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The Impact of Communication Patterns on
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Thim Strothmann

Department of Computer Science, University of Paderborn, Germany

Abstract

This paper introduces the problem of communication pattern adaption
for a distributed self-adjusting binary search tree. We propose a simple lo-
cal algorithm that is closely related to the over thirty-year-old idea of splay
trees and evaluate its adaption performance in the distributed scenario if
different communication patterns are provided. To do so, the process of
self-adjustment is modeled similarly to a basic network creation game in
which the nodes want to communicate with only a certain subset of all
nodes. We show that, in general, the game (i.e., the process of local ad-
justments) does not converge, and that convergence is related to certain
structures of the communication interests, which we call conflicts. We
classify conflicts and show that for two communication scenarios in which
convergence is guaranteed, the self-adjusting tree performs well. Further-
more, we investigate the different classes of conflicts separately and show
that, for a certain class of conflicts, the performance of the tree network
is asymptotically as good as the performance for converging instances.
However, for the other conflict classes, a distributed self-adjusting binary
search tree adapts poorly.
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1 Introduction

Over 30 years ago, Sleator and Tarjan [25] introduced an interesting paradigm
to design efficient data structures. Instead of optimizing general metrics, like
tree depth, they proposed a self-adjusting data structure. To be more precise,
the authors introduced splay trees, self-adjusting binary search trees in which
frequently accessed elements are closer to the root. This therefore improves the
average access times weighted by the popularity of the elements. Avin et al. [4]
recently proposed SplayNet, a distributed generalization of splay trees, which is
heavily inspired by [25]. In contrast to classical splay trees where requests (i.e.,
lookups) always originate from the root of the tree, communication in SplayNets
happens between arbitrary node pairs in the network. As such, SplayNets can
be interpreted as a distributed data structure, e.g., a structured peer-to-peer
(p2p) system or distributed hash table (DHT). Following the ideas of Avin et
al., we further investigate the dynamics of a distributed locally self-adjusting
tree.

An intuitive requirement to a distributed data structure is that nodes that
communicate more frequently with each other become topologically closer to
each other. An important factor that influences the performance of a distributed
data structure is the peculiarity of the underlying communication interest pat-
tern. Likewise to the original concept of splay trees, each node in the distributed
splay tree should only have access to local information to decide whether it needs
to change its position in the tree. In our specific scenario, the only kinds of infor-
mation that each node has access to are its parent, its children and information
about the distances to nodes it wants to communicate with. With only little
knowledge about the structure of the tree and only limited possibilities to change
the structure (called rotations), a distributed self-adjusting tree can be seen as
a local algorithm whose performance is affected by the communication interests.
We want to focus on this specific aspect and try to answer the question of how
the performance of a distributed self-adjusting tree is influenced by different
communication patterns. However, instead of using empirical entropies as a
building block for the analysis (as done in [4]), the analytical method we use is
heavily inspired by the concept of Basic Network Creation Games (BNCG) [2].
By doing so we can extend the analysis of [4] in convergent scenarios to a wider
variety of instances. Furthermore, we contrast the previous positive results of [4]
by giving concrete examples in which a distributed self-adjusting tree performs
poorly, compared to an optimal static network.

We focus on a binary search tree network structure, since trees are one of the
most elemental networks. They allow a simple and local routing strategy and
are a fundamental constituent of more complex networks. Additionally, many
network protocols rely on spanning trees or cycle-free backbones. Taking the
same line as [4], we do not see our work as an introduction for a new network
structure, but as a step towards a better understanding of the inherent dynamics
of self-adjusting networks and their limitations.
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1.1 Model & Notation

We model the dynamic process of a distributed self-adjusting tree whose struc-
ture is changed as a game in which the nodes of a binary search tree are the
players. An instance of the Self-Adjusting Binary Search Tree Game (SABST-
game) Γ = (GC , GI) is given by an initial connection graph GC = (V,EC)
with V = {1, . . . , n} being the set of players, which is required to be a binary
search tree (BST), and a (communication) interest graph GI = (V,EI). GC is
undirected, whereas GI is directed. The connection graph represents the dis-
tributed self-adjusting tree network and can be altered during the game. We
use IS(v) := {u ∈ V : (v, u) ∈ EI} to refer to the neighborhood of player v in
GI and denote it as the interest set of player v. Since the connection graph is
a binary search tree, we can compare two nodes by comparing their identifiers.
The depth of a node v is the length of a path from the root to v. If v has a
smaller depth than some node u, we say that v is above u, otherwise v is below
u. We say that two edges (u, v), (x, y) from GI intersect if x is in the interval
[u, v] for u < v or [v, u] for u > v and y is not, or vice versa.

Given a connection graph, we formalize the private cost of a player v as the
sum over all distances to the nodes in its interest set: c(v) :=

∑
u∈IS(v) d(v, u).

Here d(v, u) denotes the shortest path distance between u and v in GC . Note
that by using the sum, each player tries to minimize the average distance. To
improve its private cost, a player may perform rotations in the connection graph.
These rotations are closely related to the splay operation of splay trees [25]; a
single right rotation of a node (abbreviated with RR(x)) is visualized in Fig-
ure 1 (node x rotates over the node y). For a response, a player u is not only
allowed to perform a single rotation on itself, but also multiple rotations on
itself. Additionally, u can tell nodes from IS(u) to perform rotations. This is
due to the fact that by performing rotations on only itself, a node can only move
upwards in the tree. Thus, u can only move closer to a node v ∈ IS(u) that is
in its subtrees in GC , if it can tell v to perform rotations. Consequently, players
have the opportunity to decrease their private cost as much as possible, instead
of being restricted by the current connection graph. If a player u decreases its
private cost by a series of rotations, we refer to this as a better response. If the
decrease is maximal compared to all other possible better responses, we refer to
this as a best response. To provide an easy way of computing best responses, we
will stick closely to the idea of the double splay algorithm of [4]. A node u first
rotates itself upward such that it is the lowest common ancestor of all v ∈ IS(u)
(i.e., it becomes the root of this particular subtree), then all nodes v are rotated
as close as possible to u. Note that according to [4] a general optimal solution
as well as best responses can be computed in polynomial time. We denote the
connection graph to be in a rotation equilibrium if no node can perform a better
response. We say that a game converges if every sequence of best responses
converges, irrespective of the initial connection graph. Otherwise, we say that
the game is non-convergent.

The dynamic process of changing the connection graph (i.e., the game) pro-
ceeds in rounds. A round is finished when all players with non-empty interest
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Figure 1: A single right rotation of node x. The triangles represent (possibly
empty) subtrees that are not changed by the rotation.

sets have played a better response at least once. However, we do not enforce an
order in a single round, but consider an arbitrary order. The overall quality of
a connection graph GC is measured by the social cost c(GC) =

∑
v∈V c(v). Our

goal is to analyze the social cost of worst-case rotation equilibria and compare
them with a general optimal solution. We use the ratio of the two measures,
the Price of Anarchy (PoA), to do so.

1.2 Related Work

Self-adjusting networks have many possible application scenarios, varying from
self-optimizing peer-to-peer topologies (e.g., [19]) over green computing [15]
(because of reduced energy consumption) to adaptive virtual machine migra-
tions [3, 23]. Self-adjusting routing schemes were examined to deal with con-
gestion, e.g., in scale-free networks [26].

Our work combines ideas from two interesting and very different research
areas: self-adjusting binary search trees and basic network creation games. Self-
adjusting binary search trees have a history that spans over more than three
decades (e.g., [1, 5, 25]). However, research on self-adjusting data structures in
general is a half-century old since it can be traced back to the seminal work of
McCabe [21] from 1965. The focus of this paper is on splay trees [25]. Introduced
in 1985, they have an amortized time bound of O(log n) for the standard tree
operations of searching, insertion and deletion. Additionally, splay trees are
as efficient as static, optimal search trees for a sufficiently long sequence of
node accesses. Splay trees achieve this by applying a restructuring operation
for each access in the tree. This splay operation moves the recently accessed
node to the root of the tree by performing rotations on the nodes. Since their
establishment, splay trees have been extensively analyzed (e.g., [6, 8, 7, 11, 13])
and many splay tree variants have been proposed (e.g., [12, 24, 27, 16]) which
all use the dynamics of splay trees. Closest to our work is the aforementioned
paper of [4], in which a fully decentralized generalization of splay trees called
SplayNet is presented. SplayNets adapt to a communication pattern σ. The
upper bound for the amortized communication cost is based on the empirical
entropies of σ. Furthermore, SplayNets have a provable online optimality under
special request scenarios.

Basic Network Creation Games (BNCG) were introduced by Alon et al. in
2010 [2]. They are a variant of the original Network Creation Game (NCG) by



JGAA, 20(1) 79–100 (2016) 83

Fabrikant et al. [10]. In the BNCG model, an initial connection graph is given
and players are allowed to change the graph by performing what are called im-
proving edge swaps. For an edge swap, a node is able to exchange a single inci-
dent edge with a new edge to an arbitrary other node. In contrast to the original
NCG, best responses are polynomially computable. The cost for a single node
is either induced by the sum of the distances to all other nodes (SUM-version)
or by the maximal distance (MAX-version). The authors showed that for the
SUM-version of the game all trees in an equilibrium have a diameter of 2, and
that the diameter of all swap equilibria is 2O(

√
logn). For the MAX-version they

showed that all trees in an equilibrium have a diameter of at most 3, and that
the diameter of general swap equilibria is Ω(

√
n). Lenzner [20] proved that if the

game is played on a tree, it admits an ordinal potential function, which implies
guaranteed convergence to a pure nash equilibrium. However, when played on
general graphs, this game allows best response cycles. For computing a best
response, they show a similar contrast: a linear-time algorithm for computing
a best response on trees is provided, which works even if players are allowed
to swap multiple edges at a time. On the other hand, they proved that this
task is NP-hard even on simple general graphs, in case more than one edge can
be swapped. The BNCG model was extended in [9] by introducing communi-
cation interests of players. Thus, the players are now no longer interested in
communicating with all other nodes, but only with a specific subset. For the
MAX-version they give a tight upper bound of Θ(

√
n) for the Price of Anarchy,

if the connection graph is a tree, and Θ(n) for general connection graphs. We
note that network formation with focus on social networks is a classic topic
in economics and has been studied since the early 1990s [17] (see [18] for an
excellent overview).

1.3 Our Contribution

To the best of our knowledge, this is the first work that evaluates dynamics of
self-adjusting topologies by using (basic) network creation games. We introduce
a new BNCG that is closely related to the model of [2] but incorporates the
dynamics inherent to self-adjusting binary search trees. We show that the game
does not converge in general, and the distributed self-adjusting binary search
tree will never stop changing its structure. However, for certain interest graphs
which guarantee convergence, we prove a tight upper bound on the Price of
Anarchy of Θ(1). For non-convergent game instances, we use an altered variant
of the concept sink equilibria (introduced in [14]). We define the corresponding
measure worst-case Price of Sinking to evaluate the worst-case performance of
the distributed self-adjusting tree, in contrast to an optimal solution. We prove
that there exists an interest graph class such that the worst-case Price of Sinking
is constant. However, we also show that, for other interest graph classes, the
worst-case Price of Sinking is Ω( n

logn ). Furthermore, we show that a variant
of the game in which nodes act altruistically does not yield better results in
general.
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2 Analysis

In general, the SABST-game does not converge and the dynamic process never
settles on a stable binary search tree. In fact, it is possible to construct a
simple SABST-game with four nodes that can never converge (see Figure 2).
Consequently, the Price of Anarchy cannot be computed for general instances
of the game. In Section 2.1 we identify two classes of interest graphs that do
converge and have a constant Price of Anarchy.
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Figure 2: An example SABST-game instance that does not converge. Interest
graph edges are dashed, connection graph edges are continuous.

However, we can relate non-convergent behavior to properties of GI , called
conflicts. Once an interest graph contains a conflict, it is easy to show that the
game can never converge to an equilibrium. We can observe three classes of
conflicts: cyclic conflicts, BST conflicts and focal point conflicts (see Figure 3
for examples). Cyclic conflicts are cycles in GI . A BST conflict occurs if nodes
have more than two outgoing edges in GI (with one small exception, see Section
2.1) or if either two edges of GI intersect in case the nodes are ordered according
to their identifier. Focal point conflicts are nodes in GI with an indegree greater
than one. In Section 2.2 we analyze the conflict classes individually.
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Figure 3: Small examples of the three conflict classes.
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2.1 Convergence & Rotation Equilibria

One can easily identify two classes of interest graphs that imply convergence:
interest graphs that are binary search trees, and interest graphs that are star
graphs (a central node v has interest in all other nodes).

Theorem 1 Let Γ = (GC , GI) be a SABST-game with GI either forming a bi-
nary search tree or a star graph. Then, any sequence of best responses converges
independent of the initial connection graph. The Price of Anarchy is at most 2.

Theorem 1 implies that, for the two mentioned communication interest pat-
terns, a distributed self-adjusting binary search tree converges to a steady BST
and has almost optimal cost for communication: i.e., it has an approximation
factor of at most 2 compared to the optimal BST.

Proof: Theorem 1 follows from the following two lemmas.

Lemma 1 Let Γ = (GC , GI) be a SABST-game with GI forming a binary
search tree. Γ converges to a social optimum.

Proof: We call a node/player happy if it cannot perform a rotation to improve
its private cost. Let H denote the set of all nodes v ∈ V , with the property that
the complete subtree of GI rooted at v is happy. To prove convergence we show
that the size of H is monotonically increasing.

We first show that once a node has entered H, it will never leave H. Let v
be a node from H whose parent in GI is not happy. Consequently, v and all
nodes in the subtree rooted at v in GI are happy and they cannot decrease their
private cost and form a connected component in GC . Let CCv be this connected
component and v′ be a node that is unhappy and performs a rotation. If v′ and
IS(v′) are both above or below CCv in GC , then the rotations performed by v′

do not affect v and its subtrees. If v′ is below CCv and IS(v′) is above CCv (or
vice versa), v′ has to rotate over CCv. To do so, it performs only right or only
left rotations, because v′ is either smaller or greater than all nodes in CCv. But
from the definition of a rotation (see Figure 1), we can deduce that performing
only left or only right rotations does not affect the structure of the subgraph
that v′ rotates over. Thus, all nodes in CCv remain happy. The last case is if
v′ is interested in v, above v in GC and v′ rotates v upwards. This implies that
there exists at least an unhappy node v− that is on the path from v′ to v in GC .
Consequently, v− is either above v′ in GI , a sibling of v′ in GI , or in the other
subtree of v′ than v in GI . But in none of these cases can v− be in between v′

and v in GC , since GC is a binary search tree. Thus, v does not leave H and
the size of H does not decrease. H is monotonically increasing, because in each
round the parents of the nodes already in H will enter H and initially all leaves
from GI are in H, since their interest set is empty.

Now assume that Γ does not converge to a social optimum. Let T ′ be the
connection graph in a rotation equilibrium and T ′ 6= GI : i.e., ∃u ∈ V with
posGI

(u) 6= posT ′(u), where posGI
(u) and posT ′(u) denote the position of u in
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GI and T ′ depending on v’s depth. Let v′ be the node with minimal depth in
T ′ which has a child u with posGI

(u) 6= posT ′(u). Consequently, v′ is unhappy
and can perform a rotation to decrease its private cost, which contradicts the
fact that T ′ is in a rotation equilibrium. Consequently, the connection graph in
the rotation equilibrium is the same as GI and the PoA is 1. �

Note that this result only holds for binary trees, since for k-ary trees the
size of H is not necessarily monotonically increasing: i.e., if an unhappy node
performs a better response, happy nodes can become unhappy again.

Lemma 2 Let Γ = (GC , GI) be a SABST-game with GI forming a star graph:
i.e., all edges point from one single center node to all other nodes. Γ converges
and has a PoA of at most 2.

Note that the star graph is an exception to the conflict class of BST conflicts.
However, this is the only exception, because by observation one can show that
the game does not converge anymore if there is an edge (u, v) ∈ EI with u being
not the center node.

Proof: Convergence is guaranteed since there is only one node with a non-
empty interest set. Therefore, the only node actively trying to change GC is
the center node, since all other nodes have a private cost of 0. The resulting
PoA of 2 depends on the fact that the center node performs rotations such
that both subtrees are balanced binary trees. This is due to the fact that a
balanced tree minimizes the average distance to the root. However, a socially
optimal connection graph can also have a balanced binary tree of nodes above
the center node to minimize the distances further: i.e., the center node is not
the root of a social optimum.

In a worst-case scenario the interest set of the center node consists only of
nodes that have a smaller identifier than the center node. The resulting rotation
equilibrium is visualized in Figure 4(a). A corresponding social optimum has
half of these nodes above the center node in GC (see Figure 4(b)). This results
in a bisection of the social cost and the PoA is at most 2. �

Lemma 1 and 2 prove Theorem 1.
�

The rest of the section justifies the approach of focusing on a single connected
component of edges from GI . We say a node w affects the private cost of a node
v in a rotation equilibrium if w lies on the the shortest path from v to a node
u with u ∈ IS(v) .

Lemma 3 Consider a connected component E′I of edges without conflicts from
the interest graph GI = (V,EI), the corresponding node set V ′ = {v ∈ V |∃u ∈
V ∧ (u, v) ∈ E′I ∨ (v, u) ∈ E′I} and a single interest edge eI = (u′, v′). If eI is
neither a part of E′I nor in conflict with E′I , u′ and v′ do not affect the private
cost of the nodes from V ′ in a rotation equilibrium and vice versa.
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Figure 4: Comparison between a worst-case rotation equilibrium and a corre-
sponding social optimum for the interest star.

Proof: Since eI is neither in conflict with E′I , nor a part of E′I , we know that
one of the following three cases must hold:

• u′, v′ are greater than all w ∈ V ′,

• u′, v′ are smaller than all w ∈ V ′ or

• there exists an edge (u, v) ∈ E′I such that u′, v′ are in the interval spanned
by u, v.

Consequently, u′, v′ can be placed in a binary search tree such that they
are below or above all nodes from V ′. Note that in this case the lemma holds.
Assume that there exists a connection graph in a rotation equilibrium G∗C and
u′, v′ affect the private costs of the nodes from V ′. Therefore, there exist nodes
u∗, v∗ ∈ V ′ with v∗ ∈ IS(u∗) such that u′ and/or v′ lie on the shortest path
from u∗ to v∗ in G∗C . Hence, v∗ is not happy and can decrease its private cost,
which contradicts the assumption that G∗C is in a rotation equilibrium. �

The proof from Lemma 3 can be expanded to easily show the following
corollary.

Corollary 2 Consider two connected components E′I , E
′′
I of edges without con-

flicts from the interest graph GI = (V,EI), the corresponding node sets V ′ =
{v ∈ V |∃u ∈ V ∧ (u, v) ∈ E′I ∨ (v, u) ∈ E′I} and V ′′ = {v ∈ V |∃u ∈ V ∧ (u, v) ∈
E′′I ∨(v, u) ∈ E′′I } with E′I ∩E′′I = ∅ and V ′∩V ′′ = ∅ (i.e., E′I , E

′′
I are maximal).

If ∀e′′ ∈ E′′I it holds that e′′ is not in conflict with E′I . Then V ′′ does not affect
the private cost of the nodes from V ′ in a rotation equilibrium and vice versa.

Furthermore, it is possible to show that both statements hold if G′I (or G′′I )
contains conflicts. But since some additional notation is needed, to formally
state this fact we postpone this result to the next section.
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2.2 Non-Convergence & Sink Equilibria

As mentioned, the three identified classes of conflicts imply non-convergent be-
havior. Therefore, rotation equilibria do not necessarily exist and the Price of
Anarchy is no longer well defined. To overcome this obstacle, we use the solu-
tion concept sink equilibrium, which was introduced by Goemans et al. [14]. A
sink equilibrium is not defined for a single connection graph GC of a game in-
stance, but for the configuration graph of an instance. The configuration graph
GS = (V ∗, E∗) of an instance Γ = ((V,EC), (V,EI)) has a vertex which is
equal to the set of valid connection graphs (i.e., all possible BSTs) for the given
node set V . The edge set E∗ corresponds to better responses of the players:
i.e., an edge (u, v) is in E∗ if a response of a single player in the connection
graph represented by u leads the connection graph in v. A sink equilibrium is
a strongly connected component without outgoing edges in the configuration
graph. Analogical to the Price of Anarchy we define a new measurement of
how well selfish players perform compared to a social optimum. [14] uses the
expected social cost of a sink equilibrium to compute what is called Price of
Sinking (PoS). However, we want to focus on the worst-case behavior of nodes.
Therefore, instead of looking at the expected social cost of sink equilibria, we
choose a state with worst-case social cost of all sink equilibria and compare it to
the social cost of a social optimum. We call this measure the worst-case Price
of Sinking (wcPoS). If the wcPoS is low, then every state in a sink equilibrium
has social cost close to the optimal social cost and therefore the self-adjusting
binary search tree still performs well, even though it does not converge to a
fixed tree.

Before analyzing the different classes of conflicts separately and giving results
on their wcPoS, we first prove a general result about sink equilibria in the
SABST-game. Due to the definition of the wcPoS, we are faced with the problem
of finding a state in a sink equilibrium with maximal social cost. Lemma 4
simplifies this task. A response order τ is a permutation of the players V . We
say a response order is applied to connection graph GC (respectively, a state
from the configuration graph) when the players of the game play their responses
according to τ starting from GC .

Lemma 4 Given an instance of the SABST-game Γ, a response order τ and a
state s from the configuration graph GS = (V ∗, E∗) of Γ. If ∀s′ ∈ V ∗ it holds
that τ applied on s′ results in s, then s lies in a unique sink equilibrium of GS.

Proof: Assume that there is another sink equilibrium SE ′ and let v′ be a state
from SE ′. We know that v∗ can be reached from v′ by τ . But by the definition
of a sink equilibrium this implies that v∗ and v′ are in the same sink equilibrium,
which is a contradiction to the original assumption. �

Therefore, we can deduce a worst-case sink equilibrium state s, if we can
give a response order τ that constructs the connection graph represented in s.
Supplementary to the results of the last section, we can also show that a set of
interest edges that contains conflicts does not affect the private cost of interest
edges that are not in conflict with the set.
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Lemma 5 Consider a set of interest graph edges E′I ⊂ EI , the corresponding
node set V ′ = {v ∈ V |∃u ∈ V ∧ (u, v) ∈ E′I ∨ (v, u) ∈ E′I} and a single interest
edge eI = (u′, v′). If u, v are neither a part of V ′ nor is eI in conflict with E′I ,
then u′ and v′ do not affect the private cost of the nodes from V ′ in every sink
equilibrium and vice versa.

Proof: Similar to the proof of Lemma 3, one of the following three cases has
to hold:

• u′, v′ are greater than all w ∈ V ′,

• u′, v′ are smaller than all w ∈ V ′ or

• there exists an edge (u, v) ∈ E′I such that u′, v′ are in the interval spanned
by u, v.

Consequently, u′, v′ can be placed in GC such that both nodes are below
or above all nodes from V ′. Note that as soon as u′ makes its best response,
it is exactly in this situation. Therefore, such a state is clearly in every sink
equilibrium. W.l.o.g. assume that we are in the first case, i.e., u′, v′ are greater
than all w ∈ V ′, and that after the rotations of u′, both u′, v′ are in the leftmost
subtree of the nodes from V ′ (the other cases follow by a similar argument).
Consequently, it remains to show that all states in sink equilibria fulfill this
property: i.e. the private cost of u′ is always 1.

Assume that there exists a connection graph in a sink equilibrium G∗C and
at least one node w from V ′ affects the private cost of u′: i.e., w lies on the
shortest path from u′ to v′ in G∗C . Consequently, there has to exist a path in the
configuration graph from the earlier mentioned state in which u′ has private cost
of 1 to G∗C . However, in order to affect the private cost and to get in between
u′ and v′, there needs to be an incentive for w to move u′ or v′ upwards in the
tree. But since both nodes are not in IS(w), this will never be the case and G∗C
cannot be in a sink equilibrium. Therefore, all nodes from V ′ do not affect the
private cost of u′ and v′ and by applying the same arguments to every edge in
E′I , we also get the vice-versa statement. �

The proof from Lemma 5 can be expanded to easily show the following
corollary.

Corollary 3 Consider two connected components E′I , E
′′
I of edges without con-

flicts from the interest graph GI = (V,EI), the corresponding node sets V ′ =
{v ∈ V |∃u ∈ V ∧ (u, v) ∈ E′I ∨ (v, u) ∈ E′I} and V ′′ = {v ∈ V |∃u ∈ V ∧ (u, v) ∈
E′′I ∨(v, u) ∈ E′′I } with E′I ∩E′′I = ∅ and V ′∩V ′′ = ∅ (i.e., E′I , E

′′
I are maximal).

If ∀e′′ ∈ E′′I it holds that e′′ is not in conflict with E′I . Then V ′′ does not affect
the private cost of the nodes from V ′ in a rotation equilibrium and vice versa.

Consequently, we can consider each conflicting component of edges indepen-
dently: i.e. the set of edges that are mutually in conflict with each other.
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Figure 5: The connection graph for Γc.c. after response order τ ′ is applied.

2.2.1 Cyclic Conflicts

We first take a closer look on interest graphs with only cyclic conflicts. We only
need to consider interest graphs that are simple cycles (i.e., cycles that do not
intersect and are not contained in each other) because these cases imply a BST
conflict or a focal point conflict. W.l.o.g. we focus on the cyclic conflict over
all nodes Gc.c.

I = (V,EI) with V = {1, . . . , n} and EI = {(n, 1) ∪ (i, i+ 1) : i =
1, . . . , n− 1}.

Theorem 4 Let Γc.c. = (GC , G
c.c.
I ) be a SABST-game, the wcPoS is O(1).

Consequently, as long as the communication interests contain only cyclic
conflicts, the performance of the self-adjusting tree is asymptotically as good as
the performance without conflicts. To prove Theorem 4, we need to show the
following two lemmas.

Lemma 6 For the SABST-game Γc.c., every state in the unique sink equilib-
rium has social cost of 2(n− 1).

Proof: Let τ ′ = (n, . . . , 1) be a response order. If τ ′ is applied on GC the
resulting connection graph is the one visualized in Figure 5, which is in a unique
sink equilibrium. The social cost is 2(n − 1). Now independent of a response
order, there is only one unhappy node in the connection graph that can decrease
its private cost. This leads to a connection graph with social cost 2(n− 1) and
a single unhappy node again. Consequently, independent of a response order in
each round there is a single unhappy node and social cost of 2(n− 1), �

Lemma 7 Every social optimum for Γc.c. has social cost of Ω(2(n− 1)).

Proof: We call a connection graph edge eC traversed by an interest graph edge
eI = (u, v), if eC is contained in the shortest path from u to v in the connection
graph. We show that every connection graph edge of a social optimum is tra-
versed by at least two interest graph edges. Let e′C be an arbitrary connection
graph edge from a socially optimal connection graph. If e′C is removed, the
connection graph is split in two connected components A and B. Since Gc.c.

I is
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Figure 6: The interest graphs for the analysis of BST conflicts and focal point
conflicts

a simple cycle over all nodes, there exist interest graph edges e′I = (a′, b′) and
e′′I = (a′′, b′′) with a′, a′′ ∈ A, a′ 6= a′′ and b′, b′′ ∈ B, b′ 6= b′′. Consequently, e′C
is traversed twice. �

Lemma 6 and Lemma 7 together conclude the proof.

2.2.2 BST Conflicts and Focal Point Conflicts

For BST conflicts and focal point conflicts we do not prove an upper bound for
the wcPoS, but show that both conflict classes contain interest graphs such that
the wcPoS is lower bounded by Ω( n

log(n) ). Therefore, best responses of selfish

players can lead to a state in a sink equilibrium, which has high social cost
compared to a social optimum. This shows that the intuition of the double splay
algorithm [4] performs poorly in these scenarios. We start with interest graphs
that only have BST conflicts. More specifically we focus on interest graphs with
only direct conflicts in which two edges of GI intersect if the nodes are ordered
according to their identifier. Interest graphs with only direct conflicts have a
node degree smaller than 2, since all other conflict types need a node degree
of at least 2. We focus on interest graphs that maximize the number of direct
conflicts. These are of the form Gd.c.

I = (V,EI) with V = {1, . . . n}, n even
and EI = {(i, i+ n

2 ) : i = 1, . . . , n2 }, because every interest edge intersects with
every other interest edge (see Figure 6a).

Theorem 5 Let Γd.c. = (GC , G
d.c.
I ) be a SABST-game, the corresponding wc-

PoS is Ω( n
log(n) ).

To prove Theorem 5, we first prove that the configuration graph of Γ contains
a unique sink equilibrium with a state that has social cost of Θ(n2).

Lemma 8 The configuration graph of Γd.c. contains a state in the unique sink
equilibrium with social cost of Θ(n2).
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Figure 7: The connection graph for a Γd.c. if response order τ ′ = (1, . . . , n) is
applied.

Proof: We pick the response order τ ′ = (1, . . . , n). If we now apply τ ′ to
any initial connection graph, we end up with the connection graph presented in
Figure 7. This is due to the fact that every player performs rotations such that
the nodes from its interest set are in one of its subtrees. Therefore, after the
response of node 1, the node n

2 + 1 has to be the right child of 1. In the next
step, node 2 has the node n

2 + 2 as its right child, whereas 1 will be the parent
of 2 and n

2 + 1 the left child of n
2 + 2, i.e., the private cost of 1 doubles. We can

inductively use this construction to get to the connection graph from Figure 7.

The social cost is
∑n

2−1
i=0 (2i+1) = n2

4 = Θ(n2). Since this connection graph can
be reached from any initial connection graph by τ ′, we know that it is a state
in the unique sink equilibrium of Γd.c.. �

Contrasting the last lemma, we now give a general upper bound for the social
cost of a social optimum for Γ.

Lemma 9 A social optimum for Γd.c. has social cost of at most O(n log n).

Proof: We arrange the connection graph nodes such that they form a balanced
binary search tree. Since every node is interested in only a single other node at
most, we know that the private cost for a single node can be upper bound by
2 log(n). Therefore, the social cost is at most O(n log n). �

In fact, the social cost of a social optimum is overestimated by Lemma 9.
By a construction similar to the social optimum of Lemma 2, we can decrease
the social cost by a constant factor (see Figure 8).

For interest graphs with only focal point conflicts we can state a similar
result. We use the interest graph Gf.c.

I = (V,EI) with V = {1, . . . n} and
EI = {(1, n), (2, n), . . . , (n− 1, n)}, which has the maximal possible focal point
conflict (see Figure 6b).
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Figure 8: Sketch of a social optimum for BST conflicts

Theorem 6 Let Γf.c. = (GC , G
f.c.
I ) be a SABST-game, the corresponding wc-

PoS is Ω( n
log(n) ).

Proof: The proof technique for Theorem 6 is analogous to Theorem 5, i.e., we
need to show that there is a state in the unique sink equilibrium with social
cost of Θ(n2) and that a social optimum has social cost of at most O(n log n).
For the social optimum we refer to Lemma 9 and Figure 8, since the results
can be directly applied. To show that there is a a state in the unique sink
equilibrium with high social cost we pick the response order τ ′′ = (n−1, . . . , 1).
Independent of the initial connection graph, τ ′ leads to the connection graph
presented in Figure 9. By summing up the private cost of each node, we get the
desired result, i.e., the social cost of Θ(n2), and therefore the theorem holds. �

Theorems 5 and 6 imply that a SABST-game Γ = (GC , GI) in which GI

contains a subgraph G′I of size k that is either Gf.c.
I or Gd.c.

I , the wcPoS is
Ω( k

log(k) ). Therefore, we can conclude that the performance of a distributed self-

adjusting binary search tree gets worse with increasing size of the communication
patterns given by Gf.c.

I or Gd.c.
I . Notice that O(n2) is an upper bound for

the social cost of a SABST-game with an interest graph with n many edges.
Therefore, the upper bound for the wcPoS is O(n).

3 Altruistic Behavior

In this section we want to explore the possibilities of a model in which the
nodes do not act selfishly but altruistically. One way to express this formally
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Figure 9: The connection graph for a Γf.c. if response order τ ′′ is applied.

is by changing the private cost of each player to be the social cost: i.e. for the
altruistic node behavior (ANB) version of the SABST-game, the private cost of
each node is the sum over all connection costs for all players.

Without proof we can state that the ANB-version guarantees convergence.
This results from the fact that this variant of the game is similar to an ordinal
potential game as defined by Monderer and Shapely [22]. A game is an ordinal
potential game if the incentive of all players to change their strategy can be
expressed by a single global function, the so-called potential function. In the
ANB-version the sum over all connection costs for all players yields this potential
function.

Intuitively one might expect that the ANB-version leads to rotation equi-
libria with low social cost. This intuition is not completely wrong. We can
construct instances of the SABST-game in which the ANB-model leads to a
rotation equilibrium with better social cost, than the original model. However,
there are also examples in which the ANB-version never reaches a social op-
timal connection graph, but the selfish model has a social optimum in a sink
equilibrium.

Lemma 10 There are instances of the SABST-game in which the ANB-version
leads to a rotation equilibrium, which has better social cost, than the original
model.

Proof: We consider one of the interest graph classes from Section 2.1: a star
interest graph. As shown in Lemma 2 this interest graph leads to a Price of
Anarchy of 2 if nodes behave selfishly. However, in the ANB-version every
node tries to minimize the social cost by performing rotations (in contrast to
only the central node). If we take the rotation equilibrium from the proof of
Lemma 2 as a starting point for this proof, all nodes in the interest set of
the central nodes are without loss of generality in its left subtree. Since all
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nodess now behave altruistically, a node in the subtree can improve the social
cost by rotating over the central node and become an ancestor of it (or a child
of the ancestors). Depending on the order in which the nodes perform their
rotations, it is possible to reach a social optimum (see Figure 4b for a sketch of
a social optimum). Independent of the order, we know that we reach a rotation
equilibrium with lower social cost. �

A main reason for this result is the fact that in the ANB-version each node
is able to change the structure of the connection graph, whereas in the selfish
model only the nodes with non-empty interest sets will perform rotations. Thus,
for the interest star we have n active nodes instead of 1. We can contrast this
result with the following lemma.

Lemma 11 There are instances of the ANB-version of the SABST-game that
lead to a rotation equilibrium which has worse social cost than the state with the
lowest social cost in a sink equilibrium in the original model. Furthermore, the
social cost of a rotation equilibrium in the ANB-version can be as bad as the
social cost of a worst-case sink equilibrium state.

Proof: To show the lemma, we construct a small instance of the SABST-
game with 4 nodes. The interest edge set is EI = {(3, 1), (4, 2)}. In the initial
connection graph node 3 is the root of the tree and lc(3) = 2, lc(2) = 1, rc(3) = 4.
A visual representation of this instance is shown in Figure 3.

For the ANB-version the initial connection graph is a rotation equilibrium,
since no node can improve the social cost by rotations. Therefore, we have
social cost of 4. However, with selfish behavior we can achieve a connection
graph with social cost 3(see Figure 3). In this instance of the game, 4 is the
social cost of the worst state in the sink equilibrium (which in this case consists
of only 2 states), which concludes the proof. �

42

3

1

(a) The initial connection
graph of the game and the
rotation equilibrium in the
ANB-model.

4

2

31

(b) The best sink equilib-
rium state in the original
model.

Figure 10: Visualization of the proof of Lemma 11: The rotation equilibrium in
the ANB-model and the best sink equilibrium state in the original model.
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A reason why the performance of the ANB-version can be bad is the fact
that once it reaches a binary search tree that is in a sink equilibrium in the
original model, the game stops, since all possible rotations do not decrease the
social cost (by definition of a sink equilibrium). Since nodes are myopic they
do not perform a rotation that increases the social cost, but could lead to lower
social costs after further rotations: i.e., the process gets stuck in local minima.
The selfish model does not have this drawback, therefore it reaches every state
in a sink equilibrium that is reachable from the initial connection graph and
thus reaches a state with better social cost.

4 Extensions

We want to conclude our analysis by comparing our results to the work of [4].
As mentioned before, their vision of a distributed self-adjusting binary search
tree is quite similar to ours. However, they develop some positive results, while
our work shows the disadvantages of choosing a simple double-splay strategy
to adjust the tree. At first, note that their model differs from ours in many
aspects. However, there are mainly two differences that affect the analysis:

1. We use simple rotations to adjust the binary search tree, while [4] uses the
splay operations as introduced by [25] (see Figure 11 for their graphical
description).

2. In the SABST-game, the interest graph is given from the start: i.e., every
node knows its complete interest set from the beginning. [4] hides this
knowledge from the nodes. A request pattern is analyzed, but at each
timestep only one request is revealed to the tree and it has to serve that
request.

However, these differences do not affect our worst-case results. Since the
splay operations are just a subset of all possible rotations allowed in a binary
search tree, our approach of using a simple rotations as a building block gives the
nodes more freedom. This is due to the fact that we allow a node to perform as
many rotations as needed on itself and its interest set. Nodes would not perform
better in our worst-case scenarios if they had to rely on splay operations only.

We note that the second difference, i.e., the tree has to react to only a single
request from a pattern at each timestep, is a more natural scenario than ours, in
which the interest set is known a priori. However, especially for our worst-case
results of Section 2.2.2 the difference does not matter. By construction of the
special interest graph family each node only has one interest edge. Therefore,
our result directly transfers to a scenario in which nodes only see one request
per timestep. In addition we can also extend our model, so that interest edges
are annotated with probabilities: i.e., GI = (V,EI , w) where w : EI → [0, 1]
with the property that ∀v ∈ V :

∑
(v,u)∈EI

w(v, u) = 1. Thereby, we can model
that a node u has preferences among nodes in its interest set. Those nodes to
which communication is more likely should be closer to u in GC . Our results
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Figure 11: The three basic splay operations of splay trees.

developed in this paper hold for the case in which all interest edges adjacent to
a node have the same probability

Furthermore, most of the positive results developed in [4] can be confirmed
in our model, sometimes even extended. This is true for the laminated scenario,
the non-crossing matching scenario (which are both covered by our results in
Lemma 3) and the multicast tree scenario (equivalent to parts of our Theorem 1).

It remains open to show whether the performance of a distributed self-
adjusting binary search tree for general interest graphs is more influenced by
subgraphs that lead to bad performance or by those with a structure that is
served well.

5 Conclusion & Open Problems

We analyzed the performance of a distributed self-adjusting binary search tree
for different communication patterns. We have shown that, if the communica-
tion interests contain no conflicts or only cyclic conflicts, the performance of a
self-adjusting tree is almost optimal (PoA of Θ(1) and wcPos of Θ(1)). However,
if the communication interests contain BST conflicts or focal point conflicts, a
distributed generalization of splay trees performs poorly (wcPoS of Ω( n

logn )).
Moreover, we were able to show that in general altruistic behavior does not
yield better results than selfish behavior.

There are a lot of different interesting possibilities to extend our work. For
example, it is challenging to analyze the SABST-game with arbitrary combina-
tion conflicts and give upper or lower bounds for the worst-case Price of Sinking.
Moreover, it is interesting to compute the Price of Sinking as defined in [14] and
thereby get statements about the average performance.
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