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Drawing Graphs with Few Arcs
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Abstract

Let G = (V,E) be a planar graph. An arrangement of circular arcs is
called a composite arc-drawing of G, if its 1-skeleton is isomorphic to G.
Similarly, a composite segment-drawing is described by an arrangement
of straight-line segments. We ask for the smallest possible ground set of
arcs/segments for a composite arc/segment-drawing. We present algo-
rithms for constructing composite arc-drawings with a small ground set
for trees, series-parallel graphs, planar 3-trees and general planar graphs.
In the case where G is a tree, we also introduce an algorithm that realizes
the vertices of the composite drawing on a O(n1.81)× n grid. For each of
the graph classes we provide a lower bound for the maximal size of the
arrangement’s ground set.
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1 Introduction

There exists a large number of design criteria for good drawings of planar graphs
such as small area, good vertex and angular resolution, or a small number of
edge crossings. All these measures assure that vertices and edges in a drawing
are distinguishable for the observer. In this paper we propose a novel criterion
for aesthetic and readable graph drawings. Our goal is to generate drawings that
are easy to perceive by the viewer. When reading a drawing the human mind
decomposes the received picture into geometric entities such as lines, segments,
arcs, disks, circles, and so on. By interpreting the relationship between these
entities an understanding of the drawing is obtained. We refer to the number
of entities used in the drawing as its visual complexity.

Straight edges and the absence of crossings are desirable features for a draw-
ing. A straight edge would be considered as one single entity, whereas, for
example, a polygonal chain might be considered as a combination of several ge-
ometric entities. Something similar is true for edge crossings. If two edges cross,
they introduce a new perceptional feature in the drawing – the crossing point.
Therefore, a noncrossing straight-line drawing is formed by a combination of
|V | + |E| geometric entities. In this paper we want to reduce the number of
geometric entities even further. To make this possible, we group edges, such
that they form a new entity. For example, if we are able to draw a path of
the graph as a single straight-line segment in the drawing (with vertices in its
interior), the visual complexity of the drawing is reduced. More formally, we
define:

Definition 1 (Composite drawing) Let A be an arrangement of simple ge-
ometric bounded 1d objects in the plane. The objects might be subdivided by
placing additional vertices on them. Let G be the 1-skeleton of the subdivided
arrangement. The arrangement A is called a composite drawing of G. If A
contains only line segments it is called a composite segment-drawing, if A con-
tains also circular arcs it is called a composite arc-drawing. The number of
arcs/segments of A refers to the cardinality of the ground set of A.

Fig. 1 shows examples of composite arc-drawings.
Our motivation for the perception based approach stems partially from the

work of the artist Mark Lombardi. Lombardi’s visual art was focused on graph
drawings of social networks within the political and financial sector [10]. The
drawings of Lombardi have a unique style. Maybe the most characteristic fea-
ture is the use of circular arcs to represent consecutive edges. These circular-arc
paths kept the visual complexity of the drawings low. By aligning edges Lom-
bardi enhanced his drawings with additional information. For example, these
alignments were used to decode temporal or sequential dependencies of events
represented by the vertices.

In this work, we focus on the combinatorial aspects of drawings with low
visual complexity. As simple geometric objects for composite drawings we con-
sider (straight-line) segments and circular arcs. Using straight-line segments
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(a) (b)

Figure 1: A drawing with low visual complexity of the graph of the dodeca-
hedron (a). The drawing uses 10 circular arcs, which is the best possible. A
drawing of the icosahedron graph that has not the lowest possible visual com-
plexity (b).

graph class upper bounds lower bounds
segments [6] arcs segments

trees d|E|/2e d|E|/2e d|E|/2e [6]
— on O(n1.81)× n grid – d3|E|/4e d|E|/2e Thm. 1
series-parallel 3|E|/4 + 1 |E|/2 + 1 |E|/4 Thm. 2
planar 3-trees 2|E|/3 + 4 11|E|/18 + 3 |E|/6 Thm. 3
planar 3-connected 5|E|/6 + 2 2|E|/3 |E|/6 Thm. 4

Table 1: Combinatorial results obtained in the paper. The lower bounds in the
third and fifth row are presented as slightly simplified expressions.

is the most natural way for drawing edges, but also circular arcs have been
proposed as “edge shapes” before [1, 5]. In our understanding, a line segment
is a degenerated circular arc, and by a suitable Möbius transformation these
segments can be converted to proper circular arcs. We present bounds on the
maximal number of arcs/segments necessary in a composite drawing. Our ap-
proach cannot handle edge crossings, since every crossing defines a subdivision
of geometric objects and hence introduces an additional vertex in the composite
drawing. Therefore we only study (noncrossing) drawings of planar graphs, such
as trees, series-parallel graphs, and planar 3-trees. Moreover, all graphs that we
consider are simple, which means that we forbid parallel edges and self-loops.
The results of this paper are listed in Tab. 1. All lower bounds presented in this
paper are due to the following simple lemma [6].

Lemma 1 Let G be a graph with N vertices of odd degree. Every composite
arc-drawing or segment-drawing of G requires at least N/2 arcs.

Proof. In every odd degree vertex at least one arc/segment has an endpoint.
Hence we have at least N endpoints of arcs. Since the number of odd vertices
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is an even number the statement of the lemma follows. 2

Related Work. Dujmović et al. [6] studied the complexity of composite
segment-drawings. They presented their results in a slightly different form,
namely, the bounds on the number of segments are expressed in terms of |V |,
instead in terms of |E|. We are however convinced that a bound in terms of
|E| gives a more universal expression since a graph with fewer edges tends to
require fewer segments or arcs. The results of Dujmović et al. are presented in
Tab. 1. Our results for composite arc-drawings are an improvement over the
(straight-line segment) bounds of Dujmović et al.. None of the drawings of Du-
jmović et al. fulfilled additional aesthetic quality criteria. In fact, they stated
the problem of designing algorithms with small area as an open problem. From
this perspective, Theorem 1 gives the first algorithm that constructs composite
drawings on a small polynomial grid.

User studies comparing straight-line drawings with circular-arc drawing have
been conducted only recently [12, 16]. Both studies showed that certain tasks are
easier to carry out by the observer, when straight edges are used. On the other
hand, users preferred the aesthetics of circular arc drawings over straight-line
drawings in one of the studies [12]. Note that these studies have not considered
drawings with low visual complexity, but only drawings with circular arcs. The
hypothesis that drawings with low visual complexity are indeed easier to perceive
still needs to be checked empirically, which is work in progress.

Recently, so-called smooth orthogonal layouts have been studied [2, 3]. In-
stead of polyline edges, which are typically used in orthogonal layouts, chains
of smooth circular arcs are proposed as edge shapes. The goal is to optimize
the maximal edge complexity (number of circular arc pieces per edge) and not
the visual complexity of the whole drawing.

2 Composite drawings of trees

Let T = (V,E) be a tree that we want to realize as a composite segment-drawing.
Drawings with d|E|/2e segments can be constructed by a greedy algorithm [6],
which is optimal.

2.1 Grid drawings of trees with few arcs

In this subsection we show how to draw an unordered tree as a composite arc-
drawing with few arcs and the additional constraint that all vertices lie on the
Z2 grid. Our objective is to obtain a drawing that uses few arcs but also requires
a small grid. Note that the greedy algorithm in [6] yields an embedding on a
grid exponential in |V |.

To obtain a drawing on a small grid we do not aim at drawings with the
lowest visual complexity. We believe that both grid size, and visual complexity
cannot be optimized at the same time. As an easy example, the reader might
consider the realization of a simple cycle. Obviously this graph can be drawn
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Figure 2: A tree with its heavy paths (indicated by the thick edges). The
numbers refer to the depth of the heavy paths.

with only one circle. However realizing a circle such that it contains many grid
points is a highly nontrivial task. To our knowledge the best method uses a grid
of size O(5n/4) [13].

2.1.1 Heavy path decomposition

The drawing algorithm is based on a decomposition scheme for trees, called
the heavy path decomposition [15], which works as follows. We root the tree
T = (V,E) at some vertex r. Let u be a node of T , then Tu denotes the subtree
rooted at u, and N(u) denotes the size of this subtree. For every non-leaf u
we select a child v, for which N(v) is maximal (with respect to the size of the
subtrees of the other children). The edge (u, v) is called a heavy edge and all
edges that are not heavy are called light edges. A maximal connected component
of heavy edges is called a heavy path. The tree T decomposes into heavy paths
and light edges. Note that every path in T to the root visits at most dlog |V |e
light edges.

For the drawing algorithm it is convenient to introduce the following defini-
tions. We call the node on a heavy path that is closest to r its top node. The
subtree rooted at the top node of a heavy path its called the heavy path subtree
of this path. The light edge that links the top node of a heavy path P with
its parent in T is called light parent edge of P . The depth of a heavy path P
is defined as follows: If P is not incident to light parent edges of other heavy
paths, it has depth one. Otherwise we obtain the depth of P by adding one to
the maximal depth of a heavy path linked to P via its light parent edge. Note
that the subtrees of heavy paths of a fixed depth are all disjoint. Figure 2 shows
an example of a heavy path decomposition with annotated depth of the heavy
paths.

2.1.2 Algorithm outline

The drawing algorithm works (high-level) as follows. We draw all subtrees of
heavy paths with increasing order of their depth. Furthermore, we associate
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every subtree of a heavy path with an axis-aligned rectangle called its safe box.
As an invariant the drawing of a subtree is exclusively contained inside its safe
box, and the root of the subtree is placed on the top edge of its safe box, but
not on its corners. For convenience we require that every safe box has width at
least 3, in particular every leaf is placed inside a 3 × 1 safe box. When going
from a depth k to a depth k+1 subtree we arrange the drawings of the subtrees
whose heavy paths have smaller depth to a new drawing (details will be given
later). The algorithm terminates when the heavy path subtree with the largest
depth has been drawn.

Let us explain the recursive step of the algorithm, that is, how to build the
subtrees of the heavy paths (see Fig. 3(a) for an illustration). The heavy path is
drawn as a single vertical segment. The only exception might be its edge (u, v)
incident to the leaf v. Note that every subtree incident to u has to be a leaf as
well, otherwise (u, v) would not be a heavy edge. Hence all k children of u are
leaves, a node with this property is called a k-fork in the following. The children
of u are placed on the line y = 0 and u is placed on (0, 1). In the case that k is
even, we place the children of u symmetrically around the y-axis such that they
have x-coordinates −k/2,−k/2 + 1, . . . ,−1, 1, . . . k/2− 1, k/2. Two vertices are
joined by an arc through u when they have the same absolute x-coordinate (see
Fig. 3(a)). In case that k is odd we place the light edges as in the even case and
realize the heavy edge (u, v) by extending the vertical segment that contains the
remaining heavy path (see Fig. 3(b)).

Assume now that u is not a fork. All safe boxes of subtrees incident to u
will be drawn, such that their roots lie on the same horizontal line which is
one unit below u. Moreover, they will be distributed, such that two of them
are connected by a single arc running through u. Note that if we have an odd
number of light edges for u, one of the safe boxes does not have a sibling to
pair with. In this case we draw the arc as if there would be a sibling (leaf) but
we draw only the half of the arc that connects to v. The location of the safe
boxes incident to u needs vertical space, which is determined by the safe box
with the largest height. The smallest horizontal strip containing all safe boxes
incident to u is called a row. The tree is constructed such that all of its rows
are separated vertically by one unit. The child w following u on the heavy path
is placed at the bottom boundary of the row directly below u.

2.1.3 Box displacement

We now discuss how to arrange the safe boxes within each row. Let u be a
node on the heavy path P (not a leaf or fork) and let v1, v2, . . . , vk be the k
children of u not on P . By recursion, the subtrees rooted at the vis have already
been drawn, so we have for every vi a safe box Bi with width wi and height hi.
Recall that vi is placed on the top edge of Bi. We will arrange all safe boxes
Bi such that their top edges lie on a common horizontal line, the node vi has
x-coordinate xi, and the node u is placed one unit above at x = 0. To draw
multiple light edges with a single arc, we pair two children, say vi and vj , and
connect both by an arc running through u. This implies that xi = −xj for every
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(a) (b)

Figure 3: (a) A drawing of a heavy path’s subtree. Rows are drawn shaded and
the heavy path is drawn thick. (b) An example of a composite arc-drawing of a
tree. The safe boxes used in the algorithm are indicated by dashed rectangles.
Vertex v1 is a hep, v2 is a 2-fork and, v3 is a 3-fork.

∆

S

u

v1 v2v3
v4v5

B2B1
B4

B5

c2 b2b5 c5

B3

Figure 4: A snapshot during the execution of the greedy strategy for the box
displacement. The safe boxes up to B4 have already been placed. When placing
the last box B5 we avoid the restricted strip S. The boundaries of the strip S
after round 1 and 2 are drawn as dashed lines.

such pair of vertices.

We determine the location of the safe boxes by a greedy strategy (see Fig. 4).
Let `i be the distance from vi to the top left corner of Bi, and similarly, let ri
be the distance from vi to the top right corner of Bi. We first orient all boxes
such that `i ≥ ri (it is valid to reflect the whole safe box including the drawing).
Then we sort the boxes by `i in increasing order, and finally we flip all boxes
with an even index vertically, such that ri ≥ `i.

Assume for now that k is an even number. We place the safe boxes in rounds.
In round t we place the safe boxes B2t−1 and B2t, t = 1, 2, . . . k/2, and connect
them by an arc passing through u. For convenience we introduce the following
notation: If a box Bi is placed left of the heavy edge, then ci := ri and bi := `i,
otherwise ci := `i and bi := ri. This implies that bi ≥ ci for i ≤ k.

In the first round we place B1 and B2. Without loss of generality we assume
that c1 ≤ c2 (otherwise the strategy is symmetric). We place B2 as close as
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possible to the line x = 0. Since no safe boxes have been placed before, we
only have to avoid the heavy edge emanating from u. Hence, the safe box is
placed such that x2 = c2 + 1. Next, we place B1. The location of x1 is already
determined since we have fixed x2. Note that B1 is guaranteed to be to the left
of the heavy edge emanating from u, since c2 ≥ c1. Let S be vertical strip with
smallest width centered at the y-axis that contains the safe boxes placed so far.
In the following rounds we place the remaining safe boxes such that they are
separated from S by one unit and update S after every round.

In case k is odd, only one safe box needs to be placed in the final round.
We draw the final safe box on the left side, such that it is separated from S by
one unit. When all safe boxes have been arranged we determine the width of
the displacement ∆, that is the distance between the most extreme top corners.
The only exception is when k = 1; in this case ∆ equals the width of the only
safe box plus 2 as shown in Fig. 5.

∆

u

v1

B1

Figure 5: The special case where u has only one child connected by a light edge.

Lemma 2 Assume we carried out the box displacement for the safe boxes inci-
dent to some u on P by the greedy strategy as explained above. We have

∆ ≤ 7/4

k∑
i=1

wi.

Proof. Let Xc =
∑k

i ci and Xb =
∑k

i bi. We have, Xc + Xb =
∑k

i wi. Due
to our preprocessing step we know that (i) bi ≥ ci, and (ii) the safe boxes are
sorted such that bi+1 ≥ bi for all i < k. As a consequence of (i) we have that
Xc ≤ Xb.

Let us first check the case k = 1. To maintain the invariant, that the root
does not lie on a corner of the safe box, we have to extend the width ∆ (see
Fig. 5). We obtain ∆ = 2 + w1, which is smaller than 7/4w1 for w1 ≥ 3. Since
we placed all leaves inside 3×1 boxes the statement of the lemma holds for this
case.

Assume now that k is even. In every nonterminal round i the width of the
strip S increases by 2(1+max{b2i−1, b2i}+max{c2i−1, c2i}). In the last round we
determine the width of the displacement ∆ by extending the width of the current
strip S by 2+ 2 max{ck−1, ck}+ bk−1 + bk. We know that max{b2i−1, b2i} = b2i.
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Summing up all rounds yields

∆ = 2

k/2−1∑
i=1

(1 + b2i + max{c2i−1, c2i}) + 2 + 2 max{ck−1, ck}+ bk−1 + bk

≤ 2

k/2−1∑
i=1

(b2i + c2i−1 + c2i) + 2ck−1 + 2ck + bk−1 + bk

≤ 2Xc +Xb +

k/2−1∑
i=1

(b2i − b2i−1)

< 2Xc +Xb + bk−2

≤ 5/3

k∑
i=1

wi.

The second to last inequality follows by the monotonicity of (b1, b2, . . . , bk). For
the last transition we have used the facts that Xb +Xc =

∑
i wi and due to the

ordering bk−2 ≤ Xb/3.
Finally, if k is odd and k 6= 1 we have to change the above estimation only

marginally. For convenience, we assume that k is still an even number, but we
place only k − 1 safe boxes. We obtain

∆ = 2

k/2−1∑
i=1

(1 + b2i + max{c2i−1, c2i}) + 1 + ck−1 + bk−1

≤ 2

k/2−1∑
i=1

(b2i + c2i−1 + c2i) + ck−1 + bk−1

≤ 2Xc +Xb +

k/2−1∑
i=1

(b2i − b2i−1)

< 2Xc +Xb + bk−2

≤ 7/4

k∑
i=1

wi.

Since there are only k−1 safe boxes, we have to use the weaker bound bk−2 ≤ Xb/2
for the last transition.

2

Let t be the top node of a heavy path P . After carrying out the box displace-
ments for all rows we can define the safe box for the subtree of P . Its width is
determined by the row with the maximal displacement width. By construction,
t lies on the top edge, but not on a corner of the new safe box. Fig. 4 shows an
example of the greedy strategy.
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Lemma 3 By inductively laying out the safe boxes with the greedy strategy ex-
plained above, the heavy path decomposition yields a drawing where every vertex
is placed on a O(n1.81)× n grid.

Proof. In every inductive step we construct a drawing of a subtree and its safe
box out of smaller safe boxes. Assume we have k such safe boxes B1, . . . , Bk.
Due to Lemma 2 the width of the new safe box is at most 7/4

∑k
i=1 wi, since it

might happen that all safe boxes are placed in one row. On the other hand, at
least one box is placed in every row, and these rows are vertically separated by
one unit. This shows that the height of the new safe box is at most m+

∑k
i=1 hi,

for m being the number of rows plus one.
The claim of the lemma follows by induction. We first discuss the height.

When a small box contains only a single vertex, its height is one. When com-
bining the small boxes to a new subtree, we obtain as new height m+

∑k
i=1 hi.

This new subtree, however, has at least the vertices contained in the smaller
safe boxes and the m vertices on its heavy path. Hence the height of its safe
box is at most the number of its vertices.

For the width we notice that due to the heavy path decomposition the recur-
sion depth is at most dlog ne. By induction a subtree of a heavy path with depth
d and n′ vertices is contained inside a safe box of width at most 3 · (7/4)d · n′.
Hence the whole tree is contained in a box of width 3n · (7/4)dlogne which is
upper bounded by O(n1.81). 2

2.1.4 Analysis

A node is called a heavy even-prefork (short hep), if its heavy edge child is a
k-fork, with k even. Fig. 3(b) illustrates the definition. A charging scheme for
the “saved edges” in forks and heps leads to the following lemma.

Lemma 4 Let T = (V,E) be a tree drawn as a composite arc-drawing with the
algorithm based on the heavy path decomposition. Then the drawing uses at most
d3|E|/4e arcs.

Proof. For technical reasons we introduce a virtual edge, from the root of the
tree T to an imaginary father, such that every node has a father. This only
increases the number of edges by 1. Let Fk be the set of k-forks in T , and let
Ek denote the (k + 1) edges incident to a k-fork. We define Eodd :=

⋃
k oddEk

and Eeven := E \ Eodd. The edges for all forks are disjoint and hence we have
|E| = |Eodd| + |Eeven|. Finally, we denote by h the number of heps. For every
subtree S we define a potential Φ(S) based on the composite drawing restricted
to S. We set

Φ(S) := 2(#arcs in S)− (#edges in S).

If the root s of S is a k-fork, then S is a star with center s, and we have

Φ(S) =

{
0 if k is even

1 if k is odd
.
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Figure 6: An example where the analysis of Lemma 4 is tight.

If S is a single node (e.g., a leaf of T ) we have Φ(S) = 0. Assume now that
s is neither a fork nor a leaf. Let S1, S2, . . . , St be the subtrees rooted at its
children. There are t − 1 light edges to children of s, which are drawn using
bt/2c arcs. Let e be the heavy edge that joins s with some Si. If s is not a
hep, then e can be drawn for free, because the vertical segment that represents
the heavy path (except maybe for the last edge) was already partially drawn in
Si. Thus, e can be realized by extending this “heavy path part”. On the other
hand, if s is a hep, we have to draw e as a new arc. Let χ(S) be 1 if S is a hep,
and 0 otherwise. We obtain

Φ(S) ≤
t∑

i=1

Φ(Si) + 2χ(S).

This implies

Φ(T ) ≤
∑

k : k odd

|Fk|+ 2h. (1)

We now assign edges to a hep as follows: for every hep we select the two heavy
edges in its subtree, one of the light edges of the fork, and the parent edge,
which gives 4 edges in total. Note that the edges associated to a hep are neither
assigned to another hep nor contained in a k-fork with odd k. As a consequence
we have h ≤ |Eeven|/4.

We apply our edge charging scheme to Eq. (1) and observe that since |Ek|/(k+
1) = |Fk| it holds that

∑
k : k odd |Fk| ≤ |Eodd|/2. This gives Φ(T ) ≤ |Eodd|/2 +

|Eeven|/2 = |E|/2, and therefore no more than 3|E|/4 arcs are used in the com-
posite drawing. Note that we had introduced an additional edge to T . If we
subtract this edge, we obtain that there are at most d3|E|/4e arcs in the com-
posite drawing for T . 2 Note that the bound stated

in Lemma 4 is tight for trees that are stars with subdivided edges as shown in
Fig. 6. Combining Lemma 2, 3, 4 yields Theorem 1.

Theorem 1 The algorithm for realizing a tree G = (V,E) as composite arc-
drawings uses at most d3|E|/4e arcs. The computed drawing realizes all vertices
on a O(n1.81)× n grid, for n = |V |.
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3 Composite drawings of serial-parallel graphs
and planar 3-trees

In this section we study composite arc-drawings of series-parallel graphs and
planar 3-trees. We start with series-parallel graphs.

A graph G = (V,E) is a series-parallel graph if it can be built from a
sequence of serial or parallel combination steps [7]. We do not give the details
of this standard definition but use the following alternative definition instead.
A graph is a series-parallel graph if it can be decomposed into a sequence of
paths E1, E2, . . . Ek, such that (1) the endpoints for every path not E1 lie both
on some path Ej with smaller index (the path between the two endpoints on Ej

is called a nested interval), (2) no interior point of a path is contained in a path
with smaller index, and (3) all nested intervals are either disjoint or contain
each other [7]. Such a decomposition is called a nested open ear-decomposition.

Theorem 2 Let G = (V,E) be a series-parallel graph. Based on a nested open
ear-decomposition we can obtain a composite arc-drawing with at most (|E| +
1)/2 arcs. For every n there is a series-parallel graph G = (V,E) with more
than n vertices, whose composite segment-drawings need at least (|E| + 2)/4
segments.

Proof. Let E1, E2, . . . Ek be a nested open ear-decomposition of G. As noted
by Miller and Ramachandran [11], we have k = |E| − |V |+ 2. We first draw E1

as single segment and then draw the other paths in increasing order as circular
arcs. Suppose that we draw the path Ei with endpoints on Ej with j < i. By
construction, Ej has been realized as a circular arc. Let E′j be a copy of the part
of Ej that lies between the two endpoints of Ei. We can draw Ei “on top” of
Ej by slightly increasing the radius of E′j . The angle of the tangents of Ei and
Ej at their intersection can be made arbitrarily small. Hence, when executing
the drawing process, we can assume that every circular arc has small curvature.
Since all paths are “nested” we can finish the drawing without introducing an
edge crossing. Fig. 7(a) shows a drawing obtained by the algorithm.

Any (simple) series-parallel graph has |E| ≤ 2|V | − 3 edges. The drawing
uses exactly k arcs. This gives

# arcs = k = |E| − |V |+ 2 ≤ |E| − |E|+ 3

2
+ 2 =

|E|+ 1

2
.

For the lower bound consider a graph as depicted in Fig. 7(b). More generally,
we consider for some odd n > 3 the nested open ear-decomposition given by
E1 = (v1, . . . , vn) and Ei = (v1, vi+1), for 2 ≤ i ≤ n − 2. In such an n-vertex
graph only v2 has even degree and thus we have n− 1 = |E|/2 + 1 odd degree
vertices. Lemma 1 implies that such a graph needs at least |E|/4 + 1/2 arcs in
any composite arc-drawing. 2

The next class of graphs we consider are the planar 3-trees. A planar 3-
tree is a triangulation that can be defined recursively as follows: Suppose G =



JGAA, 19(1) 393–412 (2015) 405

(a) (b)

Figure 7: (a) A composite arc-drawing of a series-parallel graph, obtained by
the method explained in the proof of Theorem 2. (b) A series-parallel graph
with only one even-degree vertex.

({v1, . . . , vn}, E) is a triangulation, we can pick one of its faces, say it is spanned
by the vertices vi, vj , vk and add a new vertex u inside this face together with
the three edges connecting vi, vj , vk with u. By this we remove one face and
introduce 3 new faces. This operation is called a stacking operation. Any graph
that can be generated from a triangle by a sequence of stacking operations is
called a planar 3-tree. We say that a planar 3-tree is a k-fan if it has k + 3
vertices and it contains the triangle v1, v2, v3 and for every 4 ≤ i ≤ k + 3 the
edges (vi, v1), (vi, v2), and (vi, vi−1).

To develop an algorithm for a composite arc-drawing we first introduce a
crucial lemma. For the lemma we need the following definitions. A triangle is
called spherical if its edges are circular arcs that do not intersect. If furthermore
every triangle corner is incident to an angle (measured between tangents) larger
than zero and less than π, we call the spherical triangle nonreflex. We say a
vertex v inside a spherical triangle S is spherically visible from a point c, if there
exists a circular arc connecting c and v that lies entirely in S (see Fig. 8(a)).

Lemma 5 Let S be a nonreflex spherical triangle and let u be a point in the
interior of S. Then u is spherically visible from every of the three corners of
S. Furthermore, the arc that witnesses the spherical visibility and the boundary
arcs of the corresponding corner c have all a distinct tangent at c.

Proof. Let the corners of S be v1, v2, v3. We prove the statement for the corner
v1. Let f be the Möbius transformation that maps the arcs v1v2 and v1v3 to
straight-line segments. Clearly, u′ := f(u) lies inside S′ := f(S). We set
v′i := f(vi). Let s be the ray that starts in v′1 and is pointed towards u′. Since
Möbius transformations are conformal, the angles at v′2 and v′3 in S′ are both
less than π. It follows that s hits first the vertex u′ and then the boundary of
S′ without reentering. Therefore, the Möbius function f−1 maps the segment
v′1u
′ to a circular arc that witnesses the spherical visibility of u in S. Clearly,

the tangents of v1v2, v1v3, and f−1(s) are all distinct in v1 because f and f−1

are conformal. Fig. 8 shows an example of a triangle S and its image S′. 2

Lemma 6 Let G be a k-fan with outer face f0, and let S be a nonreflex spherical
triangle. Then G can be drawn with k + 4 circular arcs such that the boundary
of S realizes f0.
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v1

v2

v3

v4
v5

(a) (b) (c)

Figure 8: (a) A spherical triangle spanned by v1, v2, v3 with interior point u.
(b) The image of the same spherical triangle under a Möbius transformation
that turns two boundary arcs into straight-lines. (c) Construction in the proof
of Lemma 6.

Proof. Let us first discuss the case k = 1. Let the vertices of f0 be v1, v2, and
v3. The vertex v4 is placed reasonably close to the arc v1v2, such that the arc
connecting v1 with v2 via v4 lies inside S. By this we define a new spherical
triangle S′ ( S, which has the corners v1, v2 and v3. Due to Lemma 5, v4 is
spherically visible from v3 in S′, and therefore we can connect v3 with v4 by an
arc inside S′. The drawing needs five arcs.

Assume now that G is a 2-fan. We extend the arc ending at v4 (with-
out changing the curvature), such that it reaches inside the spherical triangle
spanned by v1, v2, v4. Let the endpoint of the extended arc be v5. We can in-
terpolate in between the two arcs between v1 and v2 such that we get a circular
arc connecting v1 and v2 via v5. The new arc does not introduce any crossings.
See Fig. 8(c) for an illustration. By repeating this argument, we can draw every
k-fan with k + 4 arcs. 2

Theorem 3 Every planar 3-tree G = (V,E) can be drawn with 11|E|/18 + 3
arcs as a composite arc-drawing. For every number n, there is a planar 3-tree
G = (V,E) with more than n vertices, whose composite arc-drawings require at
least |E|/6 arcs.

Proof. Note that we can naturally recurse on a planar 3-tree since when the first
vertex v4 is stacked on the face v1v2v3, the graphs contained in the three interior
triangles are planar 3-trees as well. For the drawing algorithm we assume that
there were at least two stacking operations, otherwise the bound of the lemma
follows directly. Let Gf the subgraph of G that is isomorphic to a k-fan and
that includes the boundary face, such that k ≥ 2 (see the solid-edge subgraph
in Fig. 9). We draw Gf as discussed in Lemma 6 including all induced 1-fans
of G that would lie inside faces of Gf . For every 1-fan we need 2 arcs. This
implies that in the worst case there is such a 1-fan for every face in Gf , except
for v1, v2, vk+3. Therefore we have 2k 1-fans, contributing a total of 4k arcs.
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The k-fan requires k + 1 arcs for the interior edges. Thus we have 5k + 1 arcs
for the 9k interior edges. This shows that the ratio between interior arcs and
edges is at most 11/18 (recall that k ≥ 2).

For all faces of Gf that are not faces of G we still have to fill in a subgraph
of G. These subgraphs (including its face in Gf ) form planar 3-trees as well.
We draw these 3-trees (recursively) with the above strategy. To do so, we draw
the boundary face, which is an interior face of Gf , as it was drawn for Gf . By
the above analysis we “save” for every subgraph a ratio of 11/18 of the interior
edges. The asserted bound of 11|E|/18 + 3 follows.

The lower bound is due to Lemma 1, since an arbitrarily large planar 3-
tree with odd degree vertices only can be easily constructed (see Fig. 9 for an
example). 2

Figure 9: A planar 3-tree with odd degree vertices only.

4 Composite drawings of 3-connected planar
graphs

Let G = (V,E) be a planar 3-connected graph with n vertices. We order the
vertices of G with respect to some canonical order as defined by Kant [9]. In
particular, let V = {V1, V2, . . . , Vm} a partition of the set V . The subgraph
induced by V1 ∪ · · · ∪ Vk is called Gk and the boundary face of Gk is callled Ck.
The partition V is called a cannonical order, if

• V1 = {v1, v2} and (v1, v2) ∈ E,

• Vm = {vn} and (v1, vn) ∈ E,

• Gk is 2-connected and internally 3-connected,

• for each k ∈ {2, . . . ,m − 1} either Vk = {z} where z ∈ Ck and z has
a neighbor in

⋃
j>k Vj , or Vk = {z1, . . . zt} where each zi has a neighbor
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Ck

Vk = {u}

πk−1

Ck−1

Vk = {u}

πk−1

Ck−1

Vk = {u}

πk−1

(a) (b) (c)

Figure 10: A step in the drawing algorithm for planar 3-connected graphs. First,
the path πk−1 is added (a), If Vk was a singelton, possible edges in between πk−1
and Ck are drawn (b). After a perturbation the intermediate face Ck−1 becomes
convex.

in
⋃

j>k Vj , and where z1 and zt have each one neighbor in Ck−1 and no
other vertex in Vk has a neighbor in Gk−1.

Every planar 3-connected graph has such a canonical order [9].
We use the reversed canonical order to draw the graph G. As an invariant

we maintain that after processing Vk+1 the face Ck is indeed a face in the
preliminary drawing, and furthermore it encloses a convex region. The algorithm
starts with realizing Cm as a circle and placing the vertices of Cm on that circle.
Since we do not allow circles as geometric entites, this circle is understood as
an arrangement of two circular arcs. In every step we process a set Vk of the
canonical order, where we always pick the set with the highest index that has
not been processed yet. We denote by Ek−1 the edges on Ck−1 that are not on
Ck. The edges Ek−1 form a (connected) subpath of Ck−1 which we denote with
πk−1. When processing Vk we draw πk−1 together with all edges that connect
the vertices of πk−1 with already drawn vertices. The new intermediate drawing
is obtained in three steps (see Fig. 10).

1.) We draw πk−1 as a straight-line segment connecting its two endpoints
which have to lie on Ck. This can be done without creating intersections
since Ck is a convex face.

2.) We draw the edges between πk−1 and Ck. Note that unless |Vk| = 1 there
are no such edges. Hence we can assume that Vk = {u}. Again we can
use straight-line segments for the edges, since u can see all of πk−1.

3.) We perturb the line segments representing πk−1 such that Ck−1 becomes
strictly convex. The edges drawn in the 2.) step will be updated accord-
ingly.

Clearly, after updating the drawing the invariant holds. Fig. 11 shows an ex-
ample.

Theorem 4 The above method constructs a composite arc-drawing of a planar
3-connected graph G = (V,E) with at most 2|E|/3 arcs. For every n there is a
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Figure 11: The graph of the cube drawn with the technique based on the reverse
canonical order of the vertices. The faces Ck and the sets Vk are highlighted. The
perturbation of the straight-line segments was not necessary in this example.

triangulation G = (V,E) with more than n vertices whose composite segment-
drawings need at least |E|/6 + 1 segments.

Proof. As a first step we count the number of arcs used in the drawing. We
introduced three types of arcs. (i) Every path πi will be realized as a single arc.
Such an arc will be added m− 2 times (for every transition Vi+1 → Vi, 2 ≤ i ≤
m−1). (ii) When processing a singleton set Vi = {u} we might draw additional
arcs for edges (u, u′) that are not on πi. We call these arcs short arcs and denote
the number of short arcs by s. (iii) For the boundary face we need two arcs. In
total we have thus m+ s arcs.

For the further analysis we introduce a function Φ who assigns every graph
Gi a potential. Let the number of edges in Gi that are realized as short edges in
the drawing be si, and the number of interior faces in Gi be fi. Then we define
Φ(Gi) := fi− si. Although we used the reversed canonical order in the drawing
algorithm, we consider the forward canonical order for the analysis. Clearly, we
have Φ(G1) = 0. When we add a vertex set in the canonical order the potential
changes. In case we add a singleton, we introduce a number of faces, say fnew,
but we also add fnew−1 edges which will be drawn as short arcs. Hence, we get
Φ(Gi) = Φ(Gi−1)+1. In case our set is not a singleton set we add only one face,
and no short arc edge. Again we have Φ(Gi) = Φ(Gi−1) + 1. As a consequence
Φ(G) = m− 1, and therefore f − s = m− 1, for f being the number of interior
faces in G.

The number of arcs can now be expressed as m+s = f+1. The ratio between
arcs and edges is maximized when a graph with |E| edges has a maximal number
of vertices, that is, when G is a triangulation and |E| = 3|V | − 6. By Euler’s
formula f − |E|+ |V | = 1 we obtain

# arcs = f + 1 = |E| − |V |+ 2

= |E| − 1/3|E| − 2 + 2

= 2/3|E|,
which proves the upper bound from the lemma. The lower bound follows from
the lower bound of Theorem 3. 2

Note that we have freedom how to place the vertices horizontally. The
algorithm can be easily updated such that all vertices have distance at least one
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while keeping the largest distance between any two points at most n. From this
perspective the drawing has a good vertex resolution.

5 Future work

In this paper we presented the first algorithms for composite drawings. For all
graph classes except for trees there is a gap between the lower and upper bound
on the number of necessary arcs. We are interested in tightening these gaps,
but we think that new methods are required for a substantial improvement.

This paper concentrates on the combinatorial question, i.e., how small can
the visual complexity be. On the other hand, drawings with very low visual
complexity might violate other criteria for readable drawings. We addressed
this issue in Theorem 1 by combining classical graph drawing criteria (grid
size) with low visual complexity. We would like to extend this result for more
complicated graph classes in order to construct more readable drawings with
low visual complexity.

It is ongoing research to evaluate with empirical user studies our hypothesis
that a graph with low visual complexity is easier to percept by the viewer. Our
hope is that we can show that drawings with small visual complexity are easier
to memorize and we think this might be especially applicable to drawings of
graphs with a small number of vertices.

Finally, we would like to point out that we are interested in small decom-
positions of planar graphs into edge-disjoint simple paths. This graph-theoretic
question might yield better lower bounds. Although this problem seems elemen-
tary, only partial results are known. If the graph is a triangulation, it can be
decomposed into edge-disjoint simple paths that all have exactly three edges [8].
The same is true for cubic bridge-less graphs [4]. We would like to see a similar
bound for general planar 3-connected graphs.
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