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Abstract

An edge dominating set of a graph G = (V,E) is a subset M ⊆ E

of edges such that each edge in E \ M is incident to at least one edge
in M . In this paper, we consider the parameterized edge dominating
set problem which asks us to test whether a given graph has an edge
dominating set with size bounded from above by an integer k or not, and
we design an O∗(2.2351k)-time and polynomial-space algorithm. This is
an improvement over the previous best time bound of O∗(2.3147k). We
also show two corollaries: the parameterized weighted edge dominating
set problem can be solved in O∗(2.2351k) time and polynomial space; and
a minimum edge dominating set of a graph G can be found in O∗(1.7957τ )
time where τ is the size of a minimum vertex cover of G.
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1 Introduction

An edge dominating set of a graph G = (V,E) is a subset M ⊆ E of edges in
the graph such that each edge in E \M is incident with at least one edge in M .
The edge dominating set problem (EDS) is to find a minimum edge dominating
set of a given graph. The problem is one of the basic problems highlighted
by Garey and Johnson [6] in their work on NP-completeness. Yanakakis and
Gavril [16] showed that EDS is NP-hard even in planar or bipartite graphs of
maximum degree 3. Randerath and Schiermeyer [9] designed an O∗(1.4423m)-
time and polynomial-space algorithm for EDS, where m = |E| and O∗ nota-
tion suppresses all polynomially bounded factors. The result was improved to
O∗(1.4423n) by Raman et al. [8], where n = |V |. Considering the treewidth of
the graph, Fomin et al. [5] obtained an O∗(1.4082n)-time and exponential-space
algorithm. With the measure and conquer method, van Rooij and Bodlaen-
der [10] designed an O∗(1.3226n)-time and polynomial-space algorithm and an
improved O∗(1.3160n)-time and polynomial-space algorithm was presented by
Xiao and Nagamochi [14]. For EDS in graphs of maximum degree 3, the best
algorithm is an O∗(1.2721n)-time and polynomial-space algorithm due to Xiao
and Nagamochi [15].

The parameterized edge dominating set problem (PEDS) is, given a graph
G = (V,E) with an integer k, to decide whether there is an edge dominating
set of size up to k. It is known that there is an FPT algorithm for PEDS; we
can design an algorithm with the running time f(k)poly(n) to solve the prob-
lem, where f(k) is a function of k and poly(n) is a polynomial of the number
of vertices in G. For PEDS, an O∗(2.6181k)-time and polynomial-space algo-
rithm was given by Fernau [4]. Fomin et al. [5] obtained an O∗(2.4181k)-time
and exponential-space algorithm based on dynamic programming on treewidth-
bounded graphs. With the measure and conquer method, Binkele-Raible and
Fernau [1] designed an O∗(2.3819k)-time and polynomial-space algorithm. Xiao
et al. [12] give an O∗(2.3147k)-time and polynomial-space branching algorithm.
For PEDS in graphs of maximum degree 3, the best parameterized algorithm
is an O∗(2.1479k)-time and polynomial-space algorithm due to Xiao and Nag-
amochi [13].

EDS and PEDS are related to the vertex cover problem. A vertex cover of a
graph is a set of vertices such that each edge of the graph is incident to at least
one vertex in the set. The set of endpoints of all edges in any edge dominating set
is a vertex cover. To find an edge dominating set of a graph, we may enumerate
vertex covers of the graph and construct edge dominating sets from the vertex
covers. Many previous algorithms are based on enumeration of vertex covers.
We enumerate candidates of such edge dominating sets by branching on a vertex:
fixing it as a vertex incident on at least one edge in an edge dominating set with
a bounded size or not. In the O∗(2.3147k)-time algorithm to PEDS, Xiao et

al. [12] observed that branching on vertices in a local structure called “2-path
component” is the most inefficient among branchings on other local structures,
and that reducing the number of branchings on 2-path components leads to an
improvement over the time complexity. For this, they retained branching on
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2-path components as much as possible until no structure other than, say, p
2-path components remains at a last stage, and effectively skipped out of all
possible 2p instances those which will not deliver edge dominating sets with a
bounded size using a lower bound on EDS at the last stage. In this paper,
identifying new local structures, called “bi-claw,” “leg-triangle” and “tri-claw
components” and introducing a new lower bound on the size of edge dominating
sets (Lemma 4 in this paper) in order to skip more instances at the last stage,
we design an O∗(2.2351k)-time and polynomial-space algorithm.

After Section 2 gives some terminologies and notations and introduces our
branching operations of our algorithm, Section 3 describes our algorithm which
consists of three major stages. Section 4 analyzes the time complexity of the
algorithm based on upper bounds on the number of instances generated in the
three stages, whereas Section 5 establishes an upper bound on the number
of instances generated in the second stage. As corollaries of our main result,
Section 6 and Section 7 derive improved results pertaining to the parameterized
weighted edge dominating set problem and to parameterization by the size of a
minimum vertex cover, respectively. Section 8 makes some concluding remarks.

2 Preliminaries

2.1 Terminology and notation

For non-negative integers k1, k2, . . . , km, a multinomial coefficient
(
∑

m
i=1

ki)!

k1!···km! is

denoted by
(

∑
m
i=1

ki

k1,...,km

)

.

Lemma 1 Let k1, k2, . . . , km be non-negative integers, where m ≥ 1. Then for

any positive reals γ1, γ2, . . ., γm such that
∑m

i=1 1/γi ≤ 1, it holds that

( ∑m
i=1ki

k1, k2, . . . , km

)

≤
m
∏

i=1

γki

i .

Proof: We proceed by an induction on
∑m

i=1 ki to prove the lemma.

I. The lemma holds when
∑m

i=1 ki = 0, since the both sides of the inequality in
the lemma become 1.

II. Assume that the lemma holds for any instance {k′1, k
′
2, . . . , k

′
m} such that

∑m
i=1 k

′
i ≤ K for some integer K ≥ 0. We show that the lemma holds for

any instance {k1, k2, . . . , km} with
∑m

i=1 ki = K + 1. If kj = 0 for some j,
where m ≥ 2 by

∑m
i=1 ki = K + 1 > 0, then it suffices to show that the lemma

holds for the instance {k1, k2, . . . , km} \ {kj}, since γ
kj

j = 1 for any choice of
{γ1, γ2, . . . , γm}. Hence we assume without loss of generality that ki ≥ 1 for all
i = 1, 2, . . . ,m. Let γ1, γ2, . . . , γm satisfy

∑m
i=1 1/γi ≤ 1. Using Pascal’s rule
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and the inductive hypothesis, we obtain the following inequality:

(

K + 1

k1, k2, . . . , km

)

=

(

K

k1 − 1, k2, . . . , km

)

+

(

K

k1, k2 − 1, . . . , km

)

+ · · ·+

(

K

k1, k2, . . . , km − 1

)

≤ γk1−1
1 γk2

2 · · · γkm

m + γk1

1 γk2−1
2 · · · γkm

m + · · ·+ γk1

1 γk2

2 · · · γkm−1
m

= γk1

1 γk2

2 · · · γkm

m

(

1

γ1
+

1

γ2
+ · · ·+

1

γm

)

≤ γk1

1 γk2

2 · · · γkm

m .

This proves that the lemma also holds for any instance {k1, k2, . . . , km} with
∑m

i=1 ki = K + 1. �

The set of vertices and edges in a graph H is denoted by V (H) and E(H),
respectively. For a vertex v in a graph, let N(v) denote a set of neighbors of
v and let N [v] denote a set of v and its neighbors (i.e., N [v] = {v} ∪ N(v)).
A vertex of degree d is called a degree-d vertex. The degree of a vertex v in a
graph H is denoted by d(v;H). For a set F of edges, we use V (F ) to denote
a set of vertices incident on at least one edge in F , and we say that F covers

a vertex set S ⊆ V if V (F ) ⊇ S. For a subset S ⊆ V of vertices, G[S] denote
the subgraph of G induced by S. A cycle of length ℓ is called an ℓ-cycle, and
is denoted by the sequence v1v2 . . . vℓ of vertices in it, where the cycle contains
edges v1v2, . . . , vℓ−2vℓ−1 and vℓv1. A connected component containing only one
vertex is called trivial. We define five types of connected components as follows:
a clique-component, a connected component that is a complete subgraph;
- a 2-path component, a connected component consisting of a degree-2 vertex u1

and its two degree-1 neighbors u0, u2 ∈ N(u1), denoted by u0u1u2, as illustrated
in Fig. 1(a);
- a bi-claw component, a connected component consisting of two adjacent degree-
3 vertices u1 and v1 and their four degree-1 neighbors u0, u2 ∈ N(u1) and
v0, v2 ∈ N(v1), denoted by (u0u1u2)(v0v1v2), as illustrated in Fig. 1(b);
- a legged triangle component (or leg-triangle component), a connected compo-
nent consisting of two adjacent degree-3 vertices u1 and v1, their two degree-1
neighbors u0 ∈ N(u1) and v0 ∈ N(v1) and one common degree-2 neighbor
w ∈ N(u1) ∩N(v1), denoted by u0(u1wv1)v0, as illustrated in Fig. 1(c); and
- a tri-claw component, a connected component consisting of three degree-3 ver-
tices u1, v1 and w1, their six degree-1 neighbors u0, u2 ∈ N(u1), v0, v2 ∈ N(v1)
and w0, w2 ∈ N(w1) and their common degree-3 neighbor t ∈ N(u1) ∩N(v1) ∩
N(w1), denoted by t(u0u1u2)(v0v1v2)(w0w1w2), as illustrated in Fig. 1(d).
The last four types of components, 2-path, bi-claw, leg-triangle and tri-claw
components are called bad components collectively.
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(a) (b) (c) (d)

Figure 1: The four types of bad components: (a) A 2-path compo-
nent u0u1u2; (b) A bi-claw component (u0u1u2)(v0v1v2); (c) A leg-triangle com-
ponent u0(u1wv1)v0; and (d) A tri-claw component t(u0u1u2)(v0v1v2)(w0w1w2)

2.2 Instances with covered and discarded vertices

Given a graph G = (V,E) or a parameter k, PEDS is to decide whether G has
an edge dominating set M ⊆ E of size |M | ≤ k. As in the previous results on
PEDS [1, 12], we also introduce additional constraints as follows. For a pair of
disjoint subsets C and D of V , we call an edge dominating set M of G such
that C ⊆ V (M) ⊆ V \ D a (C,D)-eds for short, where we call vertices in C
covered and vertices in D discarded. Let (C,D) denote an instance that asks to
find a (C,D)-eds M of size |M | ≤ k, where we omit indication of G and k in the
input parameters since we never modify the given graph G or the parameter k
throughout our algorithm. An instance (C,D) is called feasible if it admits a
(C,D)-eds, and is called k-feasible if it admits a (C,D)-eds M of size |M | ≤ k.
We call vertices in V \ (C ∪D) undecided and denote by U the set of undecided
vertices.
Note that PEDS is to decide whether the instance (C,D) with C = D = ∅ is
k-feasible or not. In this paper, we design a branching algorithm that decides
whether a given instance (C,D) is k-feasible or not.
We use two kinds of fundamental branching operations. One is to branch on
an undecided vertex v ∈ U in (C,D): fix v as a new covered vertex in the first
branch or as a new discarded vertex in the second branch. This is based on the
fact that there is a (C,D)-eds M with v ∈ V (M) or there is no such (C,D)-
eds. Then we also fix all the vertices in N(v) as covered vertices in the second
branch, since any edge e = vw incident to v needs to be incident to an edge
dominating set at the vertex w. The other is to branch on a 4-cycle v0v1v2v3
over undecided vertices: fix vertices v0 and v2 as new covered vertices or fix
vertices v1 and v3 as new covered vertices. This is based on the fact that for
any edge dominating set M , the set V (M) is a vertex cover and one of {v0, v2}
and {v1, v3} is contained in any vertex cover [11]. Van Rooij and Bodlaender
[10] found the following solvable case.

Lemma 2 [10] A minimum (C,D)-eds of an instance (C,D) such that G[U ]
contains only clique-components can be found in polynomial time.
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We denote by U1 the set of vertices of all clique-components in G[U ], and let
U2 = U \U1. An instance (C,D) is called a leaf instance if U2 = ∅. By Lemma 2,
we only need to select vertices from U2 to apply branching operations until all
instances become leaf instances.
The next lower bound on the size of (C,D)-edses is immediate since for each
clique-component Q in G[U ], it holds that |V (Q) ∩ V (M)| ≥ |V (Q)| − 1.

Lemma 3 For any (C,D)-eds M in a graph G, it holds that

|V (M)| ≥ |C|+
∑

{|V (Q)| − 1 | clique-components Q in G[U ]}.

Based on this, we define the measure µ of an instance (C,D) to be

µ(C,D) = 2k − |C| −
∑

{|V (Q)| − 1 | clique-components Q in G[U ]}.

We do not need to generate any instances (C,D) with µ(C,D) < 0 since they
are not k-feasible. In this paper, we introduce the following new lower bound.

Lemma 4 Let M be a (C,D)-eds in a graph G. Then for any subset S ⊆ C it

holds that

|M | ≥
∑

{⌈|V (H)|/2⌉ | components H in G[S]} ≥ ⌈|S|/2⌉.

Proof: For each component H in G[S] with a subset S ⊆ C, the mini-
mal subset MH ⊆ M that covers V (H) contains at least ⌈|V (H)|/2⌉ edges.
Since there is no edge between two components in G[S], minimal subsets MH

for all components H in G[S] are disjoint, indicating that |M | ≥
∑

{|MH | |
components H in G[S]} ≥

∑

{⌈|V (H)|/2⌉ | components H in G[S]}, which is
clearly at least ⌈|S|/2⌉. �

Branching on a bad component H in G[U2] means to keep branching on vertices
in U2 ∩ V (H) until all vertices in V (H) are contained in C ∪D ∪ U1. We treat
a series of such branchings as an operation of branching on H that generates
r new instances defined as follows. For each type of a bad component H , we
define the number r and C(j)(H) (resp., D(j)(H)), j = 1, 2, . . . , r to be a set of
vertices of H fixed as covered (resp., discarded) vertices in the j-th branch:
For a 2-path component H1 = u0u1u2, by branching on u1, we can branch on
H1 into r = 2 branches:

1. C(1)(H1) = {u1} and D(1)(H1) = ∅; and
2. C(2)(H1) = {u0, u2} and D(2)(H1) = {u1}.

For a bi-claw component H2 = (u0u1u2)(v0v1v2), where at least one of adjacent
vertices u1 and v1 must be in V (M) of any (C,D)-eds M , we can branch on
this component into r = 3 branches:

1. C(1)(H2) = {u1, v1} and D(1)(H2) = ∅;
2. C(2)(H2) = {u0, u2, v1} and D(2)(H2) = {u1}; and
3. C(3)(H2) = {u1, v0, v2} and D(3)(H2) = {v1}.
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For a leg-triangle component H3 = u0(u1wv1)v0, where at least one of adjacent
vertices u1 and v1 must be in V (M) of any (C,D)-eds M , we can branch on
this component into r = 3 branches:

1. C(1)(H3) = {u1, v1} and D(1)(H3) = ∅;
2. C(2)(H3) = {u0, v1, w} and D(2)(H3) = {u1}; and
3. C(3)(H3) = {u1, v0, w} and D(3)(H3) = {v1}.

For a tri-claw component H4 = t(u0u1u2)(v0v1v2)(w0w1w2), we can branch on
u1, v1 and w1 sequentially to generate the following r = 8 branches:

1. C(1)(H4) = {u1, v1, w1} and D(1)(H4) = ∅;
2. C(2)(H4) = {t, u0, u2, v1, w1} and D(2)(H4) = {u1};
3. C(3)(H4) = {t, u1, v0, v2, w1} and D(3)(H4) = {v1};
4. C(4)(H4) = {t, u1, v1, w0, w2} and D(4)(H4) = {w1};
5. C(5)(H4) = {t, u0, u2, v0, v2, w1} and D(5)(H4) = {u1, v1};
6. C(6)(H4) = {t, u1, v0, v2, w0, w2} and D(6)(H4) = {v1, w1};
7. C(7)(H4) = {t, u0, u2, v1, w0, w2} and D(7)(H4) = {u1, w1}; and
8. C(8)(H4) = {t, u0, u2, v0, v2, w0, w2} and D(8)(H4) = {u1, v1, w1}.

For each of the branches above, we define two kinds of values α and β which
will be summed up to give lower bounds on the size of a (C′, D′)-eds of a leaf
instance (C′, D′). For each (i, j), let

αi,j = |C(j)(Hi)| and βi,j =
∑

{⌈|V (T )|/2⌉ | components T in G[C(j)(Hi)]}.

Observe that βi,j is a lower bound on the size of a (C(j)(Hi), ∅)-eds by Lemma 4.
For (i, j) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (4, 8)}, the graph G[C(j)(Hi)] con-
tains only isolated vertices, and βi,j = |C(j)(Hi)| = αi,j . For other (i, j), the
graph G[C(j)(Hi)] consists of exactly one nontrivial component of size p ∈ {2, 3}
and |C(j)(Hi)| − p isolated vertices, and βi,j = ⌈p/2⌉ + (|C(j)(Hi)| − p) =
|C(j)(Hi)| − 1 = αi,j − 1.
In this paragraph, we introduce criteria in choosing 4-cycle/vertices to branch
on used in our algorithm. For a subset S ⊆ U2 of vertices, we let qS and bS
denote the sum of |V (Q)| − 1 over all clique-components Q and the number of
bad components newly generated by removing S from G[U2], respectively. A
4-cycle v0v1v2v3 in G[U2] is called admissible if b{v0,v2} + b{v1,v3} ≤ 1, which
means that the number of bad components newly generated by branching on it
is rather small. A vertex v in G[U2] such that bv = x and bN [v] = y is called an
(x, y)-vertex, which implies that branching on an (x, y)-vertex generates exactly
x (resp., y) bad components after the first (resp., second) branch. Then we
define the following criteria: a vertex v in G[U2] is called optimal if it satisfies
a condition (c-i) below with the minimum i over all vertices in G[U2]:
(c-1) v is a degree-3 (0, 0)-vertex;
(c-2) v is a degree-2 (x, y)-vertex with x+ y ≤ 1 and qv ≥ 1;
(c-3) (i) v is in an admissible 4-cycle;

(ii) v is a degree-d (x, y)-vertex such that 2 ≤ d ≤ 3, x + y ≤ 1 and
qv + qN [v] ≥ 4− d;
(iii) v is a degree-d (x, y)-vertex such that 2 ≤ d ≤ 3, x + y ≤ 1, qN [v] =
3−d and removing each of v and N [v] produces no new 2-path component;
or
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(iv) v is a degree-3 (0, 1)-vertex such that G[U2 \ {v}] contains at least
one degree-3 (0, 0)-vertex and removing N [v] produces exactly one new
2-path component;

(c-4) v is a degree-2 vertex with qv = 1;
(c-5) v is a degree-3 vertex; and
(c-6) v is a degree-2 vertex.

3 The Algorithm

Given a graph G and an integer k, our algorithm returns TRUE if it admits an
edge dominationg set of size ≤ k or FALSE otherwise. The algorithm is designed
to be a procedure that returns TRUE if a given instance (C,D) is k-feasible or
FALSE otherwise, by branching on a vertex/4-cycle/bad component in (C,D)
to generate new smaller instances (C(1), D(1)), . . . , (C(r), D(r)), to each of which
the procedure is recursively applied. The procedure is initially given an instance
(∅, ∅), and always returns FALSE whenever µ(C,D) < 0 holds.
Our algorithm takes three stages. The first stage keeps branching on vertices of
degree ≥ 4, and retains the set B of all the produced bad components without
branching on them. The second stage keeps branching on optimal vertices of
degree ≤ 3, immediately branching on any newly produced bad component
before it chooses the next optimal vertex to branch on. The third stage generates
leaf instances by fixing all undecided vertices in the bad components in B, where
we try to decrease the number of leaf instances to be generated based on some
lower bound on the size of solutions of leaf instances. To derive the lower bounds
in the third stage, we let Ci store all vertices fixed to covered vertices during
branching operations in the i-th stage. Formally EdsStage1 is described as
follows.

Algorithm EdsStage1(C,D)

Require: A graph G = (V,E) with an integer k, and subsets C and D of V (initially,
C = D = ∅).

Ensure: TRUE if (C,D) is k-feasible or FALSE otherwise.
1: if µ(C,D) < 0 then

2: return FALSE

3: else if there is a vertex v of degree ≥ 4 in G[U2] then
4: return EdsStage1(C ∪ {v}, D) ∨ EdsStage1(C ∪N(v), D ∪ {v})
5: else

6: C1 := C; C2 := ∅;
7: Let B store all bad components in G[U2];
8: return EdsStage2(C1, C2,B, D)
9: end if

For a given instance (G, k) of PEDS, let I1 denote the set of all instances
constructed immediately after the first stage. Let V (B) denote the set of vertices
in the bad components in B. Given an instance (C1, C2,B, D) ∈ I1, the second
stage EdsStage2 fixes all vertices in U2\V (B) to covered/discarded vertices by
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repeatedly branching on optimal vertices or any newly produced bad component
in G[U2 \V (B)] if it exists. During the second stage, the sets C1 and B obtained
in the first stage never change. When no vertex is left in U2 \ V (B), we switch
to the third stage. Formally EdsStage2 is described as follows.

Algorithm EdsStage2(C1, C2,B, D)

Require: A graph G = (V,E) with an integer k, disjoint subsets C1, C2, D ⊆ V and
a set of bad components B in G[U2].

Ensure: TRUE if (C1 ∪ C2, D) is k-feasible or FALSE otherwise.
1: if µ(C1 ∪ C2, D) < 0 then

2: return FALSE

3: else if there is a 2-path component H1 in G[U2 \ V (B)] then
4: return

∨
j=1,2 EdsStage2(C1, C2 ∪ C(j)(H1),B, D ∪D(j)(H1))

5: else if there is a bi-claw component H2 in G[U2 \ V (B)] then
6: return

∨
1≤j≤3 EdsStage2(C1, C2 ∪ C(j)(H2),B, D ∪D(j)(H2))

7: else if there is a leg-triangle component H3 in G[U2 \ V (B)] then
8: return

∨
1≤j≤3 EdsStage2(C1, C2 ∪ C(j)(H3),B, D ∪D(j)(H3))

9: else if there is a tri-claw component H4 in G[U2 \ V (B)] then
10: return

∨
1≤j≤8 EdsStage2(C1, C2 ∪ C(j)(H4),B, D ∪D(j)(H4))

11: else if U2 \ V (B) 6= ∅ then

12: Choose an optimal vertex v in G[U2 \ V (B)];
13: if v is in an admissible 4-cycle v0v1v2v3 of condition (c-4) then
14: return EdsStage2(C2 ∪ {v0, v2}, D,B, C1) ∨ EdsStage2(C1, C2 ∪

{v1, v3},B, D)
15: else

16: return EdsStage2(C1,C2∪{v},B, D)∨ EdsStage2(C1, C2∪N(v),B, D∪
{v})

17: end if

18: else /* Now U2 = V (B) */
19: return EdsStage3(C1, C2,B, D)
20: end if

Let I2 denote the set of all instances constructed immediately after the second
stage. Consider an instance I = (C1, C2,B, D) ∈ I2, where the graph G[U2]
consists of the bad components in B retained at the first stage. Let B1 (resp.,
B2,B3 and B4) be the sets of 2-path (resp., bi-claw, leg-triangle and tri-claw)
components in B, and yi = |Bi|, i = 1, 2, 3, 4 in I ∈ I2. To obtain a leaf instance
from the instance I, we need to fix all vertices in V (B). The number of all

leaf instances that can be constructed from the instance I ∈ I2 is
∏4

i=1 r
yi

i =
2y1 ·3y2 ·3y3 ·8y4, where ri is the number of subinstances generated by branching
on a bad component H ∈ Bi.
In the third stage, we avoid constructing of some “k-infeasible” leaf instances
among all leaf instances. For a leaf instance I ′ = (C′ = C1∪C2∪C3, D

′) obtained
from the instance I ∈ I2, where C3 denotes the set of undecided vertices in
V (B) that are fixed to covered vertices in I ′, we let wi,j be the number of bad
components in Bi to which the j-th branch is applied to generate I ′, and call
the vector w with these 16 entries wi,j the occurrence vector of I ′. Note that
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∑

i,j αi,jwi,j = |C3| holds, and that
∑

i,j βi,jwi,j is a lower bound on the size of
(C3, D

′)-eds by Lemma 4, since no edge in G joins two components in B. We
derive two necessary conditions for a vector w to be the occurrence vector of
a k-feasible leaf instance I ′ = (C′, D′). One is that 2k ≥ 2|M | ≥ |V (M)| ≥
|C1|+ |C2|+ |C3|, i.e.,

2k ≥ |C1|+ |C2|+
∑

i,j

αi,jwi,j . (1)

Observe that there is no edge between C3 and C2 in I ′, since any vertex in
C2 is contained in some component in G[U2 \ V (B)] during an execution of
EdsStage2. Hence

∑

i,j βi,jwi,j + ⌈|C2|/2⌉ is a lower bound on the size of a
(C3 ∪ C2, D

′)-eds by Lemma 4, and another necessary condition is given by

k ≥ |C2|/2 +
∑

i,j

βi,jwi,j . (2)

Note that the number ℓ(w) of leaf instances I ′ whose occurrence vectors are
given by w is

ℓ(w) =

(

y1
w1,1, w1,2

)(

y2
w2,1, w2,2, w2,3

)(

y3
w3,1, w3,2, w3,3

)(

y4
w4,1, w4,2, . . . , w4,8

)

.

(3)
For each instance I = (C1, C2,B, D) ∈ I2, the third stage EdsStage3 generates
an occurrence vector w satisfying the conditions (1) and (2) and

∑

j wi,j = yi,
1 ≤ i ≤ 4, and constructs all leaf instances I ′ = (C1 ∪C2 ∪C3, D

′) from I ∈ I2
with the vectorw, before it returns TRUE if one of the leaf instances is k-feasible
or FALSE otherwise. Formally EdsStage3 is described as follows.

Algorithm EdsStage3(C1, C2,B, D)

Require: A graph G = (V,E) with an integer k, disjoint subsets C1, C2, D ⊆ V and
a set of bad components B in G[U2].

Ensure: TRUE if (C1 ∪ C2, D) is k-feasible or FALSE otherwise.
1: Let B1 (resp., B2,B3 and B4) be a set of 2-path (resp., bi-claw, leg-triangle and

tri-claw) components in B, and yi := |Bi|, i = 1, 2, 3, 4;
2: for each occorrence vector w that satisfies the conditions (1) and (2) and∑

j
wi,j = yi, 1 ≤ i ≤ 4 do

3: for each combination of partitions of B1,B2,B3 and B4 into
B(1)

1 ∪ B(2)
1 = B1, B

(1)
2 ∪ B(2)

2 ∪ B(3)
2 = B2, B

(1)
3 ∪ B(2)

3 ∪ B(3)
3 = B3, and

B(1)
4 ∪ B(2)

4 ∪ · · · ∪ B(8)
4 = B4 such that |B(j)

j | = wi,j for all i and j; do

4: for each j = 1, 2 and each 2-path component H1 ∈ B
(j)
1 do

5: C3 := C(j)(H1); D := D ∪D(j)(H1)
6: end for;
7: for each j = 1, 2, 3 and each bi-claw component H2 ∈ B

(j)
2 do

8: C3 := C(j)(H2); D := D ∪D(j)(H2)
9: end for;

10: for each j = 1, 2, 3 and each leg-triangle component H3 ∈ B
(j)
3 do

11: C3 := C(j)(H3); D := D ∪D(j)(H3)
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12: end for;
13: for each j = 1, 2, . . . , 8 and each tri-claw component H4 ∈ B(j)

4 do

14: C3 := C(j)(H4); D := D ∪D(j)(H4)
15: end for; /* Now U2 = ∅ and (C1 ∪ C2 ∪ C3, D) is a leaf instance */
16: Test whether (C = C1 ∪ C2 ∪ C3, D) is k-feasible or not by computing a

minimum (C,D)-eds by Lemma 2
17: end for

18: end for;
19: if there is a k-feasible leaf instance (C1 ∪ C2 ∪ C3, D) in the for loop then

20: return TRUE

21: else

22: return FALSE

23: end if

4 The Analysis

For a given instance (G, k) of PEDS, let Ii, i = 1, 2, 3 be the set of all in-
stances constructed immediately after the i-th stage during the execution of
EdsStage1(∅, ∅), where I3 is the set of all leaf instances, which correspond to
the leaf nodes of the search tree of the execution. To analyze the time complexity
of our algorithm, it suffices to derive an upper bound on |I3|.
Let T (µ) be the maximum number of leaf instances that can be generated from
an instance I with measure µ.
The next lemma shows an upper bound on the number of instances generated
in the first stage of the algorithm.

Lemma 5 For any non-negative integer x1, the number of instances I =
(C1, ∅,B, D) ∈ I1 with |C1| = x1 is O(1.380278x1).

Proof: At the first stage, the algorithm branches on a vertex v of degree ≥ 4
in G[U2]. When the algorithm branches on v by fixing it as a covered vertex or
a discarded vertex, {v} (resp., N(v)) is added to the set C, and the measure µ
decreases by 1 (resp., |N(v)| ≥ 4). Hence we have the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 4),

which solves to T (µ) = O(1.380278µ). This proves the lemma. �

The following lemma gives us an upper bound on the number of instances gen-
erated in the second stage of the algorithm, whose proof is shown in the next
section.

Lemma 6 For any non-negative integer x2 and an instance I = (C1, ∅,B, D) ∈
I1, the number of instances I ′ = (C1, C2,B, D

′) ∈ I2 with |C2| = x2 that can be

generated from I is O(1.494541x2).

From Lemma 5 and Lemma 6, we obtain the next.
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Lemma 7 For any non-negative integers x1 and x2, the number of instances

(C1, C2,B, D) ∈ I2 such that |C1| = x1 and |C2| = x2 is O(1.380278x1 ·
1.494541x2).

Note that the number of combinations (x1, x2) for (|C1|, |C2|) is O(n2). For a
given instance (C1, C2,B, D) ∈ I2, the number of possible occurrence vectors
w satisfying the conditions (1) and (2) and

∑

j wi,j = yi, 1 ≤ i ≤ 4 is also

bounded by a polynomial of n. To show that our algorithm runs in O∗(2.2351k)
time, it suffices to prove that the number of leaf instances generated from an
instance I = (C1, C2,B, D) ∈ I2 with specified size |C1| = x1 and |C2| = x2

and a specified occurrence vector w is O∗(2.2351k). Let I3(x1, x2,w) denote
the set of all such leaf instances. By Lemma 7, we see that |I3(x1, x2,w)| =
O(1.380278x1 · 1.494541x2 · ℓ(w)).
In what follows, we derive an upper bound on O(1.380278x1 · 1.494541x2 · ℓ(w))
under the constraints (1) and (2). For this, we merge some entries in w into ten
numbers by z1,1 = w1,1, z1,2 = w1,2, z2,1 = w2,1, z2,2 = w2,2 +w2,3, z3,1 = w3,1,
z3,2 = w3,2+w3,3, z4,1 = w4,1, z4,2 = w4,2+w4,3+w4,4, z4,3 = w4,5+w4,6+w4,7

and z4,4 = w4,8. Then from (3),

ℓ(w) =

(

z1,1+z1,2
z1,1, z1,2

)

·

(

z2,1+z2,2
z2,1, z2,2

)(

z2,2
w2,2, w2,3

)

·

(

z3,1+z3,2
z3,1, z3,2

)(

z3,2
w3,2, w3,3

)

·

(

z4,1+z4,2+z4,3+z4,4
z4,1, z4,2, z4,3, z4,4

)(

z4,2
w4,2, w4,3, w4,4

)(

z4,3
w4,5, w4,6, w4,7

)

≤

(

z1,1+z1,2
z1,1, z1,2

)

·

(

z2,1+z2,2
z2,1, z2,2

)

· 2z2,2 ·

(

z3,1+z3,2
z3,1, z3,2

)

· 2z3,2 ·

(

z4,1+z4,2+z4,3+z4,4
z4,1, z4,2, z4,3, z4,4

)

· 3z4,2+z4,3 ,

which is bounded from above by a product of exponential functions from
Lemma 1

γ
z1,1
1,1 γ

z1,2
1,2 · γ

z2,1
2,1 (γ2,2/2)

z2,2 · 2z2,2 · γ
z3,1
3,1 (γ3,2/2)

z3,2 · 2z3,2 ·

γ
z4,1
4,1 (γ4,2/3)

z4,2(γ4,3/3)
z4,3 γ

z4,4
4,4 · 3z4,2+z4,3

= γ
z1,1
1,1 γ

z1,2
1,2 · γ

z2,1
2,1 γ

z2,2
2,2 · γ

z3,1
3,1 γ

z3,2
3,2 · γ

z4,1
4,1 γ

z4,2
4,2 γ

z4,3
4,3 γ

z4,4
4,4

for any positive reals γ1,1, γ1,2, γ2,1, γ2,2, γ3,1, γ3,2, γ4,1, γ4,2, γ4,3 and γ4,4
such that 1/γ1,1 + 1/γ1,2 ≤ 1, 1/γ2,1 + 2/γ2,2 ≤ 1, 1/γ3,1 + 2/γ3,2 ≤ 1 and
1/γ4,1 + 3/γ4,2 + 3/γ4,3 + 1/γ4,4 ≤ 1. Then we have

|I3(x1, x2,w)| =

O(1.380278x1 · 1.494541x2γ
z1,1
1,1 γ

z1,2
1,2 γ

z2,1
2,1 γ

z2,2
2,2 γ

z3,1
3,1 γ

z3,2
3,2 γ

z4,1
4,1 γ

z4,2
4,2 γ

z4,3
4,3 γ

z4,4
4,4 ),

which is bounded by

O(max{1.3802781/c1, 1.4945411/c2, γ
1/c1,1
1,1 , γ

1/c1,2
1,2 , γ

1/c2,1
2,1 , γ

1/c2,2
2,2 ,

γ
1/c3,1
3,1 , γ

1/c3,2
3,2 , γ

1/c4,1
4,1 , γ

1/c4,2
4,2 , γ

1/c4,3
4,3 , γ

1/c4,4
4,4 }k )

(4)
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for any constants c1, c2 and {ci,j} such that

k ≥ c1x1 + c2x2 + c1,1z1,1 + c1,2z1,2 + c2,1z2,1 + c2,2z2,2

+ c3,1z3,1 + c3,2z3,2 + c4,1z4,1 + c4,2z4,2 + c4,3z4,3 + c4,4z4,4. (5)

Conditions (1) and (2) are restated as

k ≥ x1/2 + x2/2 + (z1,1 + 2z1,2)/2 + (2z2,1 + 3z2,2)/2

+ (2z3,1 + 3z3,2)/2 + (3z4,1 + 5z4,2 + 6z4,3 + 7z4,4)/2; (6)

k ≥ x2/2 + (z1,1 + 2z1,2) + (z2,1 + 3z2,2)

+ (z3,1 + 2z3,2) + (3z4,1 + 4z4,2 + 5z4,3 + 7z4,4). (7)

As a linear combination of (6) and (7) with λ and (1−λ), we get (5) for constants

c1 = λ/2, c2 = 1/2,
c1,1 = 1− λ/2, c1,2 = 2− λ,
c2,1 = 1, c2,2 = 3− 3λ/2,
c3,1 = 1, c3,2 = 2− λ/2,
c4,1 = 3− 3λ/2, c4,2 = 4− 3λ/2, c4,3 = 3− 2λ and c4,4 = 7− 7λ/2.

From (4), we obtain |I3(x1, x2,w)| = O
(

2.2351k
)

by setting

λ = 0.80142,
γ1,1 = 1.61804, γ1,2 = 2.61804,
γ2,1 = 2.10457, γ2,2 = 3.81068,
γ3,1 = 2.23510, γ3,2 = 3.61931,
γ4,1 = 3.60818, γ4,2 = 7.36647, γ4,3 = 11.29854 and γ4,4 = 19.96819.

This establishes the next theorem.

Theorem 1 Algorithm EdsStage1, accompanied by Algorithm

EdsStage2 and EdsStage3, can solve the parameterized edge dominat-

ing set problem in O∗(2.2351k) time and polynomial space.

5 The number of instances in the second stage

As said before, this section provides a proof of the following lemma on the
second stage. The main idea behind the design of the second stage is a repeated
application of attempts of identifying the largest branching factor in the current
set of branching rules and eliminating the bottleneck branching rule by replacing
it with new branching rules or by defining a bad component to be treated in
the third stage.

Lemma 6 For any non-negative integer x2 and an instance I = (C1, ∅,B, D) ∈
I1, the number of instances I ′ = (C1, C2,B, D

′) ∈ I2 with |C2| = x2 that can
be generated from I is O(1.494541x2).



36 K. Iwaide and H. Nagamochi An Improved Algorithm for PEDS

Proof: We use U ′
2 to denote U2 \ V (B). To prove the lemma, we derive re-

currences for branchings executed by Algorithm EdsStage2. We first show
recurrences for branching on bad components only.

Proposition 8 Assume that Algorithm EdsStage2 branches on a bad compo-

nent H in G[U ′
2]. If H is a 2-path component, then the algorithm branches on

H with the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 2),

which solves to T (µ) = O(1.6181µ). If H is a bi-claw or leg-triangle component,

then the algorithm branches on H with the following recurrence:

T (µ) ≤ T (µ− 2) + 2T (µ− 3),

which solves to T (µ) = O(1.5214µ). If H is a tri-claw component, then the

algorithm branches on H with the following recurrence:

T (µ) ≤ T (µ− 3) + 3T (µ− 5) + 3T (µ− 6) + T (µ− 7),

which solves to T (µ) = O(1.5042µ).

Proof: In the i-th branch of each bad component H , all vertices in C(i)(H)
are fixed as covered vertices and thereby the measure decreases by |C(i)(H)|.
Therefore we have the recurrences above. �

The recurrences in Proposition 8 are summarized in the top three lines of Ta-
ble 1 as the branch vectors with its branch factors. Observe that Algorithm
EdsStage2 branches on a bad component with the recurrence shown in Propo-
sition 8, which is not good enough to establish Lemma 6 since the recurrences
bring about the branch factors larger than 1.494541. In our analysis, we combine
a branching on a bad component together with the branching on the optimal
vertex v (or the admissible 4-cycle on it) that produces the bad component,
which yields a recurrence better than those in Proposition 8. In the case where
the branching on v and the all bad components produced by any of the branch-
ings to v yields a recurrence even not good enough to establish Lemma 6, we
further combine it with a possible branching on a vertex of condition (c-1), (c-
2) or (c-3)(iv) produced by the branching to v. All the combined recurrences
derived in the second stage are summarized in the bottom 22 lines of Table 1
as branch vectors with their branch factors, which do not exceed 1.494541.
In what follows, for each i = 1, 2, . . . , 6 in this order, we analyze the branching
of an optimal vertex v satisfying condition (c-i) to derive such a recurrence.

Proposition 9 Algorithm EdsStage2 branches on a vertex v satisfying con-

dition (c-1) in G[U ′
2] together with possible branchings on the resulting new bad

components with the following recurrence:

T (µ) ≤ 2T (µ− 3) + 2T (µ− 4), (8)

which solves to T (µ) = O(1.494541µ).
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Table 1: The branch vectors with their branch factors derived from a sequence
of branching operations in the second stage: the first three ones are triggered
by branching on a bad component and the others are by a sequence of some
branching operations which leave no bad components in G[U ′

2].

Branch vectors Branch factors Recurrences

[1, 2] 1.6181 1st in Prop. 1
[2, 3, 3] 1.5214 2nd in Prop. 1
[3, 5, 5, 5, 6, 6, 6, 7] 1.5042 3rd in Prop. 1
[1, 3] 1.4656 1st in Prop. 2; 9th in Prop. 4
[2, 2] 1.4143 1st in Prop. 3; (12): 1st in Prop. 4
[2, 3, 4] 1.4656 (9): 2nd in Prop. 3; 3rd in Prop. 4
[2, 4, 5, 5] 1.4560 (10) 3rd in Prop. 3
[2, 5, 7, 7, 7, 8, 8, 8, 9] 1.4634 (11): 4th in Prop. 3
[1, 4] 1.3803 (13) 2nd in Prop. 4
[3, 4, 4, 4] 1.4527 4th in Prop. 4
[4, 4, 6, 6, 6, 7, 7, 7, 8] 1.4629 5th in Prop. 4
[1, 5, 6] 1.4197 6th in Prop. 4
[1, 6, 7, 7] 1.4190 7th in Prop. 4
[1, 7, 9, 9, 9, 10, 10, 10, 11] 1.4320 8th in Prop. 4
[3, 3, 4, 4] 1.494541 10th in Prop. 4
[3, 4, 6, 6, 6, 7, 7, 7, 8] 1.4914 11th in Prop. 4
[1, 5, 6, 6] 1.4841 12th in Prop. 4
[1, 6, 8, 8, 8, 9, 9, 9, 10] 1.4842 13th in Prop. 4
[2, 4, 4, 5] 1.4865 14th in Prop. 4
[4, 4, 5, 5, 6, 6, 6, 7] 1.4941 1st in Prop. 6
[4, 5, 5, 5, 5, 6, 6, 7] 1.4876 2nd in Prop. 6
[4, 5, 5, 5, 6, 6, 6, 6] 1.4833 3rd in Prop. 6
[3, 3, 4, 5] 1.4656 1st in Prop. 8
[3, 4, 4, 5, 5] 1.4826 2nd in Prop. 8
[3, 3, 5, 6, 6, 7] 1.4845 3rd in Prop. 8

Proof: Since v is a vertex satisfying condition (c-1), v is a degree-3 (0, 0)-vertex
in G[U ′

2]. Neither of the first and second branches produces a new bad compo-
nent. Therefore the algorithm branches on v with the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 3),

which solves to T (µ) = O(1.4656µ) and is better than the recurrence (8). �

Proposition 10 Algorithm EdsStage2 branches on an optimal vertex satis-

fying condition (c-2) in G[U ′
2] together with possible branchings on the resulting

new bad components with a recurrence not worse than the recurrence (8).
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Proof: Since v is an optimal vertex satisfying condition (c-2), v is a degree-2
(x, y)-vertex with x + y ≤ 1 and qv ≥ 1 in G[U ′

2]. We distinguish two cases:
Case 1. x+ y = 0; and Case 2. x+ y = 1.
Case 1. x = y = 0: In any of the first and second branches, no bad component
is newly produced. Therefore the algorithm branches on v with the following
recurrence:

T (µ) ≤ T (µ− 2) + T (µ− 2),

which solves to T (µ) = O(1.4143µ).
Case 2. x + y = 1: In one of the first and second branches, exactly one bad
component H is newly produced, and then the algorithm branches on it; and
in the other branch, no bad component is newly produced. In the following, we
derive recurrences for branching on v together with branching on H . When H
is a 2-path component, we have the following recurrence:

T (µ) ≤ T (µ− 2) + T (µ− 2− 1) + T (µ− 2− 2)

= T (µ− 2) + T (µ− 3) + T (µ− 4), (9)

which solves to T (µ) = O(1.4656µ). When H is a bi-claw or leg-triangle com-
ponent, we have the following recurrence:

T (µ) ≤ T (µ− 2) + T (µ− 2− 2) + 2T (µ− 2− 3)

= T (µ− 2) + T (µ− 4) + 2T (µ− 5), (10)

which solves to T (µ) = O(1.4560µ). When H is a tri-claw component, we have
the following recurrence:

T (µ) ≤ T (µ− 2)+T (µ− 2− 3)+3T (µ− 2− 5)+3T (µ− 2− 6)+T (µ− 2− 7)

= T (µ− 2) + T (µ− 5) + 3T (µ− 7) + 3T (µ− 8) + T (µ− 9), (11)

which solves to T (µ) = O(1.4634µ).
Since all the recurrences obtained in Cases 1 and 2 are better than the recurrence
(8), the lemma holds. �

Proposition 11 Algorithm EdsStage2 branches on an optimal vertex satis-

fying condition (c-3) in G[U ′
2] together with possible branchings on the resulting

new bad components with a recurrence not worse than the recurrence (8).

Proof: Since v is an optimal vertex satisfying condition (c-3), v is in one of
the following four cases: (i) v is in an admissible 4-cycle; (ii) v is a degree-d
(x, y)-vertex such that 2 ≤ d ≤ 3, x + y ≤ 1 and qv + qN [v] ≥ 4 − d; (iii) v
is a degree-d (x, y)-vertex such that 2 ≤ d ≤ 3, x + y ≤ 1, qN [v] = 3 − d and
removing each of v and N [v] produces no new 2-path component; and (iv) v
is a degree-3 (0, 1)-vertex such that removing N [v] produces exactly one new
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2-path component, and G[U2 \ {v}] contains at least one degree-3 (0, 0)-vertex.
We distinguish three cases: Case (i) or (ii); Case (iii); and Case (iv).
Case (i) or (ii): When the algorithm branches on v (or the admissible 4-cycle
on it) in G[U ′

2], we have one of the following two recurrences:

T (µ) ≤ T (µ− 2) + T (µ− 2), (12)

which solves to T (µ) = O(1.4143µ); and

T (µ) ≤ T (µ− 1) + T (µ− 4), (13)

which solves to T (µ) = O(1.3803µ), and at most one bad component H is newly
produced in one of the first and second branches. We consider three subcases
(a)-(c).
Case (a). The algorithm branches on v (or the admissible 4-cycle on it) in G[U ′

2]
with the recurrence (12) and exactly one bad component H is produced in one
of the first and second branches: When H is a 2-path component, we have the
recurrence (9). When H is a bi-claw or leg-triangle component, we have the
recurrence (10). When H is a tri-claw component, we have the recurrence (11).
Case (b). The algorithm branches on v in G[U ′

2] with the recurrence (13) and
exactly one bad component H is produced in the first branch: When H is a
2-path component, we have the following recurrence:

T (µ) ≤ T (µ− 1− 1) + T (µ− 1− 2) + T (µ− 4)

= T (µ− 2) + T (µ− 3) + T (µ− 4),

which solves to T (µ) = O(1.4656µ). When H is a bi-claw or leg-triangle com-
ponent, we have the following recurrence:

T (µ) ≤ T (µ− 1− 2) + 2T (µ− 1− 3) + T (µ− 4)

= T (µ− 3) + 3T (µ− 4),

which solves to T (µ) = O(1.4527µ). When H is a tri-claw component, we have
the following recurrence:

T (µ) ≤ T (µ− 1− 3)+3T (µ− 1− 5)+3T (µ− 1− 6)+T (µ− 1− 7)+T (µ− 4)

= 2T (µ− 4) + 3T (µ− 6) + 3T (µ− 7) + T (µ− 8),

which solves to T (µ) = O(1.4629µ).
Case (c). The algorithm branches on v in G[U ′

2] with the recurrence (13) and
exactly one bad component H is produced in the second branch: When H is a
2-path component, we have the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 4− 1) + T (µ− 4− 2)

= T (µ− 1) + T (µ− 5) + T (µ− 6),

which solves to T (µ) = O(1.4197µ). When H is a bi-claw or leg-triangle com-
ponent, we have the following recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 4− 2) + 2T (µ− 4− 3)

= T (µ− 1) + T (µ− 6) + 2T (µ− 7),



40 K. Iwaide and H. Nagamochi An Improved Algorithm for PEDS

which solves to T (µ) = O(1.4190µ). When H is a tri-claw component, we have
the following recurrence:

T (µ) ≤ T (µ− 1)+T (µ− 4− 3)+3T (µ− 4− 5)+3T (µ− 4− 6)+T (µ− 4− 7)

= T (µ− 1) + T (µ− 7) + 3T (µ− 9) + 3T (µ− 10) + T (µ− 11),

which solves to T (µ) = O(1.4320µ).
Case (iii): When x = y = 0; i.e., neither of the first and second branches
produces a new bad component, the algorithm branches on v with the following
recurrence:

T (µ) ≤ T (µ− 1) + T (µ− 3),

which solves to T (µ) = O(1.4656µ).
Consider the case where x + y = 1; i.e., one of the first and second branches
produces exactly one new bad component H other than a 2-path component
whereas the other branch produces no new bad component. The algorithm
branches on v together with branching on H with one of the following four
recurrences. When x = 1, y = 0 and H is a bi-claw or leg-triangle component,
we have

T (µ) ≤ T (µ− 1− 2) + 2T (µ− 1− 3) + T (µ− 3)

= 2T (µ− 3) + 2T (µ− 4),

which solves to T (µ) = O(1.494541µ). When x = 1, y = 0 and H is a tri-claw
component, we have

T (µ) ≤ T (µ− 1− 3)+3T (µ− 1− 5)+3T (µ− 1− 6)+T (µ− 1− 7)+T (µ− 3)

= T (µ− 3) + T (µ− 4) + 3T (µ− 6) + 3T (µ− 7) + T (µ− 8),

which solves to T (µ) = O(1.4914µ). When x = 0, y = 1 and H is a bi-claw or
leg-triangle component, we have

T (µ) ≤ T (µ− 1) + T (µ− 3− 2) + 2T (µ− 3− 3)

= T (µ− 1) + T (µ− 5) + 2T (µ− 6),

which solves to T (µ) = O(1.4841µ). When x = 0, y = 1 and H is a tri-claw
component, we have

T (µ) ≤ T (µ− 1)+T (µ− 3− 3)+3T (µ− 3− 5)+3T (µ− 3− 6)+T (µ− 3− 7)

= T (µ− 1) + T (µ− 6) + 3T (µ− 8) + 3T (µ− 9) + T (µ− 10),

which solves to T (µ) = O(1.4842µ).
Case (iv): In the first branch, no bad component and a degree-3 (0, 0)-vertex
u are newly produced, and then the algorithm branches on u, since u satisfies
condition (c-1) after fixing v as a covered vertex. In the second branch, exactly
one 2-path component is newly produced. Therefore the algorithm branches on
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v together with branching on u and the 2-path component with the following
recurrence:

T (µ) ≤ T (µ− 1− 1) + T (µ− 1− 3) + T (µ− 3− 1) + T (µ− 3− 2)

= T (µ− 2) + 2T (µ− 4) + T (µ− 5), (14)

which solves to T (µ) = O(1.4865µ).
Since all the recurrences obtained in Cases (i)-(iv) are not worse than the re-
currence (8), the lemma holds. �

We say that an instance (C,D) is reduced up to (c-i) if G[U ′
2] in (C,D) has no

vertices of degree ≥ 4, no vertices satisfying any of conditions (c-1) to (c-i) and
no bad components.

Proposition 12 Let (C,D) be an instance reduced up to (c-3).

(i) After removing any vertex v ∈ U ′
2 in (C,D), the set of newly produced bad

components in G[U ′
2 \{v}] is a set of three 2-path components or an empty

set.

(ii) Every degree-2 vertex u in G[U ′
2] with qu = 1 in (C,D) has a degree-3

neighbor v ∈ U ′
2 whose removal produces exactly three 2-path components

in G[U ′
2 \ {u}]. Conversely, every degree-3 vertex v in G[U ′

2] of (C,D)
whose removal produces exactly three 2-path components in G[U ′

2 \ {v}]
has a degree-2 neighbor u in G[U ′

2] with qu = 1.

Proof: (i) Now the degree of every vertex in U ′
2 is at most 3 in G[U ′

2] by the
assumption on (C,D). We first prove the next claim.

Claim No vertex v ∈ U ′
2 in (C,D) produces any bad components other than

2-path components in G[U ′
2 \ {v}].

Proof. Assuming that there is a bi-claw, leg-triangle or tri-claw component H
in G[U ′

2 \ {v}], we show that v or a vertex in H satisfies one of conditions (c-1)
to (c-3) in G[U ′

2] to prove the claim. Let k = |N(v) ∩ V (H)| in G[U ′
2], where

1 ≤ k ≤ 3. We distinguish three cases k = 1, 2, 3.

(a) (b) (c) (d)
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Figure 2: The four types of components (a)-(d) containing v in G[U ′
2] such that

a bad component H is produced by removing v and k = |N(v) ∩ V (H)| = 1 in
G[U ′

2]: H is a bi-claw component in (a); a leg-triangle one in (b) and (c); and a
tri-claw one in (d)

Case 1. k = 1: Without loss of generality there are four cases: (a) H is a bi-
claw component (u0u1u2)(v0v1v2) and u0 is adjacent to v; (b) H is a leg-triangle
component u0(u1wv1)v0 and u0 is adjacent to v; (c) H is a leg-triangle compo-
nent u0(u1wv1)v0 and w is adjacent to v; and (d) H is a tri-claw component
t(u0u1u2)(v0v1v2)(w0w1w2) and u0 is adjacent to v, where these four cases are
illustrated in Fig. 2. If v is a degree-2 vertex and has a degree-1 neighbor in
Case (a), (b) or (d), then u0 is a vertex with qu0

= 1 in G[U ′
2], which satisfies

(c-2). Assume that v is not such a vertex. We show that the degree-3 vertex
v1 ∈ V (H) furthest from v satisfies (c-1) or (c-3).
Cases (a), (b) and (c): The degree-3 vertex v1 satisfies both of the following two
conditions: removing v1 from G[U ′

2] produces no bad component; and removing
N [v1] from G[U ′

2] produces at most one bad component other than a 2-path
component. Therefore v1 satisfies (c-1) or (c-3)(iii).
Case (d): The degree-3 vertex v1 satisfies both of the following two conditions:
removing v1 from G[U ′

2] produces a degree-3 (0, 0)-vertex w1; and removing
N [v1] from G[U ′

2] produces exactly one 2-path component. Thus v1 satisfies
(c-3)(iv).

(a) (b) (c)

(d) (e) (f)

Figure 3: The six types of components (a)-(f) containing v such that a bad
component H is produced by removing v and k = |N(v) ∩ V (H)| = 2 in G[U ′

2]:
H is a bi-claw component in (a) and (b); a leg-triangle one in (c) and (d); and
a tri-claw one in (e) and (f)

Case 2. k = 2: Without loss of generality there are six cases: (a) H
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is a bi-claw component (u0u1u2)(v0v1v2) and u0, v0 ∈ N(v); (b) H is a
bi-claw component (u0u1u2)(v0v1v2) and u0, u2 ∈ N(v); (c) H is a leg-
triangle component u0(u1wv1)v0 and u0, v0 ∈ N(v); (d) H is a leg-triangle
component u0(u1wv1)v0 and u0, w ∈ N(v); (e) H is a tri-claw component
t(u0u1u2)(v0v1v2)(w0w1w2) and u0, u2 ∈ N(v); and (f) H is a tri-claw com-
ponent t(u0u1u2)(v0v1v2)(w0w1w2) and u0, w0 ∈ N(v), where these six cases
are illustrated in Fig. 3. If v has a degree-1 neighbor in G[U ′

2], then v is a
degree-3 (1, 0)-vertex such that removing v from G[U ′

2] produces exactly one
bad component, i.e., H , which is not a 2-path component. Hence v satisfies
(c-3)(iii). Assume that v is not such a vertex. We show that the degree-3 vertex
v1 ∈ V (H) furthest from v satisfies (c-1) or (c-3).
Cases (a), (b), (c) and (d): The degree-3 vertex v1 satisfies both of the follow-
ing two conditions: removing v1 from G[U ′

2] produces no bad component; and
removing N [v1] from G[U ′

2] produces at most one bad component other than a
2-path component. Therefore v1 satisfies (c-1) or (c-3)(iii).
Cases (e): v1 satisfies both of the following two conditions: removing v1 from
G[U ′

2] produces a degree-3 (0, 0)-vertex w1; and removing N [v1] from G[U ′
2]

produces exactly one 2-path component. Thus v1 satisfies (c-3)(iv).
Case (f): v1 is a degree-3 (0, 0)-vertex in G[U ′

2]. Hence v1 satisfies (c-1).
Case 3. k = 3: Now N(v) ⊆ V (H), and there is only one bad component
other than a 2-path component in G[U ′

2 \ {v}]. In the case where H is a leg-
triangle or tri-claw component, removing N [v] produces no bad component,
and v is a degree-3 (1, 0)-vertex, which satisfies (c-3)(iii). In the other case
where H is a bi-claw component (u0u1u2)(v0v1v2) and without loss of generality
{u0, u2, v0} = N(v), we see that u1 is a degree-3 (0, 0)-vertex, which satisfies
(c-1).
This proves the claim. �

Next we prove that the set of new bad components in G[U ′
2\{v}] is a set of three

2-path components. Let P1, P2, . . . , Pbv be the new bad components produced
in G[U ′

2 \ {v}], all of which are 2-path components. To prove the property (i)
of the lemma, we assume that bv ∈ {1, 2}, and prove that some neighbor of v
satisfies one of conditions (c-1) to (c-3) in G[U ′

2]. Without loss of generality
for the 2-path component P1 = v0v1v2, there are the following five cases: (a)
N(v) ∩ V (P1) = {v0}; (b) N(v) ∩ V (P1) = {v1}; (c) N(v) ∩ V (P1) = {v0, v1};
(d) N(v) ∩ V (P1) = {v0, v2}; and (e) N(v) ⊆ V (P1), as illustrated in Fig. 4.
For Case (d) or (e), there is an admissible 4-cycle vv0v1v2 in G[U ′

2], implying
that v satisfies condition (c-3)(i). Assume that neither of Case (d) and (e) holds
for P2 if any.
Next consider Case (a). We see that G[U ′

2 \ N [v0]] contains bv − 1 (≤ 1) new
2-path components, where bv = 1 if bv0 ≥ 1; i.e., removing v0 produces new
2-path components. Hence v0 is a degree-2 (x, y)-vertex with x + y ≤ 1 and
qv0 ≥ 1 in G[U ′

2], satisfying condition (c-2). Assume that Case (a) does not hold
for P2 if any.
Finally consider Case (b) or (c). Let H denote the component containing u
in G[U ′

2]. Removing v1 from G[U ′
2] produces no 2-path component, since H is
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(a) (b) (c) (d) (e)

Figure 4: The five types of components (a)-(e) containing v such that a 2-path
component v0v1v2 is produced by removing v

not a bi-claw or leg-triangle component. Removing N [v1] from G[U ′
2] produces

bv − 1 (≤ 1) new 2-path components. Hence if bv = 1, then v1 is a degree-3
(0, 0)-vertex, satisfying condition (c-1). Assume that bv = 2, and denote P2

by w0w1w2, where w1 ∈ N(u) and P2 satisfies configuration (b) or (c). We
show that v1 satisfies condition (c-3)(iv) in G[U ′

2]. Removing N [v1] from G[U ′
2]

produces only one 2-path component P2 = w0w1w2, and removing v1 from
G[U ′

2] produces no 2-path component. We see that w1 is a degree-3 vertex such
that bw0

= bN [w0] = 0 in G[U ′
2 \ {u}]. Hence v1 is a vertex satisfying condition

(c-3)(iv), as required.
(ii) Let u be a degree-2 vertex with qu = 1 in G[U ′

2]. By qu = 1, G[U ′
2 \ {u}]

contains a clique Q of size 2. The degree-2 vertex u ∈ U ′
2 has one neighbor in

Q and the other neighbor v ∈ U ′
2 \ V (Q). Removing v from G[U ′

2] produces a
2-path component H with V (H) = {u} ∪ V (Q), we see that removing v from
G[U ′

2] produces a set of three 2-path components by (i), which also indicates
that v is of degree 3 in G[U ′

2].
Conversely let v be a degree-3 vertex whose removal produces exactly three
2-path components in G[U ′

2]. Since there is no tri-claw component in G[U ′
2],

removing v from G[U ′
2] produces at least one 2-path component u0u1u2 such

that u0 ∈ N(v) in G[U ′
2]. Then u0 is a degree-2 vertex with qu0

= 1 in G[U ′
2]

since removing u0 produces the clique-component consisting of {u1, u2}. �

Proposition 13 Algorithm EdsStage2 branches on an optimal vertex v satis-

fying condition (c-4) in G[U ′
2] together with possible branchings on the resulting

new bad components with a recurrence not worse than the recurrence (8).

Proof: Since v is an optimal vertex satisfying condition (c-4), v is a degree-2
vertex with qv = 1 in G[U ′

2] in an instance (C,D) reduced up to (c-3). Thus
removing v from G[U ′

2] produces exactly two components: the component H ′

containing u and the clique-component Q of size 2. Now Proposition 12 holds for
(C,D), and v has a degree-3 neighbor u whose removal produces exactly three 2-
path components P1, P2 and P3. We see that the component H containing v is a
graph consisting of P1, P2 and P3 and the degree-3 vertex u adjacent to all these
2-path components, one of which, say, P3 is given by vv′v′′ for {v′, v′′} = V (Q).
Let wi, i = 1, 2, be the neighbor of u in Pi. In what follows, we show that the



JGAA, 20(1) 23–58 (2016) 45

algorithm continues to branch on one of w1 and w2, say, w after fixing v as a
covered vertex, and branches on the other of them after fixing w as a covered
vertex, and then derive recurrences for branching on v together with branchings
on w, w′ and all newly produced bad components. Without loss of generality,
we distinguish three cases: (a) d(w1;H) = d(w2;H) = 3; (b) d(w1;H) = 2 and
d(w2;H) = 3; and (c) d(w1;H) = d(w2;H) = 2, where these three components
are illustrated in Fig. 5.

(a) (b) (c)

Figure 5: The three types of components (a)-(c) containing a degree-2 vertex v
with qv = 1 under the assumption in Proposition 12, which contain a degree-
3 vertex u adjacent to v such that exactly three new 2-path components are
produced by removing u

Case (a). d(w1;H) = d(w2;H) = 3: From the structure of H , we see that w1

is a degree-3 (0, 1)-vertex in G[U ′
2 \{v}] such that removing w1 from G[U ′

2 \{v}]
changes w2 to a degree-3 (0, 0)-vertex satisfying condition (c-1); and removing
N [w1] from G[U ′

2 \ {v}] produces exactly one 2-path component. Hence w1

satisfies condition (c-3)(iv) in G[U ′
2 \ {v}]. Since no vertex in H ′ satisfies any of

conditions (c-1), (c-2) and (c-3)(i)-(iii) in G[U ′
2 \ {v}], each of w1 and w2 is an

optimal vertex in G[U ′
2 \{v}]. After v is fixed as a covered vertex, the algorithm

branches on one of them, say, w and continues to branch on the other one after
fixing w as a covered vertex with the recurrence (14). Therefore we have the
following recurrence:

T (µ) ≤ T (µ− 2− 2) + 2T (µ− 2− 4) + T (µ− 2− 5)

+ T (µ− 2− 1− 1) + 2T (µ− 2− 1− 2) + T (µ− 2− 2− 2)

= 2T (µ− 4) + 2T (µ− 5) + 3T (µ− 6) + T (µ− 7),

which solves to T (µ) = O(1.4941µ).
Case (b). d(w1;H) = 2 and d(w2;H) = 3: From the structure of H , we see
that w1 is a degree-2 (0, 1)-vertex with qw1

= 1 in G[U ′
2\{v}] such that removing

w1 from G[U ′
2 \ {v}] changes w2 to a degree-3 (0, 0)-vertex; and removing N [w1]

from G[U ′
2 \ {v}] produces exactly one 2-path component, where w satisfies

condition (c-2) in G[U ′
2 \ {v}]. Since no vertex in H ′ other than w1 satisfies

any of conditions (c-1) and (c-2) in G[U ′
2 \ {v}], w1 is the unique optimal vertex

in G[U ′
2 \ {v}]. After fixing w1 as a covered vertex, the algorithm branches on

w2, since w2 satisfies condition (c-1) in G[U ′
2 \ {v, w}]. Therefore we have the
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following recurrence:

T (µ) ≤ T (µ− 2− 2− 1) + T (µ− 2− 2− 3)

+ T (µ− 2− 2− 1) + T (µ− 2− 2− 2)

+ T (µ− 2− 1− 1) + 2T (µ− 2− 1− 2) + T (µ− 2− 2− 2)

= T (µ− 4) + 4T (µ− 5) + 2T (µ− 6) + T (µ− 7),

which solves to T (µ) = O(1.4876µ).
Case (c). d(w1;H) = d(w2;H) = 2: From the structure of H , we see that w1 is
a degree-2 (0, 1)-vertex with qw1

= 1 in G[U ′
2 \ {v}] such that removing w1 from

G[U ′
2 \ {v}] changes w2 to a degree-2 (0, 0)-vertex with qw2

= 1; and removing
N [w1] from G[U ′

2 \ {v}] produces exactly one 2-path component. Hence w1

(resp., w2) satisfies condition (c-2) in G[U ′
2 \ {v}] (resp., G[U ′

2 \ {v, w1}]). Since
no vertex ofH ′ other than w1 and w2 satisfies any of conditions (c-1) and (c-2) in
G[U ′

2\{v}], each of w1 and w2 is an optimal vertex in G[U ′
2\{v}]. After v is fixed

as a covered vertex, the algorithm branches on one of them, say, w and continues
to branch on the other of them, say, w′ after fixing w as a covered vertex, since
there is no vertex satisfying condition (c-1) in G[U ′

2 \{v, w}]. Therefore we have
the following recurrence:

T (µ) ≤ T (µ− 2− 2− 2) + T (µ− 2− 2− 2)

+ T (µ− 2− 2− 1) + T (µ− 2− 2− 2)

+ T (µ− 2− 1− 1) + 2T (µ− 2− 1− 2) + T (µ− 2− 2− 2)

= T (µ− 4) + 3T (µ− 5) + 4T (µ− 6),

which solves to T (µ) = O(1.4833µ).
Since all the recurrences obtained in Cases (a)-(c) are not worse than the recur-
rence (8), the lemma holds. �

Proposition 14 Let (C,D) be an instance reduced up to (c-4).

(i) For any vertex v in G[U ′
2] of (C,D), removing v from G[U ′

2] produces no

bad component, and removing N [v] from G[U ′
2] produces no bad component

other than 2-path components.

(ii) Every degree-3 vertex v in G[U ′
2] of (C,D) is a (0, 1)-vertex or a (0, 2)-

vertex.

(iii) For any degree-3 (0, 1)-vertex v in G[U ′
2] of (C,D), the component H

including v in G[U ′
2] contains a 6-cycle which is either of the form

(a) vu0u1u2u3u4 consisting of v and five degree-2 vertices ui, i =
0, 1, 2, 3, 4; or of the form

(b) vv′u0u1u2u3 consisting of v, another degree-3 (0, 1)-vertex v′, and

four degree-2 vertices ui, i = 0, 1, 2, 3.
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(iv) For any degree-3 (0, 2)-vertex v in G[U ′
2] of (C,D), the component H

including v in G[U ′
2] consists of either

(c) two 6-cycles vv′u0u1u2u3 and vv′v0v1v2v3 that share an edge vv′ be-
tween v and another degree-3 (0, 2)-vertex v′ and pass through degree-

2 vertices ui and vi, i = 0, 1, 2, 3; or
(d) a 4-cycle vv0v1v2 of v and three other degree-3 (0, 2)-vertices vi, i =

0, 1, 2 and two paths vu0u1u2v1 and v0w0w1w2v2 joining two vertices

in the 4-cycle and passing through degree-2 vertices ui and wi, i =
0, 1, 2.

The four types (a)-(d) of components containing v are illustrated in Fig 6.

(a) (b) (c) (d)

Figure 6: The four types of components (a)-(d) containing a degree-3 vertex v
under the assumption in Proposition 14

Proof: Now the degree of every vertex in U ′
2 is at most 3 in G[U ′

2] by the
assumption on (C,D).
(i) Proposition 12 holds due to the assumption, and there is no degree-2 vertex
u with qu = 1 in G[U ′

2]. Therefore for any vertex v in G[U ′
2], removing v from

G[U ′
2] produces no bad component.

To show that removing N [v] produces no bad component other than 2-path
components, we prove a slightly more general property as follows, where we can
set (z, S) = (v,N(v)) to prove (i).

Claim Let z ∈ U ′
2 and S ⊆ U ′

2 \ {z} be a subset of vertices such that z and
each vertex s ∈ S are connected by a path in G[U ′

2 \ (S \ {z, s})] of (C,D).
Then removing S from G[U ′

2] produces no bad component other than 2-path
components or the component Hz containing z.
Proof. Assuming that there exists a bi-claw, leg-triangle or tri-claw component
H (6= Hz) in G[U ′

2\S], we show that some vertex in H satisfies one of conditions
(c-1) and (c-3) in G[U ′

2] to prove the claim. Since removing z from G[U ′
2]

produces no bad component, at least two vertices in S, say, a and b are adjacent
to V (H) in G[U ′

2]. Also every bad component H other than 2-path components
contains a cut-vertex v∗ whose removal leaves a 2-path component P , which
we call a 2-path subgraph of H . Hence some vertex in S must be adjacent to
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each 2-path subgraph of H , since otherwise removing the cut-vertex v∗ would
produce a bad component. Therefore we only need to consider the following
four cases:
(1) H is a bi-claw component (u0u1u2)(v0v1v2) such that u0 ∈ N(a) and

v0 ∈ N(b) in G[U ′
2];

(2) H is a leg-triangle component u0(u1wv1)v0 such that u0 ∈ N(a) and
v0 ∈ N(b) in G[U ′

2];
(3) H is a leg-triangle component u0(u1wv1)v0 such that w ∈ N(a) and v0 ∈

N(b) in G[U ′
2]; and

(4) H is a tri-claw component t(u0u1u2)(v0v1v2)(w0w1w2) such that u0, v0
and w0 are adjacent to S in G[U ′

2].
We show that vertex u1 in cases (1)-(3) and vertex t in case (4) satisfy con-
dition (c-1) or (c-3)(iii). Note that each path that connects two vertices in
S and passes through z contains no vertex in H , since H does not contain z
in G[U ′

2 \ S]. In cases (1)-(3), removing N [u1] from G[U ′
2] produces only one

nontrivial component H ′, which cannot be a 2-path component, since H ′ has
a path of length ≥ 3 containing z, a, b and v0. Therefore u1 in cases (1)-(4) is
a degree-3 (0, y)-vertex with y ≤ 1 such that removing N [u1] produces no new
2-path component; that is, u1 satisfies condition (c-1) or (c-3)(iii). In case (4),
removing N [t] from G[U ′

2] produces only one nontrivial component H ′′ contain-
ing {u0, v0, w0} ∪ S, which cannot be a 2-path component, and we see that t
satisfies condition (c-1) or (c-3)(iii). This proves the claim.
(ii) Note that v is a (0, y)-vertex with y ≥ 0 by Proposition 12. Since there is no
degree-3 (0, 0)-vertex in G[U ′

2], v is a (0, y)-vertex with y ≥ 1. Now removing
N [v] fromG[U ′

2] produces no bad component other than 2-path components. For
any 2-path component H produced by removing N [v] from G[U ′

2], at least two
neighbors of v are adjacent to V (H); thus there are at least two edges between
N(v) and V (H) in G[U ′

2]. Therefore there are at most six edges between N(v)
and U ′

2 \N [v] in G[U ′
2]. Thus removing N [v] can produce at most three 2-path

components; and thereby v is a (0, y)-vertex with 1 ≤ y ≤ 3. Assuming that
v is a degree-3 (0, 3)-vertex in G[U ′

2], we show that there is a vertex satisfying
condition (c-1) or (c-3)(iii) in G[U ′

2]. Let a, b and c denote the three neighbors
of v in G[U ′

2]. Let P1, P2 and P3 be the three 2-path components produced by
removing N [v] from G[U ′

2]. Without loss of generality, we assume that a and
b are adjacent to V (P1), both b and c are adjacent to V (P2) and both c and
a are adjacent to V (P3) in G[U ′

2]. Then G[U ′
2] has a path that contains {b, c}

and some vertex in P2 but does not contain v. Therefore removing N [a] from
G[U ′

2] produces only one component H ′ containing {b, c} ∪ V (P2) other than
clique-components of size ≤ 2, where H ′ cannot be a 2-path component. Thus
a is a degree-3 (0, 0)- or (0, 1)-vertex in G[U ′

2], which satisfies condition (c-1) or
(c-3)(iii). Consequently, every degree-3 vertex v in G[U ′

2] is a (0, y)-vertex with
1 ≤ y ≤ 2. This proves (ii).
(iii) Let v be a degree-3 (0, 1)-vertex in G[U ′

2]. In what follows, we show that
the component H containing v in G[U ′

2] satisfies condition (a) or (b) of the
lemma. Let a, b and c denote the neighbors of v in G[U ′

2], and P = u0u1u2 be
the 2-path component produced by removing N [v] from G[U ′

2]. Note that at
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least two vertices in N(v) = {a, b, c} are adjacent to P since otherwise removing
the unique vertex in N(v) adjacent to P would produce a bad component,
contradicting (i). We distinguish two cases: N(u1) ∩ N(v) 6= ∅; and N(u1) ∩
N(v) = ∅.
Case 1. u1 is adjacent to a vertex in N(v): Without loss of generality, let
u0 ∈ N(a) and u1 ∈ N(b), where u0 6∈ N(c) and u2 6∈ N(a) since otherwise
u0cva or u2au0u1 would be an admissible 4-cycle. By (ii), degree-3 vertex u1 is
a (0, 1)- or (0, 2)-vertex such that removing N [u1] produces at least one 2-path
component, where avc must be one of such 2-path components and vertices
a and c are not adjacent. This indicates that the component H containing v
in G[U ′

2] consists of the seven vertices, v, a, b, c, u0, u1 and u2. If vertex b is
of degree 3 in H , then removing N [b] from H produces no 2-path component
because u0, a 6∈ N(c) and u2 6∈ N(a), contradicting (ii). Hence b is a degree-2
vertex and therefore we see that b is a (0, 0)-vertex with qN [b] ≥ 1 in G[U ′

2]
satisfying (c-3)(iii). This contradicts the assumption on (C,D), and Case 1
cannot occur.
Case 2. u1 is not adjacent to any vertex in N(v) in G[U ′

2]: If u0 is not adjacent to
N(v), then u2 has two neighbors in N(v), which must be a degree-3 (0, y)-vertex
with qu2

= 1, where y ≤ 1 since v is a (0, 1)-vertex. This would imply that u2

satisfies condition (c-3)(ii). Hence u0 is adjacent to N(v). Analogously u2 is
also adjacent to N(v). Without loss of generality, let u0 ∈ N(a) and u2 ∈ N(b).
We let a′ (resp., b′) denote the third neighbor of a (resp., b) if any.
We show that if c ∈ N(u0) or c ∈ N(u2) in G[U ′

2], then H contains a vertex
satisfying condition (c-3)(i)-(ii). Without loss of generality we assume that c ∈
N(u0). Since removing N [v] from G[U ′

2] produces no bad component other than
the 2-path component u0u1u2, removing {a, c} produces no bad component.
Since G[U ′

2] contains a path which starts from v, passes through b, u2 and u1

and ends at u0, removing {v, u0} from G[U ′
2] produces no bad component other

than 2-path components by the claim with (z, S) = (b, {v, u0}). If b{v,u0} ≤ 1,
then 4-cycle vau0c is admissible in G[U ′

2], and every vertex on the cycle satisfies
(c-3)(i). Let b{v,u0} ≥ 2. Then removing {v, u0} from G[U ′

2] produces a 2-path
component P ′ other than 2-path component u1u2b. If P ′ contains only one of
a and c, then removing N [v] from G[U ′

2] produces a clique-component of size 2
consisting of V (P ′) \ {a} or V (P ′) \ {c}, indicating that v satisfies (c-3)(ii). Let
P ′ contain both of a and c; i.e., P ′ = aa′c. Since b{v,a′} = b{a,c} = 0, 4-cycle
vaa′c is admissible in G[U ′

2], and every vertex on the cycle satisfies (c-3)(i). In
the following we assume that c /∈ N(u0) ∪ N(u2), where we observe that no
degree-2 vertex is adjacent to two neighbors of the degree-3 (0, 1)-vertex v.
Since a ∈ N(b) in G[U ′

2] implies that a is a degree-3 (0, 0)-vertex satisfying (c-1),
we have a 6∈ N(b) in (C,D).
If a, b ∈ N(c), then vacb would be an admissible 4-cycle in G[U ′

2] and any vertex
on it would satisfy (c-3)(i). If a ∈ N(c) and d(b;H) = 2, then we see that
bN [a] = 1 by bN [v] = 1 and that vau0u1u2b is a 6-cycle satisfying condition (b)
for H . If a ∈ N(c), b 6∈ N(c) and d(b;H) = 3, then b would be a degree-3
(0, 0)-vertex in G[U ′

2] satisfying (c-1). Hence we assume that a, b 6∈ N(c) in the
following.
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We here show that a 6∈ N(u2). Let a ∈ N(u2). Then a is a degree-3 (0, y)-vertex,
where y = 2, since if a is a degree-3 (0, 1)-vertex then there cannot exist a degree-
2 vertex u1 adjacent to two neighbors of a. In this case, the graph G[U ′

2 \N [a]]
has two new 2-path components, Pb containing b and Pc containing c, where
Pc is not adjacent to any vertex in {a, b, u0, u1, u2} since c /∈ N(u0) ∪ N(u2),
contradicting that Pc will not be produced by removing v. Therefore we have
a 6∈ N(u2), b 6∈ N(u0) and d(u0;H) = d(u1;H) = d(u2;H) = 2.
Finally we show that if d(a;H) = 3 then removing N [a] from G[U ′

2] produces
no 2-path component that does not contain vertex b. Assume that a 2-path
component P ′′ not containing b is produced in G[U ′

2 \N [a]]. Since removing a′

from G[U ′
2] produces no bad component, both a′ and v are adjacent to V (P ′′)

in G[U ′
2], and V (P ′′) consists of vertex c and some vertices e, f ∈ U ′

2 \ (N [v] ∪
{a′, u0, u1, u2}). Since v is a degree-3 (0, 1)-vertex in G[U ′

2] by assumption, there
is no 2-path component consisting of {a′, e, f} in G[U ′

2 \N [v]]. Hence removing
N [v] from G[U ′

2] produces a clique-component of size 2 consisting of two of
{a′, e, f}. Then v would be a degree-3 (0, 1)-vertex with qN [v] = 1 in G[U ′

2]
satisfying condition (c-3)(ii), a contradiction. This proves that if d(a;H) = 3
(resp., d(b;H) = 3) then removing N [a] (resp., N [b]) from G[U ′

2] produces no
2-path component that does not contain vertex b (resp., a).
When d(a;H) = d(b;H) = 2, there is a 6-cycle which starts from v, passes
through five degree-2 vertices a, u0, u1, u2 and b in this order and ends at v,
indicating that the the component H containing v satisfies condition (a).
Let d(a;H) 6= d(b;H), say, d(a;H) = 3 and d(b;H) = 2. Then removing N [a]
from G[U ′

2] produces no 2-path component that does not contain vertex b; i.e.,
it produces only one 2-path component bu2u1, and thereby a is a degree-3 (0, 1)-
vertex in G[U ′

2]. Since there is a 6-cycle which starts from v, passes through four
degree-2 vertices b, u2, u1, u0 and a in this order and ends at v, the component
H containing v in G[U ′

2] satisfies condition (b).
Let d(a;H) = d(b;H) = 3. Similarly to the case of d(a;H) = 3 and d(b;H) = 2,
we see that each of a and b is a degree-3 (0, 1)-vertex in G[U ′

2]. Recall the fact
that degree-3 (0, 1)-vertex v has two degree-3 (0, 1)-neighbors joined by a path
Pv passing through three degree-2 vertices. By applying the fact to degree-
3 (0, 1)-vertex a, we see that G[U ′

2] contains a path Pa = aa′s0s1s2v passing
through degree-2 vertices si, i = 0, 1, 2. Similarly there is a path Pb = bb′t0t1t2v
passing through degree-2 vertices ti, i = 0, 1, 2. Since s2 = t2 must hold, such
two paths cannot exist unless a′ = b′. However, when a′ = b′, we see that v is
a (0, 2)-vertex, a contradiction.
Consequently, the component H containing v in G[U ′

2] satisfies one of two con-
ditions (a) and (b) of the lemma.
(iv) Let v be a degree-3 (0, 2)-vertex in G[U ′

2], a, b and c denote the three
neighbors of v in G[U ′

2], and H be the component containing N [v] in G[U ′
2].

Let P1 = u0u1u2 and P2 = w0w1w2 be the two 2-path components produced
by removing N [v] from G[U ′

2]. In what follows, we show that there is a vertex
satisfying condition (c-1) or (c-3) in G[U ′

2] unless H is a graph that satisfies
condition (c) or (d) of the lemma.
For each Pi, at least two neighbors of v are adjacent to V (Pi). Hence at least
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one neighbor of v, say, b is adjacent to both P1 and P2.
If u1 is adjacent to a vertex in N(v), then it is a degree-3 (0, 0)-vertex, since
removing u0, u1, u2 and exactly one vertex in N(v) produces no 2-path compo-
nent; that is, u1 satisfies condition (c-1). We assume that neither of u1 and w1 is
adjacent to any vertex in N(v). Let {u2, w2} ⊆ N(b) without loss of generality.
If u0 is not adjacent to any vertex in N(v), then the degree-3 vertex b is a (0, y)-
vertex with y ≤ 1 and qN [b] ≥ 1, which satisfies condition (c-1) or (c-3)(ii). We
further assume that each of u0, u2, w0 and w2 is adjacent to a vertex in N(v).
If vertex a (resp., c) is not adjacent to u0u1u2 or w0w1w2 in G[U ′

2], then another
neighbor c (resp., a) of v is a degree-3 (0, 0)-vertex in G[U ′

2], which satisfies (c-1).
If b is a degree-3 (0, 1)-vertex in G[U ′

2], then by (iii) H must have a 6-cycle
containing b and at most one more degree-3 vertex that is not the degree-3
(0, 2)-vertex v. Since such a 6-cycle does not exist in H , b is a degree-3 (0, 2)-
vertex in G[U ′

2], and hence removing N [b] from G[U ′
2] produces two 2-path

components, which must be au0u1 and cw0w1 (or cu0u1 and aw0w1).
In the following we assume that N(u0) = {a, u1}, N(w0) = {c, w1} and a 6∈ N(c)
without loss of generality.
Case 1. Both a and c are degree-2 vertices in G[U ′

2]: In this case, H satisfies
condition (c) of the lemma.
Case 2. One of a and c, say, a is a degree-3 vertex in G[U ′

2]: If a 6∈ N(w2)
or u2 ∈ N(c), then removing N [a] from G[U ′

2] produces no 2-path component.
Therefore we have a ∈ N(w2) and u2 6∈ N(c). Symmetrically if c is a degree-3
vertex in G[U ′

2], then c ∈ N(u2) and w2 6∈ N(a). This means that exactly one
of a and c can be a degree-3 vertex in G[U ′

2], and H satisfies condition (d) of
the lemma. �

Proposition 15 Algorithm EdsStage2 branches on an optimal vertex v satis-

fying condition (c-5) in G[U ′
2] together with possible branchings on the resulting

new bad components with a recurrence not worse than the recurrence (8).

Proof: Since v is an optimal vertex satisfying condition (c-5), v is a degree-
3 vertex in G[U ′

2]. Let H be the component containing v in G[U ′
2]. There

are no vertices satisfying any of conditions (c-1) to (c-4) in G[U ′
2]; therefore

Proposition 14 holds, indicating that H satisfies one of the four conditions (a)
to (d) in the lemma.
In what follows, we first show that after removing v, a vertex w satisfying
condition (c-2) will become an optimal vertex, and then derive recurrences for
branching on v together with branchings on the optimal vertex w and all newly
produced bad components. Note that after removing v, there is no vertex satis-
fying condition (c-1) in G[U ′

2 \ {v}], since v does not satisfy condition (c-3)(iv)
in G[U ′

2]. We distinguish two cases: condition (a) or (b) in Proposition 14 holds;
and condition (c) or (d) in Proposition 14 holds
Case (a) or (b): Now v is a degree-3 (0, 1)-vertex in G[U ′

2].
We first consider case (a); i.e., H contains a cycle of length 6 which starts from v,
passes through five degree-2 vertices v0, v1, v2, v3 and v4 in this order and ends at
v. Then v2 will be a degree-2 vertex that satisfies condition (c-2) in G[U ′

2 \{v}],
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since removing v2 from G[U ′
2 \ {v}] produces exactly two clique-components of

size 2: one consisting of {v0, v1} and the other consisting of {v3, v4}. Hence v2
will be an optimal vertex w in G[U ′

2 \ {v}].
We next consider case (b); i.e., H contains a cycle which starts from v, passes
through four degree-2 vertices v0, v1, v2, v3 and a degree-3 vertex v′ in this order
and ends at v. Then v2 will be a degree-2 vertex that satisfies condition (c-2) in
G[U ′

2\{v}], since removing v2 fromG[U ′
2\{v}] produces exactly two components:

a clique-component of size 2 consisting of {v0, v1} and the component containing
{v3, v′}. Hence v2 will be an optimal vertex w in G[U ′

2 \ {v}]. To derive a
recurrence, we show that removing each of v2 and N [v2] from G[U ′

2 \ {v2}]
produces no bad component other than a 2-path component. Removing v2 from
G[U ′

2 \ {v}] produces no bad component other than a 2-path component, since
v′ is a degree-2 vertex in G[U ′

2 \ {v, v2}]. Let u denote the other neighbor of v′

in G[U ′
2 \ {v}]. In the case where u is of degree ≤ 2 in G[U ′

2 \ {v}], removing
N [v2] produces no bad component other than a 2-path component. In the case
where u is of degree 3 in G[U ′

2 \ {v}], the component containing u produced by
removing N [v2] is not a bad component, since u must satisfy one of conditions
(a) to (d) in Proposition 14.
As a result, the optimal vertex w in G[U ′

2 \ {v}] satisfies condition (c-2); that
is, w is a degree-2 (x, y)-vertex with x+ y ≤ 1 and qw ≥ 1, and removing either
w or N [w] from G[U ′

2 \ {v}] produces no bad component other than a 2-path
component. In the case where x+ y = 0, we have the following recurrence:

T (µ) ≤ T (µ− 1− 2) + T (µ− 1− 2) + T (µ− 3− 1) + T (µ− 3− 2)

= 2T (µ− 3) + T (µ− 4) + T (µ− 5),

which solves to T (µ) = O(1.4656µ). In the case where x + y = 1, we have the
following recurrence:

T (µ) ≤ T (µ− 1− 2− 1) + T (µ− 1− 2− 2) + T (µ− 1− 2)

+ T (µ− 3− 1) + T (µ− 3− 2)

= T (µ− 3) + 2T (µ− 4) + 2T (µ− 5),

which solves to T (µ) = O(1.4826µ).
Case (c) or (d): Now v is a degree-3 (0, 2)-vertex in G[U ′

2].
We first consider case (c); i.e., H consists of the following two paths between
v and a degree-3 (0, 2)-vertex v′: a path which starts form v, passes through
degree-2 vertices u0, u1, u2 and u3 in this order and ends at v′; and a path which
starts form v, passes through degree-2 vertices v0, v1, v2 and v3 in this order and
ends at v′. Recall that after removing v from G[U ′

2], no vertex in H satisfies
condition (c-1). Removing v from H leaves only a path which starts from u0,
passes through degree-2 vertices u1, u2, u3, v

′, v3, v2 and v1 in this order and
ends at v0. We see that any vertex w ∈ {u2, v2} is a degree-2 (0, 0)-vertex with
qw = 1 in G[U ′

2 \{v}], and becomes an optimal vertex satisfying condition (c-2).
We next consider case (d); i.e., H consists of a 4-cycle vv0v1v2 of four degree-3
(0, 2)-vertices and the following two paths joining two diagonal vertices in the 4-
cycle: a path which starts from v, passes through degree-2 vertices u0, u1 and u2
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and ends at v1; and a path which starts from v0, passes through degree-2 vertices
w0, w1 and w2 and ends at v2. After removing v from G[U ′

2], only one vertex
v1 becomes a degree-3 vertex in G[U ′

2 \ {v}], which does not satisfy condition
(c-1), as already observed. Here removing u2 from G[U ′

2 \ {v}] produces exactly
two components: a clique-component of size 2 consisting of {u0, u1} and the
component containing v1, which is not a bad component. Removing N [u2] from
G[U ′

2 \ {v}] also produces exactly two components: an isolated vertex u0 and
the component containing {v0, v2}, which is not a bad component. Hence u2 is
a degree-2 (0, 0)-vertex with qu2

= 1 in G[U ′
2 \ {v}], and is an optimal vertex w

satisfying condition (c-2).
As a result, any optimal vertex w in G[U ′

2 \ {v}] is a degree-2 (0, 0)-vertex
satisfying condition (c-2); that is, w is a degree-2 (0, 0)-vertex with qw = 1.
Thus we have the following recurrence:

T (µ) ≤ T (µ− 1− 2) + T (µ− 1− 2)

+ T (µ− 3− 1− 1) + 2T (µ− 3− 1− 2) + T (µ− 3− 2− 2)

= 2T (µ− 3) + T (µ− 5) + 2T (µ− 6) + T (µ− 7),

which solves to T (µ) = O(1.4845µ).
Since all the recurrences obtained in Cases (a) to (d) are not worse than the
recurrence (8), the lemma holds. �

A component in G[U ′
2] is called a cycle component if it consists of a single

cycle. The following proposition shown in [12] is used to analyze the case where
Algorithm EdsStage2 branches on an optimal vertex satisfying condition (c-6).

Proposition 16 [12] Let L be a cycle component of length ≥ 4 in G[U ′
2]. Algo-

rithm EdsStage2 branches on vertices of L with a recurrence not worse than

the recurrence (8) until U ′
2 has no vertices in L.

Proposition 17 Algorithm EdsStage2 branches on an optimal vertex v satis-

fying condition (c-6) in G[U ′
2] together with possible branchings on the resulting

new bad components with a recurrence not worse than the recurrence (8).

Proof: Since v is an optimal vertex satisfying condition (c-6), v is a degree-
2 vertex in G[U ′

2]. Let H be the component containing v in G[U ′
2]. In the

following, we show that H is a cycle component of length ≥ 4.
Since there is no vertex that satisfies condition (c-5), there are only vertices of
degree ≤ 2 in G[U ′

2]. Furthermore there is no vertex of degree ≤ 1 in G[U ′
2],

since G[U ′
2] has no clique-component, no 2-path component and no degree-2

vertex u with qu ≥ 1, which satisfies condition (c-2). Therefore there are only
degree-2 vertices in G[U ′

2], indicating that the component containing v in G[U ′
2]

is a cycle component of length ≥ 4.
Algorithm EdsStage2 branches on vertices of H until G[U ′

2] has no more ver-
tices of H , with a recurrence not worse than the recurrence (8), by Proposi-
tion 16. �
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Now we are ready to complete the proof of Lemma 6. Propositions 9, 10, 11,
13, 15 and 17 guarantee that Algorithm EdsStage2 branches on an admis-
sible 4-cycle or an optimal vertex in G[U ′

2] together with possible branchings
on the resulting new bad components with a recurrence not worse than the
recurrence (8).

�

6 The parameterized weighted edge dominating

set problem

The parameterized weighted edge dominating set problem (PWEDS) is, given a
graph G = (V,E) with an edge weight function ω : E → R≥1 and a positive
real k, to test whether there is an edge dominating set M such that ω(M) ≤ k.
We show that a modification of our algorithm for PEDS can solve PWEDS in
the same time and space complexities as our algorithm does PEDS.
For PWEDS we use the same terminologies and notations as for PEDS; for
example, an instance of PWEDS is also denoted by (C,D). The following
solvable case for PEDS stems from [10].

Lemma 18 [10] A minimum (C,D)-eds of an instance (C,D) of PWEDS with

a given instance (G,ω, k) such that G[U ] contains only clique-components of

size ≤ 3 can be found in polynomial time.

Based on this lemma, we modify U1 to be the set of vertices of clique-components
of size ≤ 3 in G[U ]. This modification brings the following corollary.

Corollary 19 The modified algorithm can solve the parameterized weighted

edge dominating set problem in O∗(2.2351k) time and polynomial space.

Proof: We first show the correctness. If an edge dominating set M of G is
k-feasible, i.e., ω(M) ≤ k, then it holds that |V (M)| ≤ 2k and |M | ≤ k since
ω(e) ≥ 1 for any edge e ∈ E. This ensures the correctness of the measure
µ(C,D) and the conditions (1) and (2) for an instance (C,D) of the weighted
variant. Therefore we can solve PWEDS by the same branching method as
PEDS.
Second we show that the time complexity is the same as PEDS. The difference
between our algorithm for PEDS and one for PWEDS is only treatment of
clique-components of size ≥ 4. In what follows, we describe the treatment by
our modified algorithm, which will guarantee that the time complexity remains
O∗(2.2351k). For a clique-component H of size ≥ 5 of an instance (C,D), the
degree of a vertex of H in G[U2] is |V (H)| − 1 ≥ 4, on which therefore the
modified algorithm branches in the first stage. For a clique-component H of
size 4 of an instance (C,D), a vertex of H satisfies condition (c-2), on which
therefore the algorithm branches in the second stage. �
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7 Parameterization by the size of the minimum

vertex cover

The complexity for finding a minimum edge dominating set of a graph G as a
function of the size τ = τ(G) of a minimum vertex cover of the graph has been
studied. Escoffier et al. [3] showed that EDS can be solved in O∗(1.821τ) time
and polynomial space. In this section, we show that our new result on FPT
algorithm for EDS in this paper can improve their result.
The O∗(1.821τ)-time algorithm due to Escoffier et al. [3] invokes their algorithm
for PEDS [12] as a subroutine, where in fact any algorithm for PEDS can replace
theirs. The analysis of their method can be summarized as follows.

Lemma 20 [3] Assume that a minimum vertex cover of a graph G with τ =
τ(G) can be found in O∗(ατ ) time and polynomial space, and that PEDS with

an instance (G, k) can be solved in O∗(βk) time and polynomial space. Then for

any positive real p ∈ (0, 1) such that βp =
(

pp(1− p)1−p
)−1

, a minimum edge

dominating set of G can be found in O∗(max {α, βp}τ ) time and polynomial

space.

Note that a minimum vertex cover of a graph G can be found in O∗(1.2738τ)
time [2]. The following corollary is immediately deduced from this, Lemma 20
and our result for PEDS by setting α = 1.2738, β = 2.2351 and p = 0.727842.

Corollary 21 A minimum edge dominating set of a graph G with τ = τ(G)
can be found in O∗(1.7957τ) time and polynomial space.

8 Conclusion

In this paper, we have presented an O∗(2.2351k)-time and polynomial-space
algorithm to PEDS. The algorithm retains bad components produced at the first
stage for branching on vertices of degree ≥ 4, and branching on the remaining
undecided vertices not in clique-components by choosing 4-cycles/vertices to
branch on carefully. Based on our new lower bound on the size of (C,D)-edses,
we derived an upper bound on the number of leaf instances generated in the
third stage.
For a possible achievement of further improved algorithms, it is still left to
modify the first stage of our algorithm to branch on vertices of degree ≤ 4 in
the second stage and to identify several new components as bad components.
The time bound is derived from the balance between the first and the third
stages, implying the factor 2.2351k. Note that the second stage attains a nearly
tight bound; that is, 1.4945412k ≤ 2.2337k. So we suspect that a possible
improvement by this would be tiny.
It is also open whether our algorithm can be analyzed by the measure and
conquer method. The time bound of the algorithm by Binkele-Raible and Fernau
[1] is analyzed effectively by use of the measure and conquer even though it
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employs a simple branching rule of selecting higher-degree vertices. Contrary
to this, the algorithms by Xiao et al. [12] and ours collect bad components so
that they are treated together in the third stage, where a certain number of
combinations of branchings on them will be truncated efficiently. However, we
evaluate the size of bad components in the analysis in terms of “the number of
vertices included into C at the first and the second stages (see (1) and (2))”
rather than weights of vertices or components in a possible analysis by the
measure and conquer. So it would be interesting if we find a more flexible way
of evaluating the size of bad components in our algorithms.
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