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Abstract

In this paper we introduce and study a new problem named min-
max edge q-coloring which is motivated by applications in wireless mesh
networks. The input of the problem consists of an undirected graph and an
integer q. The goal is to color the edges of the graph with as many colors as
possible such that: (a) any vertex is incident to at most q different colors,
and (b) the maximum size of a color group (i.e. set of edges identically
colored) is minimized. We show the following results:

1. Min-max edge q-coloring is NP-hard, for any q ≥ 2.

2. A polynomial time exact algorithm for min-max edge q-coloring on
trees.

3. Exact formulas of the optimal solution for cliques and almost tight
bounds for bicliques and hypergraphs.

4. A non-trivial lower bound of the optimal solution with respect to
the average degree of the graph.

5. An approximation algorithm for planar graphs.

Submitted:
January 2015

Accepted:
September 2015

Final:
September 2015

Published:
October 2015

Article type:
Regular Paper

Communicated by:
X. He

A preliminary version of this paper was presented at IWOCA 2014.

E-mail addresses: tommi.larjomaa@gmail.com (Tommi Larjomaa) alexandru.popa@nu.edu.kz

(Alexandru Popa)

http://dx.doi.org/10.7155/jgaa.00373
mailto:tommi.larjomaa@gmail.com
mailto:alexandru.popa@nu.edu.kz


506 Larjomaa and Popa The Min-Max Edge q-Coloring Problem

1 Introduction

Traditionally, backbone connectivity in networks of various sizes has been built
using wired infrastructure. Even though the bandwidth that modern wired
networking technology offers is no doubt better than that of wireless alternatives,
the material and installation costs of wired networks is a significant drawback.
Therefore, the concept of wireless mesh networks (WMNs) has received a lot of
attention and has been researched actively during the past decade [2, 16, 3, 7, 8].

In a multi-channel WMN, each node is able to use multiple non-overlapping
frequency channels. The use of many channels inside the same network can
significantly improve overall performance; interference from neighboring nodes
can be decreased substantially, when nodes do not need to use the same radio
channel for every link. Multiple radio channels in the network means, that
at least some of the nodes need to handle more than one channel at a time.
In many proposed designs the multi-channel feature is achieved by packet-by-
packet reconfiguration of the radio [11, 9, 15]. However, one of the drawbacks
of this kind of continuous channel switching of a single radio interface is that it
requires precise synchronization throughout the network.

An alternative approach would be to fit multiple radio interfaces to each
node, thus allowing a more persistent channel allocation per interface. A couple
of such multi-NIC (network interface card) architectures have been proposed
by Raniwala et al. [13, 12]. Their simulation and testbed experiments show
a promising improvement with only two NICs per node, compared to a single-
channel WMN. Another appealing feature of these architectures is that they are
based on readily available, commodity IEEE 802.11 interfaces, requiring only
systems software modification.

The scenario of two or more NICs per node with fixed channels imposes
some limitations to the assignment of channels on each interface. In order to
set up a link between two nodes, both of them have to have at least one of
their interfaces set to the same channel. On the other hand, links inside an
interference range should use as many different channels as possible. Thus, the
channels need to be assigned carefully in order to both keep every required link
possible and maximize useful bandwidth throughout the network.

The channel assignment problem can be modelled as a type of edge coloring
problem: given a graph G, the edges have to be colored so that there are
at most q different colors incident to each vertex. Here, vertices, edges and
colors represent network nodes, links and channels, respectively. A coloring
that satisfies this constraint, is called an edge q-coloring. Note, that the coloring
constraint differs from the traditional coloring problems, where adjacent items
are not allowed to have the same color. Also the goal is different; instead of
minimizing the amount of colors, a large amount of different colors in an edge
q-coloring is often a desired state of things.

Previously, the channel assignment was formulated as the max edge q-coloring
problem, where the goal was to maximize the total number of edges. The draw-
back of this model is that in an optimal solution the same color is assigned to
many edges while other colors are used only once. We remind the reader that
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in the wireless mesh network setting, having the same color assigned to many
edges is equivalent to having the same frequency used many times, and there-
fore, having intereference. Since the goal of the application is to minimize the
interference, max edge q-coloring is perhaps not the ideal theoretical formulation
(although max edge q-coloring is still interesting as a combinatorial problem).
Instead, it is more realistic to try to have the color components as balanced as
possible. Therefore, we newly introduce the min-max edge q-coloring where the
goal is to minimize the maximum size of a color group.

We would like to emphasize that the approximation algorithms proposed
for the max edge q-coloring [1, 5, 4, 6] indeed use the same color many times
since they select first a maximum matching in the graph, color the edges of the
matching with distinct colors, remove them from the graph, and, finally, color
all the edges in the same connected component using an identical color. Thus,
the situation presented in the previous paragraph is definitely not an artificial
example it reflects precisely the behavior of known algorithms.

Related work. The problem of finding a maximum edge q-coloring of a
given graph has been first studied by Feng et al. [5, 4, 6]. They provide a
2-approximation algorithm for q = 2 and a (1 + 4q−2

3q2−5q+2 )-approximation for
q > 2. They show that the problem is solvable in polynomial time for trees
and complete graphs in the case q = 2, but the complexity for general graphs
has been left as an open problem. Later, Adamaszek and Popa [1] show that
the problem is APX-hard and present a 5/3-approximation algorithm for graphs
which have a perfect matching. The maximum edge q-coloring is also considered
in combinatorics and is a particular case of the anti-Ramsey number. For a brief
description of the connection of the two problems, the reader can refer to [1].

To the best of our knowledge there has been no prior research on the min-
max edge q-coloring problem.

Our contributions. In this paper we introduce and study the min-max
edge q-coloring problem. First, in Section 2 we prove that the problem is NP-
hard for any q ≥ 2. The proof is split into two parts. We first show the
NP-hardness for a more general version in which each vertex is allowed to have
an independent value of q. In the second part we show how to introduce extra
gadgets in order to force all the vertices to have the same value of q.

Then, in Section 3 we show an exact polynomial time algorithm for trees,
for q = 2. We first show that the optimal solution in a tree is at least ∆/2 and
at most ∆, where ∆ is the maximum degree of the tree. Then, the algorithm
uses binary search to find a value c, such that the input admits a coloring in
which the largest color group is at most c. Given a value c, we select in turn
each vertex as the root of the tree and try to construct a solution in a bottom
up fashion. This is not straightforward as for each vertex we have to solve a
knapsack instance (fortunately, these instances are solvable in polynomial time).

In Section 4 we analyse the value of the optimal solution on special classes
of graphs: cliques, bicliques and hypercubes. We provide the exact formulas of
the optimal solutions for cliques. For bicliques we present a lower bound which
is tight when both parts of the graph have an even number of vertices (and
almost tight for the other cases). For a hypergraph Qn we give a lower bound
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which is tight for even n, and similarly, almost tight for odd n. Although these
classes of graphs have a very simple structure, finding lower bounds is much
more difficult than in the case of the max edge q-coloring problem. We need to
prove several lemmas in order to understand the structure of the coloring and
to prove the final theorems.

A good lower bound of the optimal solution is necessary in order to design
approximation algorithms. For the min-max edge q-coloring problem, a triv-
ial lower bound is half of the maximum degree. Nevertheless, in Section 5 we
show another lower bound in terms of the average degree of the graph. Sec-
tion 6 presents an approximation algorithm for planar graphs which achieves
a sublinear approximation ratio. The algorithm uses a theorem of Lipton and
Tarjan [10] which says that a planar graph admits a small balanced separator.
Section 7 summarizes the results and briefly discusses possible future research
directions.

2 NP-hardness of Min-max Edge q-coloring

In this section we prove that the min-max edge q-coloring problem is NP-hard
for q ≥ 2, giving little hope of finding a general exact polynomial time algorithm
for it. The proof is split into two steps. First we prove NP-hardness for a more
general version of the problem, defined next, where each vertex is assigned a
value for q individually.

Problem 1 (General min-max edge q-coloring problem) The input is a
graph G = (V,E), and for each vertex vi there is a positive integer qi. A feasible
solution is a coloring of edges, such that for each vertex vi, there are at most qi
different colors incident to it. The goal is to find a coloring σ such that the size
of the largest color group, max

c
|{e ∈ E|σ(e) = c}|, is minimized.

The reduction is made from monotone one-in-three SAT (Definition 1), which
is known to be NP-complete [14]. By modifying this reduction slightly we can
prove NP-hardness for the min-max edge q-coloring problem with a constant
value of q.

Definition 1 (monotone one-in-three SAT problem) The input is a
Boolean 3CNF-formula φ, where each literal is simply a variable; there is no
negation. Determine whether a truth assignment for the variables exists, such
that for each clause, there is exactly one literal that is true, while the other two
literals are false.

Now we state and prove NP-hardness for the general edge q-coloring problem.

Theorem 1 Problem 1 is NP-hard.

Proof: We use a reduction from monotone one-in-three SAT (Definition 1),
which goes as follows. There are m clauses and n variables in the formula φ.
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For each clause, there is a single vertex cj with q = 2 (we use this notation
as a shorthand for “at most 2 different colors can be incident to cj”). For
each variable xi, there are three vertices: ai, bi and vi having q = 1, q = 1
and q = 2, respectively. Each vertex vi is adjacent to vertices ai and bi. If a
variable is present in a clause, the corresponding variable vertex ai is adjacent
to the clause vertex cj . For each ai, there are additional leaves adjacent to it,
so that deg(ai) = 2mi, where mi is the number clauses the variable is present
in.1 Moreover, for each bi, there are additional leaves so that deg(bi) = L−2mi,
where L = 4m + n. Finally, there is a vertex f with q = 1, that is adjacent to
each vi. The resulting graph is of polynomial size in m. Figure 1 illustrates the
idea of the reduction by showing the full gadget of a single variable.

Figure 1: The reduction from monotone 1-in-3 SAT to general min-max edge q-
coloring for a single variable. The dotted edges lead to similar variable gadgets.

Next we show that if φ is satisfiable, there is a feasible coloring for the
reduction, whose largest color group is L. For each variable xi that is false in
the satisfying truth assignment, color the edges incident to ai with the color F ,
which is the color incident to the vertex f . There are two edges incident to some
a-vertex per each literal, and 2m false literals, so there are in total 4m+ n = L
edges colored with F . Since vi is incident to only one color at this point, we
give a distinct color for the edges of bi, of which there are less than L.

For each true variable xi we choose a distinct color and use it to color edges
incident to both ai and bi. These color groups have thus L − 2mi + 2mi = L
edges. Since the truth assignment is satisfying, there is one color representing a
true variable and the color F representing false variables incident to each clause
vertex, which makes the coloring feasible.

Finally, we show that if the formula is not satisfiable, the optimum of the

1We can safely assume that each variable has at most one literal in any clause. Otherwise
a variable set to true could make a clause unsatisfied regardless of other variables, essentially
making the formula not 3CNF from the point of view of the satisfiability problem.
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reduction is more than L (in other words, if the optimum of the reduction is less
or equal to L, the formula is satisfiable). In a feasible coloring of a reduction from
an unsatisfiable formula, there are two possibilities. Either there are clauses in
which two or more variables and their a-vertices have a color different from F ,
or there are clauses in which all variables are using color F (or both).

In the first case, two variable vertices ai and aj necessarily share a color,
which we denote by C. Consequently, the vertices vi and vj are both saturated
with colors F and C. Note, that for any variable xk, deg(bk) ≥ L − 2m >
L/2. Thus, if the vertices bi and bj are assigned the same color, the limit L is
immediately exceeded. On the other hand, if one of those vertices, say, bi takes
the color F , and bj takes the color C, there are already L edges colored with C
due to the variable xj plus the edges incident to ai.

In the second case we can assume that the clauses that have not only false
literals in them, have exactly one true literal, since the other case was already
discussed. Now, there are more than 2m false literals, and, as observed before,
there are two edges per literal incident to the a-vertices. Thus, there must be
more than 4m+ n = L edges colored with F . �

As we go on to prove NP-hardness for min-max edge q-coloring, where each
vertex has the same value for q, we use a slightly modified version of the previous
reduction. The idea is to mimic vertices with q = 1 or q = 2. This is done by
saturating vertices with an appropriate number of different colors that already
have L edges. We proceed with the theorem and proof.

Theorem 2 The min-max edge q-coloring problem is NP-hard for q ≥ 2.

Proof: We begin by showing how to force a vertex with any value of q to allow
only one or two new colors for its additional edges, given the upper bound L for
color group size. Observe that the optimum for a (qL + 1)-star, namely a star
with qL leaves, is exactly L. We take q − 1 such stars, pick one leaf from each
star and contract them as one vertex. In an optimal coloring of the acquired
gadget, the contracted vertex v is incident to q − 1 different colors of size L.
As we add edges to v, they can be colored with only one color in order to keep
color group sizes below L. If we want a vertex that allows two colors, we pick
q − 2 leaves from different qL-stars (we can use the same stars as before, since
there are plenty of leaves left) and contract them as one.

Using such gadgets that mimic vertices with q = 1 and q = 2, we straightfor-
wardly construct a reduction equivalent to the one used in the proof of Theorem
1. Now it remains to show that the number of additional vertices and edges in
the new reduction is polynomially bounded in the size of the formula.

We show that we need only (q − 1) stars to be able to mimic enough ver-
tices. In the original reduction, there is one vertex per clause, three vertices per
variable2 and the vertex f . In total we have M = m+ 3n+ 1 vertices that need
to be mimicked. We need at most q − 1 leaves to mimic one vertex, so having

2We do not need to take into account the leaves of the variable vertices; a leaf allows only
one color incident to it, no matter what value q has.
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qL ≥ 2L ≥M will suffice. Assume the opposite, which yields

M > 2L⇔ m+ 3n+ 1 > 8m+ 2n⇔ n > 7m− 1.

This contradicts with the fact that there can be at most 3m variables in a
3CNF-formula, that is, n ≤ 3m. So, the number of additional edges needed for
the modified reduction is (q − 1)qL = O(m+ n), since q is constant. �

3 Exact Polynomial Time Algorithm for Trees

In this section we present an exact polynomial time algorithm for solving the
min-max edge 2-coloring problem on trees. First of all we give the following
bound of the optimal solution.

Lemma 1 For an instance of the min-max edge 2-coloring problem, where the
graph is a tree T , OPT ∈

[
∆
2 ,∆− 1

]
, where ∆ is the maximum degree of T .

Proof: The lower bound follows from the fact that there is a vertex with ∆
edges incident to it, and only two distinct colors can be assigned to these edges.
The upper bound can always be achieved with the following coloring. Choose
an arbitrary vertex vr as the root vertex, and color its edges evenly with two
colors. For each child v of vr, there are deg(v) − 1 uncolored edges that can
be colored with a new color, since v had only one edge colored previously. The
same is repeated iteratively for each child vertex of a visited vertex. No more
than ∆− 1 edges are colored with any color. �

The polynomial time algorithm for trees is defined below (Algorithm 1).
The idea of the algorithm is to try to color the tree with different candidate
values for optimum from the interval

[
∆
2 ,∆− 1

]
, until candidates c and c − 1

are found so that c leads to a feasible coloring whereas c − 1 does not. This is
repeated for each vertex as the root vertex, and the smallest successful value of
c is the optimum. By applying the principle of binary search we only need to
test O(log ∆) different candidates per root. Now we prove that the output is in
fact optimal.

Theorem 3 Given a tree as input, the output of Algorithm 1 is a feasible and
optimal solution to the min-max edge 2-coloring problem.

Proof: From Lemma 1 we know that the optimum is within the search range
of the algorithm, so if it is able to identify a feasible maximum color group size
candidate, it finds the optimum. To see that this is the case, we analyse the
applied coloring strategy carefully.

As in the algorithm, we choose one vertex of the input tree T at a time as
root. Consider a maximum candidate c and a non-leaf vertex v that has only
leaves as children. In order to keep the color group sizes below c, it is best to
color as many leaf edges of v as possible with one color. Anything less would
be more detrimental for the task of satisfying the limit c, since the parent of v,
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namely vp, needs to use one of its two colors for the residual edges of v. In other
words, when the edge between v and vp is assigned a color, the color necessarily
propagates to the child edges of v that are yet without a color. Note also that
the parent edge of a vertex is necessarily one of its residual edges. Thus, for any
non-root vertex the residual number (introduced in step 6 of the algorithm) is
at least one, whereas for the root it can be zero.

In addition to v, its parent vp possibly has other children that similarly to v
have a certain amount of uncolored residual edges. This is where the knapsack
problem comes in. One color needs to be assigned to a set of children of vp so
that the sum of the residual numbers of these children is maximized, but does
not exceed c. This in turn minimizes the residual number of vp. We then repeat
this minimization task for each vertex. This needs to be done in a bottom up
order since the residual number of a vertex is dictated by those of its children.
If at any point the residual number of a vertex turns out larger than c, we
know that with the currently chosen root vertex, the coloring attempt fails to
satisfy the candidate limit. If all residual numbers are less than c, the coloring
is successful. Figure 2 illustrates a failed coloring attempt.

Essentially, one run through the loop starting at step 8 minimizes the resid-
ual number of the root vertex with respect to an optimum candidate c. If a
residual number exceeds c, the combination of the root vertex and the optimum
candidate does not lead to a feasible coloring. Changing the root vertex, how-
ever, changes the parental relationships between the vertices, and consequently
the residual numbers, even if the optimum candidate was the same. This is why
we need to iterate the minimization process with all combinations of root ver-
tices and optimum candidates to be sure3. Since there are merely O(n∆) of such
combinations, this does not compromise the algorithm running in polynomial
time.

Figure 2: A failed attempt to color a tree with optimum candidate 2. The
dashed edges are without color.

As a final note, since the knapsack problem is known to be NP-hard, it might

3It might be that a failure to color a tree with any root vr and a fixed optimum candidate
c implies a similar failure for all possible roots, but this remains an open question.
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Input: A tree graph T

1. m←− ∆− 1
2. For each vertex vr

3. Label each vertex of T with its distance from the root vertex
4. l←−

⌈
∆
2

⌉
, u←− ∆− 1

5. Repeat
6. Assign for each non-root vertex v a residual number vl ←− 1, and for

the root vrl ←− 0
7. c←−

⌊
1
2
(l + u)

⌋
8. For each non-leaf vertex in descending order of distance from root

9. Solve the following knapsack instance:
Denote the children of v by vi. Size of the knapsack is c, and the
item sizes are the residual numbers vil of the children.

10. Store the set of indices of the children in the knapsack solution to S

11. If
∑
i

vil −
∑
j∈S

vjl + vl > c: l←− c + 1 and go to step 16

12. Color the uncolored edges incident to vi, i ∈ S, and all their
successors with a new color

13. vl ←− vl +
∑
i

vil −
∑
j∈S

vjl

14. Color the remaining uncolored edges connected to the root with one
color

15. Store the current coloring to U , and set u←− c
16. If l = u, revert to the coloring U , jump out of the loop to step 17

17. if u < m: m←− u and M ←− U
18. Revert to the coloring M

Output: m
Algorithm 1: Tree 2-coloring algorithm

give reason to believe that step 9 of the algorithm does not run in polynomial
time in general. Fortunately, it is also well known that knapsack instances are
solvable in O(nW ) time, where n is the number of items and W is the size of
the knapsack. Since at any vertex there are at most ∆ items (children) and the
knapsack size is also at most ∆, any knapsack instance encountered in step 9 is
solvable in O(∆2) time. �

4 Special Cases

In this section we present formulas for the optimal solution of the min-max edge
2-coloring problem in the case of three simple graph types. These special cases
are cliques, bicliques and hypercubes.
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4.1 Clique

Here we show that an optimal min-max edge 2-coloring of an n-clique Kn

achieves OPT(Kn) ≥
⌈

1
3 |E(Kn)|

⌉
. The proof is split in parts. Also, we show

that the bound is tight in most cases and present exact formulas for the op-
timum in all cases. Before we begin, we define a term used frequently later
on.

Definition 2 (Color subgraph) For a given feasible edge q-coloring of a
graph G and a color c, a color subgraph Gc is an edge induced subgraph of G,
induced by all edges with the color c.

The first observation concerns a color that is not incident to every vertex of
the clique. Such a color can share vertices with only a limited number of other
colors. This and the forthcoming lemmas help narrow down the different ways
of how a clique can be colored.

Lemma 2 In a feasible edge 2-coloring of a clique Kn and for any color c, a
color subgraph Kc

n cannot share vertices with more than two other color sub-
graphs, if V (Kc

n) ⊂ V (Kn).

Proof: Assume the opposite. In a feasible coloring of Kn, let Kc
n be a color

subgraph that shares vertices with k ≥ 3 other color subgraphs Kc1
n , . . . ,K

ck
n ,

and V (Kc
n) ⊂ V (Kn). Now, a vertex v in V (Kc

n) is incident to two colors: c and
ci, the latter being assigned to the edges going from v to vertices not in V (Kc

n).
Formally, V (Kn) \ V (Kc

n) ⊂ V (Kci
n ) for each i = 1, . . . , k. Thus, we have a set

of vertices V (Kci
n ) that is incident to k colors, which makes the coloring not

feasible, a contradiction. �

Next, we look at a more specific case of the situation described in the above
lemma. When a color is not incident to all vertices and shares vertices with ex-
actly two other colors, there are exactly three colors, all of which are necessarily
incident to the other two. This coloring strategy actually turns out to be the
best in the end.

Lemma 3 Given a feasible edge 2-coloring of Kn, for which there is a color
subgraph Kc

n that shares vertices with exactly two other color subgraphs, and
V (Kc

n) ⊂ V (Kn), the coloring has exactly three colors, whose color subgraphs
have these same properties.

Proof: Let Kc
n be a color subgraph of Kn that shares vertices with exactly

two other color subgraphs Kc1
n and Kc2

n . As in the proof of Lemma 2, V (Kn) \
V (Kc

n) ⊂ V (Kci
n ), i = 1, 2. Thus, all vertices V (Kn)\V (Kc

n) are saturated with
2 colors. Since V (Kc

n) was assumed to be incident to only the three colors, there
cannot be any other colors. Furthermore, none of the colors is incident to all
vertices. �

In the following lemma we cover the remaining non-trivial alternative, that
is, there is a color that shares vertices with exactly one other color. This implies
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the presence of a color incident to all vertices. From now on we call such a color
global.

Lemma 4 Given a feasible edge 2-coloring of Kn and a color subgraph Kc
n that

shares vertices with exactly one other color subgraph KF
n , and V (Kc

n) ⊂ V (Kn),
the color F is incident to all vertices of Kn.

Proof: The edges between V (Kc
n) and the rest of the vertices must be colored

with some other color than c. Since c is incident only to V (Kc
n), the edges

between V (Kc
n) and the rest of the vertices must be colored with F . Thus, F

is incident to all vertices of Kn. �

We now have enough tools to provide the actual lower bound. First we show
that if there are more than four colors, one of them must be global. This, in
turn, yields that one of the colors has over one third of all edges. Since the
alternative is to have three or less different colors, the lower bound follows.

Theorem 4 For min-max edge 2-coloring, the following holds:

OPT(Kn) ≥
⌈

1

3
|E(Kn)|

⌉
=

⌈
n(n− 1)

6

⌉
(1)

Proof: First of all, we observe that in order to have OPT (Kn) <
⌈

1
3 |E(Kn)|

⌉
,

at least four different colors must be used in an optimal coloring. Assume this
is possible. With at least four colors, Lemmas 2 and 3 imply that the colors not
incident to all vertices can share vertices with only one other color. By Lemma
4, that other color is the global color F . Now, let Kc

n be the color subgraph
with the largest proper subset of vertices of Kn, and let kc = |V (Kc

n)|. Edges
of only the global color fill the cut (i.e. the set of edges between two groups of
vertices) between V (Kc

n) and the rest of the n− kc vertices, thus

kc(n− kc) ≤
1

3
|E(Kn)| = n(n− 1)

6
.

With the help of basic calculus, this yields

kc ≤
n

2
−
√
n2 + 2n

12
<

(
1

2
− 1√

12

)
n <

1

3
n (2)

or

kc ≥
n

2
+

√
n2 + 2n

12
>

(
1

2
+

1√
12

)
n >

2

3
n. (3)

If (2) is true, there are two possibilities: either all non-global colors are incident
to a total of less than a third of all vertices, or there is a set of non-global colors
that are incident to a total of k vertices, so that 1

3n ≤ k ≤ 2
3n. In the former

case, |E(KF
n )| > 1

3 |E(Kn)|, a contradiction. In the latter case, the cut between
the k and the other n−k vertices are again filled with edges of the global color,
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as in the case of kc, but this time k fails to satisfy (2) or (3), leading to a
contradiction.

If (3) is true, there are k < 1
3n vertices for the rest of the colors to occupy. In

total, these vertices have at most the following amount of edges between them:

|E(Kk)| = k(k − 1)

2
<

1
3n

2 − n
6

<
n2 − n

6
=

1

3
|E(Kn)|.

Thus, over two thirds of the edges are left for the two other colors to share,
leaving the lower bound out of reach.

Now, the only way to achieve the suggested lower bound is by using three
colors, in which case the bound is trivial. �

Most of the time, the lower bound is actually tight, and it is achievable only
with a coloring described in Lemma 3 (i.e. every vertex incident to exactly two
colors, no global color) for two reasons. First, as we saw in the above proof, the
lower bound is out of reach using four colors. Second, if one of the three colors
is global, the other colors need to satisfy either (2) or (3), leaving at least one
of them too small. Figure 3 shows an optimal coloring of K6.

Figure 3: An optimal coloring of K6.

The most even way to distribute the edges between three colors is to first
divide the vertices of Kn to three groups of sizes k =

⌊
n
3

⌋
and k+ 1, depending

on the remainder of the division. Each color is then incident to the vertices of
two of the groups, each group is incident to two colors.

If the remainder is 1, then k = n−1
3 . One color is incident to 2k vertices,

while two other colors are incident to 2k+1 vertices each. If the “smaller” color
subgraph with 2k vertices can accommodate one third of the edges, distribut-
ing the rest of the edges evenly to the two “bigger” color subgraphs is trivial.
Otherwise, it is not possible to color the edges quite evenly, and the remaining
over two thirds of edges still need to be shared between the bigger color groups.
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More precisely, the exact optimum can be written as

OPT(Kn) = max

(⌈
1

3
|E(Kn)|

⌉
,

⌈
2k(k + 1) + k(k+1)

2

2

⌉)

= max

(⌈
1

3
|E(Kn)|

⌉
,

⌈
5

4
k(k + 1)

⌉)
.

If the remainder is 2, then k = n−2
3 . There are two colors incident to 2k+ 1

vertices and one color incident to 2k+ 2 vertices. Achieving the lower bound is
possible, if the bigger color subgraph can avoid coloring more than one third of
all edges. If not, the minimum size of the bigger color group is the optimum,
that is

OPT(Kn) = max

(⌈
1

3
|E(Kn)|

⌉
, (k + 1)2

)
.

4.2 Biclique

In this subsection we give a lower bound for min-max edge 2-coloring of a
biclique Km,n. Throughout this subsection we use V1 and V2 to denote the two
independent sets of a biclique Km,n. We also assume that m ≥ n. The labels
are chosen so that |V1| = m and |V2| = n. Furthermore, we denote the set of
vertices in Vi incident to color c by V ci .

As bicliques are not that different from cliques, the upcoming proofs are
somewhat reminiscent of those in the previous subsection. For instance, the
following lemma states that the absence of a global color implies at most four
colors. We use this result in a similar fashion to how we used the three lemmas
in the previous proof.

Lemma 5 In an edge 2-coloring of a biclique Km,n = (V1 + V2, E), assume
that no color is incident to all vertices. Then there can be at most four distinct
colors.

Proof: Consider color c0. By the assumption, either V c01 ⊂ V1 or V c02 ⊂ V2 (or
both). For clarity, we assume V c02 ⊂ V2. Now, every vertex in V c01 has to be
incident to some other colors, in order to color edges between V c01 and V2 \V c02 .
This makes each v ∈ V c01 saturated with two colors. V c01 can be incident to
at most two different colors other than c0, since all those other colors will be
incident to all v ∈ V2\V c02 . If V c01 = V1, there can be no more colors. Otherwise,
we can repeat the arguments so far, swapping 1s and 2s in place. This leads to
the conclusion that all vertices in V c02 are also saturated with at most two other
colors.

If V c01 (or V c02 ) is incident to exactly two other colors, the remainder V2 \V c02

(V1 \ V c01 ) will be saturated by them. This makes all of V2 (V1) saturated,
allowing no more colors. If also V c02 (V c01 ) is incident to exactly two other
colors, at least one of them must be the same as one of the other colors incident
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to V c01 (V c02 ), so that the remainders can share a color. Thus, we have at most
four colors.

If both V c01 and V c02 are incident to exactly one other color, those other
colors must be different. Otherwise, the other color would necessarily be global
by previous arguments, contradicting the assumption. So we have V1 \ V c01 and
V2 \ V c02 incident to different colors. The only uncolored edges at this point
are the ones between these two remainders. Having a new color incident to
any vertex in the remainders leads to the opposing remainder to be saturated,
allowing no more colors. Thus we end up with at most four colors, and all
possibilities are now examined. �

This lemma suffices as leverage for the proof of the following lower bound.
The idea is again to show, that with a global color implied by five or more colors,
it is impossible to get below the suggested lower bound.

Theorem 5 For min-max edge 2-coloring, the following holds:

OPT(Km,n) ≥
⌈

1

4
|E(Km,n)|

⌉
=
⌈mn

4

⌉
(4)

Proof: The only chance of having a smaller OPT than suggested is by having
more than four colors in an optimal coloring. By Lemma 5, this is possible only
if there is a global color. It is impossible to have more than one global color
(unless there are only two colors), since two global colors already saturate every
vertex.

Next, we show that if we restrict the coloring to have one global color, it is
impossible to achieve even the lower bound in (4). Denote the global color by
F , and the other colors by ci, i ∈ {1, . . . , C}, where C > 4 is the number of
non-global colors. No two non-global colors can be incident to common vertices,
that is, V cil ∩ V

cj
l = ∅, l ∈ {1, 2}, i 6= j. For convenience, we define k

cj
i := |V cji |,

and α
cj
i ∈ [0, 1] such that α

cj
i k

F
i = k

cj
i . Note, that kF1 = m and kF2 = n.

Our approach is to try to force the global color group as small as possible,
while keeping the other color groups just small enough, that is,

kci1 k
ci
2 = αci1 mα

ci
2 n ≤

mn

4
=⇒ αci1 α

ci
2 ≤

1

4
. (5)

In order to make analysis simpler, we allow the values k
cj
i ≥ 0 to be fractional.

Since this relaxation makes the set of feasible values for k
cj
i only bigger, the

upcoming failure to even then get below the lower bound suffices for proof.
Consider a feasible coloring, where every non-global color group is smaller

than the suggested lower bound, i.e. the inequalities in (5) are strict. In such
a situation, we can always make the global color group smaller by following
adjustments. We take the biggest αci1 , and grow αci2 at the expence of other
α
cj
2 , j 6= i, until either αci2 = 1 or αci1 α

ci
2 = 1

4 . We change sides and repeat, and
end up with αci1 α

ci
2 = 1

4 . This procedure makes the total size of the non-global
color groups bigger (and thus the global color group smaller), since the color
group of ci grows faster than the other groups shrink in the exchange.
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The important point here is that a coloring that minimizes the size of the
global color group, must have at least one non-global color group for which (5)
holds with equality (given the relaxation of k

cj
i ). Let c1 be such a color, and

αc11 ≥ αc12 . From (5) it follows, that αc11 ≥ 1
2 and αc12 ≤ 1

2 . The edges between
V c11 and V2 \ V c12 must be colored with the global color. Thus, the size of the
global color group is always at least

αc11 k
F
1 (1− αc12 )kF2 ≥

1

2
m

1

2
n =

mn

4
. (6)

In conclusion, having five or more colors in an edge q-coloring of a biclique
implies exactly one global color, which in turn makes it impossible to achieve
the lower bound in (4). Finally, falling back to the realm of integral solutions
gives

OPT(Km,n) ≥
⌈mn

4

⌉
=

⌈
1

4
|E(Km,n)|

⌉
. (7)

�

As in the case of cliques, the lower bound is often tight. For example, when
m and n are both even, it is easy to find an optimal coloring, as illustrated in
figure 4. The idea is to split the vertex sets V1 and V2 into equal sized halves.
Then, the edges between each pair of halves on opposite sides can be colored
with a distinct color. Even if m and n were odd, the aforementioned procedure
leads to an asymptotically optimal coloring.

Figure 4: An optimal coloring of K2,4.

4.3 Hypercube

In this subsection we give a lower bound for an optimal min-max edge 2-coloring
of a hypercube Qn. Also the tightness of the bound is discussed for both even
and odd n. We begin by looking at subgraphs of Qn with k vertices and the
maximum number of edges they can have. Later we apply this result directly
to color subgraphs with k vertices.

Lemma 6 In a hypercube Qn, any subgraph with k ≤ |V (Qn)| vertices has at
most 1

2k log2 k edges. In other words, the average degree of such a subgraph is
at most log2 k.
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Proof: We prove the lemma by induction. We take the initial step by looking
at the case n = 2. A subgraph with n− 1 = 1 vertex has 0 ≤ 1

2 log2 1 edges, so
the lemma holds. The induction hypothesis is that the lemma holds for Qn−1

and smaller hypercubes.
Now we take the induction step. Consider the hypercube Qn. It can be par-

titioned into two subgraphs identical to Qn−1, denote them by Q1 and Q2. Next,
consider a subgraph S of Qn with k vertices. Denote the number of vertices of
S in Q1 and Q2 by k1 and k2, respectively. By the induction hypothesis, there
are at most 1

2ki log2 ki edges among each of the two ki sized subgraphs of S.
Additionally, there are at most min(k1, k2) edges between the two subgraphs of
S, since each vertex in one of the hypercubes Q1 and Q2 is adjacent to exactly
one vertex in the other. Due to symmetry and for simplicity, we can choose
k1 to be the smaller one. We also choose α so that k1 = αk. Consequently,
k2 = (1− α)k and α ∈ [0, 1

2 ]. An upper bound for the number of edges in S is
thus as follows.

|E(S)| ≤ 1

2
k1 log2 k1 +

1

2
k2 log2 k2 + k1

=
1

2
log2(kk11 kk22 ) +

1

2
· 2 log2 2k1

=
1

2
log2

(
(4k1)k1kk22

)
=

1

2
log2

(
(4αk)αk ((1− α)k)

(1−α)k
)

=
1

2
k log2

(
(4α)α(1− α)(1−α)kαk(1−α)

)
=

1

2
k log2

(
(4α)α(1− α)(1−α)k

)
Now, if the right-hand side of (8) is shown to be less than or equal to 1

2k log2 k,
we are done.

1

2
k log2

(
(4α)α(1− α)(1−α)k

)
≤ 1

2
k log2 k

⇐⇒ (4α)α(1− α)(1−α) ≤ 1

⇐⇒ 4α(1− α)
(1−α)
α ≤ 1.

Observe that 4α ≤ 2, since α ∈ [0, 1
2 ]. Thus it remains to show that (1 −

α)
(1−α)
α ≤ 1

2 . For this end, we make the following change of variables: β = α
1−α ,

which yields 1− α = 1
1+β and β ∈ [0, 1].

(1− α)
(1−α)
α ≤ 1

2

⇐⇒
(

1

1 + β

) 1
β

≤ 1

2

⇐⇒ 2β ≤ 1 + β.
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Since 2β is convex, 1 + β is linear and equality holds, when β = 0, 1, the above
equation holds while β ∈ [0, 1]. This concludes the proof. �

The following lemma reveals, that the average degree of the whole graph
bounds the maximum average degree of the color subgraphs from below. An
intuitive reason for this is that otherwise there might not be enough edges in
the color subgraphs to account for the edges of the original graph.

Lemma 7 In a feasible edge q-coloring of G, there must be at least one color
subgraph, whose average degree is greater or equal to dG/q, where dG is the
average degree of G.

Proof: Assume the opposite. Consider a feasible coloring with m distinct colors
and each color subgraph having smaller average degree than dG

q . Let n = |V (G)|,
k1, . . . , km the number of vertices in each color subgraph and d1, . . . , dm the
average degrees of the color subgraphs. Since the coloring is feasible, the number
of edges in G can be written as follows.

|E(G)| = ndG
2

=

n∑
i=1

kidi
2

<

m∑
i=1

kidG
2q

=
dG
2q

m∑
i=1

ki ≤
ndG

2
= |E(G)|.

The second inequality follows from the fact that each vertex can be in at most
q different color subgraphs, so the sum over ki is at most qn. Having a contra-
diction, the lemma follows. �

The two previous lemmas make the proof of the next theorem relatively
straightforward.

Theorem 6 For min-max edge 2-coloring, the following holds:

OPT(Qn) ≥ 1

2
n2

1
2n−1 =

1

2
k log2 k, (8)

where k = 2
1
2n.

Proof: The right-hand side of (8) is equal to the maximum number of edges in
a subgraph of Qn with k vertices, as follows from Lemma 6. The lemma also
implies, that the average degree of any subgraph is smaller than log2 k, if it has
less than k vertices. A subgraph with k or more vertices and less than 1

2k log2 k
edges also has smaller average degree than log2 k. So, in a coloring where each
color subgraph has less than 1

2k log2 k edges, the average degrees of the color
subgraphs are all less than log2 k = n

2 . Since n is the average degree of Qn, such
an edge 2-coloring cannot be feasible according to Lemma 7. �

The lower bound is tight for even n. A feasible coloring satisfying (8) with
equality for n = 2m is constructed as follows, for example. Consider the bit-
strings of length n representing the vertices. Split the string into two halves of
length m. Keeping, say, the left half fixed and cycling through the possible bit
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Figure 5: An optimal coloring of (a) Q4 and (b) Q3. In (a) colors are reused to
avoid complicated patterns.

values for the right half gives a set of 2m vertices, inducing a subgraph identical
to an m-cube. Furthermore, going through all possible fixed strings on the left
side gives 2m disconnected m-cubes. Color each of these with a distinct color.
At this point, every vertex is incident to exactly one color. Repeat the process,
this time keeping the right side of the bitstring fixed. We get 2m disconnected
m-cubes consisting of the remaining uncolored edges. Again, color each cube
with a distinct color, introducing exactly one new color to each vertex. Now
all edges are colored, and each vertex is incident to exactly two colors, so the
coloring is feasible. The size of each color group is m2m−1, which satisfies (8)
with equality.

For odd n, there is a coloring with color group size (2m+1)2m−1, where m =⌊
n
2

⌋
. We achieve this as follows. First, we take two identically and optimally

colored (n− 1)-cubes. For each color, we have an m-cube of that color in both
bigger cubes. For each such pair of m-cubes we add 2m−1 edges of the same
color between corresponding vertices until we have an n-cube. Note that the
size of each color group is now 2m2m−1 + 2m−1 = (2m+ 1)2m−1. Whether this
is an optimal coloring, is an open question, although the existence of a better
coloring seems unlikely. Example colorings of n-cubes for both even and odd n
are presented in figure 5.

5 Lower and Upper Bounds

In this section we present two lower bounds for the optimum (OPT) of the min-
max edge q-coloring problem, and we show that a trivial coloring algorithm
achieves a linear approximation factor in the number of vertices in the graph.

We begin with a lower bound in terms of maximum degree. The bound is
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very simple, but nevertheless useful in some proofs.

Theorem 7 Denote the maximum degree of graph G by ∆(G). Then,

OPT ≥
⌈

∆(G)

q

⌉
. (9)

Proof: The theorem follows directly from the fact that only q different colors
can be incident to any vertex of G. �

The next lower bound is in terms of average degree. This bound is rather
loose for graphs with a small average degree, but becomes tighter as the graphs
get denser.

Theorem 8 Let the average degree of G be denoted by d(G). Then,

OPT ≥ d2(G)

2q2
.

Proof: For convenience, we denote OPT by m. The idea is to find an upper
bound for the average degree of G in terms of m, which in turn yields a lower
bound for m in terms of the average degree.

First we show that the average degree of a graph with at most k edges is at
most

√
2k. If k = 1 and there are n vertices, the average degree is certainly less

than
√

2k. Observe that an n-clique Kn has the largest possible average degree,
given at most n vertices or |E(Kn)| edges. If k = |E(Kn)|, we get

k =
n(n− 1)

2
⇒ n =

1

2
+

√
1

4
+ 2k ⇒ d(Kn) = n− 1 ≤

√
2k.

If we keep n fixed and add edges (until we have a clique), then the average
degree grows linearly in k. Since

√
2k is convex, it is larger than the average

degree of any graph with k edges.
Since each subgraph induced by a color group in an optimal coloring has at

most m edges, their average degrees are at most
√

2m. Furthermore, d(G) is
maximized, if each vertex is in q color subgraphs, whose average degree is

√
2m.

Let n = |V (G)|. We get

d(G) =
2|E(G)|
|V (G)|

≤ 2qn
√

2m

2n
= q
√

2m.

Thus, there is no graph with higher average degree than q
√

2OPT. The claim
follows:

OPT ≥ d2(G)

2q2
.

�

In the following we show that the approximation factor of the most trivial
algorithm for min-max edge q-coloring is linear in the number of vertices. Here
is the definition of the trivial algorithm, followed by the theorem stating the
approximation factor.
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Input: Graph G
1. Assign the same color to each edge of G
2. m←− |E(G)|
Output: m

Algorithm 2: Trivial coloring algorithm

Theorem 9 The approximation factor of Algorithm 2 is O(n), where n is the
number of vertices in the input graph.

Proof: Algorithm 2 achieves objective function value m = |E(G)| = 1
2nd(G),

where d(G) is the average degree of G. By Theorem 8 and by making the
restriction d(G) ≥ nα, we get

m

OPT
≤ 8nd(G)

2d2(G)
=

4n

d(G)
≤ 4n(1−α).

Choosing α ≥ 0 yields d(G) ≥ 1, which is the case for any connected graph
with n ≥ 2 (every vertex has at least one edge incident to it). Thus, the
approximation factor is at most 4n, that is, O(n). �

6 Approximation Algorithm for Planar Graphs

In this section we present an algorithm that achieves a sublinear approxima-
tion factor for planar graphs. The basic idea of the algorithm comes from the
following theorem, proven by Lipton and Tarjan [10].

Theorem 10 Let G be an n-vertex planar graph and let 0 ≤ ε ≤ 1. Then there
is some set S of O(

√
n/ε) vertices whose removal leaves G with no connected

component with more than εn vertices. Furthermore the set S can be found in
polynomial time.

The so called planar separator S described in the above theorem is partic-
ularly useful regarding min-max edge q-coloring, since the residue components
are balanced. Moreover, S itself does not have too many vertices either. Now
we proceed to define the algorithm.

Choosing the order of magnitude of ε is central in obtaining the lowest pos-
sible approximation factor, as will become clear in the proof of the following
theorem.

Theorem 11 The approximation factor of Algorithm 3 is O(n2/3).

Proof: Denote the maximum degree of the input graph G by ∆. After the
algorithm ends, there are two possibilities. Either one of the colors associated
with the separated components or the color associated with the separator has
the most vertices. Furthermore, each vertex can be incident to at most ∆ edges.
Thus,

m ≤ max
(

∆O(
√
n/ε),∆εn

)
.
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Input: A planar graph G with n vertices

1. Find a separator S as described in Theorem 10, with ε = n−1/3

2. Color edges incident to S with one color
3. m←− number of edges incident to S
3. Remove S from G
4. For each remaining connected component Si:

5. Color edges incident to Si with a unique color
6. mi ←− number of edges incident to Si
7. If mi > m, m←− mi

Output: m
Algorithm 3: Planar separator 2-coloring algorithm

Theorem 7 gives us a lower bound for OPT in terms of ∆. Together with the
above, the approximation factor is

m

OPT
≤ max

(
O(
√
n/ε), 2εn

)
.

The order of magnitude of the right-hand-side is minimized when it is equal for
both terms. This happens when ε is chosen to be n−1/3, as is done on the first
line of the algorithm. We get

m

OPT
≤ max

(
O(
√
n4/3), 2n2/3

)
= O(n2/3).

�

7 Summary

The goal of this paper is to analyze the problem of efficiently allocating channels
in wireless mesh networks from a theoretic point of view and to design and
analyze some basic approximation algorithms. The analysis is simplified by
modelling the channel allocation problem as a graph coloring problem, namely
min-max edge q-coloring. The concept of edge q-coloring captures the restriction
in some proposed WMN architectures, where each network node can use at most
a number of different frequency channels at once. Furthermore, we give the
most attention to the case q = 2, since it has been considered important from a
practical perspective.

For the min-max edge q-coloring problem, we prove NP-hardness, both in a
more general case (see Problem 1), where each vertex has its individual value
for q, and in the case where the value of q ≥ 2 is constant for each vertex. We
show lower bounds for the optimum in terms of maximum and average degree.
We also introduce two new algorithms: an approximation algorithm for planar
graphs, and an exact polynomial time algorithm for trees. The former is shown
to have an approximation factor of O(n2/3). We also give lower bounds that
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are close, and often tight, to optimums of three special cases, namely cliques,
bicliques and hypercubes.

Interesting directions for future research include finding hardness of approx-
imation results and better algorithms, especially for min-max edge q-coloring on
general graphs. Also it might be interesting to see how the proposed algorithms
would affect performance, if applied to actual Wireless Mesh Networks.
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