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Abstract

We investigate the problem of constructing planar drawings with few
bends for two related problems, the partially embedded graph problem—to
extend a straight-line planar drawing of a subgraph to a planar drawing of
the whole graph—and the simultaneous planarity problem—to find planar
drawings of two graphs that coincide on shared vertices and edges. In both
cases we show that if the required planar drawings exist, then there are
planar drawings with a linear number of bends per edge and, in the case
of simultaneous planarity, with a number of crossings between any pair
of edges which is bounded by a constant. Our proofs provide efficient
algorithms if the combinatorial embedding of the drawing is given. Our
result on partially embedded graph drawing generalizes a classic result by
Pach and Wenger which shows that any planar graph can be drawn with
a linear number of bends per edge if the location of each vertex is fixed.
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1 Introduction

In many practical applications we wish to draw a planar graph while satisfying
some geometric or topological constraints. One natural situation is that we have
a drawing of part of the graph and wish to extend it to a planar drawing of the
whole graph. Pach and Wenger [26] considered a special case of this problem.
They showed that any planar graph can be drawn with its vertices lying at
pre-assigned points in the plane and with a linear number of bends per edge. In
this case the pre-drawn subgraph has no edges.

If the pre-drawn subgraph H has edges, a planar drawing of the whole graph
G extending the given drawing H of H may not exist. Angelini et al. [1] gave
a linear-time algorithm for the corresponding decision problem; the algorithm
returns, for a positive answer, a planar embedding of G that extends that of H
(i.e., if we restrict the embedding of G to the edges and vertices of H, we obtain
the embedding corresponding to H). If one does not care about maintaining the
actual planar drawing of H this is the end of the story, since standard methods
can be used to find a straight-line planar drawing of G in which the drawing of
H is topologically equivalent to the one of H. In this paper we show how to
draw G while preserving the actual drawing H of H, so that each edge has a
linear number of bends. This bound is worst-case optimal, as proved by Pach
and Wenger [26] in the special case in which H has no edges.

A result analogous to ours was claimed by Fowler et al. [14] for the special
case in which H has the same vertex set as G. Their algorithm draws the
edges of G one by one, in any order so that edges connecting distinct connected
components of H precede edges within the same connected component of H;
each edge is drawn as a curve with the minimum number of bends. Fowler et al.
claim that their algorithm constructs drawings with a linear number of bends
per edge. However, we prove that there exists a tree, a set of prescribed positions
for its vertices, and an order of the edges of the tree, such that drawing the edges
in the given order as curves with the minimum number of bends results in some
edges having an exponential number of bends.

The second graph drawing problem we consider is the simultaneous planarity
problem [5], also known as “simultaneous embedding with fixed edges” (SEFE).
The SEFE problem is strongly related to the partially embedded graph problem
and—in a sense we will make precise later—generalizes it. We are given two
planar graphs G1 and G2 that share a common subgraph G (i.e., G is composed
of those vertices and edges that belong to both G1 and G2). We wish to find a
simultaneous planar drawing, i.e., a planar drawing of G1 and a planar drawing
of G2 that coincide on G. Graphs G1 and G2 are simultaneously planar if they
admit such a drawing. Both G1 and G2 may have private edges that are not
part of G. In a simultaneous planar drawing the private edges of G1 may cross
the private edges of G2; in fact, a private edge of G1 may cross a private edge
of G2 several times. The simultaneous planarity problem arises in information
visualization when we wish to display two relationships on two overlapping
element sets.

The decision version of the simultaneous planarity problem is not known to
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be NP-complete, or to be solvable in polynomial time, though it is known to be
NP-complete if more than two graphs are given [16]. However, there is a com-
binatorial characterization of simultaneous planarity, based on the concept of a
“compatible embedding”, due to Jünger and Schulz [21] (see below for details).
Erten and Kobourov [12], who first introduced the problem, gave an efficient
drawing algorithm for the special case where the two graphs share vertices but
no edges. In this case, a simultaneous planar drawing on a polynomial-size grid
always exists in which each edge has at most two bends and therefore any two
edges cross at most nine times, see [11, 12, 22]. In this paper we show that if
two graphs have a simultaneous planar drawing, then there is a drawing on a
polynomial-size grid in which every edge has a linear number of bends and in
which any two edges cross at most 24 times. Our result is algorithmic, assuming
a compatible embedding is given.

1.1 Realizability Results

Our paper addresses the following two drawing problems:

Planarity of a partially embedded graph (PEG). Given a planar graph
G and a straight-line planar drawing H of a subgraph H of G, find a
planar drawing of G that extends H (see [1, 20]).

Simultaneous planarity (SEFE). Given two planar graphs G1 and G2 that
share a subgraph G, find a simultaneous planar drawing of G1 and G2

(see [5]).

We prove the following results:

Theorem 1 (Realizing a Partially Embedded Graph) Let G be an n-ver-
tex planar graph, let H be a subgraph of G, and let H be a straight-line planar
drawing of H. Suppose that G has a planar embedding E that extends the one of
H. Then we can construct a planar drawing of G in O(n2)-time which realizes
E, extends H, and has at most 72|V (H)| bends per edge.

Theorem 1 generalizes Pach and Wenger’s classic result, which corresponds
to the special case in which the pre-drawn subgraph has no edges.

Theorem 2 (Realizing a Simultaneous Planar Embedding) Let G1 and
G2 be simultaneously planar graphs on a total of n vertices with a shared sub-
graph G. If we are given a compatible embedding of the two graphs, then we can
construct in O(n2) time a drawing that realizes the compatible embedding, and
in which any private edge of G1 and any private edge of G2 intersect at most
24 times. In addition, we can ensure either one of the following two properties:

(i) each edge of G is straight, and each private edge of G1 and of G2 has at
most 72n bends; also, vertices, bends, and crossings lie on an O(n2) ×
O(n2) grid; or
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(ii) each edge of G1 is straight and each private edge of G2 has at most
72|V (G1)| bends per edge.

Theorem 1 provides a weak form of Theorem 2: If G1 and G2 are simul-
taneously planar, they admit a compatible embedding. Take any straight-line
planar drawing of G1 realizing that embedding and extend the induced drawing
of G to a drawing of G2. By Theorem 1, we obtain a simultaneous planar draw-
ing where each edge of G1 is straight and each private edge of G2 has at most
72|V (G1)| bends per edge. Our stronger result of 24 crossings between any two
edges is obtained by modifying the proof of Theorem 1, rather than applying
that result directly.

Grilli et al. [17] independently proved a result in some respect stronger than
Theorem 2. They showed that two simultaneously planar graphs have a simul-
taneous planar drawing with at most 9 bends per edge, vastly better than our
72n bound. On the other hand, our bound of 24 crossings per pair of edges is
better than the bound of 100 that can be derived from their result. Also, our
algorithm allows us to construct simultaneous planar drawings in which each
edge of one graph is straight or in which vertices, bends, and crossings lie on a
polynomial-size grid. The former feature is not achievable by means of Grilli et
al.’s algorithm; the latter one could be obtained from Grilli et al.’s result, at the
expense of increasing the number of bends per edge to 300n (which corresponds
to the number of crossings on a single private edge).

Frati et al. [15] very recently proved that two simultaneously planar graphs
have a simultaneous planar drawing with at most 6 bends per edge and 16
crossings per pair of edges. This result improves on Grilli et al.’s result [17] and
at the same time on part (i) of our Theorem 2, where the 72n bound would be
replaced by a 48n bound. On the other hand, Frati et al. [15] cannot guarantee
the private edges of one graph to be straight.

1.2 Related Work

The decision version of simultaneous planarity generalizes partially embedded
planarity: given an instance (G,H,H) of the latter problem, we can augment
H to a drawing of a 3-connected graph G1 and let G2 = G. Then G1 and G2

are simultaneously planar if and only if G has a planar embedding extending
H. In the other direction, the algorithm [1] for testing planarity of partially
embedded graphs solves the special case of the simultaneous planarity problem
in which the embedding of the common graph G is fixed (which happens, e.g.,
if G or one of the two graphs is 3-connected).

Several optimization versions of partially embedded planarity and simulta-
neous planarity are NP-hard. Patrignani showed that testing whether there
is a straight-line drawing of a planar graph G extending a given drawing of a
subgraph of G is NP-complete [27], so bend minimization in partial embedding
extensions is NP-complete; Patrignani’s result holds even if a combinatorial
embedding of G is given.1 Bend minimization in simultaneous planar drawings

1Patrignani does not explicitly claim NP-completeness in the case in which the embedding
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is NP-hard, since it is NP-hard to decide whether there is a straight-line simul-
taneous drawing [13]. Crossing minimization in simultaneous planar drawings
is also NP-hard, as follows from an NP-hardness result on anchored planar
drawings by Cabello and Mohar [6]; see Theorem 4 in Section 4 for a slightly
stronger result.

Di Giacomo et al. [10] studied the special case of PEG in which the n-vertex
graph G to be drawn is a tree. They showed that, given a drawing H of a
subtree H of G, a drawing of G extending H can be computed in O(n2 log n)
time so that each edge of G has at most 1 + 2d|V (H)|/2e bends.

Further, as mentioned above, the special cases of PEG and SEFE in which
there are no edges in the pre-drawn subgraph and in the common subgraph have
been already studied.

Concerning PEG, Pach and Wenger [26] proved the following result: given
an n-vertex planar graph G with fixed vertex locations, a planar drawing of
G in which each edge has at most 120n bends can be constructed in O(n2)
time. They also proved that such a bound is asymptotically tight in the worst
case. Regarding the constant, Badent et al. [2] improved the bound to 3n + 2
bends per edge. Biedl and Floderus [4] considered the more general problem of
drawing an n-vertex planar graph on fixed vertex locations where the drawing is
constrained to lie inside a k-vertex polygon. They show that there is a drawing
with O(n+ k) bends per edge.

Concerning SEFE, Di Giacomo and Liotta [11] and independently Kam-
mer [22] proved the following result: given two planar graphs G1 and G2 shar-
ing some vertices and no edge with a total number of n vertices, there exists an
O(n)-time algorithm to construct a simultaneous planar drawing of G1 and G2

on a grid of size O(n2) × O(n2), where each edge has at most 2 bends, hence
there are at most 9 crossings between any edge of G1 and any edge of G2. This
improves upon a previous result of Erten and Kobourov [12]. The algorithms
in [11, 12, 22] make use of a drawing technique introduced by Kaufmann and
Wiese [23].

Haeupler et al. [18] showed that if two simultaneously planar graphs G1 and
G2 share a subgraph G that is connected, then there is a simultaneous planar
drawing in which no two edges intersect more than once. Introducing vertices
at crossing points yields a planar graph, and a straight-line drawing of that
graph provides a simultaneous planar drawing with O(n) bends per edge, O(n)
crossings per edge, and with vertices, bends, and crossings on an O(n2)×O(n2)
grid. Our result generalizes this to the case where the common graph G is not
necessarily connected.

1.3 Graph Drawing Terminology

A drawing of a graph is a mapping of each vertex to a distinct point of the plane
and of each edge to a Jordan arc between the endpoints of the edge. A planar

of G is fixed, but that can be concluded by checking his construction; only the variable gadget,
pictured in his Figure 3, needs minor adjustments.
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Figure 1: A face in a planar drawing of a disconnected graph. The face is colored
gray and is delimited by three facial walks of sizes 13, 11, and 4. The numbers
on each facial walk indicate how to count its vertices to determine its size. The
red dots indicate where the traversal of each walk was initiated.

drawing is such that no two edges intersect except, possibly, at common end-
points. A planar drawing of a graph determines a clockwise order of the edges
incident to each vertex, called rotation system. A planar drawing of a graph
partitions the plane into topologically connected regions, called faces. The un-
bounded face is the outer face, while the other faces are internal. For connected
graphs, the rotation system uniquely defines the walk delimiting each face; this
is called facial walk—it is the closed walk composed of all the vertices and edges
incident to the face. Two drawings of the same connected graph are equivalent
if they determine the same rotation system and they have the same walk de-
limiting the outer face. A planar embedding (or combinatorial embedding) is an
equivalence class of planar drawings. We note that a planar embedding can be
specified combinatorially, namely by giving the rotation system and the outer
facial walk. Furthermore, a given rotation system corresponds to some planar
embedding if and only if Euler’s formula holds, i.e., n − m + f = 2 where n
is the number of vertices, m the number of edges, and f the number of facial
walks.

The size |W | of a facial walk W is the number of vertices of W , where we
count vertex repetitions. That is, if W consists of a single vertex, its size is 1.
Otherwise, the size of W is the number of vertices, or equivalently the number
of edges, encountered when traversing W as follows (refer to Figure 1): Start
traversing any edge (a, b) from a to b and assume w.l.o.g. that the face is to the
right during the traversal; when traversing an edge from a vertex u to a vertex
v, choose (v, w) as the next edge to be traversed from v to w, where (v, w) is the
edge following (u, v) in the counter-clockwise order of the edges incident to v in
W (note that w = u if the degree of v is one); stop the traversal when the edge
(a, b) is again being traversed from a to b. Note that the same vertex might
be encountered more than once in the described traversal, and every time it is
encountered it is counted for the size of W .

The definition of planar embedding as stated above does not handle the
combinatorics of a planar drawing of a disconnected graph—namely it does not
tell us how connected components nest into each other.



JGAA, 19(2) 681–706 (2015) 687

Following Jünger and Schulz [21], we define a topological embedding of a
(possibly non-connected) graph as follows: We specify a planar embedding for
each connected component. This determines a set of inner faces. For each
connected component we specify a “containing” face, which may be an inner
face of some other component or the unique outer face. Furthermore, we forbid
cycles of containment—in other words, if a connected component is contained
in an inner face, which is contained in a component, etc., then this chain of
containments must lead eventually to the unique outer face.

A face in a topological embedding of a graph has several facial walks along
its boundary. Each facial walk along the boundary of a face is also called a
boundary component. Each face (unless it is the outer face) has a distinguished
facial walk we call the outer facial walk separating the remaining inner facial
walks from the outer face of the embedding; in Figure 1 the outer facial walk
is the one with size 13. The size of a face F , denoted by |F |, is the sum of the
sizes of its boundary components.

A compatible embedding of two planar graphs G1 and G2 consists of topo-
logical embeddings of G1 and G2 such that the common subgraph G inherits
the same topological embedding from G1 as from G2 (where a subgraph inherits
a topological embedding in a straightforward way; in particular, if we remove
an edge that disconnects the graph, the face containment is determined by the
edge that was removed). Jünger and Schulz [21] proved that G1 and G2 are si-
multaneously planar if and only if they have a compatible embedding. For that
proof, they construct a simultaneous planar drawing of G1 and G2 by extending
a drawing of G (thus proving a form of our Theorem 1). However, their method
does not yield any bounds on the number of bends or crossings.

2 Partially Embedded Graphs

In this section we prove Theorem 1; that is, we show how to construct a planar
drawing of G that extends the planar straight-line drawing H and has a linear
number of bends per edge assuming that we are given a planar embedding of G
extending the one of H. It is sufficient to prove the result for a single face F of
H (possibly F is the outer face of H), since the embedding of G is given, and we
know for each vertex and edge of G which face of H it lies in, so the drawings
in different faces of H do not interfere with each other.

Pach and Wenger [26] proved their upper bound on the number of bends
needed to draw a graph with fixed vertex locations by drawing a tree with its
leaves at the fixed vertex locations, and “routing” all the edges close to the
tree, sometimes crossing the tree but never crossing each other. We want to use
their approach, but we have to deal with a more general problem. Instead of
fixed vertex locations we have fixed facial boundaries. The solution is natural:
We contract each facial walk Wi of F to a single vertex vi, fix a position for
vertex vi inside F near Wi, and then apply the Pach-Wenger method to draw
the contracted multigraph on the fixed vertex locations vi. We ensure that
the contracted multigraph is drawn inside F , indeed we stay a small distance
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away from the boundary of F , inside a polygonal region F ′ that is an “inner
approximation” of F . Inside F ′ we draw a tree T with its leaves vi at the fixed
vertex locations, while suitably bounding the number of vertices of T so as to get
our bound on the number of bends. We then route the edges of the contracted
multigraph close to T as Pach and Wenger do. Finally, to retrieve the original,
uncontracted graph, we route the edges incident to vi to their true endpoint on
the facial walk Wi—these routes use the empty buffer zone F − F ′.

We fill in the details of this argument in Section 2.3, but before doing so we
introduce “inner approximations” in Section 2.1, and formalize the tree argu-
ment in Section 2.2.

To simplify notation, we use nA and mA for the number of vertices and edges
in a graph (or subgraph) A.

2.1 Approximating Faces

In the drawing H, the face F is a region of the plane homeomorphic to a disc
with holes. Each facial walk of F appears in the drawing as a closed polygonal
arc, i.e. a sequence of straight-line segments joined in a path that returns to its
starting point (repeated segments/vertices may occur); see Figure 2(a). We will
refer to a facial walk and its drawing interchangeably.

We will approximate F by offsetting each of its facial walks into the interior
of F . See Figure 2(b). Let W1 be the outer facial walk of F , and let W2, . . . ,Wb

be the inner facial walks. An inner ε-approximation of Wi is a simple polygon
Pi (a closed polygonal arc with no self-intersections) such that:

1. Pi is ε-close to Wi, meaning that every point of Pi is within distance ε of
a point of Wi,

2. the inner facial walk Wi lies in the interior of Pi if 2 ≤ i ≤ b, and

3. the outer facial walk W1 lies in the exterior of P1.

If in addition the Pi’s form a polygonal region (a simple polygon with holes)
with P1 as the outer polygon, then we say that the polygonal region is an
inner ε-approximation of F . The next lemma shows that we can build inner
ε-approximations of F .

Lemma 1 For any ε > 0 we can construct an inner ε-approximation F ′ of F
in time O(|F |).

See Figure 2 for an illustration of Lemma 1. To prove the lemma, we
construct—for every sufficiently small ε > 0 and for every facial walk of F—an
inner ε-approximating polygon Pε which does not have too many bends, and so
that the Pε are nested in the following sense: if 0 < ε′ < ε, then Pε′ lies in the
interior of Pε if F is the walk that Pε and Pε′ approximate is an inner facial
walk, and vice versa otherwise. There are various ways to achieve this. Pach
and Wenger [26] use the Minkowski sum of the facial walk (in their case the
facial walk of a tree) and a square diamond centered at 0. We use a slightly
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W1
W2

F'

(a) (b)

W3W4

Figure 2: (a) A face F with outer facial walk W1 and inner facial walks
W2,W3,W4. (b) An inner approximation F ′ (heavy blue lines) of F .

different construction, because it seems easier (both computationally and con-
ceptually) and it gives a slightly better bound on the number of bends (which
is what we are most interested in): for the facial walk of an n-vertex tree, Pach
and Wenger construct a polygon with 4n − 2 vertices, while ours have 2n − 2
vertices. Our construction does have one disadvantage: the resulting drawings
are tight, placing elements close together, for sharp (acute or obtuse) angles
(the Minkowski-sum construction has the same problem for highly obtuse an-
gles only).

Lemma 2 Let W be a facial walk in a face F of a drawing of a graph G in the
plane. We can construct a nested family of inner ε-approximating polygons Pε

so that each Pε has at most max{3, |W |} vertices. Each Pε can be computed in
time O(n).

Proof: Let e, v, f be a corner of W , that is, two consecutive edges e, f and
their shared vertex v. At v erect the angle bisector of e and f of length ε (inside
F ), and let v′ be the endpoint of the bisector different from v. In order to avoid
square root computations, we will use the `1-norm at this point. If (vi)

k
i=1 is

the sequence of vertices along W , with k = |W |, then (v′i)
k
i=1 defines a closed

polygonal chain. If ε is sufficiently small, namely less than half the distance
between any vertex of W and a non-adjacent edge on W , the polygonal chain is
free of self-crossings, and therefore bounds a simple polygon with |W | vertices.
There are two special cases in which this argument does not work: if the facial
walk is a facial walk on an isolated vertex or an isolated edge. In both of these
cases, we can approximate W using a triangle. �

To prove Lemma 1 we can use Lemma 2 to efficiently construct an inner
ε-approximating polygon for each facial walk of F . The resulting polygons are
disjoint and form a polygonal region as long as ε is less than half the distance
between any two non-adjacent vertices or edges of H.
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2.2 Extending Partial Embeddings

Our main technical tool in the proof of Theorem 1 is the following lemma.
Multigraphs, in this paper, may have multiple edges and loops.

Lemma 3 Let G be a multigraph with a given planar embedding and fixed loca-
tions for a subset U of its vertices. Suppose we are given a straight-line drawing
of a tree T whose leaves include all the vertices in U at their fixed locations.
Then for every ε > 0 there is a planar poly-line drawing of G so that

1. the drawing is ε-close to T ,

2. the drawing realizes the given embedding,

3. the vertices in U are at their fixed locations, and

4. each edge has at most 12nT bends and comes close to each vertex u in
U at most six times, where coming close to u means intersecting an ε-
neighborhood of u. Furthermore, any edge that comes close to u will either
terminate at u or enter the ε-neighborhood of u, bend at a point in this
ε-neighborhood, and then leave it.

Our proof of Lemma 3 will follow closely the structure of Pach and Wenger’s
algorithm [26] to draw a planar graph with fixed vertex locations. That al-
gorithm has three ingredients: (i) making G Hamiltonian, (ii) drawing the
Hamiltonian cycle of G, and (iii) drawing the remaining edges of G. We use
their result (i) directly:

Lemma 4 (Pach, Wenger [26]) Given a planar graph G we can in linear
time construct a Hamiltonian planar graph G′ with |E(G′)| ≤ 5|E(G)| − 10 by
adding and subdividing edges of G (each edge is subdivided by at most two new
vertices).

We will use a slightly stronger version of Lemma 4 in which G is allowed to
be a multigraph. Pach and Wenger’s proof of Lemma 4 works in the presence
of multiple edges and loops.

For part (ii) Pach and Wenger show that a Hamiltonian cycle can be drawn
at fixed vertex locations ε-close to a star connecting all the vertices. For our
application, we replace their star with a straight-line drawing of a tree T whose
leaves are the vertices vi (recall that vi is the vertex to which we contract the
facial walk Wi of F ). Lemma 5 shows how to draw the Hamiltonian cycle. Later
we will see how to draw the remaining edges.

Independently of our result, the generalization of part (ii) to trees has es-
sentially been shown by Chan et al. [8]. Since their goal was to minimize edge
lengths, they did not give an estimate on the number of bends.

Lemma 5 Let C be a cycle with fixed vertex locations, and suppose we are given
a straight-line planar drawing of a tree T , in which the vertices of C are leaves
of T at their fixed locations. Then for every ε > 0 there is a planar poly-line
drawing of C with at most 2|E(T )| − 1 bends per edge and ε-close to T .



JGAA, 19(2) 681–706 (2015) 691

p1

p3

p2p4

Θ1

Θ5

p5

(a)

p1

p3

p5

p2p4

v

ev1

v2

(b)

p1

p3

p5

p2p4

(c)

Figure 3: (a) A straight-line planar drawing of a tree T (edges are black, leaves
are red), together with polygons Θi (orange). In order to improve the readabil-
ity, Θ1 is farther from T than it should be. (b) A look at the situation after the
construction of a poly-line drawing of p1, p2, which is represented by green lines.
Polygon Θ′2 is represented by blue lines. The edges of T not in T2 := Q1 ∪Q2

are dotted. (c) Complete planar poly-line drawing of cycle C.

Proof: Let p1, . . . , pn be the vertices of C in their order along the cycle. We
build a planar poly-line drawing of C as follows. Let Θi be an iε/(n + 1)-
approximation of the given drawing of T for 1 ≤ i ≤ n (which we construct
using Lemma 2). Figure 3(a) shows polygons Θi drawn around T . We start
at p1. Suppose we have already built the poly-line drawing of p1, . . . , pi and
we want to add pipi+1. For 1 ≤ j ≤ n − 1, let Qj be the unique path in T
connecting pj to pj+1. Create Θ′i from Θi by keeping only the vertices of Θi

close to (approximating) vertices in Ti :=
⋃

j≤iQj . This removes parts of the
walk along Θi which we patch up as follows (refer to Figure 3(b)): suppose v is
an interior vertex of Ti, and v is incident to e which does not lie on Ti. Then
v is approximated by two vertices v1 and v2 which lie on bisectors formed by
e with neighboring edges. Now v1 and v2 belong to Θ′i, but the path along Θi

between them got removed (since e does not belong to Ti). We add v1v2 to Θ′i
to connect them. Note that v1v2 does not pass through v since v is incident to
at least three edges (e and two edges of Ti), and it does not cross any edges of
any Θ′j with j < i, since Ti is monotone: if e 6∈ E(Θi), then e 6∈ E(Θj) for j < i.

Now both pi and pi+1 correspond to unique vertices on Θ′i (since they are
leaves), so we can pick the facial walk v1, . . . , vk on Θ′i which connects pi to
pi+1 and which avoids passing by p1. We now add line segments piv2, v2v3, . . .,
vk−2vk−1, vk−1pi+1 to the poly-line drawing of C. We treat the final edge pnp1

similarly, except that we move along Θ′n = Θn back to p1 in the last step, which
we can do since none of the intermediate paths passed by p1. Figure 3(c) shows
an example of application of the described algorithm for the construction of a
planar poly-line drawing of C that is ε-close to T .
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Note that Θ′i has at most as many edges as Θi, which has at most 2|E(T )|
edges. Hence, the polygonal arc we build along Θ′i has at most 2|E(T )| − 1
edges (since it is not closed). We conclude that each edge of C is replaced by a
polygonal arc with at most 2|E(T )| − 1 bends. �

The following lemma shows how to draw the remaining edges of G, assuming
that G is Hamiltonian. As mentioned earlier, this lemma is close to a result by
Chan et al. [8], except for the claim about the number of bends, and the rotation
system (which we need for our main result).

Lemma 6 Let G be a Hamiltonian multigraph with a given planar embedding
and fixed vertex locations. Suppose we are given a straight-line drawing of a tree
T whose leaves include all the vertices of G at their fixed locations. Then for
every ε > 0 there is a planar poly-line drawing of G so that

1. the drawing is ε-close to T ,

2. the drawing realizes the given embedding,

3. the vertices of G are at their fixed locations,

4. every edge has at most 4|E(T )| − 1 bends, and

5. every edge comes close to any leaf of T at most twice, and only does so by
terminating at or bending near the leaf.

The obvious idea—routing edges along the Hamiltonian cycle C—only gives
a quadratic bound on the number of bends, since each edge would follow the
path of a linear number of edges of C, and each edge of C has a linear number of
bends. Pach and Wenger came up with an ingenious way to construct auxiliary
curves with few bends based on the level curves Θ′i which carry the cycle C in
the proof of Lemma 5.

Proof: Let C be the Hamiltonian cycle of G and let G1 and G2 be the two
outerplanar graphs composed of C and, respectively, of the edges of G inside and
outside C. Using Lemma 5 we find a planar poly-line drawing of C on V (G).
We need to show how to draw G1 and G2 respecting the planar embeddings
induced by the given embedding of G. Let n = |V (G)| and mi = |E(Gi)|. We
only describe how to draw G1, since G2 can be handled analogously. Let ∆i,k,
1 ≤ k ≤ m1 +m2, be a kε/(n(m1 +m2 + 1))-approximation of Θ′i constructed
using Lemma 2; see Figure 4(a). For a fixed i, each ∆i,k crosses C twice: when
C moves from pi to Θ′i+1, and when it finally moves back from Θ′n to p1. As in
Pach and Wenger, we can then split ∆i,k at the crossings and connect their free
ends to p1 and pi, resulting (for each k) in two curves ∆′i,k and ∆′′i,k connecting
p1 to pi, where ∆′i,k lies inside C (these are the curves we use for G1) and ∆′′i,k
lies outside C (these are the curves we use for G2). Each such curve has at most
2|E(T )| − 1 bends. As in the proof of Pach and Wenger, we can create edges
pipj ∈ E(G1) by concatenating ∆′i,k with ∆′j,k. Since we chose m1 + m2 such
approximations, we can do this for each edge in G1. There are two problems
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p1

p3∆3,k ∆5,k

p5
(a)

p1

p3

p5
(b)

Figure 4: Drawing an edge of G1 between p3 and p5. (a) Parts of polygons
∆3,k and ∆5,k are shown by blue lines. Note that there should be m1 + m2

polygons ∆3,k (same for ∆5,k), however only one of them is shown, for the sake
of readability. (b) Drawing a polygonal path between p3 and p5 (represented by
blue lines) by concatenating the parts ∆′3,k and ∆′5,k of ∆3,k and ∆5,k inside C
and suitably introducing a bend close to p1.

remaining: edges pipj now all pass through p1 and they could potentially cross
(rather than just touch) there. Pach and Wenger show that any two edges touch,
so the drawing can be modified close to p1 so as to separate all edges pipj from
each other; see Figure 4(b). This introduces at most one more bend per edge,
so that the resulting edges have 2(2|E(T )|−1)+1 = 4|E(T )|−1 bends. Finally,
note that each edge pipj comes close to each leaf of T (including p1) at most
twice, once for ∆′i,k and once for ∆′j,k. Each time an edge comes close to a leaf
of T it either terminates at the leaf, or bends near the leaf. �

We are finally ready to complete the proof of Lemma 3. We show how to
apply Lemma 6 in case G is not Hamiltonian, and not all its vertices are assigned
fixed locations.

Proof of Lemma 3: By Lemma 4, we can construct a graph G′ with a Hamil-
tonian cycle C by subdividing each edge of G at most twice, and by adding
some edges, where G′ has a planar embedding extending the embedding of (a
subdivision of) G.

Next we deal with the issue that not all vertices lie in U , the set of vertices
with fixed locations. Traverse C: whenever we encounter an edge of C with at
least one endpoint not in U , contract that edge. This yields a new Hamiltonian
multigraph G′′ with V (G′′) = U and a planar embedding induced by the planar
embedding of G′. Use Lemma 6 to construct a planar poly-line drawing of G′′ at
the fixed vertex locations, and ε-close to T , so that each edge of G′′ has at most
4|E(T )| − 1 bends. Each vertex u ∈ U of G′′ corresponds to a set of vertices
Vu ⊆ V (G′) which was contracted to u, so the subgraph G′u of G′ induced by
Vu is connected. Since we embedded G′′ with the induced planar embedding of
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G′, we can now do some surgery to turn u back into G′u.
The idea is to remove a small disc around vertex u in the drawing of G′′,

and to draw G′u inside this disc, connected to the appropriate edges leaving the
disc. This will involve introducing new vertices where edges cross into the disc.
The same idea was used in [18, Theorem 2].

To this end, we define a graph G+
u , which consists of G′u, a cycle Cu contain-

ing G′u in its interior, and some further edges. Each vertex of Cu corresponds to
an edge of G′ “incident to” G′u, i.e., with an end-vertex in Vu and an end-vertex
not in Vu. Vertices appear in Cu in the same order as the corresponding edges
incident to G′u leave G′u (this order also corresponds to the cyclic order of the
edges incident to u in G′′); each vertex of Cu corresponding to an edge e of G′

is connected to the end-vertex of e in Vu. Finally, G+
u contains further edges

that triangulate its internal faces.
Consider a small disk δ around u. We erase the part of the drawing of

G′′ inside δ. We construct a straight-line convex drawing of G+
u in which each

vertex of Cu is mapped to the point in which the corresponding edge crosses the
boundary of δ. This drawing always exists (and can be constructed efficiently),
since G+

u is 2-connected and internally-triangulated. Removing the edges that
triangulate the internal faces of G+

u completes the reintroduction of G′u.
Overall, we added one bend to an edge with exactly one endpoint in Vu.

Since an edge can have endpoints in at most two Vu, this process adds at most
two bends per edge, so every edge has at most 4|E(T )| + 1 bends. Since each
edge of G was subdivided at most twice to obtain G′, each edge of G has at
most 3(4|E(T )|+ 1) = 12|E(T )|+ 3 < 12|V (T )| bends. Each edge of G′ comes
close to each leaf of T at most twice, so each edge of G comes close to each
vertex of U at most six times. Each time an edge comes close to a leaf of T it
either terminates at the leaf, or bends near the leaf. This concludes the proof
of Lemma 3. �

2.3 Proof of Theorem 1

As we mentioned earlier, it is sufficient to prove the result for each face of
H, so fix such a face F . Let Wi, with 1 ≤ i ≤ b, be the facial walks of
F . We distinguish between facial walks consisting of isolated vertices, indexed
by I := {i : |Wi| = 1}, and facial walks consisting of more than one vertex,
with indices in N := {1, . . . , b} \ I. Temporarily remove the isolated vertices
Wi, with i ∈ I, from F and construct an inner ε-approximation FN of the
resulting face using Lemma 1. Reinsert the isolated vertices and let F ′ be the
face bounded by the boundary components of FN and by the isolated vertices Wi

with i ∈ I. For i ∈ N , let W ′i be the polygon in F ′ that approximates Wi. Then
|W ′i | ≤ max{3, |Wi|} ≤ |Wi|+ 1 by Lemma 2 and the fact that |Wi| ≥ 2. Thus
we have that |F ′| ≤

∑
i∈N |Wi| + |N | + |I|. We remark that all the boundary

components of F ′ are either isolated vertices or simple polygons (thus the size
of F ′ is equal to the number of vertices in its boundary components).

We can triangulate F ′ using at most |F ′|+ 2|N |+ |I| − 4 triangles, applying
the following lemma with n = |F ′|, h1 = |I|, and h2 = |N | − 1.
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Figure 5: A face F with outer facial walk W1 and inner facial walk W2. (a) The
5 edges of G−H. (b) The polygons W ′1 and W ′2 (in heavy blue) that bound the
inner ε-approximation F ′ of F ; a triangulation of F ′ (fine lines); and the dual
spanning tree (dashed red) with extra vertices v1 and v2 close to W1 and W2,
respectively.

Lemma 7 (Based on O’Rourke [25, Lemma 5.2]) Any n-vertex polygonal
region with h1 point-holes and h2 non-point-holes can be triangulated by adding
chords in time O(n log n). The resulting triangulation has n + h1 + 2h2 − 2
triangles.

Proof: The time bound can be derived from the algorithm of O’Rourke [25,
Lemma 5.1]. Consider the total sum of all angles in triangles of the triangulation.
Suppose there are n0 vertices on the outer face, n1 = h1 isolated vertices, and
n2 vertices on non-point-holes (of which there are h2). Then the total angle
sum is [(n0 − 2) + 2n1 + (n2 + 2h2)]π which equals tπ, where t is the number of
triangles. We conclude that t = n+ h1 + 2h2 − 2. �

We use a result of Bern and Gilbert [3] to construct a straight-line drawing of
the dual of the triangulation; refer to Figure 5. Bern and Gilbert place a vertex
at the incenter of each triangle (where the angle bisectors of the triangle meet)
and prove that the straight-line edge joining two vertices in adjacent triangles
lies within the union of the two triangles. Now take a spanning tree T of the
dual. By Lemma 7, T has |F ′| + 2|N | + |I| − 4 vertices. For each facial walk
Wi, i ∈ N , we augment T with a new leaf vi close to Wi and inside F ′; for
each facial walk Wi, i ∈ I, we add the isolated vertex of Wi to T as a new leaf
vi. This adds |N | + |I| vertices to T , so the number of vertices of T is now
nT = |F ′|+ 3|N |+ 2|I| − 4.

Let GF be the embedded multigraph obtained by restricting G to vertices
and edges lying inside or on the boundary of F and by contracting each facial
walk Wi of F to a single vertex vi. We can now use Lemma 3 to embed GF

along T so that vertices vi are drawn at their fixed locations. Each edge of GF

has at most 12nT bends.
We now want to connect edges in GF to the suitable vertices in the boundary
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components of F they are incident to in G. For facial walks Wi, i ∈ I, there is
nothing to do, since we chose vi to coincide with the isolated vertex Wi. So we
may assume that we are dealing with boundary components consisting of more
than one vertex. We will use the buffer zone F − F ′ to do this; note that this
buffer zone is composed of |N | connected regions, namely for each i ∈ N such
that Wi is an inner facial walk of F , we have a connected region that is exterior
to Wi and interior to W ′i , and for the outer facial walk Wi of F (if it exists,
i.e. if F is not the outer face of G) we have one connected region that is exterior
to W ′i and interior to Wi.

In order to route the edges in the buffer zone, we split the buffer zone into
two, so we apply Lemma 1 a second time to obtain an inner ε/2-approximation
F ′′ of F , so that F ′ ⊆ F ′′ ⊆ F . See Figure 6. Let W ′′i be the polygon that
approximates Wi in F ′′. Note that |W ′′i | = |W ′i | ≤ |Wi|+ 1. Now for each walk
Wi we extend the edges ending at vi to their endpoint on Wi. Since the cyclic
order in which the edges of G are incident to Wi is the same as the one in which
they are incident to vi in GF , we can simply route these edges around Wi using
approximations to Wi via Lemma 1, and we can do so in the open connected
region that is exterior to Wi and interior to W ′′i , if Wi is an inner facial walk of
F , or exterior to W ′′i and interior to Wi, if Wi is the outer facial walk of F .

This adds two bends to the edge near vi, plus at most one bend for each
vertex of W ′′i except the one corresponding to the final destination vertex on
Wi. In total we add at most 2 + |W ′′i | − 1 ≤ |Wi| + 2 bends. There is one
difficulty: there are edges of GF that pass by vi, separating it from the segment
of W ′i close to vi (which is our gate to Wi). To remedy this difficulty, we first
route all of these edges around the whole obstacle Wi in the F ′′−F ′ part of the
buffer (more precisely in the open connected region delimited by W ′i and W ′′i ),
which adds |W ′i | + 3 ≤ |Wi| + 4 bends to an edge every time it passes vi (see
Figure 6(b), note that the edge starts with one bend close to the vertex).

Now we are free to route the edges of G−H that have to be embedded in F
and are incident to Wi to their endpoints along Wi. Since an edge can pass by
and/or terminate at a vertex at most six times, the number of additional bends
in each edge caused by going around Wi is at most 6(|Wi| + 4) = 6|Wi| + 24;
totaling this number over all boundary components of F yields a bound of at
most 6

∑
i∈N |Wi|+ 24|N | bends along the whole edge (we can ignore Wi with

i ∈ I, since we do not reroute around those components). Since each edge
started with 12nT bends in the drawing of GF , each edge of G−H embedded
in F now has at most 12nT + 6

∑
i∈N |Wi|+ 24|N | bends.

In order to derive a bound in terms of nH = |V (H)|, we use:
(1) nT = |F ′|+3|N |+2|I|−4 (as discussed in the first part of this subsection),
(2) |F ′| ≤

∑
i∈N |Wi| + |N | + |I| (as discussed in the first part of this sub-

section),
(3)

∑
i∈N |Wi| ≤ 2nH (which can be easily proved by induction on |N |,

primarily, and on the number of 2-connected components of Wi, if |N | = 1),
and

(4) 2|N | + |I| ≤ nH (since each facial walk Wi with i ∈ N consists of more
than one vertex).
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Figure 6: A close-up of the situation near inner facial walk W2. The tree T has
an edge (drawn as a heavy dashed line) incident to vertex v2. (a) After drawing
the edges of GF around the tree T edges 1, . . . , 5 are incident to v2 in the correct
cyclic order, but two other edges e and f come near v2, passing between v2 and
W ′2. (b) We add an ε/2-approximation F ′′ of F which introduces polygon W ′′2 ,
and we route the edges e and f (in dashed red) around W2 in the buffer zone
between W ′2 and W ′′2 . (c) We route the edges incident to W2 in the buffer zone
between W ′′2 and W2.

From (1) and (2) we get that nT ≤
∑

i∈N |Wi| + 4|N | + 3|I|. Thus the
number of bends in each edge of G−H that is embedded in F is at most

12nT + 6
∑
i∈N
|Wi|+ 24|N | ≤ 12(

∑
i∈N
|Wi|+ 4|N |+ 3|I|) + 6

∑
i∈N
|Wi|+ 24|N |

≤ 18(
∑
i∈N
|Wi|) + 72|N |+ 36|I|

≤ 18(
∑
i∈N
|Wi|) + 36(2|N |+ |I|).

From (3) and (4), we conclude that each edge of G − H has at most 36nH +
36nH = 72nH bends.

Most of the steps in the construction can be performed in linear time. Build-
ing the triangulation takes time O(nH log nH). The overall running time is thus
bounded by the size of the resulting drawing which contains a linear number of
edges each with a linear number of bends, yielding the quadratic running time.

Remark 1. The algorithm we presented in this section provides a bound better
than 72nH bends per edge if the subgraph H of G for which a straight-line
drawing H is given as part of the input is induced. If that is the case, then
the embedded multigraph GF defined in this section contains no self-loops;
consequently, a Hamiltonian planar graph G′F can be constructed in linear time
by adding vertices and edges and by subdividing edges of GF so that each edge
is subdivided by at most one new vertex (while in the general case we use two
subdivision vertices per edge, see Lemma 4). This can be done by exploiting an
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algorithm by Kaufmann and Wiese [23] for making embedded (simple) graphs
4-connected, as described in the following.

Lemma 8 Let GF be an embedded multigraph with no self-loops. An embedded
simple Hamiltonian graph G′F can be constructed from GF by adding vertices
and edges and by subdividing each edge of GF with at most one new vertex.

Proof: A separating triangle in an embedded (multi-)graph is a cycle (u, v, z)
such that removing u, v, and z and their incident edges disconnects the graph.
We state two facts that we use for our proof.

First, it is a well-known theorem of Tutte [30] that a 4-connected simple
maximal planar graph is Hamiltonian. Second, it has been shown by Kaufmann
and Wiese [23] how to turn a simple maximal planar graph into a 4-connected
simple maximal planar graph by subdividing each of its edges with at most one
new vertex and by adding some edges to the resulting graph; moreover, an edge
is subdivided with a new vertex only if it is an edge of a separating triangle.

Now starting from GF , we add edges to it so that every face is delimited
by a cycle with three vertices or by two parallel edges. Next, for each pair of
vertices u and v such that there is more than one edge connecting u and v, we
subdivide all the parallel edges (u, v) with one subdivision vertex; denote by S
the set of newly inserted vertices. We add a new vertex vf inside each face f
and we connect vf to all the vertices on the boundary of f , obtaining a simple
maximal planar graph Hf . It is easy to note that no edge incident to a vertex
in S belongs to a separating triangle in Hf . Then we can complete the proof
by using the previously mentioned results. Namely, by Kaufmann and Wiese’s
result, Hf can be turned into a 4-connected simple maximal planar graph G′F
by subdividing some of its edges and inserting some new edges; since no edge
incident to a vertex in S belongs to a separating triangle, each original edge of
GF is subdivided at most once. By Tutte’s result G′F is Hamiltonian, which
completes the proof of the lemma. �

Subdividing each edge with one new vertex rather than two immediately
allows us to improve the bounds in Lemma 3 on the number of bends per edge
to 8nT and on the number of times each edge comes close to each vertex u to at
most four. The same analysis as above and the improved bounds of Lemma 3
allow us to upper bound the number of bends per edge in Theorem 1 by 48nH .

Remark 2. An improvement upon the 72nH bound of Theorem 1 can be
obtained by modifying the placement of vi, for each i ∈ N , and the route of the
edges that go around Wi. This modification makes the algorithm slightly more
involved, so we preferred to omit it from the proof and to sketch it here. The
main idea is that vertex vi can be inserted not just at any point inside F ′, but
rather at a convex corner of F ′i that approximates an occurrence σ of a vertex
of Wi. Then each edge that goes around vi and has to be “wrapped around”
Wi can save three bends (each time it passes by vi) with respect to the route
described in Figure 6(b). To achieve this, we bend the edge at its intersection
points with F ′i and then connect it directly to the suitable approximations of
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the vertices next to σ along Wi. This route introduces |F ′i | = |Wi| + 1 new
bends each time an edge passes by vi. A similar argument can be used for the
edges that terminate at some vertex of Wi. This results in each edge of G−H
having at most 12nT + 6

∑
i∈N |Wi|+ 6|N | bends. Then the same calculations

described above lead to a bound of 63nH bends per edge.

3 Extending Partial Drawings Greedily

Let G be a planar graph with a spanning subgraph H for which we have fixed
a straight-line planar drawing H. For a given ordering σ = [e1, . . . , em] of the
edges in G \H we say that a drawing Γ of G greedily extends H with respect to
σ if it is obtained by drawing edges e1, . . . , em in this order, so that ei is drawn
as a polygonal curve that respects the embedding of G and with the minimum
number of bends, for i = 1, . . . ,m. Note that the graph H might have no edges;
in this case we call it the empty spanning subgraph of G.

Suppose σ orders the edges of G \H so that the edges between distinct con-
nected components of H precede edges between vertices in the same connected
component of H. For such orderings Fowler et al. claimed in [14] that there
exists a drawing Γ of G greedily extending H with respect to σ in which each
edge has O(|V (G)|) bends. However, in the following we confirm a claim of
Schaefer [29] stating that greedy extensions do not, in general, lead to drawings
with a polynomial number of bends.

Theorem 3 For every n ≥ 9 there exists an n-vertex planar graph G, a planar
drawing H of H = (V (G), ∅), the empty spanning subgraph of G, and an order
σ of the edges in G so that any drawing of G that greedily extends H with respect
to σ has edges with 2Ω(n) bends.

Proof: We adapt an example by Kratochv́ıl and Matoušek [24]. Refer to Fig-
ure 7. LetN = bn3 c−2, for any integer n ≥ 9. GraphH consists of n isolated ver-
tices, name them u1, . . . , uN , v1, . . . , vN , w1, . . . , wN , a, b, c, d, e, r1, . . . , rn−3N−5.
Note that N ≥ 1, given that n ≥ 9, and n − 3N − 5 ≥ 1. The first n −N − 1
edges in σ are (ui, wi) for i = 1, . . . , N , (wi, wi+1) for i = 1, . . . , N −1, (ri, ri+1)
for i = 1, . . . , n − 3N − 6, (c, w1), (b, c), (c, e), (e, d), (a, d), and (a, rn−3N−5).
All these edges are straight-line segments in any drawing Γ of G that greedily
extends H with respect to σ. The last N edges in σ are (u1, v1), . . . , (uN , vN )
in this order.

Consider any drawing Γ of G that greedily extends H with respect to σ.
We claim that edge (ui, vi) has at least 2i−1 bends in Γ. In fact, it suffices to
prove that (ui, vi) has 2i−1 intersections with the straight-line segment ab in Γ.
Indeed, (u1, v1) has exactly one intersection with ab in Γ. Inductively assume
that (ui, vi) has 2i−1 intersections with ab in Γ; we prove that (ui+1, vi+1) has 2i

intersections with ab in Γ. This proof is accomplished by following Kratochv́ıl
and Matoušek [24] almost verbatim. Since (ui+1, vi+1) does not cross (ui, vi), it
has a bend bi+1 around vi, i.e., inside the square defined by ui−2, wi−2, wi−1,
and ui−1. Thus the polygonal curve representing (ui+1, vi+1) in Γ consists of
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Figure 7: A drawing Γ of G that greedily extends H with respect to σ. Drawing
H consists of the black circles. The first n − N − 1 edges in σ are (black)
straight-line segments. The last N edges (ui, vi) are (colored) polygonal lines
whose bends have been made smooth to improve the readability. Only four of
the latter edges are shown.

two parts—one from ui+1 to bi+1, the other from bi+1 to vi+1. Both of these
parts may be used as an edge joining ui and vi, after contracting ui+1 and vi+1

into ui, and bi+1 into vi. Hence, by induction, each of these two parts has
2i−1 intersections with ab, and the whole edge (ui+1, vi+1) has 2i intersections
with ab.

Hence, in any drawing Γ of G that greedily extends H with respect to σ, one
edge has 2N−1 = 2b

n
3 c−3 ∈ 2Ω(n) bends, which concludes the proof. �

We remark that the graph G in the proof of Theorem 3 is a tree, so every
edge of G connects vertices in distinct connected components of H.

4 Simultaneous Planarity

Before turning to our algorithm to draw simultaneously planar graphs, we justify
our claim that minimizing the number of crossings in a simultaneous planar
drawing is NP-hard. This result follows from Cabello and Mohar’s proof of
NP-hardness for the anchored planarity problem [6, Theorem 2.1], but a more
direct proof of a slightly stronger result is possible by reduction from the NP-
complete crossing number problem.

Theorem 4 Minimizing the number of crossings in a simultaneous planar draw-
ing of two graphs is NP-complete, even if one graph is the disjoint union of paths
of length at most two and the other graph is a matching.

The result is sharp in the sense that if both G1 and G2 are matchings, the
problem is easy, since the union of two matchings is always planar.

Proof: We use the fact that the (standard) crossing number problem is NP-
hard for cubic graphs [19]. Let K be a cubic graph with m edges. Subdivide
each edge 2m or 2m + 1 times (we will shortly see which). At each of the
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original vertices of K choose two of the incident edges, and make them part
of G1; the third edge at each vertex is added to G2. Now add the remaining
edges to G1 and G2 so that along each path between original vertices G1 and
G2 edges alternate. If such a path ends with two G1-edges or two G2-edges,
we need to subdivide it 2m times to make this possible; if it ends with one
G1-edge and one G2-edge, we subdivide it 2m+ 1 times. By this construction,
G1 is a disjoint union of paths of length at most two, and G2 is a matching;
further, the common subgraph of G1 and G2 has the same vertex set as G1 and
G2, and contains no edge. Finally, the number of crossings in a simultaneous
planar drawing of G1 and G2 is an upper bound on the crossing number of K,
and, since we subdivided each edge of K sufficiently often, the two numbers
are equal: starting with a crossing-minimal drawing of K, we can realize each
crossing by aligning a G1-edge with a G2-edge. �

We now turn to the proof of Theorem 2.

Proof of Theorem 2: We first note that it is easy to go from (ii) to (i):
Suppose we have constructed, in time O(n2) a simultaneous planar drawing Γ
so that a private edge of G1 and a private edge of G2 intersect at most 24 times.
We add dummy vertices at the locations of the O(n2) crossings points in Γ, thus
obtaining a planar drawing of a graph L. Observe that L might have parallel
edges, either between two dummy vertices or between a vertex and a dummy
vertex. In either case, no more than two edges are parallel to each other, because
one comes from part of an edge of G1 and one comes from part of an edge of
G2. We consider two cases. If there are two parallel edges between two dummy
vertices, then we can swap those two parts of the original edges to eliminate the
two crossings altogether. Doing this involves splitting each dummy vertex into
two degree-2 vertices, one in the G1 edge and one in the G2 edge. Note that we
still have a planar graph, and we have not altered the rotation system. If there
are two parallel edges between a vertex v and a dummy vertex then we will not
perform a swap since it might change the rotation system at vertex v. Instead,
we will introduce one extra dummy vertex near v in one of the parallel edges.
With these modifications L becomes a simple planar graph. We then construct
a straight-line drawing of L on a small grid. The number of bends in an edge is
equal to the number of dummy vertices we added along the edge. Each edge in
Γ intersects at most 3n − 6 edges, and intersects each one of them at most 24
times. The number of dummy vertices we added along the edge is therefore at
most 24(3n− 6) + 2 ≤ 72n, where the +2 takes into account the extra dummy
vertices we may have added near each endpoint of the edge.

We are left with the proof of (ii). That is, we have to construct in time
O(n2) a simultaneous planar drawing of G in which private edges of G1 and G2

intersect at most 24 times, all edges of G1 are straight, and every private edge
of G2 has at most 72|V (G1)| bends.

Start with an arbitrary straight-line planar drawing Γ1 of G1. We now con-
struct a drawing Γ2 of G2 using an approach similar to the proof of Theorem 1.
Drawing Γ1 induces a straight-line planar drawing Γ of G. Thus, in order to
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determine Γ2, it remains to describe how to draw the private edges of G2. We
will accomplish this independently for each face F of G.

We construct a triangulation Σ of F by using all the vertices and edges
of G1 that lie inside F . Next, we execute the same algorithm we used in the
proof of Theorem 2. Namely, we construct a straight-line drawing of the dual
D of Σ and we take a spanning tree T of D. For each facial walk Wi of F , we
augment T with a leaf vi close to Wi and inside F ′, if |Wi| > 1, and coinciding
with Wi, if |Wi| = 1; here, F ′ is an inner ε-approximation of F constructed
as earlier. Let GF

2 be the embedded multigraph obtained by restricting G2 to
the vertices and edges inside or on the boundary of F , and by contracting each
facial walk Wi of F to a single vertex vi. We use Lemma 3 to construct a
planar poly-line drawing of GF

2 that realizes the given embedding, that is ε-
close to T , and in which vertices vi maintain their fixed locations. Finally, for
boundary components with |Wi| > 1, we reconnect edges in GF

2 to the boundary
components they belong to. In order to do this, we first “wrap” the edges of GF

2

passing by a vertex vi around Wi, and we then extend the edges of GF
2 incident

to vi to their endpoint on Wi, by routing them around Wi.
By construction every edge of G1 is straight. By Theorem 1 every private

edge of G2 has at most 72|V (G1))| bends. Also, the algorithmic steps are the
same as for the proof of Theorem 1, hence the algorithm runs in O(n2) time.
It remains to prove that any private edge of G1 and any private edge of G2

intersect at most 24 times.
Consider any private edge e of G2 and any private edge e′ of G1. Recall that

e′ is an edge of Σ. Denote by Wi and Wj the facial walks that the end-vertices
of e′ belong to. Edge e can only intersect edge e′ in the following two situations:
when passing by vi or vj and when passing by the point pT in which the edge of
D dual to e′ crosses e′. We prove that each of these two types of intersections
happens at most 12 times.

For the first type of intersections, Lemma 3 implies that edge e passes by
each of vi or vj at most 6 times, hence at most 12 times in total.

For the second type of intersections, Lemma 4 implies that edge e is sub-
divided into at most three edges e1, e2, and e3 in order to turn GF

2 into a
Hamiltonian graph. For each j = 1, 2, 3, ej either belongs to the Hamiltonian
cycle of the subdivided GF

2 or not. In the former case, ej is drawn as part of an
iε/n-approximation Θi of T , as in the proof of Lemma 5, hence it crosses e′ at
most twice. In the latter case, ej is composed of two parts, denoted by ∆′p,k and
∆′q,k, or by ∆′′p,k and ∆′′q,k in the proof of Lemma 6. Each of ∆′p,k, ∆′q,k, ∆′′p,k
and ∆′′q,k is part of a kε/n(m1 +m2 + 1)-approximation of Θ′i, which is part of
Θi. Hence, each of ∆′p,k, ∆′q,k, ∆′′p,k and ∆′′q,k crosses e′ at most twice; thus ej
crosses e′ at most four times, and e crosses e′ close to pT at most 12 times. �

5 Open Questions

We conclude with three open questions. We proved that if a graph has a planar
drawing extending a straight-line planar drawing of a subgraph then there is
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such a drawing with at most 72n bends per edge. This is asymptotically tight,
but can the constant 72 be reduced? As sketched at the end of Section 2, a
variation of our algorithm decreases this constant to 63, however new ideas
seem to be needed in order to push the bound further down.

Our second result was that any two simultaneously planar graphs have a si-
multaneous planar drawing with at most 24 crossings per pair of edges, a bound
which was recently improved to 16 crossings per pair of edges [15]. The only
lower bound on the number of crossings between two edges in a simultaneous
planar drawing is 2 (see [9] or the figure in the margin for the entry “simultane-
ous crossing number” in [28]). There is a large gap between 2 and 16. Can two
edges be forced to cross more than twice in a simultaneous planar drawing?

As a third open question, we note that Frati et al. [15] proved that two
simultaneously planar graphs have a drawing with at most 6 bends per edge
and 16 crossings per pair of edges, though not on a grid. Is it possible to
achieve a constant number of bends per edge, a constant number of crossings
per pair of edges, and a nice grid?
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nani, and I. Rutter. Testing planarity of partially embedded graphs. ACM
Trans. Algorithms, 11(4):32:1–32:42, 2015. doi:10.1145/2629341.

[2] M. Badent, E. Di Giacomo, and G. Liotta. Drawing colored graphs on
colored points. Theoret. Comput. Sci., 408(2-3):129–142, 2008. doi:10.

1016/j.tcs.2008.08.004.

[3] M. Bern and J. R. Gilbert. Drawing the planar dual. Inform. Process.
Lett., 43(1):7–13, 1992. doi:10.1016/0020-0190(92)90022-N.

[4] T. C. Biedl and P. Floderus. Drawing planar graphs on points inside a poly-
gon. In Mathematical Foundations of Computer Science (MFCS 2012), vol-
ume 7464 of Lecture Notes in Computer Science, pages 172–183. Springer,
2012. doi:10.1007/978-3-642-32589-2_18.

[5] T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embeddings of
planar graphs. In R. Tamassia, editor, Handbook of Graph Drawing and Vi-
sualization, Discrete Mathematics and Its Applications, chapter 11, pages
349–382. Chapman and Hall/CRC, 2013.

[6] S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing
number and 1-planarity hard. SIAM Journal on Computing, 42(5):1803–
1829, 2013. doi:10.1137/120872310.

[7] T. M. Chan, F. Frati, C. Gutwenger, A. Lubiw, P. Mutzel, and M. Schae-
fer. Drawing partially embedded and simultaneously planar graphs. In
Graph drawing, volume 8871 of Lecture Notes in Comput. Sci., pages 25–
39. Springer, Heidelberg, 2014. doi:10.1007/978-3-662-45803-7_3.

[8] T. M. Chan, H.-F. Hoffmann, S. Kiazyk, and A. Lubiw. Minimum length
embedding of planar graphs at fixed vertex locations. In Graph Drawing,
volume 8242 of Lecture Notes in Comput. Sci., pages 376–387. Springer,
Cham, 2013. doi:10.1007/978-3-319-03841-4_33.
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