k ≤ 10, if all possible pairs c1 and c2 on the linkages satisfying
the conditions from (1) to (9) do not realize any distance LJi in Table 1 ex-
cept J17 and J84, any edge unfolding of the JZ solid Ji cannot be folded into a
corresponding regular tetrahedron TJi

. However, the number of possible config-
urations of the linkage is still huge. To reduce the number, we use the following
theorem:

Theorem 6 Let J ′ be the set {J1, J8, J10, J12, J13, J14, J15, J16, J49, J50,
J51, J86, J87, J88, J89, J90} of the JZ solids that have some edge unfoldings
which are also p2 tilings. For some Ji ∈ J ′, suppose that the linkage L =
(p0, q1, p1, q2, p2, . . . , qk, pk) defined above exists. Let I be the set of integers and
I+1/2 be the set defined by I∪{i+1/2 | i ∈ I}. Let ~u1 = (1, 0), ~u2 = (

√
3/2, 1/2),

~u3 = (1/2,
√

3/2), ~u4 = (0, 1), ~u5 = (−1/2,
√

3/2), and ~u6 = (−
√

3/2, 1/2) be
six unit length vectors as shown in Figure 10. Then there are four integers
k2, k3, k4, k5 in I and two numbers k1, k6 in I+1/2 such that

∑6
i=1 |ki| ≤ 10 and

c2 = c1 +
∑6

i=1 ki ~ui.

Proof: When we regard each link in the linkage as a vector, since vectors are
commutative, we can swap two links without changing the coordinate of c2 (see
Figure 11 for an example; one can find the same idea in, e.g., [5, Section 5.1.1]).
Thus we have the theorem. 2
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Figure 10: Six unit
vectors.
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Figure 11: Linkage as the set of unit vectors: (a) given tiling
and linkage, (b) corresponding vectors, and (c) reorganized
vectors.

Corollary 7 For the two points c1 and c2 with c2 = c1 +
∑6

i=1 ki ~ui in Theorem

6, There are four numbers h1, h2, h3, h4 in I+1/2 such that c2 = c1 +
∑4

i=1 hi ~ui.

Proof: Since ~u6 = ~u4 − ~u2 and ~u5 = ~u3 − ~u1, we can remove two vectors from
the equation. Precisely, we have

∑6
i=1 ki ~ui = (k1 − k5) ~u1 + (k2 − k6) ~u2 + (k3 +

k5) ~u3 + (k4 + k4) ~u4. 2

Now we prove the main theorem in this section:

Proof: (of Theorem 3) First we consider two points c1 and c2 given in Corollary

7: c2 = c1 +
∑4

i=1 hi ~ui for some four numbers h1, h2, h3, h4 in I+1/2. Then

|c1c2| 2 = L2
Ji

= h21+h24+h1h3+h2h4+13(h22+h23)/4+2
√

3(h1h2+h2h3+h3h4).
Now we fix some JZ solid Ji for some i. Let mi and ni be the number of

triangles and squares in Ji, respectively. Then we have L2
Ji

= mi/4 +
√

3ni/3.
By the condition that h1, h2, h3, h4 ∈ I+1/2, we can observe that

mi = 4h21 + 4h24 + 4h1h3 + 4h2h4 + 13h22 + 13h23 (1)

ni = 6(h1h2 + h2h3 + h3h4) (2)

From the second equation, we can observe that ni is a multiple of 3. Thus the
JZ solids J1, J8, J10, J15, J16, J49, J50, J86, J87, J88, and J90 have no edge
unfolding that is a net of a regular tetrahedron.

For the remaining JZ solids J12 (n = 0,m = 6), J13 (n = 0,m = 10), J14
(n = 3,m = 6), J51 (n = 0,m = 14), and J89 (n = 3,m = 18), we check
them by a brute force. More precisely, we generate all possible k1, k2, . . . , k6 ∈
[−10..10] ∩ I+1/2 with

∑6
i=1 |ki| ≤ 10, and compute h1 = k1 − k6, h2 = k2 −

k5, h3 = k3 + k6, h4 = k4 + k5, and n and m by the above equations. Then no
6-tuple (k1, k2, . . . , k6) generates any pair of (n = 0,m = 6), (n = 0,m = 10),
(n = 3,m = 6), (n = 0,m = 14), and (n = 3,m = 18) 4.

Therefore, in J , only J17 and J84 have feasible solutions LJ17 = 2 and
LJ84 =

√
3 in the distances. 2

4From the viewpoint of the programming, we only use integer variables k′1 = 2k1, k′2 = 2k2,
. . ., and k′6 = 2k6, and compute 4m and 4n. Then all computation can be done on integers.
Hence we can avoid computational errors, and the program runs in a second.
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5 Convex Polyhedra with Regular Polygonal
Faces

According to the classification in [2], there are 23 polyhedra with regular polyg-
onal faces whose edge unfoldings allow tilings. Among them, 18 JZ solids have
been discussed in Section 4, and four Platonic solids were discussed in [8]. The
remaining one is hexagonal antiprism that consists of two regular hexagons and
12 unit triangles. By splitting each regular hexagon into six unit triangles,
which is called coplanar deltahedron, we can show the following theorem using
the same argument above:

Theorem 8 The hexagonal antiprism has no edge unfolding that can fold into
a regular tetrahedron.

Thus we can conclude as follows:

Corollary 9 Among convex polyhedra with regular polygonal faces, including
the Platonic solids, the Archimedean solids, and the JZ solids, regular prisms,
and regular anti-prisms, only the JZ solids J17 and J84 (and regular tetrahedron)
admit to fold into regular tetrahedra from their edge unfoldings.

6 Concluding Remarks

In this paper, we show that the JZ solids J17 and J84 are exceptionally in the
sense that their edge unfoldings admit to fold into regular tetrahedra. Espe-
cially, some edge unfoldings can fold into a regular tetrahedron in two or three
different ways. In this research, the characterization of nets by tiling (Theo-
rem 4) plays an important role. In general, even the decision problem that asks
if a polyhedron can be folded from a given polygon is quite difficult problem [5,
Chapter 25]. More general framework to solve the problem is future work.
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