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Abstract

Graph embedding problems have gained importance in the field of in-
terconnection networks for parallel computer architectures. Interconnec-
tion networks provide an effective mechanism for exchanging data between
processors in a parallel computing system. In this paper, we embed the
rooted hypertree RHT (r) into r-dimensional hypercube Qr with dilation
2, r ≥ 2. Also, we compute the exact wirelength of the embedding of the
r-dimensional hypercube Qr into the rooted hypertree RHT (r), r ≥ 2.
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1 Introduction

A suitable interconnection network is an important part for the design of a
multicomputer or multiprocessor system. This network is usually modeled by
a symmetric graph, where the nodes represent the processing elements and the
edges represent the communication channels. Desirable properties of an inter-
connection network include symmetry, embedding capabilities, relatively small
degree, small diameter, scalability, robustness, and efficient routing [21]. One of
the most efficient interconnection networks is the hypercube due to its structural
regularity, potential for parallel computation of various algorithms, and the high
degree of fault tolerance [22]. The hypercube has many excellent features and
thus becomes the first choice of topological structure of parallel processing and
computing systems. The machines based on hypercubes such as the Cosmic
Cube from Caltech, the iPSC/2 from Intel and Connection Machines have been
implemented commercially [8]. Hypercubes are very popular models for paralled
computation because of their symmetry and relatively small number of inter-
processor connections. The hypercube embedding problem is the problem of
mapping a communication graph into a hypercube multiprocessor. Hypercubes
are known to simulate other structures such as grids and binary trees [7, 16].

Graph embedding is an important technique that maps a logical graph into
a host graph, usually an interconnection network. Many applications can be
modeled as graph embedding. In architecture simulation, graph embedding has
been known as a powerful tool for implementation of parallel algorithms or
simulation of different interconnection networks. A parallel algorithm can be
modeled by a task interaction graph, where nodes and edges represent tasks
and direct communications between tasks, respectively. Thus, the problem of
efficiently executing a parallel algorithm A on a parallel computer M can be
often reduced to the problem of mapping the logical graph G, representing A,
on the host graph H, representing M , so that the communication overhead is
minimized [15]. In parallel computing, a large process is often decomposed into
a set of small sub-processes that can execute in parallel with communications
among these sub-processes. The problem of allocating these sub-processes into
a parallel computing system can be again modeled by graph embedding [6].

The quality of an embedding can be measured by certain cost criteria. One
of these criteria which is considered very often is the dilation. The dilation of
an embedding is defined as the maximum distance between a pair of vertices of
host graph that are images of adjacent vertices of logical graph. It is a measure
for the communication time needed when simulation one network on another
[15]. Another important cost criteria is the wirelength. The wirelength of an
embedding is the sum of the dilations in host graph of edges in guest graph.
The wirelength of a graph embedding arises from VLSI designs, data structures
and data representations, networks for parallel computer systems, biological
models that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on [14, 24]. Graph embeddings have been well studied for a
number of networks [2, 3, 7, 16, 17, 18, 19, 20].
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Figure 1: Wiring diagram of a grid G into path H with ECf (G,H) = 4

Even though there are numerous results and discussions on the wirelength
problem, most of them deal with only approximate results and the estimation
of lower bounds [2]. The embedding discussed in this paper produce exact
wirelength.

2 Preliminaries

In this section we give the basic definitions and preliminaries related to embed-
ding problems.

Definition 2.1 [2] Let G and H be finite graphs. An embedding of G into H
is a pair (f, Pf ) defined as follows:

1. f is a one-to-one map from V (G)→ V (H)

2. Pf is a one-to-one map from E(G) to {Pf (u, v) : Pf (u, v) is a path in H
between f(u) and f(v) for (u, v) ∈ E(G)}.

For brevity, we denote the pair (f, Pf ) as f .

Definition 2.2 [2] If e = (u, v) ∈ E(G), then the length of Pf (u, v) in H is
called the dilation of the edge e. The maximum dilation over all edges of G is
called the dilation of the embedding f . The dilation of embedding G into H is
the minimum dilation taken over all embeddings f of G into H and denote it
by dil(G,H).

The expansion [2] of an embedding f is the ratio of the number of vertices of
H to the number of vertices of G. In this paper, we consider embeddings with
expansion one.

Definition 2.3 [2] Let f : G→ H be an embedding. For e ∈ E(H), let ECf (e)
denote the number of edges (u, v) of G such that e is in the path Pf (u, v) between
f(u) and f(v) in H. In other words,

ECf (e) = |{(u, v) ∈ E(G) : e ∈ Pf (u, v)}| .
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Then the edge congestion of f : G → H is ECf (G,H) = maxECf (e), where
the maximum is taken over all edge e of H.

The edge congestion of G into H is defined as EC(G,H) = minECf (G,H),
where the minimum is taken over all embeddings f : G → H. On the other
hand, if S is any subset of E(H), then ECf (S) =

∑
e∈S

ECf (e).

If we think of G as representing the wiring diagram of an electronic circuit,
with the vertices representing components and the edges representing wires con-
necting them, then the edge congestion EC(G,H) is the minimum, over all em-
beddings f : V (G) → V (H), of the maximum number of wires that cross any
edge of H [3]. See Figure 1.

Definition 2.4 [16] The wirelength of an embedding f of G into H is given by

WLf (G,H) =
∑

(u,v)∈E(G)

dH(f(u), f(v)) =
∑

e∈E(H)

ECf (e)

where dH(f(u), f(v)) denotes the length of the path Pf (u, v) in H.
The wirelength of G into H is defined as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddings f of G into H.

The wirelength problem [2, 3, 16, 18] of a graph G into H is to find an
embedding of G into H that induces the minimum wirelength WL(G,H). The
following two versions of the edge isoperimetric problem of a graph G(V,E) have
been considered in the literature [4], and are NP -complete [10].

Problem 1 : Find a subset of vertices of a given graph, such that the edge
cut separating this subset from its complement has minimal size among all
subsets of the same cardinality. Mathematically, for a given m, if θG(m) =

min
A⊆V , |A|=m

|θG(A)| where θG(A) = {(u, v) ∈ E : u ∈ A, v /∈ A}, then the

problem is to find A ⊆ V such that |A| = m and θG(m) = |θG(A)|.

Problem 2 : Find a subset of vertices of a given graph, such that the number
of edges in the subgraph induced by this subset is maximal among all induced
subgraphs with the same number of vertices. Mathematically, for a given m, if
IG(m) = max

A⊆V , |A|=m
|IG(A)| where IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the

problem is to find A ⊆ V such that |A| = m and IG(m) = |IG(A)|.
For a given m, where m = 1, 2, . . . , n, we consider the problem of finding a

subset A of vertices of G such that |A| = m and |θG(A)| = θG(m). Such subsets
are called optimal. We say that optimal subsets are nested if there exists a total
order O on the set V such that for any m = 1, 2, . . . , n, the first m vertices in
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this order is an optimal subset. In this case we call the order O an optimal

order [4, 12]. This implies that WL(G,Pn) =
n∑

m=0
θG(m) [10].

Further, if a subset of vertices is optimal with respect to Problem 1, then its
complement is also an optimal set. But, it is not true for Problem 2 in general.
However for regular graphs a subset of vertices S is optimal with respect to
Problem 1 if and only if S is optimal for Problem 2 [4]. In the literature,
Problem 2 is defined as the maximum subgraph problem [10].

Lemma 2.5 (Congestion Lemma) [16] Let G be an r-regular graph and f be
an embedding of G into H. Let S be an edge cut of H such that the removal of
edges of S leaves H into 2 components H1 and H2 and let G1 = f−1(H1) and
G2 = f−1(H2). Also S satisfies the following conditions:

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pf (a, b) has no edges in S.

(ii) For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pf (a, b) has exactly
one edge in S.

(iii) G1 is an optimal set.

Then ECf (S) is minimum and ECf (S) =
∑
e∈S

ECf (e) = r |V (G1)|−2 |E(G1)|.

Lemma 2.6 (Partition Lemma) [16] Let f : G → H be an embedding. Let
{S1, S2, . . . , Sp} be a partition of E(H) such that each Si is an edge cut of H
satisfying the conditions of Congestion Lemma. Then

WLf (G,H) =

p∑
i=1

ECf (Si).

Lemma 2.7 (2-Partition Lemma) [1] Let f : G → H be an embedding. Let
[2E(H)] denote a collection of edges of H repeated exactly 2 times. In other
words, [2E(H)] comprises of 2 copies of the edge set of H. Let {S1, S2, . . . , Sm}
be a partition of [2E(H)] such that each Si is an edge cut of H. Then

WLf (G,H) =
1

2

m∑
i=1

ECf (Si).

Definition 2.8 [24] For r ≥ 1, let Qr denote the r-dimensional hypercube. The
vertex set of Qr is formed by the collection of all r-dimensional binary strings.
Two vertices x, y ∈ V (Qr) are adjacent if and only if the corresponding binary
strings differ exactly in one bit.

Equivalently if n = 2r then the vertices of Qr can also be identified with
integers 0, 1, . . . , n − 1 so that if a pair of vertices i and j are adjacent then
i− j = ±2p for some p ≥ 0.
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Figure 2: (a) HT (4) with binary labels (b) HT (4) with decimal labels

Definition 2.9 [13] An incomplete hypercube on i vertices of Qr is the subcube
induced by {0, 1, . . . , i− 1} and is denoted by Li, 1 ≤ i ≤ 2r.

Definition 2.10 [11] The basic skeleton of a hypertree is a complete binary tree
Tr. Here the nodes of the tree are numbered as follows: The root node has label
1. The root is said to be at level 1. Labels of left and right children are formed
by appending a 0 and 1, respectively, to the label of the parent node. See Figure
2(a). The decimal labels of the hypertree in Figure 2(a) is depicted in Figure
2(b). Here the children of the node x are labeled as 2x and 2x + 1. Additional
links in a hypertree are horizontal and two nodes are joined in the same level
i of the tree if their label difference is 2i−2. We denote an r-level hypertree as
HT (r). It has 2r − 1 vertices and 3 (2r−1 − 1) edges. The rooted hypertree
RHT (r) is obtained from the hypertree HT (r) by attaching to its root a pendant
edge. The new vertex is called the root of RHT (r), r ≥ 2.

Theorem 2.11 [12] Let Qr be an r-dimensional hypercube. For 1 ≤ i ≤ 2r, Li

is an optimal set on i vertices.

Lemma 2.12 [16] Let Qr be an r-dimensional hypercube. Let m = 2t1 + 2t2 +
· · ·+ 2tl such that r ≥ t1 > t2 > · · · > tl ≥ 0. Then |E(Qr[Lm])| = [t1 · 2t1−1 +
t2 · 2t2−1 + · · ·+ tl · 2tl−1] + [2t2 + 2 · 2t3 + · · ·+ (l − 1)2tl ].

3 Main Results

In this section, we embed the rooted hypertree RHT (r) into r-dimensional
hypercube Qr with dilation 2. Further we compute the minimum wirelength of
embedding Qr into RHT (r).

The concept of embedding is widely studied in the area of fixed intercon-
nection parallel architectures. A parallel architecture is embedded into another
architecture to simulate one on another. An important feature of an intercon-
nection network is its ability to efficiently simulate programs written for other
architectures [15].

A tree is a connected graph that contains no cycles. The most common type
of tree is the binary tree. It is so named because each node can have at most two
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descendents. A binary tree is said to be a complete binary tree if each internal
node has exactly two descendents. These descendents are described as left and
right children of the parent node. Binary trees are widely used in data structures
because they are easily stored, easily manipulated, and easily retrieved. Also,
many operations such as searching and storing can be easily performed on tree
data structures. Furthermore, binary trees appear in communication pattern
of divide-and-conquer type algorithms, functional and logic programming, and
graph algorithms [24].

There are several useful ways in which we can systematically order all nodes
of a tree. The three most important ordering are called preorder, inorder and
postorder. To achieve these orderings the tree is traversed in a particular fashion.
Starting from the root, the tree is traversed counter clockwise staying as close
to the tree as possible. For preorder, we list a node the first time we pass it.
For inorder, we list a node the second time we pass it. For postorder, we list a
node the last time we pass it [9].

For any non-negative integer r, the complete binary tree of height r − 1,
denoted by Tr, is the binary tree where each internal vertex has exactly two
children and all the leaves are at the same level. Clearly, a complete binary
tree Tr has r levels and level i, 1 ≤ i ≤ r, contains 2i−1 vertices. Thus, Tr has
exactly 2r − 1 vertices. The rooted complete binary tree RTr is obtained from
a complete binary tree Tr by attaching to its root a pendant edge. The new
vertex is called the root of RTr and is considered to be at level 0 [24].

A hypertree is a hypergraph H if there is a tree T such that the hyperedges
of H induce subtrees in T [5]. In the literature, hypertree is also called a subtree
hypergraph or arboreal hypergraph [5, 23].

A hypertree is an interconnection topology for incrementally expansible mul-
ticomputer systems, which combines the easy expansibility of tree structures
with the compactness of the hypercube; that is, it combines the best features
of the binary tree and the hypercube. These two properties make this topology
particulary attractive for implementation of multiprocessor networks of the fu-
ture, where a complete computer with a substantial amount of memory can fit
on a single VLSI chip [11].

Algorithm Dilation (Hypertree, Hypercube)

Input : The rooted hypertree RHT (r) and the r-dimensional hypercube Qr,
r ≥ 2.
Algorithm : Removal of the horizontal edges in rooted hypertree RHT (r)
leaves a rooted complete binary tree RTr. Label the vertices of RTr using
binary codes corresponding to the inorder labeling [9]. Label the vertices of
Qr by using binary code corresponding to the lexicographic order [2] from 0 to
2r − 1. See Figure 3.
Output : An embedding f of RHT (r) into Qr given by f(x) = x with dilation
2. See Figure 3.

Theorem 3.1 The rooted hypertree RHT (r) can be embedded into the r-dimen-
sional hypercube Qr with dilation 2, r ≥ 2.
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Figure 3: Embedding of RHT (4) into Q4 with dilation 2

Proof: Label the vertices ofRHT (r) andQr using Dilation Algorithm. RHT (r)
and Qr are not isomorphic, since RHT (r) contains a cycle of length 3 and Qr

is a bipartite graph. Hence the dilation of RHT (r) into Qr is ≥ 2.
Consider any edge e = (u, v) in RHT (r). We have the following two cases.
Case 1 (e ∈ RTr): Since, the children of the node u in level i, 1 ≤ i ≤ r−1

are labeled as u−2r−(i+1) and u+2r−(i+1), the binary codes of u and u−2r−(i+1)

will differ in exactly one position and the binary codes of u and u+2r−(i+1) will
differ in exactly two positions. Suppose u is the root of RTr, then the binary
code of u and v will differ in exactly one position.

Case 2 (e /∈ RTr): By the labeling of RHT (r), the binary codes of u and
v will differ in exactly one position.

Hence the distance between f(u) and f(v) in Qr is not larger than 2 in both
the cases. �

Next, we compute the exact wirelength of embedding r-dimensional hyper-
cube Qr into rooted hypertree RHT (r). For proving the main result, we need
the following Lemmas.

Lemma 3.2 [19] For i = 1, 2, ..., r − 1, NcutS2i

i = {2i, 2i + 1, ..., 2i+1 − 1} is
an optimal set in Qr.

Lemma 3.3 For i = 1, 2, ..., r − 1, NcutS2i

i = {2i, 2i + 1, ..., 2i+1 − 2} is an
optimal set in Qr.

Proof: Let L2i denote the incomplete hypercube on 2i vertices. Define ϕ :
NcutS2i

i → L2i by ϕ(2i + k) = k. If the binary representation of 2i + k is
α1α2 · · ·αr then the binary representation of k is 00 · · · 00︸ ︷︷ ︸

r−i times

αr−i+1αr−i+2 · · ·αr.

Thus the binary representation of two numbers x and y differ in exactly one bit
⇔ the binary representation of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore

(x, y) is an edge in NcutS2i

i ⇔ (ϕ(x), ϕ(y)) is an edge in L2i . Hence NcutS2i

i

and L2i are isomorphic. By Theorem 2.11, NcutS2i

i is an optimal set in Qr. �

Lemma 3.4 For i = 1, 2, . . . , r − 2, NcutSi
1 = {0, 1, 2, . . . , 2i − 2, 2r−1, 2r−1 +

1, . . . , 2r−1 + 2i − 2} is an optimal set in Qr.
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Figure 4: Edge cut of RHT (5)

Proof: By Theorem 2.11, the set {0, 1, 2, . . . , 2i − 2} is optimal and by Lemma
3.2, the set {2r−1, 2r−1 + 1, . . . , 2r−1 + 2i− 2} is optimal in Qr. Also the binary
representation of k and 2r−1 + k, 0 ≤ k ≤ 2i − 2, differ exactly in one bit.
Therefore

∣∣E(Qr[NcutSi
1])
∣∣ = 2 |E(Qr[L2i−1])|+ 2i−1 = 2i(2i−1− i) + 2i−1 =

(i + 1)2i − 2i − 1. But by Lemma 2.12,
∣∣E(Qr[L2(2i−1)])

∣∣ = (i + 1)2i − 2i − 1
and hence by Theorem 2.11, NcutSi

1 is an optimal set in Qr. �

Algorithm Wirelength (Hypercube, Hypertree)

Input : The r-dimensional hypercube Qr and the rooted hypertree RHT (r),
r ≥ 2.

Algorithm : Label the vertices of Qr by lexicographic order [2] from 0 to 2r−1.
Removal of the horizontal edges in rooted hypertree RHT (r) leaves a rooted
complete binary tree RTr. Label the vertices of RTr using inorder labeling [9].
See Figure 4.

Output : An embedding f of Qr into RHT (r) given by f(x) = x with optimal
wirelength.

Theorem 3.5 The exact wirelength of Qr into RHT (r), r ≥ 2 is given by

WL(Qr, RHT (r)) = 2r−1(r2 − 5r + 11)− (r + 3).

Proof. Label the vertices of Qr and RHT (r) using Wirelength Algorithm. We
assume that the labels represent the vertices to which they are assigned.

For 1 ≤ i ≤ r− 2, 1 ≤ j ≤ 2r−(i+1) and j is odd, let Si
j and Ri

j be edge cuts

in RHT (r) given by Si
j = Ri

j = {(2i−1(2j − 1) − 1, j2i − 1), (2r−1 + 2i−1(2j −
1)− 1, 2r−1 + j2i − 1)}.
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For 1 ≤ i ≤ r− 2, 1 ≤ j ≤ 2r−(i+1) and j is even, let Si
j and Ri

j be edge cuts

in RHT (r) given by Si
j = Ri

j = {(2i−1(2j − 1) − 1, 2i−1(2j − 2) − 1), (2r−1 +

2i−1(2j − 1)− 1, 2r−1 + 2i−1(2j − 2)− 1)}.
For i = 1, let Si and Ri be edge cuts in RHT (r) given by Si = Ri = {((2i−

1)2r−2−1, 2r+i−2−1)}. For i = 2, let Si = {(2r−2−1, 2r−1−1), (2r−1−1, 2r−2+
2r−1−1)}. For i = 3, let Si = {(k−1, k+2r−1−1), (2r−2−1, 2r−1−1) : 1 ≤ k ≤
2r−1− 1}. For i = 4, let Si = {(k− 1, k+ 2r−1− 1), (2r−1− 1, 2r−2 + 2r−1− 1) :
1 ≤ k ≤ 2r−1 − 1}.

Then {Si
j , R

i
j : 1 ≤ i ≤ r− 2, 1 ≤ j ≤ 2r−(i+1)} ∪ {S1, R1} ∪ {Si : 2 ≤ i ≤ 4}

is a partition of [2E(RHT (r))]. See Figure 4.

For each i, j, 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1), E(RHT (r))\Si
j has two

components Hi
j1 and Hi

j2, where V (Hi
j1) = {(j − 1)2i, (j − 1)2i + 1, . . . , j2i −

2, 2r−1 + (j−1)2i, 2r−1 + (j−1)2i + 1, . . . , 2r−1 + j2i−2}. Let Gi
j1 = f−1(Hi

j1)

and Gi
j2 = f−1(Hi

j2). By Lemma 3.4, Gi
j1 is an optimal set and each Si satisfies

conditions (i), (ii) and (iii) of the Congestion Lemma. Therefore ECf (Si
j) is

minimum. Similarly, ECf (Ri
j) is minimum.

For i = 1, E(RHT (r))\Si has two components Hi1 and Hi2, where V (Hi1) =
{2r−2+i − 1}. Let Gi1 = f−1(Hi1) and Gi2 = f−1(Hi2). By Theorem 2.11, Gi1

is an optimal set and Si satisfies conditions (i), (ii) and (iii) of the Congestion
Lemma. Therefore ECf (Si) is minimum. Similarly, ECf (Ri) is minimum.

For i = 2, E(RHT (r))\Si has two components Hi1 and Hi2, where V (Hi1) =
{2r−1 − 1, 2r − 1}. Let Gi1 = f−1(Hi1) and Gi2 = f−1(Hi2). Since, Gi1 is an
optimal set and Si satisfies conditions (i), (ii) and (iii) of the Congestion Lemma.
Therefore ECf (Si) is minimum.

For i = 3, E(RHT (r))\Si has two components Hi1 and Hi2, where V (Hi1) =
{0, 1, . . . , 2r−1 − 2}. Let Gi1 = f−1(Hi1) and Gi2 = f−1(Hi2). By Theorem
2.11, Gi1 is an optimal set and Si satisfies conditions (i), (ii) and (iii) of the
Congestion Lemma. Therefore ECf (Si) is minimum.

For i = 4, E(RHT (r))\Si has two components Hi1 and Hi2, where V (Hi1) =
{2r−1, 2r−1 + 1, . . . , 2r − 2}. Let Gi1 = f−1(Hi1) and Gi2 = f−1(Hi2). By
Lemma 3.3, Gi1 is an optimal set and Si satisfies conditions (i), (ii) and (iii)
of the Congestion Lemma. Therefore ECf (Si) is minimum. The 2-Partition
Lemma implies that the wirelength is minimum.

By Congestion Lemma, ECf (S1) = ECf (R1) = r, ECf (S2) = 2r − 2,
ECf (S3) = ECf (S4) = 2r−1+r−2. For each i, j, 1 ≤ i ≤ r−2, 1 ≤ j ≤ 2r−(i+1),
ECf (Si

j) = ECf (Ri
j) = 2i+1(r− i− 1)− 2r+ 4i. Then, by 2-Partition Lemma,

WL(Qr, RHT (r)) = 3r − 3 + 2r−1 +

r−2∑
i=1

2r−(i+1)[2i+1(r − i− 1)− 2r + 4i]

= 2r−1(r2 − 5r + 11)− (r + 3). �
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4 Concluding Remarks

We provide an embedding of the rooted hypertree RHT (r) into r-dimensional
hypercube Qr with dilation 2. Further, we compute the exact wirelength of
embedding r-dimensional hypercube Qr into rooted hypertree RHT (r), r ≥ 2.
Finding the dilation of embedding hypercube into rooted hypertree is under
investigation.
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