Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 19, no. 2, pp. 571-593 (2015)
DOI: 10.7155/jgaa.00364

MapSets: Visualizing Embedded
and Clustered Graphs

Alon Efrat[l] Yifan Huff| Stephen G. Kobourou[l] Sergey Pupyreu[T

EDepartment of Computer Science
University of Arizona, Tucson, USA
Plyahoo Labs, New York, USA
ﬂ[nstitute of Mathematics and Computer Science
Ural Federal University, Ekaterinburg, Russia

Abstract

In addition to objects and relationships between them, groups or clus-
ters of objects are an essential part of many real-world datasets: party
affiliation in political networks, types of living organisms in the tree of
life, movie genres in the internet movie database. In recent visualiza-
tion methods, such group information is conveyed by explicit regions that
enclose related elements. However, when in addition to fixed cluster mem-
bership, the input elements also have fixed positions in space (e.g., geo-
referenced data), it becomes difficult to produce readable visualizations.
In such fixed-clustering and fixed-embedding settings, some methods pro-
duce fragmented regions, while other produce contiguous (connected) re-
gions that may contain overlaps even if the input clusters are disjoint.

Both fragmented regions and unnecessary overlaps have a detrimental
effect on the interpretation of the drawing. With this in mind, we pro-
pose MapSets: a visualization technique that combines the advantages of
both methods, producing maps with non-fragmented and non-overlapping
regions. The proposed method relies on a theoretically sound geometric
algorithm which guarantees contiguity and disjointness of the regions, and
also optimizes the convexity of the regions. A fully functional implemen-
tation is available in an online system and is used in a comparison with
related earlier methods.

Submitted: Reviewed: Revised: Accepted: Final:
November 2014 May 2015 June 2015 August 2015 August 2015
Published:

November 2015

Article type: Communicated by:
Regular Paper C. Duncan and A. Symvonis

A preliminary version of this paper was presented at the 22nd International Symposium on
Graph Drawing (GD 2014) [16]
E-mail addresses: |alon@cs.arizona.edu| (Alon Efrat) lyifanhu@yahoo.com (Yifan Hu)

kobourov@cs.arizona.edu| (Stephen G. Kobourov) spupyrev@gmail.com| (Sergey Pupyrev)

http://dx.doi.org/10.7155/jgaa.00364
mailto:alon@cs.arizona.edu
mailto:yifanhu@yahoo.com
mailto:kobourov@cs.arizona.edu
mailto:spupyrev@gmail.com

572 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

1 Introduction

In many real-world examples of relational datasets, groups of objects (clusters)
are an inherent and important part of the input. For example, scientists belong
to specific research communities, politicians are affiliated with specific parties,
and living organisms are divided into biological species in the tree of life. The
clusters are often visualized with regions in the plane that enclose related ob-
jects. Such representations are very helpful in dealing with clustered data. By
explicitly defining the boundary and coloring of the regions, the cluster informa-
tion becomes evident. In many instances the data objects are often associated
with fixed or relative positions in the plane. In geo-referenced data, for exam-
ple, the positions of the objects might be based on their geographic coordinates.
Thus a natural problem arises: How to best visualize graphs in which vertices
are divided into clusters and embedded with fixed positions in the plane?

Several existing visualization approaches seem suitable. For example, meth-
ods for visualizing set relations over existing embedded pointsets, such as Bub-
bleSets |11] and LineSets |3] use colored shapes to connect objects that belong
to the same set. Alternatively, a geographic map metaphor can be used to rep-
resent such data. With self-organizing maps [29] or geometry-based GMaps [23],
objects become cities and cluster information is captured by uniquely colored
countries. While both approaches can produce compelling visualizations, we
argue that neither is perfectly suited to the problem of visualizing embedded
and clustered graphs.

As the number of sets increases, set-based methods generate very complex
and sometimes ambiguous results. More recent methods such as KelpDia-
grams |12] and KelpFusion [32] reduce visual clutter and guarantee unambiguous
visualization. But more importantly, all of these methods result in overlapping
regions for the sets, even when the input sets are disjoint. This unnecessarily
increases visual complexity and might mislead the viewer about the disjointness
of the sets. The geographic map approach suffers from a different problem. A
country in the map, that represents a given cluster of vertices, might not be a
contiguous (connected) region in the plane. Even though each cluster is uniquely
colored, such fragmented maps are difficult to read as human perception of color
changes based on surrounding colors [37] and can be misinterpreted [26].

We want to combine the advantages of existing methods, while attempting
to avoid their problems. That is, we are interested in visualizing embedded
and clustered graphs with non-fragmented and non-overlapping regions. While
constructing such representations is easy in theory, in practice the regions may
still have high visual complexity; see Figure[I} Ideally the regions should be as
convex as possible, as the convex hull best captures cohesive grouping according
to Gestalt theory [27]. Riche and Dwyer (38| simplify Euler diagrams, relying
on a similar argument that the use of convex and simple regions is a primary
factor impacting readability.

With this in mind, we describe MapSets, a method for creating
non-fragmented, non-overlapping regions that are as convex as possible,
from a given embedded and clustered graph. We consider several criteria

JGAA, 19(2) 571-593 (2015) 573

Figure 1: (a) An embedded and clustered (red/blue) pointset. (b-c) Two different
ways to construct contiguous shapes bounding points of the same color.

for measuring convexity of a given shape, and propose a novel geometric
problem aiming at optimizing convexity. We present a theoretical analysis of
the problem in Section [3] which includes an observation of its computational
hardness and a new approximation algorithm. Next, in Section we
provide a practical method for visualizing clustered graphs, which relies on
the theoretical algorithm and guarantees contiguity and disjointness of the
regions, while also optimizing the convexity of the regions. A fully functional
implementation is available in an online system and is used in a comparison
with existing techniques, which we present in Section

2 Related Work

We review work related to the practical and theoretical aspects of the problem
of visualizing embedded and clustered graphs.

2.1 Set Visualization

Graph clusters can be viewed as sets over graph vertices. In Venn diagrams |9/15]
and their generalization, Euler diagrams, closed curves correspond to (possibly
overlapping) sets, and overlaps between the curves indicate intersections. Sev-
eral techniques have been recently devised to automatically generate Euler-like
diagrams. Simonetto et al. [40] and Stapleton et al. [43] automatically generate
Euler-like diagrams, by allowing disconnected regions, which can be complex
and non-convex, especially when the sets exhibit numerous overlaps. Riche and
Dwyer [38] propose a way to avoid the visual complexity problem by drawing
simplified rectangular Euler-like diagrams, that do not depict the intersections
between the sets explicitly, by creating separate rectangular regions for the sets,
and duplicating objects that belong to multiple sets. In a user study, they
found that it is beneficial to show intersections using simple set regions and
strict containment, enabled by the duplication.

For the setting where the positions of the objects are fixed, Collins et al. [11]
present BubbleSets, a method based on isocontours to overlay such an arrange-

574 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

ment with enclosing set regions. A similar approach is suggested by Byelas and
Telea [7]. The readability of these visualizations suffer when there are many
overlapping regions.

A recent technique called LineSets [3] aims to improve the readability of
complex set intersections and to minimize the overall visual clutter by reduc-
ing set regions to simple curved lines drawn through set elements. KelpDia-
grams |12] incorporate classic graph-drawing “bubble and stick” style graph or
tree spanners over the member points in a set. When multiple sets are shown
simultaneously, overlapping regions are drawn with strictly nested containment.
KelpFusion [32] adds filled-in regions to provide a stronger sense of grouping for
close elements. A significant limitation of all these set visualization techniques
is that they produce overlapping regions even when the sets are disjoint.

2.2 Visualizing Graphs as Maps

The geographic map metaphor is utilized as visual interface for relational
data, where objects, relations between objects, and clustering are captured by
cities, roads, and countries. Using maps to visualize non-cartographic data
has been considered in the context of spatialization by Fabrikant et al. [17].
Self-organizing maps, coupled with geographic information systems, render 2D
maps of textual documents [41], which provide an adaptable set of tools for
spatial visualization of large document collections. Maps of science showing
groups of scientific disciplines are used by a wide range of professionals to
grasp developments in science and technology [6]. One drawback is that
self-organizing maps are very computationally expensive.

The geographic map metaphor is helpful for graph and network visualiza-
tion. Gronemann and Jiinger [21] show how to draw clustered graphs exploiting
elevation levels to show the cluster hierarchy. An alternative Graph-to-Map
(GMap) approach [23] combines graph layout and graph clustering, together
with appropriate coloring of the clusters and creating boundaries based on clus-
ters and connectivity in the original graph. Maps of computer science [19], built
on top of GMap, provide a way for visual exploration of topics in a particular
conference or journal. However, since layout and clustering are two separate
steps, a region representing a cluster may often be fragmented; see Figure
Such fragmentation makes it difficult to identify the correct regions and can
result in misinterpretation of the map [26]. Note that in the setting when either
an input embedding or clustering can be modified, the GMap approach can be
improved to achieve contiguous regions 28], which results in better performance
for cluster-based tasks [39].

2.3 Colored Spanning Trees

From an algorithmic perspective, our approach of optimizing the convexity of
regions that cover points in the plane is related to several computational ge-
ometry problems; we mention only a few of them here. In many problems the
input is a multicolored point set, as in the red-blue intersection, separation, and

JGAA, 19(2) 571-593 (2015) 575

connection problems [1,/4.[5]. Tokunaga [44] considers a set of bicolored points
in the plane and computes one geometric spanning tree of each color such that
they intersect as few times as possible. A related work is the group Steiner
tree problem where, for a graph with colored vertices, the objective is to find
a minimum weight subtree covering all colors [33]. Also related is the problem
of computing spanning graphs for multicolored point set of Ferran et al. [24].
The problem is motivated by optimizing the amount of “ink” needed to connect
monochromatic points that arise when visualizing sets using KelpFusion. Note
that these trees cannot be directly used as “skeletons” of regions in the plane
as they can result in overlapping regions.

Finally, the clustered planarity problem is related to our approach [18]. The
problem asks for a drawing of a clustered graph such that every cluster is repre-
sented by a non-fragmented region containing exactly the vertices in the cluster.
Unlike our setting, the graph edges are taken into account; the drawing must
be planar and edges of the graph can cross region boundaries at most once.
While many special cases have polynomial-time algorithms, the computational
complexity of the general variant remains open.

3 Creating Contiguous Non-Overlapping
Regions

We assume that the input instance consists of a finite set of objects P with
fixed positions p; € R? for all i € P, for example, cities and their geographic
locations. In practical applications labels are often associated with the objects.
In this case, we assume that non-overlapping bounding boxes for the labels are
given. The input also specifies a clustering C' = {C1,...,Ci} of the objects
with U¥_,C; = P and C; N C; = 0 for i # j. We wish to enclose all objects of
the same cluster by a single contiguous region so that regions corresponding to
different clusters do not overlap.

On the one hand, simply overlaying each cluster with a convex region (e.g.,
bounding box or convex hull) is not always a valid solution, as it might cover
elements in other clusters. On the other hand, representing clusters by some
minimal regions (e.g., spanning or Steiner trees) is also not always valid, as it
might result in intersecting regions.

We require regions that are contiguous and disjoint, and it is not difficult
to see that such regions can be easily computed. We can begin by computing
a crossing-free spanning tree of points belonging to some cluster. Once the
tree is constructed, its vertices and edges become “obstacles” that should be
avoided by subsequent trees. Note that we can process all the clusters in this
manner, as the trees do not separate the plane into more than one region.
Finally, contiguous non-overlapping regions can be grown, starting from these
disjoint trees. However, this procedure often generates “octopus’-like shapes
that are neither aesthetically pleasant nor practically useful for visualization;
see Figure [II Hence, we require a method for creating regions that are as

576 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

Figure 2: Convexity measures for a shape S enclosing red points. (a) Solid segments
are within S, while dashed ones are not. (b) A shape and its convex hull (dashed).
(c) Area-based measure ignores boundary defects. (d-e) Ink needed to connect the
points is much bigger than the length of the minimum spanning tree. The shape is
enclosed in solid black, while the tree is dashed red.

convex as possible. In order to design such a method, a quality criterion for
measuring the convexity of regions is needed. Next we review and formalize
several convexity measures.

3.1 Convexity Measures

A shape S is said to be convex if it has the following property: If points p, ¢ € R?
belong to S then all points along the line segment pg belong to S as well. The
definition allows for several different ways to measure the convexity of non-
convex shapes.

Point/vertex visibility. For a given shape S, this convexity measure is de-
fined as the probability that for points p and ¢, chosen uniformly at random
from S, all points from the line segment pg also belong to S [46]. The result is
a real number in the range [0, 1], with 1 corresponding to convex shapes.

A problem with this definition is that it is difficult to compute, even if S is
a polygon. Therefore, we suggest its discrete variant, taking into account that
the input of our problem specifies points in the plane; see Figure

This measure takes into account how many segments pg are completely in S

for pairs of input points p, g € P of the cluster corresponding to S. The measure

. 4(p,
is defined as w, where the sum is over all pairs of input points P and

d(p,q) = 1 if pq lies inside S and §(p, q) = 0, otherwise.

Convex hull area/perimeter. Recall that the smallest convex set which

includes a shape S is called the convex hull, CH(S), of S; see Figure The

area-based convexity measure is defined as #%; it is frequently used and

appears in textbooks [42]. The result is a real number in the range [0, 1], with
1 corresponding to convex shapes. Unlike visibility-based measures, the convex
hull-based one is very easy to calculate efficiently and is robust with respect to
noise. However, the definition does not allow to detect large anomalies of the

JGAA, 19(2) 571-593 (2015) 577

(a) (b)

Figure 3: (a) An input for CESF with n = 10 points and k = 3 colors. (b) An
optimal solution with minimum ink containing Steiner points.

boundary that have a relatively small impact on the shape area; see Figure
The perimeter-based definition attempts to remedy this: #%.

If a shape S is convex, then every spanning tree on the given point set lies
completely in S. On the other hand, non-convex shapes do not necessarily
admit such a spanning tree. Hence, the length of a shortest curve that belongs
to S and connects all the input points is an indicator of convexity of S. In the
following measure, we compare the length of such a curve (or equivalently, the
amount of “ink” needed to connect all the points) with the length of a minimum

spanning tree on the same point set; see Figures [2(d){2(e)|

Minimum ink. Let |INK(P,S)| be the length of the shortest curve lying in
S connecting all points of P, and let | MST(P)| be the length of the minimum
| MST(P)]|
[INK(P,S)["
best possible value (though, it does not always correspond to a convex shape);
smaller values are worse.

Note that there are advantages and disadvantages of all of the proposed
convexity measures, and there are also many other ways to define convexity of
shapes or polygons. For example, an “almost” convex shape can be partitioned
into a small number of strictly convex polygons. This leads to a measure that
asks for a decomposition of a given shape into the minimum number of convex
polygons. Such decomposition can be found in polynomial time for a hole-free
shape [8], but the problem is computationally hard for arbitrary non-convex
shapes [31]. In an attempt to balance theoretical and practical considerations,
we focus on the visibility-based and ink-based measures. Similar ink-based
criteria are used for constructing LineSets and KelpDiagrams. By minimizing
the ink needed for drawing, all of these techniques aim to reduce visual clutter
and increase the readability of the representation.

spanning tree of P. The measure is defined as Again, 1 indicates the

3.2 An Algorithm for Ink Minimization

Here we define and study a new problem motivated by computing contiguous
regions with minimum ink. The input consists of n points in the plane, and each
point is associated with one of k£ colors. The COLORED EUCLIDEAN STEINER
FoRrEST (CESF) problem is to connect points of the same color by mutually
non-intersecting curves of shortest total length. It is easy to see that in an

578 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

(a) (b) (c) (d)

Figure 4: Steps of the algorithm for the CESF problem. (a) An input with n = 10
points and £ = 3. (b) Computing minimum spanning trees. (c¢) Bounding the tree
having the shortest length, and removing red-blue crossings. (d) Merging with the
green tree.

optimal solution each curve forms a tree spanning all the points of the corre-
sponding color. In general, the trees may use additional (Steiner) points that
do not belong to the original pointset; see Figure [3]

Computing an optimal solution for CESF is NP-hard. This follows directly
from the observation that the known NP-complete MINIMUM STEINER TREE
problem is a special case of CESF, in which the input consists of monochro-
matic points. Next we present a heuristic for CESF and prove that it is an
approximation algorithm in the theoretical sense, and hence produces solutions
guaranteed to be close to the optimum.

We refer to the minimum spanning tree and the Steiner tree of a set of points
P as MST(P) and SMT(P), respectively; their lengths are denoted by | MST(P)|
and | SMT(P)|. We use the Steiner ratio, denoted by p, which is the supremum
of the ratio of the length of a minimum spanning tree to the length of a minimum
Steiner tree. Gilbert and Pollak conjectured that p = % ~ 1.15 [20]. While
the conjecture is still open [25], Chung and Graham [10] have shown that p is
at most ~ 1.21.

We begin with the description of our algorithm in the bicolored setting,
that is, when the input consists of blue and red points. First, we compute
a minimum spanning tree of the blue points (ignoring the red ones), and a
minimum spanning tree of the red points; see Figure If the trees do not
intersect, then they form a solution for CESF. Otherwise, we create a red “shell”
bounding the blue tree; see Figure Note that now all red-blue crossings
appear inside the constructed shell. To eliminate the crossings, we remove all
portions of the red tree inside the shell; the operation clearly keeps the red tree
connected. Finally, the red curve, consisting of the original spanning tree and
the constructed shell, can be made into a tree by disconnecting its cycles; see
Figure

Our general algorithm, for more than 2 colors, works as follows. First, create
a minimum tree MST(C;) spanning the set of points C; for 1 <i < k, ignoring
points of the other colors. Sort the colors with respect to the length of the
corresponding spanning trees. Without loss of generality, we may assume that
the resulting order is C1,...,Cy and |[MST(C4)| < --- < |[MST(Cy)|- Then
the resulting curve for C; is the tree MST(C}). A curve for each successive

JGAA, 19(2) 571-593 (2015) 579

color C; is constructed by adding a “shell” bounding the curve corresponding
to C;—1. The length of the shell is exactly 2. ;[MST(Cj)|, since it bounds
all the spanning trees corresponding to already processed colors; see Figure [4]
The length of a curve for C; is then | MST(Cy)| +23_;_, [MST(Cj)|.

In order to analyze the algorithm, we denote the amount of ink in the optimal
solution by OPT, and the total length of the constructed solution by ALG. An
optimal solution induces a curve connecting all points of the same cluster, that
is, the solution is a Steiner tree for the set of points (but not necessarily the
minimum one). Hence, OPT > . |SMT(C;)| > > . |MST(C;)|/p. On the
other hand,

k i—1 k
ALG < 37 (IMST(Cy)| +2 3 IMST(Cy)|) = 37 (2k = 20 + 1)| MST(C).

For the approximation factor, we get
ALG _ S L(2k — 20+ 1)| MST(C))|
OPT = %, |MST(Cy)l/p
S KIMST(C)| + S50, (k — 20+ 1) MST(C)|
- SF L IMST(C))|
S (= 20+ DMST(C)| + S)41 (k — 20+ 1)| MST(C3)]
S IMST(C))|
Sk — 20 + 1) MST(C)| = SHP (k — 20 + 1) MST(Chign)|
S IMST(Cy)] ’
ST (1 — 24 4 1)(| MST(Cy)| — | MST(Criin))
S IMST(Cy))|

P

=kp+ p < kp.

Hence, we have the following theorem.

Theorem 1 There exists a polynomial-time (kp)-approzimation for CESF for
every k > 1.

4 MapSets

Here we describe MapSets, starting with a high-level overview; see Figure
We assume that the input is a set of rectangular shapes (bounding boxes of
labels) embedded in the plane along with a clustering. In the first step, we
compute spanning mutually non-crossing trees interconnecting centers of rect-
angles corresponding to the same cluster, while minimizing the total ink needed
to draw the trees. In the second step, we modify the trees by adding buffers
of free space around the segments of the trees, using a force-directed heuris-
tic. In the third step, we try to optimize the convexity of the resulting regions

580 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

—/
I:II:I
—/
—
— —
—c [}3a
—

(a) Input (b) Tree Construction (¢) Force-directed Adjust-
ment

(d) Edge Augmentation (e) Adding Auxiliary Points (f) Computing Map Regions

Figure 5: Algorithmic pipeline of MapSets.

based on the vertex visibility measure, by adding edges between vertices in the
same cluster, while ensuring that edges of different clusters do not cross. In the
fourth step, we use the modified trees and the added edges to build contiguous
non-overlapping boundaries for all clusters.

Tree construction. In order to construct the trees, we employ the approxi-
mation algorithm described in Section For each cluster, we first compute a
minimum tree spanning the set of rectangle centers, ignoring other clusters. The
clusters are then sorted in non-decreasing order by the length of the computed
trees and processed in this order. At each step we consider all the pre-computed
trees as obstacles that should be avoided when constructing the current tree.
The rectangles with different color from the current tree are also treated as
obstacles. We compute a visibility graph on the set of obstacles, where the
vertices are all the centers and corners of the rectangles, and there is an edge
between two vertices if one can draw a straight-line segment without crossing
the obstacles. The full visibility graph may have quadratic number of edges and
require quadratic time for construction, which can be too slow, especially for
interactive applications. Therefore, we utilize a sparse visibility spanner, that is,
a subgraph of the visibility graph, approximately preserving shortest paths. We
utilize the so called Yao graphs [45], whose construction is based on partitioning
the plane around each vertex into a constant number of cones, which is 12 in our
implementation. The graph contains at most one edge per cone, and therefore,
it has a linear number of edges; such graphs can be constructed efficiently [14].
We then compute shortest paths (of the visibility graph) between every pair
of rectangles in the current cluster. From these shortest paths, we compute a
minimum spanning tree for the current cluster. We add the tree to the set of

JGAA, 19(2) 571-593 (2015) 581

obstacles and proceed with the next cluster.

Force-directed adjustment. This step improves the constructed trees. Our
goal is to provide some free space around the edges of the trees so as to avoid
(1) narrow channels between parts of the same region and (2) region borders
lying too close to the input vertex labels. To accomplish this, we consider an
adjustment graph G°¥ in which vertices are the end-points and bends of the
constructed trees and edges are maximal straight-line segments of the trees. We
then build a force system moving the vertices of G*¥ that correspond to the
bends of the tree. The system relies on the following forces.

e Vertex-vertex attraction. We would like to keep the ink of the drawing
low. Therefore, for every vertex of G®¥ | there is a force pushing the vertex
towards its neighbor vertices in Go%.

e Edge-edge repulsion. This repulsive force attempts to push the edges
of G apart to provide enough space to draw the regions. In order to
compute the force, it is convenient to replace edges of G*¥ with rectangles
of a specified thickness. Then, if two rectangles corresponding to different
trees intersect, the force repels them away from each other. This force
also ensures that the trees do not overlap and do not intersect during the
adjustment process.

e Edge-label repulsion. This force prevents edges from being routed too
close to the input text labels. Again, it is convenient to consider the edges
of G as rectangles. The force is applied only if a rectangle occludes a
label. In this case, we introduce a repulsive force moving the corresponding
vertices of G%¥ away from the label.

We use iterative refinement similar to that used in drawing graphs with
edge bundles [36] to adjust the positions of the vertices of G*¥ under these
three forces: repulsive forces have equal priorities, and the attractive force is
weaker. In our experiments, the force system provides the desired buffer of free
space around the trees and converges quickly; see Figure

Edge augmentation. In this step we try to optimize the convexity of the
regions using the vertex visibility metric. Consider all possible straight-line
segments connecting centers of rectangles belonging to the same cluster. Our
goal is to select and add as many of these segments as possible, subject to the
condition that they do not cross each other. To this end, we construct a graph H
in which vertices are the straight-line segments. A segment is added to H only
if it does not intersect the trees found in the previous step. Two vertices of H
are connected by an edge if the corresponding straight-line segments belong to
different clusters and cross each other. Notice that now the problem reduces to
the problem of finding a maximum non-crossing (independent) set of segments
in the plane. The problem can be solved optimally in polynomial time for two
clusters, that is, if & = 2. Indeed, in this case the graph H is bipartite, and the

582 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

size of a maximum independent set in a bipartite graph equals the number of
edges in a minimum edge covering by Konig’s theorem. The latter can be found
using a maximum matching algorithm. Unfortunately, the general variant is
NP-hard even for k = 3 |30]. Therefore, for larger values of k, we use a greedy
heuristic to solve the problem. At every step, choose a vertex of minimum degree
in H, add the vertex to the solution, and remove its neighbors from H. It is
well-known that this strategy guarantees an approximation ratio of (A + 2)/3
on graphs with maximum degree A [22].

Adding auxiliary points and computing map regions. Given the initial
placement of the labels and curves connecting the labels from the previous steps,
we need explicit regions grouping together labels and curves in the same cluster.
To this end, we follow an approach suggested for GMap, which utilizes a Voronoi
diagram of the labels’ corners [23]. Asin GMap, we generate realistic boundaries
by adding auxiliary points to the current embedding. There are three types of
auxiliary points: (a) random points, sufficiently far away from the set of the
input labels, lead to more rounded and thus more realistic region boundaries;
(b) random points along bounding boxes of the labels help ensure that the labels
are drawn inside the regions; (c) auxiliary points along all the edges constructed
on the previous step, that keep the regions connected. The distance between
consecutive points on an edge is chosen to be less than the distance to any other
point of a different color. After adding the auxiliary points, we compute the
Voronoi diagram of the set of all points and merge the Voronoi cells that belong
to the points of the same color.

MapSets meets the goals of creating contiguous non-overlapping regions for
a given embedded and clustered graphs. The heuristic improvements help make
the regions more convex. In Section [f|we compare the proposed method against
several existing methods and quantitatively evaluate several aspects of MapSets
itself (e.g., ink-minimization, running time of various steps).

Time Complexity. Now we discuss the complexity of our algorithm on an
input with n points and k clusters, assuming we can compute distances and
intersections between geometric primitives (points, line-segments, rectangles) in
constant time. The sparse visibility graph can be constructed in O(nlogn) time
and it contains O(n) edges [14]. Therefore, computing all pairwise distances
takes O(n?logn) time with Johnson’s algorithm. Finding a minimum spanning
tree for one cluster takes O(n?) time using Prim’s algorithm. Summing over all
clusters, we get O(kn? + n?logn) for the first step of our algorithm.

In the iterative force-directed heuristic we compute forces between pairs of
vertices, pairs of edges, and between label corners and edges in graph G*%. By
construction, the graph contains O(n) vertices and edges; thus, computing all
forces takes O(n?) time for an iteration. Overall, the time complexity of the
force-directed heuristic is O(cn?), where ¢ is the maximum number of iterations
in the adjustment (¢ = 10 in our implementation).

JGAA, 19(2) 571-593 (2015) 583

(a) MapSets (b) GMap (c) BubbleSets (d) KelpFusion

Figure 6: The senator voting graph (the part of the U.S. west of Mississippi). The
vertices are senators (red republicans and blue democrats) positioned according to
their home-cities.

The complexity of the edge augmentation step is O(n?), as we may add
quadratic number of edges in the greedy process. Adding auxiliary points and
creating final regions involves computing a Voronoi diagram of the set of all
points. This can be done in O(nlogn) time [23)].

Therefore, the overall time complexity is O(n?(k + logn) + n?) = O(n?).
Actual running times for our example graphs are given in the next section.

5 Experiments

We compare our new algorithm with the existing approaches for map-like visu-
alizations: GMap [23], BubbleSets |11], LineSets [3], and KelpFusion [32]. An
implementation of MapSets, GMap, BubbleSets, and LineSets, together with a
dataset, is available in an online system at http://gmap.cs.arizona.edul
Our first example is the senator voting graph; see Figure[6] The vertices in
the graph are the U.S. senators in 2010 positioned according to their home-cities
in the U.S. The clustering is based on the political party they represent, red for
republicans and blue for democrats. Clearly, both clustering and geographic
information of the vertices are fixed and cannot be changed. GMap produces
fragmented clusters, while BubbleSets and KelpFusion compute overlapping re-
gions. The result of MapSets is contiguous and non-overlapping, which we
believe makes it easier to analyze the distribution of senators over the map.
The second example shows population data in Europe [34]. The original
points correspond to genetic data from 1,387 Europeans (but we sampled only
50 vertices corresponding to Eastern Europe for illustration purposes). The
positions of the vertices come from the original principal component analysis,
based on DNA similarity. As the authors point out, the PCA plot (appropri-
ately rotated) closely matches the geographic outlines of Europe; hence, it is
undesirable to change the node positions. The clusters are extracted indepen-
dently and correspond to the countries of origin of the individuals. Again, only
MapSets constructs non-fragmented disjoint regions; see Figure [7] However,
it is not clear which visualization technique would be most useful for analysis.

http://gmap.cs.arizona.edu

584 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

(a) MapSets (c) BubbleSets (d) KelpFusion

Figure 7: The graph of genetic similarities between 50 individuals in Europe. The
layout is computed using the principal component analysis, while the clusters corre-
spond to the countries of origin of the individuals.

(a) Colors (b) Universities

Figure 8: Examples of MapSets for two real-world networks. The layout is created
using multidimensional scaling, clustering is done using the modularity optimization
algorithm. The images are zoomable and have high resolution. (a) The graph is
constructed using the 50 most common monitor colors. The edge-weights are defined
by the distance in the RGB space between corresponding pairs. (b) The network of
the U.S. universities and their average SAT scores. The vertices are universities and
edges are constructed based on similarities in admissions.

Further examples of the results of MapSets are given in Figure

Quantitative experiments. We next analyze the performance of our ink
minimization algorithm. To this end, we utilize a collection of 10 real-world
networks, that are embedded and clustered using the GMap tool with the default
setting . Table gives details about the graphs and measurements of our ink
saving algorithm. Here, ALG shows the ratio of the total ink of the computed
trees to the total length of the minimum spanning trees computed individually
for every cluster. In other words, this is an upper bound for the approximation
factor achieved by our algorithm on the test cases. Although we can only
guarantee approximation factor kp, in practice the algorithm performs very well,
producing solutions that are at most 1.6p times worse than optimal. Informally,

JGAA, 19(2) 571-593 (2015) 585

graph Ref. |P| k ALG ALGyq
Colors (28] 50 6 1.002 1.012
GD 28] 506 23 1582 1.612
Recipes 12] 381 15 1.356 1.502
Trade (23] 211 8 1.101 1.259
Universities (23] 161 8 1.366 1.443
SODA [19] 316 11 1.204 1.296
IPL (19 33 11 1337 1414
SOCG 9] 500 11 1492 1.601
TARJAN [19] 252 16 1.150 1.197
ALGO [19] 500 5 1.547 1.650

Table 1: Measurements of MapSets on test cases: ALG and ALG ¢4 stand for the ratio
between the total ink of the drawing and the total length of the minimum spanning
trees after the steps Tree Construction and Force-directed Adjustment, respectively.

our experiments indicate that the ink minimization often leads to aesthetically
more pleasant map visualizations; see Figure [J] for a comparison.

In order to further investigate the approximation factor of our algorithm,
we generated a collection of point sets, varying the number of clusters and their
spatial distribution. We use n = 150 points and k € {2,3,5,10,15} equally-
sized clusters for the dataset. The goal is to create instances of CESF using
a parameter, which controls whether the points of the same cluster are spatial
neighbors or uniformly distributed in the plane. To this end, we first choose
cluster bases by picking k points at random from a unit square. Then for every
cluster, n/k points are chosen at random from a disk with radius r centered at
the corresponding cluster base. In the experiments, we use r € {0.25,0.5, 1,2};
here small values of r correspond to spatially disconnected clusters, while larger
values correspond to overlapping clusters. We create 10 instances for every
combination of k£ and r, and report the average approximation factor ALG
for the test cases; see Figure for the results and Figure for an
example of a run. We observe that the algorithm yields a solution, which is
close to the trivial lower bound, if the input clusters are spatially separated
from each other. For many real-world examples (e.g., PCA dataset in Figure [7)
as well as for graph visualizations in which clustering and embedding are related
(e.g., GMap [23]), this is a natural assumption. However, if the input points
of different clusters are distributed rather uniformly, then the resulting non-
crossing trees may have long detours and be visually unappealing. An interesting
observation from Figure is that the approximation factor for instances with
k = 2 is below 1.2, even if the points are chosen randomly from a unit square.
This may indicate that our bound for the approximation factor is not tight.

For the force-directed adjustment, we measure ALG fq, which is the utilized
ink after the step. As expected, the ink increases after the adjustment, but
the increase is not significant for both real-world and generates inputs. On

586 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

(a) (b)

Figure 9: The effect of ink minimization in MapSets. The results computed for the
trees with (a) ALG = 1.17 and (b) ALG = 1.06, where ALG is the ratio of the total
ink to the total length of the minimum spanning trees.

the other hand, the adjustments improve the quality of the resulting regions.
Figure provides an example of the maps computed with and without the
heuristic; notice the narrow channels in the figure computed without the ad-
justments. Finally, we observe that the goal of the step—providing free space
around the vertices—can also be achieved by several other techniques. For ex-
ample, drawing graphs with fat edges [13] and computing non-crossing paths
with pre-specified thickness [35]. We leave the study of the usability of such
techniques for our setting as an open problem.

Running time. The MapSets algorithm is implemented in C++, whereas for
GMap, BubbleSets, and LineSets, we utilize available implementations. We use
a machine with Intel i5 3.2GHz and 8GB RAM for measuring running time; see
Figure[12} The last two steps, Adding Auziliary Points and Computing Regions,
are very efficient, taking only a few milliseconds even for the largest graphs,
and hence are not included in the chart. The first step, Tree Construction,
is usually the most time consuming; it is more efficient for nearly contiguous
clusters (e.g, Colors) and less efficient for graphs with many fragments (e.g.,
GD). Although Edge Augmentation theoretically has cubic time complexity, it
is among the fastest steps in practice, because there are usually not many edges
added. Overall, our algorithm processes all the graphs (most with hundreds of
vertices) in less than a minute. This is slower than the default GMap algorithm
and the LineSets method, but comparable to BubbleSets; see Table Since
our algorithm extensively utilizes many primitive geometric operations (e.g.,
testing for segment intersections), using a specialized geometric library will likely
improve the performance.

JGAA, 19(2) 571-593 (2015) 587

o
anN
a1

NP oo

A
3
1
EERO

>§O< : II ||
52+

number of clusters, k

(a) (b)

Figure 10: (a) Approximation factor of our algorithm for CESF on the generated
dataset. (b) A generated instance with n = 150 points, kK = 3 colors, and r = 0.5.
The corresponding disks of radius r are shown dashed. For the instance, ALG =~ 1.38,
which indicates that the optimum is at most 1.38p < 1.67 times smaller.

Discussion. Although the results of our initial evaluations seem promising,
the comparison of different visualization techniques is not supported by an ob-
jective qualitative validation. Arguably, the results of MapSets are easier to
analyze when the regions have simple shapes, as in Figure We found that
in most real-world examples MapSets can serve as a post-processing step for the
GMap algorithm, whose resulting regions are often fragmented but still “almost”
convex. On the other hand, some input graphs require complex “octopus”-like
regions, even in an optimal solution; see Figure In these cases it would
be better to relax the constraints and to allow either fragmented regions (as
in GMap), or intersections between regions (as in BubbleSets and KelpFusion).
We leave the question of finding a proper trade-off between the approaches,
together with an objective user experiment, for future work.

6 Conclusions and Future Work

We designed and implemented a new approach for visualizing embedded and
clustered graphs. Unlike existing techniques, our MapSets method always pro-
duces contiguous and non-overlapping regions. There are several directions for
future work.

We presented a simple (kp)-approximation algorithm for the CESF problem
of ink minimization, where k is the number of clusters and p is the Steiner ratio.
A natural future direction is to improve the approximation factor. An interesting
variant of the problem is when a solution may not contain Steiner points that

588 Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

(a) (b)

Figure 11: The effect of the Force-directed Adjustment step in MapSets: (a) without
the adjustments and (b) with the adjustments. The very thin connection between two
blue components is almost invisible without the force-directed adjustments.

Tree Construction
Force-directed Adjustment
B Edge Augmentation

i
3
|

=
[S)
|

running time, sec
7]

N
§
7 N § N N
% , V , N
- . N NN |

Colors GD Recipes = Trade Universities SODA
graph

7 N
/
I N7

SOCG TARJAN ALGO

Figure 12: Running times of the different steps of MapSets on the networks described
in Table (1} The last two steps (Adding Auziliary Points and Computing Regions) take
few milliseconds for the graphs and are not included.

are not part of the input. Note that the variant with £ = 1 corresponds to
finding a minimum spanning tree. Is the variant NP-hard for k£ > 17

The input for our method is a colored point set corresponding to the locations
of vertices of a clustered graph. However, in the tree computation step of
MapSets, the edges of the graph are not explicitly used. It would be interesting
to extend the technique so that it takes the edges of the input graph into account,
for example, by requiring regions that span connected subgraphs. An alternative
future direction is to allow modification of the given embedding in order to
achieve more convex regions.

An in-depth human subjects evaluation is needed to compare map-based
visualizations constructed with different approaches considered in the paper.
Such a study should cover the spectrum of possible tasks (e.g., node-based tasks,
network-based tasks, group-based tasks), consider a range of real-world input
graphs (e.g., small/large, sparse/dense, with varying the number of clusters),

JGAA, 19(2) 571-593 (2015) 589

graph MapSets GMap BubbleSets LineSets
Colors 1.3 0.2 1.5 0.3
GD 23.2 0.6 6.4 0.4
Recipes 7.9 0.7 5.7 0.3
Trade 10.2 0.5 4.7 0.3
Universities 8.9 0.3 3.8 0.3
SODA 13.8 0.5 5.1 0.3
IPL 16.9 0.5 7.3 0.3
SOCG 17.6 0.8 11.7 0.6
TARJAN 7.3 0.4 4.2 0.3
ALGO 19.4 0.9 9.4 0.7

Table 2: CPU time (in seconds) taken by different algorithms.

and ensure fair comparison (e.g., font types and sizes, colors).

It would be also worthwhile to carefully evaluate different convexity measures
and select one that offers the best balance between ease of computation and
visual quality of the resulting regions.

Finally, as mentioned earlier, some of the inputs require complex regions,
even in an optimal solution. Hence, a challenging problem is to find a trade-off
between contiguity of the resulting regions and their visual complexity. How
difficult is to minimize the number of “almost” convex fragments for a given
pointset?

Acknowledgements

This work is supported in part by NSF grants CCF-1115971 and DEB 1053573.
We thank the authors of [34] for the DNA dataset. The drawings of KelpFusion
are courtesy of the authors of [32].

590

Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

References

1]

2]

P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean
minimum spanning trees and bichromatic closest pairs. Discrete Comput.
Geom., 6(1):407-422, 1991. doi:10.1007/BF02574698.

Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabasi. Flavor network
and the principles of food pairing. Scientific reports, 1, 2011. doi:10.1038/
srep00196.

B. Alper, N. H. Riche, G. Ramos, and M. Czerwinski. Design study of
LineSets, a novel set visualization technique. IEEE Trans. Visual. Comput.
Graphics, 17(12):2259-2267, 2011. doi:10.1109/TVCG.2011.186.

S. Arora and K. Chang. Approximation schemes for degree-restricted MST
and red—blue separation problems. Algorithmica, 40(3):189-210, 2004. |doi:
10.1007/s00453-004-1103-4.

M. J. Atallah and D. Z. Chen. On connecting red and blue rectilin-
ear polygonal obstacles with nonintersecting monotone rectilinear paths.
Int. J. Comput. Geom. Appl., 11(04):373-400, 2001. |doi:10.1142/
S50218195901000547.

K. W. Boyack, R. Klavans, and K. Borner. @ Mapping the back-
bone of science. Scientometrics, 64:351-374, 2005. |doi:10.1007/
$11192-005-0255-6.

H. Byelas and A. Telea. Towards realism in drawing areas of interest on ar-
chitecture diagrams. Journal of Visual Languages & Computing, 20(2):110—
128, 2009. doi:10.1016/j.jv1c.2008.09.001,

B. Chazelle and D. Dobkin. Decomposing a polygon into its convex parts.
In Symposium on Theory of Computing, pages 38-48. ACM, 1979. |doi:
10.1145/800135.804396.

S. C. Chow. Generating and drawing area-proportional Fuler and Venn
diagrams. PhD thesis, University of Victoria, 2007.

F. Chung and R. Graham. A new bound for Euclidean Steiner minimal
trees. Annals of the New York Academy of Sciences, 440(1):328-346, 1985.
doi:10.1111/7.1749-6632.1985.tb14564.x.

C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations
with isocontours over existing visualizations. IEEE Trans. Visual. Comput.
Graphics, 15(6):1009-1016, 2009. |doi:10.1109/TVCG. 2009 . 122!

K. Dinkla, M. J. van Kreveld, B. Speckmann, and M. A. Westenberg. Kelp
diagrams: Point set membership visualization. Comput. Graph. Forum,
31(3pt1):8757884, 2012. doi:10.1111/3.1467-8659.2012.03080.x.

http://dx.doi.org/10.1007/BF02574698
http://dx.doi.org/10.1038/srep00196
http://dx.doi.org/10.1038/srep00196
http://dx.doi.org/10.1109/TVCG.2011.186
http://dx.doi.org/10.1007/s00453-004-1103-4
http://dx.doi.org/10.1007/s00453-004-1103-4
http://dx.doi.org/10.1142/S0218195901000547
http://dx.doi.org/10.1142/S0218195901000547
http://dx.doi.org/10.1007/s11192-005-0255-6
http://dx.doi.org/10.1007/s11192-005-0255-6
http://dx.doi.org/10.1016/j.jvlc.2008.09.001
http://dx.doi.org/10.1145/800135.804396
http://dx.doi.org/10.1145/800135.804396
http://dx.doi.org/10.1111/j.1749-6632.1985.tb14564.x
http://dx.doi.org/10.1109/TVCG.2009.122
http://dx.doi.org/10.1111/j.1467-8659.2012.03080.x

[13]

[14]

[17]

[18]

[22]

[23]

JGAA, 19(2) 571-593 (2015) 591

C. A. Duncan, A. Efrat, S. Kobourov, and C. Wenk. Drawing with fat
edges. Int. J. Found. Comput. S., 17(05):1143-1163, 2006. doi:10.1142/
S0129054106004315.

T. Dwyer and L. Nachmanson. Fast edge-routing for large graphs. In
D. Eppstein and E. Gansner, editors, Graph Drawing, volume 5849 of Lec-
ture Notes Comput. Sci., pages 147-158. Springer, 2010. |doi:10.1007/
978-3-642-11805-0_15.

A. W. F. Edwards. Cogwheels of the mind: the story of Venn diagrams.
JHU Press, 2004.

A. Efrat, Y. Hu, S. Kobourov, and S. Pupyrev. MapSets: Visualizing
embedded and clustered graphs. In C. Duncan and A. Symvonis, editors,
Graph Drawing, volume 8871 of Lecture Notes Comput. Sci., pages 452—463.
Springer, 2014. doi:10.1007/978-3-662-45803-7_38.

S. Fabrikant, D. Monteilo, and D. M. Mark. The distance-similarity
metaphor in region-display spatializations. IEEE Comput. Graph. Appl.,
26(4):34744, 2006. doi:10.1109/MCG.2006.90.

Q.-W. Feng, R. Cohen, and P. Eades. Planarity for clustered graphs. In
P. Spirakis, editor, ESA, volume 979 of Lecture Notes Comput. Sci., pages
213-226. Springer, 1995. |doi : 10.1007/3-540-60313-1_145|

D. Fried and S. G. Kobourov. Maps of computer science. Pacific Visualiza-
tion Symposium, pages 113-120, 2014. |doi:10.1109/PacificVis.2014.
a7.

E. Gilbert and H. Pollak. Steiner minimal trees. SIAM J. Appl. Math.,
16(1):1-29, 1968. doi:10.1137/0116001.

M. Gronemann and M. Jiinger. Drawing clustered graphs as topographic
maps. In W. Didimo and M. Patrignani, editors, Graph Drawing, volume
7704 of Lecture Notes Comput. Sci., pages 426-438. Springer, 2013. |doi:
10.1007/978-3-642-36763-2_38.

M. Halldérsson and J. Radhakrishnan. Greed is good: Approximating
independent sets in sparse and bounded-degree graphs. Algorithmica,
18(1):145-163, 1997. doi:10.1145/195058.195221.

Y. Hu, E. R. Gansner, and S. G. Kobourov. Visualizing graphs and clusters
as maps. IFEE Comput. Graphics and Appl., 30(6):54—66, 2010. |doi:
10.1109/MCG.2010.101.

F. Hurtado, M. Korman, M. Kreveld, M. Loffler, V. Sacristdan, R. Sil-
veira, and B. Speckmann. Colored spanning graphs for set visualiza-
tion. In S. Wismath and A. Wolff, editors, Graph Drawing, volume
8242 of Lecture Notes Comput. Sci., pages 280-291. Springer, 2013. doi:
10.1007/978-3-319-03841-4_25.

http://dx.doi.org/10.1142/S0129054106004315
http://dx.doi.org/10.1142/S0129054106004315
http://dx.doi.org/10.1007/978-3-642-11805-0_15
http://dx.doi.org/10.1007/978-3-642-11805-0_15
http://dx.doi.org/10.1007/978-3-662-45803-7_38
http://dx.doi.org/10.1109/MCG.2006.90
http://dx.doi.org/10.1007/3-540-60313-1_145
http://dx.doi.org/10.1109/PacificVis.2014.47
http://dx.doi.org/10.1109/PacificVis.2014.47
http://dx.doi.org/10.1137/0116001
http://dx.doi.org/10.1007/978-3-642-36763-2_38
http://dx.doi.org/10.1007/978-3-642-36763-2_38
http://dx.doi.org/10.1145/195058.195221
http://dx.doi.org/10.1109/MCG.2010.101
http://dx.doi.org/10.1109/MCG.2010.101
http://dx.doi.org/10.1007/978-3-319-03841-4_25
http://dx.doi.org/10.1007/978-3-319-03841-4_25

592

[25]

[26]

Efrat et al. MapSets: Visualizing Embedded and Clustered Graphs

A. Ivanov and A. Tuzhilin. The Steiner ratio Gilbert-Pollak conjec-
ture is still open. Algorithmica, 62(1-2):630-632, 2012. |doi:10.1007/
s00453-011-9508-3.

R. Jianu, A. Rusu, Y. Hu, and D. Taggart. How to display group informa-
tion on node-link diagrams: An evaluation. IEEE Trans. Visual. Comput.
Graphics, 20(11), 2014. |doi:10.1109/TVCG.2014.2315995.

G. Kanizsa and W. Gerbino. Convexity and symmetry in figure-ground
organization. Vision and Artifact, pages 25-32, 1976.

S. G. Kobourov, S. Pupyrev, and P. Simonetto. Visualizing graphs as
maps with contiguous regions. In Furographics Conference on Visualiza-
tion, pages 31-35, 2014. |[doi:10.2312/eurovisshort.20141153,

T. Kohonen. Self-organizing maps, volume 30 of Springer Series in Infor-
mation Sciences. Springer, 2001.

J. Kratochvil and J. Nesetfil. Independent set and clique problems in
intersection-defined classes of graphs. Comment. Math. Univ. Carolinae,
31(1):85-93, 1990.

A. Lingas. The power of non-rectilinear holes. In M. Nielsen and
E. Schmidt, editors, Automata, Languages and Programming, volume 140
of Lecture Notes Comput. Sci., pages 369-383. Springer, 1982. doi:
10.1007/BFb0012784.

W. Meulemans, N. Riche, B. Speckmann, B. Alper, and T. Dwyer. KelpFu-
sion: A hybrid set visualization technique. IEEE Trans. Visual. Comput.
Graphics, 19(11):1846-1858, 2013. doi:10.1109/TVCG.2013.76!

J. S. Mitchell. Geometric shortest paths and network optimization. In J.-R.
Sack and J. Urrutia, editors, Handbook of computational geometry, pages
633-701. Elsevier, 2000. Section 7.1.

Novembre et al. Genes mirror geography within Europe. Nature,
456(7218):98-101, 2008. doi:10.1038/nature07331.

V. Polishchuk and J. S. Mitchell. Thick non-crossing paths and minimum-
cost flows in polygonal domains. In Symposium on Computational Geom-
etry, pages 56—65. ACM, 2007. |[doi:10.1145/1247069.1247079.

S. Pupyrev, L. Nachmanson, S. Bereg, and A. Holroyd. Edge routing
with ordered bundles. In M. van Kreveld and B. Speckmann, editors,
Graph Drawing, volume 7034 of Lecture Notes Comput. Sci., pages 136—
147. Springer, 2012. |[doi:10.1007/978-3-642-25878-7_14.

D. Purves and R. B. Lotto. Why we see what we do: An empirical theory
of vision. Sinauer Associates, 2003. doi:10.1162/089892903770007452.

http://dx.doi.org/10.1007/s00453-011-9508-3
http://dx.doi.org/10.1007/s00453-011-9508-3
http://dx.doi.org/10.1109/TVCG.2014.2315995
http://dx.doi.org/10.2312/eurovisshort.20141153
http://dx.doi.org/10.1007/BFb0012784
http://dx.doi.org/10.1007/BFb0012784
http://dx.doi.org/10.1109/TVCG.2013.76
http://dx.doi.org/10.1038/nature07331
http://dx.doi.org/10.1145/1247069.1247079
http://dx.doi.org/10.1007/978-3-642-25878-7_14
http://dx.doi.org/10.1162/089892903770007452

[38]

[45]

[46]

JGAA, 19(2) 571-593 (2015) 593

N. H. Riche and T. Dwyer. Untangling Euler diagrams. IFEFE Trans.
Visual. Comput. Graphics, 16(6):1090-1099, 2010. |doi:10.1109/TVCG.
2010.210.

B. Saket, P. Simonetto, S. Kobourov, and K. Bérner. Node, node-link, and
node-link-group diagrams: An evaluation. IEEE Trans. Visual. Comput.
Graphics, 20(12):2231-2240, 2014. doi:10.1109/TVCG.2014.2346422,

P. Simonetto, D. Auber, and D. Archambault. Fully automatic visualisation
of overlapping sets. Comput. Graph. Forum, 28(3):967-974, 2009. |doi:
10.1111/35.1467-8659.2009.01452.x.

A. Skupin. A cartographic approach to visualizing conference abstracts.
IEEE Comput. Graph. Appl., 22(1):50-58, 2002. |doi:10.1109/38.974518!

M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis,
and Machine Vision. Thomson-Engineering, 2007. |doi:10.1007/
978-1-4899-3216-7.

G. Stapleton, P. Rodgers, J. Howse, and L. Zhang. Inductively generating
Euler diagrams. IEEE Trans. Visual. Comput. Graphics, 17(1):88-100,
2011. doi:10.1109/TVCG.2010.28.

S.-i. Tokunaga. Intersection number of two connected geometric graphs.
Inform. Process. Lett., 59(6):331-333, 1996. doi:10.1016/0020-0190(96)
00124-X.

A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional
spaces and related problems. SIAM Journal on Computing, 11(4):721-736,
1982. |[doi:10.1137/0211059.

J. Zunic and P. L. Rosin. A convexity measurement for polygons. IEEE
Trans. Pattern Anal. Mach. Intell., 26:173-182, 2002. |doi:10.1109/
TPAMI.2004.19.

http://dx.doi.org/10.1109/TVCG.2010.210
http://dx.doi.org/10.1109/TVCG.2010.210
http://dx.doi.org/10.1109/TVCG.2014.2346422
http://dx.doi.org/10.1111/j.1467-8659.2009.01452.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01452.x
http://dx.doi.org/10.1109/38.974518
http://dx.doi.org/10.1007/978-1-4899-3216-7
http://dx.doi.org/10.1007/978-1-4899-3216-7
http://dx.doi.org/10.1109/TVCG.2010.28
http://dx.doi.org/10.1016/0020-0190(96)00124-X
http://dx.doi.org/10.1016/0020-0190(96)00124-X
http://dx.doi.org/10.1137/0211059
http://dx.doi.org/10.1109/TPAMI.2004.19
http://dx.doi.org/10.1109/TPAMI.2004.19

	Introduction
	Related Work
	Set Visualization
	Visualizing Graphs as Maps
	Colored Spanning Trees

	Creating Contiguous Non-Overlapping Regions
	Convexity Measures
	An Algorithm for Ink Minimization

	MapSets
	Experiments
	Conclusions and Future Work

