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Abstract

We study Vertex Contact representations of Paths on a Grid (VCPG).
In such a representation, the vertices of G are represented by a family of
interiorly disjoint grid-paths on a square grid. Adjacencies are represented
by contacts between an endpoint of one grid-path and an interior point
of another grid-path. Defining u → v if the path of u ends on the path
of v, we obtain an orientation on G from a VCPG. To control the bends
of the grid paths the orientation is not enough. We therefore consider
pairs (α,ψ): a 2-orientation α and a flow ψ in the angle graph. The 2-
orientation describes the contacts of the ends of a grid-path and the flow
describes the behavior of a grid-path between its two ends. We give a
necessary and sufficient condition for such a pair (α,ψ) to be realizable
as a VCPG.

Using realizable pairs, we show that every planar (2,2)-tight graph
admits a VCPG with at most 2 bends per path and that this bound is
tight. In a similar way, we show that simple planar (2,1)-sparse graphs
have a 4-bend representation and simple planar (2,0)-sparse graphs have
6-bend representation.

Submitted:
March 2015

Reviewed:
July 2015

Revised:
October 2015

Reviewed:
November 2015

Revised:
December 2015

Accepted:
December 2015

Final:
December 2015

Published:
December 2015

Article type:
Regular paper

Communicated by:
C. D. Tóth
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1 Introduction

Outline of results. In this paper, we consider the question whether a graph
G admits a VCPG, i.e., a Vertex Contact representation of Paths on a Grid,
where the grid is the square grid. In such a representation, the vertices are
represented by a family of interiorly disjoint grid-paths with distinct endpoints.
An endpoint of one grid-path coincides with an interior point of another grid-
path if and only if the two represented vertices are adjacent. The shared point
is not a bend-point of either of the grid-paths. We denote such a contact by
proper contact. It follows that a graph admitting such a representation has to
be planar.

A VCPG induces a unique orientation of the edges of G: Orienting the edge
uv as u→ v if the grid-path of u ends on grid-path of v we obtain an orientation
of G. As each grid-path has two ends, in the induced orientation each vertex
has outdegree at most 2. We denote such an orientation simply 2-orientation.
The existence of a 2-orientation implies that the density of graphs admitting a
VCPG is rather restricted, in technical terms they have to be (2, 0)-sparse.

Every 2-orientation of a planar graph induces a VCPG (Lemma 8). However,
a 2-orientation of G defines the representation of the edges in a VCPG, but not
how the grid-paths behave (e.g. how many bends a grid-path has). To control the
behavior of the grid-paths between its endpoints, we introduce a flow network
in the angle graph (Section 3).

To obtain a full combinatorial description of a VCPG, we consider a pair
(α,ψ): a 2-orientation α in the graph and a flow ψ in the angle graph. The
main contribution of this paper is a necessary and sufficient condition for such
a pair (α,ψ) to be realizable as a VCPG. We will then use such realizable pairs
to give bounds on the number of bends needed to represent certain classes of
graphs.

When the number of bends of each path is at most k, we call the represen-
tation Bk-VCPG and when every path has precisely k bends, we speak about
strict Bk-VCPG. We will show that there are graphs admitting a B1-VCPG but
no strict B1-VCPG and we construct a planar (2,2)-tight graph that does not
admit a B1-VCPG (Section 4.1). We show that planar (2,2)-tight graphs admit
a B2-VCPG (Section 4.2) and planar (2,0)-tight graphs admit a B6-VCPG (Sec-
tion 4.3).

Related work. Graphs that can be represented as intersection graphs of grid-
paths without bends, i.e., by vertical and horizontal segments are known as
Grid Intersection Graphs (GIG). This is a well studied class of bipartite graphs.
Contact graphs of vertical and horizontal segments, i.e., B0-VCPG graphs or
contact 2DIR graphs, are exactly the bipartite planar graphs [6, 11]. In fact, 2-
orientations1 of maximal bipartite planar graphs are in bijection with separating
decompositions of this graph and separating decomposition induce a segment
contact representation by segments in two directions (cf. [5, 6, 8, 11]).

1With two non-adjacent vertices of out-degree 0 on the outer face.
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Intersection graphs of grid-paths are called VPG graphs. VPG graphs were
introduced by Asinowski et al. [3]. When the number of bends of each path
is at most k, we denote the representation by Bk-VPG. From the result that
every planar graph has a contact representation by T-shapes [7], it follows that
every planar graph has an intersection representation by grid-paths where each
path has at most three bends [3]. To obtain the B3-VPG, every T-shape is
replaced by a grid-path that follows the T-shape in such a way that every point is
covered on at least one side. Asinowski et al. conjectured this bound to be tight,
i.e., there exists a planar graph for which three bends are necessary. Chaplick
and Ueckerdt disproved this by showing that every planar graph admits a B2-
VPG [4]. It is still open to decide whether this is tight. Chaplick and Ueckerdt
conjectured that every planar graph admits a B1-VPG [4].

In a contact representation by grid-paths (as well as segments, pseudoseg-
ments, etc.), the vertices are represented by a family of internally disjoint ob-
jects. An endpoint of one object coincides with an interior point of another
object if and only if the two represented vertices are adjacent. Kobourov, Ueck-
erdt and Verbeek show that all planar (2,3)-tight graphs admit an L-contact
representation [12], i.e., a strict B1-VCPG (a sketch of their algorithm is given
in Section 4.1). It follows that every (2,3)-sparse graph also admits a strict B1-
VCPG. There are graphs that are not (2,3)-sparse but admit a strict B1-VCPG,
e.g. K4. Kobourov et al. stated that every graph that admits a B1-VCPG is
planar and (2,2)-sparse and they asked whether these conditions are also suffi-
cient.

Chaplick and Ueckerdt show that triangle-free planar graphs, i.e., (2,4)-
sparse planar graphs, admit a contact representation of {L,

L
,I, I}-shapes [4].

In other words, triangle-free planar graphs admit a B1-VCPG with only two
possible orientations of the one-bend paths. Alam et al. investigate which (2,0)-
sparse graphs have a contact representation of circular arcs [2].

Another related area of research is orthogonal graph drawing . Here one
wants to draw a given graph in the classical setting, i.e., the vertices are points
in the plane and the edges are grid-paths. In orthogonal graph drawing, there
have been many results on minimizing the number of bends. Note that in this
setting vertices have degree at most 4, or as a workaround, the vertices can
be represented as boxes. An early result of Tamassia gives an algorithm to
obtain an orthogonal drawing with minimal bend number of a planar graph
in polynomial time [14]. The algorithm preserves the embedding of the input
graph. Optimizing the number of bends per path has received much attention
too. Schäffter [13] gives an algorithm to draw 4-regular graphs in a grid with at
most two bends per edge (which is tight when not restricted to planar graphs).
For orthogonal drawings without degree restriction, Fößmeier, Kant and Kauf-
mann have shown that every plane graph has an orthogonal drawing preserving
the embedding with at most one bend per edge [9].

Outline of the paper. In Section 2, we define sparse and tight graphs and
show that every (2,0)-sparse graph has a 2-orientation. In Section 3, we intro-
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duce a flow network. We then give the necessary and sufficient condition for a
pair, a 2-orientation and a flow, to be realizable as a VCPG. In Section 4, we
apply realizable pairs to give bounds on the number of bends in a VCPG.

2 Preliminaries: on (2,`)-sparse graphs

Let G = (V,E) be a planar graph and let R be a VCPG of G. When we speak
about the embedding of G, we mean the embedding R. In R, the vertices of
G are represented by internally disjoint grid-paths with distinct endpoints. We
denote the grid-path of v ∈ V by pv. Each grid-path has two endpoints. When
two grid-paths intersect, the intersection point is an endpoint for precisely one
of the grid-paths. An endpoint of pv coincides with an interior point of pu
precisely when u and v are adjacent. If an endpoint does not coincide with
another grid-path, we call it a free end. The number of free ends is denoted by
`. A free end in an interior face can be extended to represent an edge, which is
considered a dummy edge. As interior free ends can be seen as dummy edges,
we assume that R only has free ends in the outer face. Later, in Lemma 2,
we will see that free ends in the outer face reduce the number of bends needed
to close the outer face. Therefore, the assumption that all free ends are in the
outer face is also attractive.

If a graph G = (V,E) is given and W ⊂ V , then we let E[W ] be the set of
edges induced by W in G. We start with an easy proposition which gives an
upper bound on the number of edges in a VCPG.

Proposition 1 If G = (V,E) admits a VCPG then:

∀W ⊆ V : |E[W ]| ≤ 2|W | . (1)

Proof: Each edge is represented as a proper contact between two grid-paths
representing two vertices. For one of the vertices this contact point is an end-
point of its grid-path. This vertex is the representative for the edge. Each
vertex can be a representative for at most two edges. Therefore the number of
edges induced by a set W ⊆ V is at most twice the number of vertices. �

If every grid-path has at most one bend, then there must be at least two
free ends in the outer face2. Therefore, the number of edges of a B1-VCPG is
at most twice the number of vertices minus two.

Definition 1 Let G = (V,E) a graph and k, ` ≥ 0 integers. If

∀W ⊆ V : |E[W ]| ≤ k|W | − ` ,

then G is called (k, `)-sparse. Where if k < `, the cardinality of W should be at
least d`/ke. If G is (k, `)-sparse and

|E| = k|V | − `

holds, then G is called (k, `)-tight.

2This should be quite evident. A formal proof can be given by adding up the changes in
direction, see the proof of Lemma 2 and in particular Equation 3.
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Graphs that admit a VCPG must be planar and (2,0)-sparse (Proposition 1).
In this paper we focus on (2,0)-tight graphs, (2,1)-tight graphs and (2,2)-tight
graphs. When we speak about (2, `)-tight or sparse graphs, we consider ` = 0, 1
or 2. Alam et al. [2] have shown that every plane (2,`)-sparse graph H, is a
subgraph of a plane (2,`)-tight graph G. Hence, it follows that our focus on
tight graphs is not a restriction.

2.1 A 2-Orientation Representing Edges

Defining u→ v if pu ends on pv, we obtain an orientation on G from a VCPG.
Every vertex has outdegree at most two in this orientation. The vertices with
outdegree less than two are precisely those for which the grid-path has free ends.
Such an orientation is denoted by 2-orientation.

A VCPG is not completely described by a plane graph with a 2-orientation.
For example, the VCPGs in Figure 1 induce the same orientation on the same
plane graph, but the number of bends in the representations is different.

a b

c

e

fd
ef

d

c

a

b

a

d

c

f

e

b

Figure 1: Two VCPGs of the octahedron, which induce the same 2-orientation
(shown in the middle) but the number of bends differs.

It is clear that for a (2,`)-tight graph with ` > 0, not every vertex has outde-
gree precisely 2. We also assume that the vertices that do not have outdegree 2
are on the outer face. With the next lemma, we show that for 0 ≤ ` ≤ 2 every
(2,`)-tight graph has such an orientation.

Lemma 1 Every planar (2, `)-tight graph has a 2-orientation. If 0 < ` ≤ 2,
then for every embedding, there exists a 2-orientation such that all vertices with
outdegree less than 2 are on the boundary of the outer face.

Proof: Let G = (V,E) be a planar (2, `)-tight graph. Suppose there is a
subset W of the vertices of G that has less than 2|W | incident edges. Then
G[V −W ] must induce at least:

2|V | − `− (2|W | − 1) = 2|V −W | − `+ 1

edges, which contradicts (2, `)-sparseness. Hence, every subset W of the vertices
of G has at least 2|W | incident edges.
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Now we construct a bipartite graph B. The first color class, V1, consists
of two copies of all but ` of the vertices of G. The remaining ` vertices are
only added once. The second color class, V2, consists of the edges of G. The
edge set of B is defined by the incidences in G: two vertices are connected if
the corresponding vertex of G is an endpoint of the corresponding edge of G.
We will show that (2, `)-tightness of G implies that this bipartite graph has a
perfect matching. A perfect matching defines a 2-orientation of G.

Let U ⊆ V1 consist of n duplicate vertices, and m vertices without a copy,
so |U | = 2n+m. Let NB(U) denote the set of neighbors of U in B. The
neighbors are all edges in G, except for the edges between two vertices that are
not in U . There are at most 2(|V | − n−m) + ` such edges. Therefore,

|NB(U)| ≥ |E|−2(|V |−n−m)+` ≥ 2|V |−`−2(|V |−n−m)+` = 2(n+m) ≥ |U | .

Hence, Hall’s marriage condition is satisfied for each subset V1. Since |V1| = |V2|,
the graph B has a perfect matching and, hence, G has a 2-orientation.

To prove the second part of the lemma, we fix an embedding of G. The ver-
tices that are not added twice to V1 are chosen arbitrarily from the boundary of
the outer face. The above argument implies the existence of a perfect matching
and thus the desired 2-orientation. �

Remark. Lemma 1 holds for all (2,`)-tight graphs, not only simple and
planar (2,`)-tight graphs. In the proof, neither simplicity nor planarity is used.
The only difference is that in a non-planar graph the vertices with outdegree
less than 2 should be selected differently, because “being on the outer face” is
meaningless.

3 A Combinatorial Characterization of VCPGs

3.1 A Feasible Flow Representing Bends

From here on, we consider graphs that are (2, `)-tight, plane and 2-connected.
Note that any (2, `)-tight graph can easily be extended to a 2-connected (2, `)-
tight graph by adding an appropriate number of degree 2 vertices.

To describe the behavior of the bends of a grid-path, we introduce a flow
network. The construction is inspired by Tamassia’s flow network [14]. A flow
network N is a graph that has two distinct sets of vertices that are the sources
and the sinks of the network. The sources and the sinks in our case, as well as
in the network designed by Tamassia, are the faces of the graph (see Figure 2).
For a face of a graph G, the need of a convex angle of a bend is presented as
having a negative demand3, i.e., it is a source. Similarly, needing a concave
angle of a bend is presented as having a positive demand, i.e., it is a sink.

The network will be the angle graph of G. Formally, the angle graph arises
from G by taking the union of the vertices and faces of G as the vertices of

3We could also speak about excess, however, for simplicity we have chosen to only use the
notion demand throughout this work.
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(c)

+1

(a) (b)

0-1

Figure 2: Faces with their demand and possible representations by grid-paths
with appropriate numbers of convex and concave angles.

A(G) and the pairs (v, f), v ∈ V (G), f ∈ F (G), such that v is a vertex on f
in G, as the edges of A(G) (see Figure 4). The angle graph A(G) is a plane
bipartite graph with one color class consisting of vertex-vertices and the other of
the face-vertices. Edges of A(G) represent the angles4 of G. The angle graph of
a 2-connected plane graph is a maximal bipartite graph, i.e., a quadrangulation.
The outer face has special properties in a VCPG, therefore, we consider graphs
with a fixed embedding.

The sources and sinks of the network are faces of G. A path in the network
from a source to a sink has to traverse vertices of G, as the vertices will be
represented as grid-paths with bends.

A directed path in the network going from a source to a sink passing through
a vertex v represents a bend in the grid-path pv representing vertex v. A path
f1 → v → f2 represents a bend of pv where the convex angle belongs to f1
and the concave angle to f2. The difference between the network needed for
VCPGs and the network defined by Tamassia for orthogonal drawings is that
in the case of VCPGs the paths, resp. flow, goes through a vertex and in the
case of orthogonal drawings the flow goes through an edge. In other words, the
underlying graph of the network defined by Tamassia is the dual graph and not
the angle graph (see Figure 3). We proceed with the formal introduction of the
encoding of the bends of a VCPG.

A flow ψ is a weighted directed graph, with the network N as underlying
graph. The weight of an edge denotes the amount of flow that is routed over
this edge. Flow conservation holds relative to correction terms given by the
positive or negative demands. An example of a flow ψ in the angle graph of K4

is shown on the right side of Figure 4. A face-vertex of A(G) can be a source
or a sink, depending on the size of the face in G (see Proposition 2 below). The
vertex-vertices of A(G) are neither sources nor sinks. The capacities of edges are
unbounded. From a VCPG R we construct a flow ψ as follows. For each bend
of pv, such that the convex angle of this bend lies in f1 and the concave angle
lies in f2, add a unit of flow f1 → v → f2. Note that the matching between
concave and convex corners at faces sharing a bend of an edge forces us to adopt
a strange classification of convex and concave angles at the outer face, e.g., the
outer face of a rectangle has four concave angles.

4The angles of a graph are the angles that are formed by any two consecutive edges that
meet at a common vertex.
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Figure 3: An example of a feasible flow for K4 (inner faces have demand −1, the
outer face has demand 3) with the dual graph (left) or the angle graph (right)
as underlying graph.

3
3

2

c

a b

c

a b

Figure 4: The angle graph (black) of the octahedron (grey) and the angle graph
with the feasible flow induced by the VCPG on the left of Figure 1. In the flow,
the edges that get weight zero are omitted, the edges that have weight larger
than 1 are labeled with their weight.

Proposition 2 Let ψ be the flow obtained from a VCPG of a (2, `)-tight graph.
Then the following holds. Every interior k-face f has demand |f | − 4 (interior
3-faces have negative demand). The outer face f∞ has demand (4− 2`) + |f∞|.

Proof: Following the boundary of an interior region of a VCPG and adding
the changes in direction, one should obtain 2π. Each edge is represented as a
proper contact and therefore changes the direction with π/2. A convex angle
at a vertex changes the direction with π/2 as well and a concave angle at a
vertex changes the direction with −π/2. For a face f , let c(f) be the number of
concave angles at vertices minus the number of convex angles at vertices. For
an interior face f we obtain:

2π = π/2 · |f | − π/2 · c(f) . (2)

The value c(f) also counts the incoming minus the outgoing flow in ψ and
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therefore is the demand of f . By rearranging (2), we obtain

c(f) = |f | − 4 ,

i.e., the desired result.
For the outer face f∞, the bends have to be counted differently. For the outer

face, an edge implies a change in direction of −π/2. A convex angle contributes
a −π/2 change of direction and a concave angle a change of π/2. A free end
gives a change in direction of π. Together we obtain

2π = −π/2 · |f∞|+ π/2 · c(f) + π` , (3)

and after rearranging:
c(f∞) = (4− 2`) + |f∞|

where ` is the number of free ends. �

A valid flow for the network N satisfies the flow conservation law at each
vertex that is not a source or a sink, i.e., the net flow is zero at each vertex
v 6∈ S ∪ T . At a sink, the sum of the incoming flow minus the sum of the
outgoing flow is at most the demand of the sink. At a source, the sum of the
incoming flow minus the sum of the outgoing flow is at least the size of the
demand5. A valid flow ψ is feasible if the demand of every sink is satisfied. We
next show that the demands of the sinks add up to the absolute value of the sum
of the demands of the sources, hence, in a feasible flow the negative demand of
each source is also satisfied.

The total value of a feasible flow is equal to the number of interior 3-faces
(the number of sources), which in turn is equal to the sum of the demands of
all sinks. We take the sum of all demands.∑

f

c(f) =
∑

f∈Fint

(|f | − 4) + (4− 2`) + |f∞| =∑
f∈F

|f | − 4|F |+ 8− 2` = 2|E| − 4|F |+ 8− 2` =

2|E| − 4(2− |V |+ |E|) + 8− 2` = −2(|E| − (2|V |+ `)) = 0.

We have used Euler’s formula to replace |F | and the fact that the graph is (2, `)
tight for the last equation.

The number of bends prescribed by the flow is∑
v∈V

ψ(v) ,

where ψ(v) denotes the amount of flow that goes through the vertex v. In
order to relate to a VCPG it is necessary that ψ is an integral feasible flow for

5Recall that the demand of a source is negative.
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the network N . Note that since the demands are integral the existence of a
(minimum cost) integral feasible flow is guaranteed. In the sequel, we will omit
the word ‘integral’ as we only consider integral feasible flows.

A flow does not uniquely define a VCPG either. The two VCPGs in Figure 5
induce the same feasible flow, but the edges are represented in a different way.
The obvious question is whether every feasible integral flow in A(G) belongs to
a VCPG. Unfortunately this is not the case (see Figure 6). However, using both
the orientation and the feasible flow, we obtain a characterization of VCPGs.
This is the subject of the following section.

b

e

a

b

c

e

f

g

d
ge

d

b

c

fa

g
f

a

cd

Figure 5: A feasible flow does not uniquely define a VCPG. On the left two
VCPGs, and on the right the feasible flow induced by both of the VCPGs. The
difference is the orientation of the cycle e, a, b, f (in red).

3.2 Realizable Pairs

Starting with a VCPG, a 2-orientation α and a feasible flow ψ can be obtained,
as described in the previous sections. In this section we identify a necessary
property of a pair, (α,ψ) that comes from a VCPG. Not every pair (α,ψ) on G
induces a VCPG of G. We call a pair (α,ψ) realizable when it does. We
will prove that the necessary property is also sufficient, hence, realizable pairs
are in bijection to VCPGs. Our proof method is algorithmic, it shows how
one can construct a VCPG (the geometric setting) from a realizable pair (the
combinatorial setting).

3.2.1 A Property of Realizable Pairs

We will deduce a property of realizable pairs and show that this property is
necessary and sufficient for a pair, a 2-orientation α and a feasible flow ψ,
to be realizable. The property depends on α and on ψ. First we define the
property for a vertex v (see Figure 7 (c)). Let A[NA(G)[v]] denote the angle
graph induced by the closed neighborhood of a vertex v, i.e. induced by v and
all its neighbors in A(G). Let n1, n2 be the neighbors of v along the outgoing
edges of v in α. If v has outdegree 0, then n1, n2 are its neighbors on the outer
face. If v has outdegree 1, then n1 is its neighbor along the outgoing edge. The
vertex n2 is the neighbor of v on the outer face, chosen such that the units of



JGAA, 19(3) 817–849 (2015) 827

vu
w

3

2

2

Figure 6: A feasible flow ψ that does not belong to a VCPG, i.e. there exists
no 2-orientation α such that the pair (α,ψ) is realizable.

flow are equally distributed on the clockwise and counterclockwise side of the
path n1, v, n2. Informally, a unit of flow through a vertex v represents a bend
of the grid-path of v. Following the grid-path from n1 to n2, looking left and
right, the bends are met at the same time. This implies that the flow through
a vertex must be laminar, i.e., non-crossing.

Definition 2 (Realizability Condition) The pair (α,ψ) satisfies the realiz-
ability condition at vertex v if and only if, given A[NA(G)[v]] and the flow in
this subgraph (see Figure 7 (b)):

• there is a decomposition of the flow into non-crossing paths, and,

• every path of such a decomposition crosses the path n1, v, n2.

When the pair (α,ψ) satisfies the realizability condition at each vertex we say
that the pair is realizable.

(a) (b) (c)1 2

34 34

1 2

n2

1

2

4

3n2
n1 n1

n2
n1

Figure 7: (a) The vertex v in G and the local flow. (b) The expansion of v: The
flow through v is decomposed into disjoint paths and each of these paths cuts
the path consisting of the outgoing edges of v. (c) A close look at the grid-path
of a vertex v in a VCPG.
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Let us look at the feasible flow ψ from Figure 6 in the context of the re-
alizability condition. The graph is (2,0)-tight and therefore all vertices have
outdegree 2 in a 2-orientation that comes from a VCPG. A 2-orientation α such
that (α,ψ) is a realizable pair, is such that u→ v and w → v. Then v has out-
degree at most 1. This shows that there is no 2-orientation α such that (α,ψ)
is realizable, and hence, due to Lemma 2, ψ does not come from a VCPG.

We now show that a pair that comes from a VCPG satisfies the realizability
condition.

Lemma 2 A pair (α,ψ) that comes from a VCPG is realizable.

Proof: First note that a VCPG of G describes an embedding of G. If there is a
grid-path with one free end, then before proceeding, we reduce all unnecessary
bends, i.e., if a grid-path has bends between its last neighbor and its free end,
these bends are removed. The 2-orientation α that is induced by the VCPG
has an edge u→ v if and only if the grid-path of u ends on the grid-path of v.
Consider the grid-path that represents a vertex v. If this path has no bends,
the realizability condition is satisfied at this vertex. Suppose the path has k
bends. Draw an arrow from the face containing a convex corner to the face in
which the associated concave corner lies. Now the set of arrows represents the
flow ψ(v). This flow is non-crossing through v and every unit of flow is cut
by the the grid-path of v. When these arrows are introduced for all bends of
all grid-paths, the flow given by these arrows satisfies the demand of each face.
Contract the strictly interior steps of the grid-path to a vertex. Every unit of
the non-crossing flow through v is now cut by the outermost two segments of the
grid-path, which correspond to the outgoing edges of v, or to the outgoing edge
and the location of the last incoming edge before the free end of the grid-path.
Hence, the realizability condition is satisfied at each vertex. Therefore, the pair
(α,ψ) obtained from the VCPG is realizable. �

3.3 Realizable Pairs Are in Bijection with VCPGs

Now we are ready for the main result.

Theorem 1 The realizable pairs are in bijection with VCPGs.

The remainder of this section is dedicated to showing that given a realizable
pair (α,ψ), there exists a VCPG, with the same vertices on the outer face as in
the chosen embedding of G (this embedding is implied by the pair (α,ψ) since
ψ lives on the angle graph), and such that:

(a) The grid-path of u ends on the grid-path of v if and only if the edge uv is
oriented from u to v in α; and

(b) The grid-path of v has precisely ψ(v) bends.

We will show how to construct a VCPG given a realizable pair. Note that an
embedding can be derived from A(G) (in which the flow ψ is defined). Consider
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a realizable pair (α,ψ). The construction consists of four steps, which we first
outline here.
Step 1: First, we expand the vertices that have k units of flow going through
them, to a path6 of length k. We obtain a bipartite graph.
Step 2: We introduce help-edges and vertices in the bipartite graph to construct
a quadrangulation (see Figure 8(b)). The orientation α is extended to a 2-
orientation of the quadrangulation.
Step 3: We then find a segment contact representation of the quadrangulation.
It has been shown that the 2-orientations of maximal bipartite planar graphs
are in bijection with separating decompositions of this graph (e.g. [5]). In turn,
a separating decomposition induces a segment contact representation (cf. [11,
6, 8]). Hence we can construct a segment contact representation where the
representation of the edges is in bijection with the given 2-orientation. An
example is shown in Figure 8(c).
Step 4: Last, we will show that the extra edges that have been introduced to
make a quadrangulation of the bipartite graph can be deleted in order to obtain
a VCPG of G (see Figure 8(d)).

Let us describe the steps in more detail.
Step 1. Let (α,ψ) be a realizable pair for G. We expand all vertices with
non-zero flow. The plane graph we obtain is denoted by G̃. For every vertex v
for which ψ(v) 6= 0, expanding v consists of the following steps (see Figure 7):

1. Expand v to a circle. We will call this the bag of v.

2. Inside the circle, add a path with ψ(v)+1 vertices between the two outgo-
ing edges of v. If v has outdegree 1 or 0, then v is on the outer face. The
path is added between the edge on the outer face and the outgoing edge,
or between the two edges on the outer face, respectively. The edges of the
path are called path-edges, the inner vertices of the path by path-vertices,
and all the vertices that belong to a bag are called bag-vertices.

3. Each incoming edge of v, is now connected to a path-vertex. This is done
such that the flow between two faces only crosses a single edge and this is
an edge of the path.

After all the expansions have been done we obtain a graph where all faces have
even length. Each face gets ||f | − 4|+2k extra vertices due to the expansion
step, where k is the amount of flow crossing through the face. The resulting
faces in G̃ have size |f |+ ||f | − 4|+ 2k, for |f | = 3 this is 4 + 2k and for |f | > 3
this is 2|f | − 4 + 2k, both are even. So, all faces in G̃ have even length and
therefore G̃ is a bipartite graph.
Step 2. Now we add help-edges to extend G̃ to a quadrangulation. We denote
the quadrangulation by GQ. We will also orient the new edges to obtain a 2-
orientation of GQ. In order to explain how the help-edges are added, we need
the following lemma.

6The length of a path counts the number of edges.
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Figure 8: From a realizable pair to a VCPG: (a) a plane (2,0)-tight graph with
a realizable pair (ψ in red); (b) expanding the vertices according to the flow (in
blue) and extending the bipartite graph to a quadrangulation (in green); (c) a
segment contact representation of the quadrangulation with the segments that
belong to the original graph highlighted; (d) a VCPG.
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Lemma 3 Every interior face f̃ of G̃ has (|f̃ | − 4)/2 units of incoming flow.

Proof: Let ψ+(f) (respectively ψ−(f)) denote the incoming (respectively out-
going) flow in face f . Let f be the face corresponding to f̃ in the original
graph G.

As ψ is a feasible flow, the demand c(f) of f is the difference between
incoming and outgoing flow:

ψ+(f)− ψ−(f) = c(f) = |f | − 4 .

Now we use that the size of the extended face f̃ is the size of f plus the incoming
and the outgoing flow.

|f̃ | = |f |+ ψ+(f) + ψ−(f) = |f |+ ψ+(f) + ψ+(f)− |f |+ 4 = 2ψ+(f) + 4

Hence we find

ψ+(f) =
|f̃ | − 4

2
. (4)

�

Using (|f̃ | − 4)/2 help-edges, we can quadrangulate f̃ (see Figure 9 and
the proof of Lemma 4). The help-edges should be added in such a way that
every bag (vertex expansion) gets as many help-edges as the value of the flow
going into f̃ through this vertex. Informally, a concave corner arises from two
segments that both end in one point. In the segment contact representations
that we will use, there are only proper contacts or free ends. Each help-edge
represents a segment of a concave corner that proceeds into the face, and, this
part will later be removed. Such a help-edge will be oriented as outgoing from
the bag.

Later, we will construct a segment contact representation of the quadran-
gulation. For this, it is necessary that every interior vertex has outdegree pre-
cisely 2. Therefore, the help-edges must be added in such a way that this is
possible for all vertices. Each interior bag-vertex should finally get assigned
two outgoing arcs (which are not edges in the original graph). The vertices on
the boundary of the bag, i.e., the vertices incident to the outgoing edges of the
vertex in the original graph, need one additional outgoing arc. To begin with,
the help-edges are added along the flow from a vertex into a face. This gives
the required number of new edges leaving a bag (a bag with k vertices and 2
outgoing edges in α has k − 1 internal vertices and flow value k − 1, hence,
adding one out-edge for each unit of flow is the right amount).

Lemma 4 Each inner face f̃ of G̃ can be quadrangulated in such a way that
each bag through which k units of flow enter f̃ gets k new outgoing arcs. The
outer face of G̃ can be quadrangulated using four help-vertices (vt, vr, vb, vl), in
such a way that each bag through which k units of flow enter the outer face
gets k new outgoing arcs.
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An example of quadrangulating an interior face is depicted in Figure 9. The
flow ψ is given by the red arrows. First, half-arcs are added, the green solid
arcs. Then these half-arcs are subsequently connected in such a way that they
close one 4-face (green dashed lines). The quadrangulation of the outer face is
based on the same idea.

Proof of Lemma 4: Add an outgoing half-arc into f̃ from each vertex that
comes clockwise after a unit of incoming flow, see Figure 9. This ensures that
every bag gets the correct number of new outgoing arcs. Now we will show that
extending these half-arcs allows us to quadrangulate f̃ . There are (|f̃ | − 4)/2
vertices that get a half-arc, thus (|f̃ | + 4)/2 without a half-arc. Hence, there
exists a vertex with a half-arc which is followed by two consecutive vertices
u, v without a half-arc. We will extend this half-arc and show that afterwards
there is again a half-arc which is followed by two consecutive vertices without a
half-arc. Consider the half-arc clockwise before u, v and connect it to the vertex
after u, v. We have constructed a 4-face and completed one half-arc. The other
face has |f̃ |−2 vertices and (|f̃ |−2+4)/2 half-arcs. Therefore, there must again
be a vertex with a half-arc that is followed by two vertices without a half-arc
and the step can be repeated on this face. In every step the size of the face is
reduced by two and one half-arc is extended, there are (|f̃ | − 4)/2 steps. Since

|f̃ | − 2 · (|f̃ | − 4)/2 = 4

it follows that the result is a quadrangulation of f̃ . The way the half-arcs are
added ensures that that each bag through which k units of flow enter f̃ gets k
new outgoing arcs.

Figure 9: Adding help-edges in a face. The flow ψ is depicted by red arcs. The
green half-arcs together with the dashed extensions represent the help-edges.

To take care of the outer face we add a quadrilateral around the graph and
quadrangulate the new inner face between the graph and the quadrangle.

We distinguish four cases (see Figure 10), a detailed description of the process
in each of the cases is given below.

(a) There exists a vertex s in the original graph G which has no outgoing
arcs under α.

(b) There exist two vertices s, t in the original graph G which both have
precisely one outgoing arc under α.

(c) There exists precisely one vertex s which has precisely one outgoing arc
under α.
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(d) All vertices have outdegree 2 under α.

We add a quadrilateral around the graph and construct an inner face, of size
2k+ 4 such that the amount of incoming flow is k (see Figure 10). Then we can
use the same method as for the interior faces.
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Figure 10: Adding a quadrilateral around the graph.

Recall that we consider (2, `)-tight graphs. Hence the graph has 2|V | − `
edges and there are precisely ` free ends in the outer face of the representation.

(a) Note that ` = 2. Add a quadrangle around the graph with vertices
vl, vt, vr, vb in clockwise order. If s is expanded, we label the vertices in the ex-
pansion in counterclockwise order, following the boundary of ˜f∞, by s1, . . . , sk.
If s is not expanded then we label s = s1. Add the arcs (s1, vt) and (s1, vb). Now
the bounded face f∗ containing s1, vt, vr, vb on its boundary has the following
properties: |f∗| = | ˜f∞|+4, it has 1

2 | ˜f∞| incoming flow. The same method as for
an inner face can be used: first, half-arcs are added and then these are extended
to arcs by consecutively closing 4-faces.

(b) Note that ` = 2. Add a quadrangle around the graph with vertices
vl, vt, vr, vb in clockwise order. If s and t are expanded, we label the expansion
vertices in the respective bags such that s1 and t1 have no outgoing arc under α
and they are end vertices of the expansion path. If s respectively t is not
expanded, we label s = s1 respectively t = t1. Add the arc (s1, vt) and let
f∗ be the inner face that is bounded by the quadrangle. Let ψt1,s1 denote the

incoming flow to f∗ between t1 and s1 clockwise around ˜f∞. Assign the label
q to the vertex at distance 2ψt1,s1 + 3 from t1 walking counterclockwise around
f∗. Add the arc (t1, q). Now we have obtained two faces fu, fd, for which the
incoming flow ψ+(fu), ψ+(fd) is equal to |fu|/2−2, |fd|/2−2. The same method
as for an inner face can be used: first, half-arcs are added and then these are
extended to arcs by consecutively closing 4-faces.

(c) Note that ` = 1. Add a quadrangle around the graph with vertices
vl, vt, vr, vb in clockwise order. The vertex s has outdegree precisely 1 under α.
Label the vertex in the bag of s that has no outgoing edge and is an end vertex
of the extension path s1 or if s is not expanded we label s = s1. Add the
arc (s1, vt). Let f∗ be the inner face that is bounded by the quadrangle. The
incoming flow of f∗ is of size 1

2 | ˜f∞|+ 1 and the size is given by |f∗| = | ˜f∞|+ 6.
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The same method as for an inner face can be used: first, half-arcs are added
and then these are extended to arcs by consecutively closing 4-faces.

(d) Note that ` = 0. Add a quadrangle around the graph with vertices
vl, vt, vr, vb in clockwise order and let f∗ be the inner face that is bounded by
the quadrangle. We will use one unit of flow to connect ˜f∞ to the quadrangle.
First add a half-arc into f∗ from each vertex clockwise after a unit of incom-
ing flow. Choose any half-arc and connect it to vt. We obtain a face f with
1
2 | ˜f∞|+ 1 incoming flow and |f | = ˜f∞ + 6. The same method as for an inner
face can be used: first, half-arcs are added and then these are extended to arcs
by consecutively closing 4-faces.

In the resulting graph each inner face f̃ of G̃ is quadrangulated and the outer
face of G̃ is quadrangulated using four help-vertices (vt, vr, vb, vl). Due to the
introduction of the half-arcs according to the incoming flow in a face, we have
ensured that each bag through which k units of flow enter the face gets k new
outgoing arcs. �

To obtain a 2-orientation of the quadrangulation GQ, the edges that are
strictly inside the bags, and the four boundary edges need to be oriented. The
orientation of the original edges is inherited from α, the help-edges are already
oriented. Each bag bv contains |bv|−1 = ψ(v) edges which are not yet oriented.

Lemma 5 The outdegree of each bag bv in GQ is precisely |bv| + 1 and the
outdegree of each vertex is at most 2.

Proof: The bag bv of a vertex v has ψ(v) + 1 vertices. According to the
flow, ψ(v) outgoing arcs are added at the introduction of the help-edges.

If a bag bv comes from a vertex v which has outdegree 2, the bag has outde-
gree 2+ψ(v) = |bv|+1. If a bag bv comes from a vertex v which has outdegree 1
in α, then the quadrangulation step has assigned another outgoing arc to this
bag. Therefore the bag has outdegree |bv|+ 1. If a bag bv comes from a vertex
v which has outdegree 0 in α, then the quadrangulation step has assigned two
outgoing arcs to this bag. Therefore the bag has outdegree |bv|+ 1.

Suppose one of the bag-vertices has outdegree 3 or more. At most one of
the arcs is an edge of the original graph, as otherwise the vertex would not
have been expanded and no new outgoing arc is added. When an outgoing arc
is added to a vertex, the vertex is located clockwise after a path-edge, i.e., an
edge that was added during the expansion of the vertex, and this path-edge is
crossed by a unit of flow routed into the adjacent face for which the vertex is
clockwise after the edge. If a vertex has two added arcs, it must be incident to
two faces, one on each side of the path and such that the vertex is clockwise
next of the path-edge with respect to this face. Hence, this vertex is incident
to two path-edges and is not an end vertex of the path. Therefore, it cannot
have an outgoing arc that is an edge of the original graph. It follows that every
vertex has outdegree at most 2. �

Orient vlvt, vrvt, vlvb and vrvb towards vt and vb, respectively. The ver-
tices vt and vb are the two poles of the 2-orientation. The orientation can be
completed in a greedy way.
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Lemma 6 The path-edges can be oriented such that the resulting orientation is
a 2-orientation of GQ.

Proof: Let u1, u2, . . . , us be the vertices of a bag in the ordering given by the
path. Think of the path as being horizontal. We know that u1 and us have
outgoing edges that come from the 2-orientation α or an outgoing edge that
connects to the surrounding quadrilateral. In addition, a unit of flow that goes
through the edge ui, ui+1 into the “upper face” implies an outgoing edge at
ui. We orient such an edge as ui+1 → ui so that the flow through the edge
contributes a single outgoing edge at each of the endpoints. A unit of flow that
goes through the edge uj , uj+1 into the “lower face” implies an outgoing edge at
uj+1. We orient such an edge as uj → uj+1 so that again the flow through the
edge contributes a single outgoing edge at each of the endpoints. Taking into
account the special outgoing edges at u1 and us we have a total of 2s outgoing
edges from the bag. Also, every vertex in the bag has outdegree at most 2.
Therefore, every vertex of the path now has outdegree 2. �

Step 3. From G and the realizable pair (α,ψ) we constructed a quadrangulation
GQ with a 2-orientation α̂ (vt and vb are the only two vertices with outdegree 0
instead of outdegree 2). We construct a segment contact representation, the
vertices of the two color classes of GQ become horizontal and vertical segments
and the edges are proper contacts between the segments satisfying α̂.

Step 4. It remains to show that this segment representation of GQ can be
transformed to a VCPG of G that realizes (α,ψ). The segment contact repre-
sentation of GQ contains a paths pv for each vertex that reflects the behaviour
prescribed by the pair (α,ψ). If the bag bv of v contains the path u1, u2, . . . , us,
then path pv starts and ends at the contact points of the segments representing
u1 and us with the segments representing their special outneighbors. The bends
of pv are at the contact points of segments of pairs ui, ui+1 of adjacent vertices
in the bag.

The collection of these paths pv for v ∈ V does not immediately induce the
VCPG. In the example in Figure 11 (a), the path of 1, belonging to vertex b
does not end on the part of 10 that will belong to vertex a. To be precise, the
path of 1 ends on a part of 10 that belongs to a help-edge. In general it might
be that a grid-path that is supposed to end on another grid-path ends on a part
that belongs to a help-edge. The following lemma shows that we can change
the order of segments ending on different sides of a segment. It follows that the
segment contact representation can be changed such that all contacts are as we
want them to be.

Lemma 7 Given a vertical segment s in a segment contact representation, sup-
pose a horizontal segment s` ends on the left of s and sr ends on the right of s
such that the endpoint of s` on s is below the endpoint of sr on s. Then there is
an equivalent segment contact representation, i.e., with the same corresponding
2-orientation, where the endpoint of s` on s is above the endpoint of sr on s.
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Proof: Consider a cutline consisting of an interval on s and two horizontal
rays. The first ray starts just below s` and points to the left. The second ray
starts just above sr and points to the right. The base-points of both rays on
s are chosen such that the rays only intersect vertical segments. The interval
on s is the interval between the two base-points. Now cut the graph along
the cutline and shift the half containing s` up until s` is above sr. Vertical
segments that are intersected by the rays now have disconnected parts, connect
these parts vertically through the slab opened by the shift. This results in a new,
equivalent, segment contact representation where s` is higher than sr. Figure 11
shows an example where s = 10, s` = 9 and sr = 1. �

Clearly, there is a symmetric construction that allows to change the order of
two segments touching a horizontal segment one from above and the other from
below. We call this operation a shift operation.

Let s be a vertical segment and let s`1 , . . . , s`a and sr1 , . . . , srb be the seg-
ments touching s from the left resp. from the right, where each of the two sets
have increasing order of y-coordinates. Let a merge of the segments be a permu-
tation of the a+b segments where the subpermutation of the segments touching
from the left is s`1 , . . . , s`a and the order of the segments touching from the
right is sr1 , . . . , srb . We can realize any merge of the a+ b segments touching s
as the order of their y coordinates. A procedure that achieves this is working
upwards on s. Lemma 7 allows to shift the needed next segment from the left
or the right chain of segments below all the still untouched segments. Again
there is a symmetric statement for horizontal segments.
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Figure 11: Cutting open, shifting and extending shows that neighbors on each
side can be moved independently: (a) a segment contact representation where
the highlighted part of 1 does not end on the highlighted part of 10, and a
cutting line (dashed); (b) the segment contact representation is cut and the top
is pulled upwards extending the vertical segments that are cut.
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Theorem 2 The segment representation of GQ obtained from a realizable pair
(α,ψ) induces a VCPG of G.

Proof: We use three operations identification, shift operations and deletion to
transform the segment representation of GQ into a VCPG of G.

Identification. For each vertex v we will identify a set of parts of segments
that form a grid-path pv. Basically the identified set represents the path edges
and the original outgoing edges of v. This grid-path will represent the vertex in
the VCPG. We call the parts of the segments that are selected the highlighted
parts (see Figure 11). For a vertex v that is not expanded, we take the whole
segment as pv. For each bag bv, select the segments representing the bag-vertices
u1, . . . , us. For each bag-vertex ui, use the part of the segment between ui−1
and ui+1 for pv. For the end vertices of the bag, u1 (respectively us) take the
part of the segment between u2 (respectively us−1) and the outgoing neighbor of
u1 (respectively us) that is not in the bag nor reached via a help-edge. Together
these pieces form the grid-path pv associated with v. When ` = 1, 2 we have
added arcs while quadrangulating the outer face that do not correspond to the
flow nor to original edges. These edges represent the free ends of grid-paths.
We cut such segments right after the last neighbor ending on this segment to
get the free end of pv.

Shift operations. It may occur that for an arc of G, say v → u, the endpoint
from v on u appears on a non-highlighted part of a segment that contributes to
the path pu of color u. This may occur because of the added help-edges. This
is to be repaired with a shift operation as described in Lemma 7. We have to
show that such a shift operation can indeed be used for the repair.

Let ui be the vertex of the bag bu corresponding to the segment si on which
pv ends. Let ui−1 and ui+1 be the neighbors of ui in the bag bu. For i = 1,
we also let u0 be the special outneighbor of u1, i.e., the outneighbor that is not
introduced because of the flow unit associated with u1, u2. Similarly, us+1 is
the special outneighbor of us.

In the following, it is crucial that when walking clockwise around si, we see
the contacts with other segments in the same order as we see around ui in GQ

the edges to neighbors.
If ui−1 ← ui → ui+1, then the complete segment si belongs to pu. Hence,

the end-point of pv on si is already on pu.
Our second case is ui−1 ← ui ← ui+1. For ease of reference, we assume that

si is vertical with the segment of ui+1 to its right. Figure 12(a) shows a generic
situation. The figure shows GQ and the flow associated to ui, ui+1 in the upper
sketch, and the representation with segment contacts in the lower sketch. With
a and b we have included two possible neighbors of u that are attached to ui.
The path pb already meets pu, a contact of pa with pu can be created with the
shift operation. It is crucial that on the right side of si above ui+1 there can
be no contact with pv. This is because the flow associated to ui, ui+1 and the
help-edge leaving ui that is associated to this flow point into the same face of
G. The case ui−1 → ui → ui+1 is the same as the previous, just the numbering
of the vertices in the bag is reversed.
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We are left with the case ui−1 → ui ← ui+1. Again we assume that si is
vertical with the segment of ui+1 to its right. The segment of ui−1 is to the
left of si because around ui in GQ vertices ui−1 and ui+1 are separated by the
outgoing edges. As above on the right side of si above ui+1 and on the left side
of si below ui−1, there can be no contact with a path pv. Figure 12(b) shows
a generic situation. With a and b we have included two possible neighbors of
u that are attached to ui. Taking the segments of a and b as the reference
segments for a shift operation we transform the representation such that pa and
pb both end on pu.

(a) (b)
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a

si
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ui+1
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ui

ui−1 ui+1

b
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a
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Figure 12: Using shift operations, the missing contacts from pa and pb to pu
can be established.

Deletion. After the shift operations, all edges v → u of G are represented by
an endpoint of pv on pu. We delete all parts of the segments that are not used
by paths pv.

Conclusion. It follows from the three steps that each edge v → u of G is
represented by a contact of the corresponding paths pv and pu. Each vertex v
is represented by a path consisting of intervals on ψ(v) + 1 segments, hence, it
is a grid-path with ψ(v) bends. The result is a VCPG of G that agrees with α
and ψ. �

With the four steps we have obtained a VCPG from a realizable pair. This
completes the proof of Theorem 1.
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4 Bounding the Number of Bends

When a planar graph has a 2-orientation, it easily follows that it has a VCPG.
An example is shown in Figure 13.

Lemma 8 Let G be a planar graph, not necessarily simple. If G has a 2-
orientation, i.e., an orientation in which every vertex has outdegree at most 2,
then G admits a VCPG.

Proof: Consider an embedding of G and a 2-orientation α of G. Subdivide
each loop twice. If a pair of vertices is connected by multiple edges, all but one
of the multiple edges are subdivided. The result is a simple plane graph, which
admits a straight-line drawing. The idea is to represent a vertex v by a path
pv that contains v and extends in both directions close to the outgoing edges
of v. An end of pv is a contact on the path pu of an outneighbor u. Figure 13
illustrates the construction of a VCPG of G. �

Figure 13: A VCPG drawn by approximating a straight-line drawing of a graph
and using a 2-orientation.

Lemma 1 shows that every planar (2, `)-tight graph has a 2-orientation. It
follows that every planar (2, `)-tight graph admits a VCPG.

Using this construction, there is no control over the number of bends of a
grid-path. A realizable pair precisely gives the number of bends of each vertex.
Adding costs to the vertices in the flow network, it is possible to request few
bends for certain vertices, and allow for more bends at others. The characteri-
zation also gives a certificate that the total number of bends is minimized. If all
the costs are set to 1, and there is a realizable pair that attains a minimum flow,
then this is a certificate. Even if this is not the case, the flow value gives a lower
bound on the number of bends needed in any representation. We do not know
an example where the minimum flow value deviates from the minimum number
of bends in a representation, i.e., it might be that there is always a realizable
pair (α,ψ) where ψ is a minimum cost flow.

In the following sections, we will show some results on the number bends
for a vertex, we will try to locally minimize the number of bends for particular
graph classes.

The following proposition is an application of the VCPG of a (2, `)-sparse
graph G.
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Lemma 9 Let ` = 0, 1 or 2. Every planar (2, `)-sparse graph is the subgraph of
a planar (2, `)-tight graph, and, of a planar (2, 0)-tight graph.

Proof: Let G be a (2, `)-sparse graph. Let B be the bipartite graph consisting
of two copies of each vertex of G in one color class, and the edges of G in the
second color class. The edges of B are the incidences between the edges and
vertices in G. From the sparsity condition, it follows that B has a matching in
which all the edge-vertices are matched:

∀A ⊆ E : |A| ≤ 2|V ∩A| − ` ≤ 2|V ∩A| = |NB(A)| .

Hence, the graph G has a 2-orientation and by Lemma 8 G admits a VCPG.
Let R be a VCPG of G. Choose ` special free ends, which we do not consider
in the following.

Within a face f that contains a free end of the grid-path pv which repre-
sents v, the following step is taken:
• If the f is not a 3-face, pv is extended such that it ends on the grid-path

of a non-neighbor of v.
• If the f is a 3-face, we add a new segment perpendicular to pv at the free

end. This segment is extended on both sides to make contacts with the
other two vertices of the 3-face.

This takes care of all but ` of the free ends, and the resulting graph must be
(2, `)-tight. To obtain a (2, 0)-tight supergraph, the ` remaining free ends are
removed with the same technique. The graph that is represented by the resulting
VCPG is a tight graph that contains G as a subgraph. �

Lemma 9 is part of the PhD thesis of the first author. In a recent paper
Alam et al. [2] prove a slightly stronger result. They show that for ` ∈ {0, 1, 2, 3}
there is a (2, `)-tight graph that has G as a spanning subgraph.

4.1 B1-VCPGs

In a B1-VCPG, each vertex is represented by a grid-path with at most one
bend. Kobourov et al. have shown that every (2,3)-tight graph admits a strict
B1-VCPG, i.e., every vertex has precisely one bend [12]. To obtain a strict B1-
VCPG, the grid-paths of the two vertices on the outer face, get a bend in the
outer face, i.e., both the convex and the concave angle of these bends are in the
outer face. The representation obtained by the algorithm of Kobourov et al. has
the special property that every interior face has precisely one convex angle of
a vertex. The authors call this property ‘proper’ and they show that plane
Laman graphs are precisely the graphs that admit a proper strict B1-VCPG.
For readers familiar with this work, the angular tree can be seen as a flow in the
angle graph (see Figure 14). The 2-orientation obtained from splitting along
the angular tree, together with the flow given by the angular tree, is a realizable
pair. Kobourov et al. asked whether all planar (2,2)-tight graphs admit a strict
B1-VCPG.
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(b)(a) s1

s3 s2

(c)
s1

s2s3

Figure 14: An angular tree, splitting to obtain a 2-orientation and a proper,
strict B1-VCPG.

In this section we will answer this question by showing a graph that admits
B1-VCPG but no strict B1-VCPG and that not all planar (2,2)-tight graphs
admit a B1-VCPG. We will also show that every (2,2)-tight planar graph that
has an edge e such that the removal of e leaves a (2,3)-tight graph, has a strict
B1-VCPG (not a proper strict B1-VCPG).

There are graphs that are not (2,3)-sparse but admit a B1-VCPG, for exam-
ple K4. In this section, we give some insight into the class of graphs that admit
a B1-VCPG. As mentioned before, it is known that plane (2,3)-tight graphs
are precisely the graphs that admit a proper, strict B1-VCPG [12]. It follows
that planar (2,3)-sparse graphs admit a strict B1-VCPG. The complete graph
on four vertices, K4, shows that there are graphs that have strict B1-VCPG but
no proper strict B1-VCPG. We will show that there are graphs that have a B1-
VCPG but no strict B1-VCPG, i.e., there exist graphs that can be represented
when segments are allowed. We will also show that not all planar (2,2)-tight
graphs admit a B1-VCPG.

Lemma 10 There are graphs admitting a B1-VCPG but no strict B1-VCPG.

Proof: The graph G in Figure 15 admits a B1-VCPG but no strict B1-VCPG.
Every embedding of the graph G contains a subgraph embedded as the subgraph
H shown in the right part of the figure. We now concentrate on a B1-VCPG
representation of H. To satisfy the demands of all 3-faces, the six boundary
vertices of H in total have six bends. If x had a bend, then there would be a
unit of flow traversing each of the two 4-faces incident to x. This implies that
a boundary vertex would get one additional unit of flow. Hence, at least one of
the boundary vertices will have two bends. Therefore, x has to be represented
as a segment in a B1-VCPG of this graph. �

Lemma 11 Not every planar (2,2)-tight graph admits a B1-VCPG.

Proof: Suppose a graph has a B1-VCPG, then, by Theorem 1, there must be
a realizable pair (α,ψ) such that 0 ≤ ψ(v) ≤ 1 for all vertices v. Consider
the graph from Figure 16. Suppose that there is a plane embedding and a flow
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x

x
H

G

Figure 15: Every embedding of the graph G contains a subgraph embedded
as H. In a B1-VCPG corresponding to the embedding of H vertex x must be
represented by a segment.

ψ which satisfies 0 ≤ ψ(v) ≤ 1 for all vertices v. Each embedding has two
K4 subgraphs whose faces are bounded by triangles sharing only vertex m (the
grey-colored K4 subgraphs). These K4 subgraphs both have demand −3. So,
there must be 6 units of flow going out of the two K4 subgraphs. However, there
are only 5 vertices bounding the two K4 subgraphs. We conclude that there is
no feasible flow such that there is at most one unit of flow going through each
vertex. �

m

v1

v2v3

m

v1

v2

v3

Figure 16: Two embeddings of a planar (2, 2)-tight graph that is not B1-VCPG.

A Laman-plus-one graph G is a (2, 2)-tight graph such that there exists
an edge e in G for which G − e is (2, 3)-tight, i.e. a Laman graph [10]. In
the following, we extend the result of Kobourov et al. from planar (2, 3)-tight
graphs to planar Laman-plus-one graphs. There are two bends of vertices that
are completely in the outer face (the bends of s1 and s3 in Figure 14(c)). The
idea is to use these bends for the additional edge.
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Theorem 3 Every planar Laman-plus-one graph has a strict B1-VCPG. This
representation has the following three properties:

1. Precisely one face has two convex corners.
2. The outer face has no convex corner.
3. All other faces have one convex corner.

b

a

(d)(c)

z

x

b

a
y

z

x

b

(b)

a

y

a

b

x y
z

(a)

Figure 17: The extension of G and the addition of e.

Proof: Let G+ be a planar Laman-plus-one graph and e = ab an edge such
that G = G+ − e is a Laman graph. Consider an embedding of G+ such that e
is incident to the outer face and b comes before a in clockwise order around the
boundary (as in Figure 17(a)). We use the induced drawing of G and extend
this graph to a graph with a triangular outer face (see Figure 17(a)). Three new
vertices x, y and z are added to G.

1. Add x and the edges xa and xb.

2. Add y and the edges ya and yb in such a way that the outer face now
consists of a, x, b and y.

3. Subdivide the edge by, call the new vertex z and add the edge xz such
that the outer face now consists of x, b and z.

The addition of x and y are Henneberg type 1 steps and the addition of z is
a Henneberg type 2 step. Therefore, the graph G′, obtained from G with the
extension, is a Laman graph. We construct a strict B1-VCPG of G′ according
to the method of Kobourov, Ueckerdt and Verbeek [12], in such a way that x
and z are the “special vertices”. Hence, in this VCPG every face has precisely
one convex corner and x and z have their bend in the outer face.

Consider the three interior faces that are incident to at least one of x, y
and z. All three have one convex corner, which is not the corner of x or z. We
will show that a, b and y have their convex corner in these faces. Consider the
representation of G that arises by removing x, y and z. There are precisely three
free ends, two at b and one at a. This follows from the fact that x and z together
have three free ends and xz must use the fourth of their ends, therefore, the
edges of a and b are oriented such that b→ z, b→ x and a→ x. The boundary
of G is a closed cycle and in the representation it has three free ends into the
outer face. We claim that all other vertices on this boundary have their concave
angle in the outer face.
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To prove the claim, we do some counting. Let s be the number of edges, c+

be the number of convex corners and c− be the number of concave corners on the
outer face of G. Since the total change in direction around the outer face is 2π
and the three free ends contribute π each we get: 2 = s− c−+ c+. Between two
contacts (edges), we may see a straight segment, a convex corner or a concave
corner. Hence, with t being the number of straight segments: s = t+ c+ + c−.
Substituting this in the previous formula, we obtain 2 = t+ 2c+. We know that
a ends on x and y ends on z, since x and z contribute a horizontal respectively
vertical part, a and y have a vertical respectively horizontal part. Since y must
also end on a both y and a must have a horizontal and a vertical part outside
of G. Hence, a contributes no corner to the boundary of G, i.e., t > 0. Since c+

is a non-negative integer, we conclude that c+ = 0. This was the claim.
From the claim, it follows that a, b and y must have their convex corners in

the three new faces. Therefore, the rest of the graph connects to only one side
of one leg of b, see Figure 17(b) and (c). The two cases are similar and therefore
we only consider the first one, where the rest of the graph lives on the vertical
part of the grid-path of b. The convex corner of b only has one option. Since y
only contributes to two faces and one of them is taken by b, there is no choice
for the convex corner of y. Finally, the convex corner of a must be in axyz. The
corners must be precisely as in Figure 17(b).

Removing x, y and z from the representation leaves a strict B1-VCPG in
which the leg of the free end of a has no vertices ending on it. Moreover, the
legs of a can be extended such that no vertex but one of the free ends of b is
to the right of this leg of a, since a has its corner in the outer face of G in the
representation. Hence, we can extend this leg in such a way that it ends on
b. The result is a strict B1-VCPG of G+. Figure 17(d) shows the result. It
follows from the construction of Kobourov et al. that all faces except for the two
incident to the bend of a, have precisely one convex corner. The face incident
to the convex corner of a has also a convex corner from b and the outer face has
no convex corners. �

The graph in Figure 15 with vertex x deleted is not a Laman-plus-one graph.
However, it has a strict B1-VCPG. It would be interesting to characterize of the
class of graphs that have a strict B1-VCPG.

4.2 B2-VCPGs

For simple (2, 2)-tight graphs, we show that for every 2-orientation α, there
exists a flow ψ such that ψ(v) ≤ 2 for all vertices v and the pair (α,ψ) is
realizable.

Theorem 4 Every planar (2, 2)-tight graph admits a B2-VCPG.

Proof: Let G be a planar (2,2)-tight graph. We fix an embedding of G. For
the proof, we construct an appropriate realizable pair (α,ψ).

The underlying graph of the flow ψ is the angle graph A(G) of G. We
construct ψ in two steps. First we define an auxiliary flow ψ∗ on the dual G∗
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of G such that ψ∗ satisfies all demands of ψ. In the second step, we route the
auxiliary flow on the edges of A(G).

The demand of the faces is given by c(f) = |f | − 4 and for the outer face it
is c(f∞) = |f∞| (Proposition 2 with ` = 2). We claim that there is a flow ψ∗

satisfying all demands such that the flow value in each dual edge is at most one.
This is shown by checking the size of all cuts. Let H be a subgraph induced
by a subset FH of bounded faces of G. Let b be the number of boundary edges
of H. We have to show that b ≥ |

∑
f∈H c(f)|.

Let vH , eH and f∗H be the number of vertices, edges and bounded faces of
H, respectively. Using Euler’s formula (vH−eH +f∗H = 1) and the upper bound
on the edges in H, we obtain the following.∑

f∈FH

(4− |f |) = 4f∗H − 2eH + b (5)

= 4eH − 4vH + 4− 2eH + b (Euler’s Formula)

= 2eH − 4vH + 4 + b

≤ 4vH − 2`− 4vH + 4 + b (since eH ≤ 2vH − `)
= b+ 4− 2` = b (since ` = 2)

The vertices VH of H are partitioned into boundary vertices BH and inner
vertices IH . We have |E[V \ IH ]| ≤ 2|V | − 2|IH | − ` and hence, eH − b =
|E[V \ IH ]| ≥ (2|V | − `) − (2|V | − 2|IH | − `) = 2|IH | = 2(vH − b). Using
eH ≤ 2vH − b in Euler’s formula, we obtain f∗H ≥ vH − b+ 1.

Therefore, we obtain the following:∑
f∈FH

(|f | − 4) = 2eH − b− 4f∗H (6)

= (2vH + 2f∗H − 2)− b− 4f∗H (Euler’s Formula)

= 2vH − 2f∗H − 2− b
≤ 2vH − 2vH + 2b+ 2− 2− b (since f∗H ≥ vH − b+ 1)

= b

Putting this together we obtain:∣∣∣ ∑
f∈H

c(f)
∣∣∣ =

∣∣∣ ∑
f∈H

(|f | − 4)
∣∣∣ ≤ b.

It follows from the max-flow min-cut theorem, that there is a flow in the dual
graph that satisfies all demands and respects the capacity bound of 1 in each
edge. Since all constraints are integral we can assume that the flow is integral,
i.e., a 0, 1-flow. From Lemma 1, we know that there is a 2-orientation α of G
such that the only vertices with outdegree less than 2 are incident to the outer
face. Using α, we construct the flow ψ in the angle graph as follows: If there is
a flow from f1 to f2 crossing edge u→ v, then we add f1 → u and u→ f2 to ψ.

Since the flow in the dual graph is edge-disjoint and each vertex has at most
two outgoing edges we have ψ(v) ≤ 2 for all vertices v. At each vertex, the
flow cuts off the outgoing edge. Hence, the realizability condition is satisfied at
each vertex. We conclude that the pair (α,ψ) is realizable. �
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4.3 Bk-VCPGs for k > 2

For (2,2)-tight graphs, using a flow in the dual gives a tight bound. We have
seen before that there are planar (2, 2)-tight graphs which do not admit a B1-
VCPG (Lemma 11). On the other hand, using the dual graph, we could show
that two bends per vertex are sufficient. Unfortunately this is not the case for
(2,1)- and (2,0)-tight graphs.

Theorem 5 Every simple planar (2, 1)-tight graph admits a B4-VCPG.

Proof: We claim that there is a flow in the dual graph such that each edge has
capacity 2. Similarly to the proof of Theorem 4, we obtain that a simple planar
(2, 1)-tight graph admits a B4-VCPG.

Again, let H be a subgraph induced by a subset FH of bounded faces of G
and let b be the number of boundary edges of H. From Equations (5) and (6)
we obtain: ∣∣∣ ∑

f∈FH

c(f)
∣∣∣ =

∣∣∣ ∑
f∈FH

(|f | − 4)
∣∣∣ ≤ b+ 4− 2` = b+ 2 .

There are no loops, therefore, b > 1. It follows that the demands can be satisfied
using b edges with capacity 2. �

We have only been able to show that the lower bound is 2. An example is given
by the octahedron with an interior edge removed. We conjecture that every
simple planar (2, 1)-tight graph admits a B2-VCPG.

Theorem 6 Every simple planar (2, 0)-tight graph admits a B6-VCPG.

Proof: Let G be a simple planar (2, 0)-tight graph. Again, let H be a subgraph
induced by a subset FH of bounded faces of G and let b be the number of
boundary edges of H. From Equations (5) and (6) we obtain:∣∣∣ ∑

f∈FH

c(f)
∣∣∣ =

∣∣∣ ∑
f∈FH

(4− |f |)
∣∣∣ ≤ 4 + b . (7)

As there are no loops, we can satisfy all the demands in the dual graph by using
every edge at most thrice.

As in the proof of Theorem 4, this induces a realizable pair, in which every
vertex has at most 6 units of flow. This yields a B6-VCPG. �

4.4 Obtaining Better Bounds

In the previous section, we have used an auxiliary flow ψ∗ in the dual graph
to obtain a feasible flow ψ in the angle graph. This way, we are certain that
there exists a 2-orientation such that the pair is realizable and, hence, is in
bijection to a VCPG. Even stronger, the choice of the 2-orientation does not
matter. Unfortunately, it neither minimizes the total number of bends nor does
it minimize the number of bends per vertex when a 2-orientation is given. We
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illustrate this with the following example. In Figure 18, two VCPGs of the
octahedron are shown, the left of which does not relate to a feasible flow in the
dual graph. Any feasible flow in the dual graph will lead to a VCPG with at
least 12 bends in total, while 8 is the minimum. Any feasible flow in the dual
graph together with the chosen orientation, ensures that c has no bends incident
to the outer face in the VCPG. To close the outer cycle at least 7 bends are
needed, which will be divided over a and b, hence, there will be a vertex with 4
bends while 3 is the minimum.

a b

c

d

e

f

a

d

c

f

e

b e

a

c

b

f

d

Figure 18: Two VCPGs of the octahedron that induce the same 2-orientation.
The VCPG on the left does not relate to a flow in the dual graph as the rightmost
bend on the bottom (of the grid-path of vertex b) cannot be transformed into a
flow in the dual graph.

It has been fruitful to use the dual graph for bounding the number of bends
locally at each vertex, but what if we want to globally minimize the number of
bends. Ideally, there would always exists a 2-orientation such that the minimum
cost feasible flow is realizable. However, for the graph in Figure 19, a minimum
cost flow is given (the value of the flow is equal to the number of 3-faces). For
this flow, there does not exist a 2-orientation such that the pair is realizable.
Suppose there is such a 2-orientation. The realizability condition requires the
orientations a→ c and b→ c. Then c has only one outgoing edge, but the flow
requires the free ends to be in the outer face, contradiction. Note that rerouting
a unit of flow that uses a or b to go through c leaves a flow for which there does
exist a 2-orientation such that the pair is realizable.

5 Conclusion

We have shown that there exist planar (2, 2)-tight graphs that do not admit a
B1-VCPG. However, the only type of (2, 2)-tight planar graph that we found not
to have a B1-VCPG has at least one vertex which is the intersection of “many”
critical subsets. Do all planar (2,2)-tight graphs that have no such vertex admit
a B1-VCPG?

We have also obtained bounds for simple (2,1)-tight and (2,0)-tight planar
graphs. However, we believe that these bounds are not tight. A lower bound of
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s3 s2

s1

c
b a

Figure 19: A minimum feasible flow for which there is no 2-orientation such
that the pair is realizable.

three bends for simple, planar (2,0)-tight graphs is given by the octahedron.

Conjecture 1 Every simple planar (2, 0)-tight graph admits a B3-VCPG.

Conjecture 2 Every simple planar (2, 1)-tight graph admits a B2-VCPG.

The bounds that we have shown do not depend on a chosen 2-orientation
(i.e. the bounds hold for every 2-orientation). It would be interesting to find
a sufficient condition on a flow such that, when satisfied, there exists a 2-
orientation such that the pair is realizable. For (2,3)-tight graphs, the algorithm
of Kobourov, Ueckerdt and Verbeek, takes a particular flow and a particular net-
work as an input. Is there a way to construct a realizable pair simultaneously
for all (2,0)-sparse graphs?
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[9] U. Fößmeier, G. Kant, and M. Kaufmann. 2-visibility drawings of planar graphs.
In Proc. Graph Drawing, volume 1190 of Lec. Notes Comp. Sci., pages 155–168.
Springer, 1996. doi:10.1007/3-540-62495-3_45.

[10] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. L.
Souvaine, I. Streinu, and W. Whiteley. Planar minimally rigid graphs and
pseudo-triangulations. Comp. Geom.: Theory and Appl., 31(1-2):31–61, 2005.
doi:10.1016/j.comgeo.2004.07.003.

[11] I. B.-A. Hartman, I. Newman, and R. Ziv. On grid intersection graphs. Discr.
Math., 87(1):41–52, 1991. doi:10.1016/0012-365X(91)90069-E.

[12] S. G. Kobourov, T. Ueckerdt, and K. Verbeek. Combinatorial and geometric
properties of planar Laman graphs. In Proc. ACM-SIAM Symp. Discr. Algo.,
pages 1668–1678, 2013. doi:10.1137/1.9781611973105.120.
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