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Abstract

We examine several types of visibility graphs in which sightlines can
pass through k objects. For k ≥ 1 we bound the maximum thickness
of semi-bar k-visibility graphs between d 2

3
(k + 1)e and 2k. In addition

we show that the maximum number of edges in arc and circle k-visibility
graphs on n vertices is at most (k+1)(3n− k− 2) for n > 4k+4 and

(
n
2

)
for n ≤ 4k + 4, while the maximum chromatic number is at most 6k + 6.
In semi-arc k-visibility graphs on n vertices, we show that the maximum
number of edges is

(
n
2

)
for n ≤ 3k + 3 and at most (k + 1)(2n− k+2

2
) for

n > 3k + 3, while the maximum chromatic number is at most 4k + 4.
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1 Introduction

Visibility graphs are graphs for which vertices can be drawn as regions so that
two regions are visible to each other if and only if there is an edge between
their corresponding vertices. In this paper we study bar, semi-bar, arc, circle,
and semi-arc visibility graphs. We also study a variant of visibility graphs
represented by drawings in which objects are able to see through exactly k
other objects for some positive integer k. These graphs are known as k-visibility
graphs.

Dean et al. [1] previously placed upper bounds on the number of edges, the
chromatic number, and the thickness of bar k-visibility graphs with n vertices
in terms of k and n. Felsner and Massow [3] tightened the upper bound on the
number of edges of bar k-visibility graphs and placed bounds on the number of
edges, the thickness, and the chromatic number of semi-bar k-visibility graphs.
Hartke et al. [4] found sharp upper bounds on the maximum number of edges
in bar k-visibility graphs.

Other research has found classes of graphs which can be represented as bar
visibility graphs. For example Lin et al. [7] determined an algorithm for plane
triangular graphs G with n vertices which outputs a bar visibility representation
of G no wider than b 22n−4215 c with bar ends on grid points in time O(n). Luc-
cio et al. [8] proved any bar visibility graph can be transformed into a planar
multigraph with all triangular faces by successively duplicating edges, and fur-
thermore that every graph which can be transformed into a planar multigraph
with all triangular faces by successively duplicating edges can be represented as
a bar visibility graph.

In Section 2 we define each type of k-visibility graph considered in this paper.
In Section 3 we bound the maximum thickness of semi-bar k-visibility graphs
between d 23 (k + 1)e and 2k. We also bound the maximum number of edges
and the chromatic numbers of arc, circle, and semi-arc k-visibility graphs. In
Section 4 we show an equation based on skyscraper puzzles for counting the
number of edges in any semi-bar k-visibility graph.

After posting an earlier version of this paper, the authors found an abstract
[11] with no paper that claimed to bound the maximum thickness of bar k-
visibility graphs between d 2k+3

3 e and 3k + 3 and the maximum thickness of

semi-bar k-visibility graphs between d 2k+5
6 e and 2k. The proofs in this paper

do not use the results claimed in [11].

2 Definitions and assumptions

In this section we define the various types of visibility graphs and cover condi-
tions that we assume throughout the paper.

Definition 1 The thickness Θ(G) of a graph G is the minimum number of
planar subgraphs whose union is G.
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Research on bounding graph thickness is motivated by the problem of effi-
ciently designing very large scale integration (VLSI) circuits. VLSI circuits are
built in layers to avoid wire crossings which disrupt signals [9]. For each graph
G with vertices corresponding to circuit gates and edges corresponding to wires,
the thickness of G gives a lower bound on how many layers are needed to build
the VLSI circuit without wires crossing in the same layer.

Below are definitions for the different kinds of k-visibility graphs.

2.1 Bar k-visibility graphs

Bar visibility graphs are graphs that have the property that the vertices of the
graph correspond to the elements of a given set of horizontal segments, called
bars, in such a way that two vertices of the graph are adjacent if and only if
there exists a vertical segment which only intersects the horizontal segments
corresponding to those vertices. The set of horizontal segments is said to be the
bar visibility representation of the graph.

This type of visibility graph was introduced in the 1980s by Duchet et al.
[2] and Schlag et al. [10] mainly for its applications in the development of
VLSI. Figure 1 gives an example of a set of horizontal line segments and its
corresponding bar visibility graph. Sightlines are drawn as dashed lines.

Figure 1: A bar visibility graph and its bar visibility representation.

Dean et al. [1] extended the definition of bar visibility graphs by allowing
visibility through k bars. Vertices u and v have an edge in the graph if and only
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if there exists a vertical segment intersecting the horizontal bars correspond-
ing to u and v and at most k other horizontal bars. These graphs are called
bar k-visibility graphs. In this terminology visibility means 0-visibility and we
will use these terms interchangeably. Figure 2 shows an example of a bar 1-
visibility graph with a bar 1-visibility representation equivalent to the one in
Figure 1. Sightlines that pass through an additional bar are drawn thicker than
the original sightlines.

Figure 2: A bar 1-visibility graph and its bar 1-visibility representation.

2.2 Semi-bar k-visibility graphs

A semi-bar k-visibility graph is a bar k-visibility graph where the right endpoints
of all the bars have x-coordinates equal to 0. We prove an upper bound of 2k on
the thickness of semi-bar k-visibility graphs and show that there exist semi-bar
visibility graphs with thickness at least

⌈
2
3 (k + 1)

⌉
. We will assume that all

semi-bars have different lengths unless otherwise specified. If any pair of semi-
bars had the same length, then the length of one could be changed without
deleting any edges.

Every semi-bar k-visibility graph on n vertices, including representations
that contain semi-bars of equal lengths, can be represented using semi-bars with
integer lengths between 1 and n inclusive. Therefore every semi-bar k-visibility
graph can be represented by a sequence of n positive integers between 1 and n
inclusive.
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Felsner and Massow [3] proved that the maximum number of edges in a
semi-bar k-visibility graph with n vertices is (k+ 1)(2n− 2k− 3) for n ≥ 2k+ 2
and

(
n
2

)
for n ≤ 2k + 2. We give a formula to count the number of edges

of an arbitrary semi-bar k-visibility graph based on functions of its semi-bar
k-visibility representation.

The method we use is inspired by skyscraper problems, which were also ex-
amined using permutations in [6]. A skyscraper puzzle consists of an empty
n× n grid with numbers written left or right of some rows and above or below
some columns. The solver fills the grid with numbers between 1 and n repre-
senting heights of skyscrapers placed in each entry of the grid. The numbers
are placed so that no two skyscrapers in the same column or same row have the
same height.

If there is a number m above a column in the empty grid, then the numbers
1, . . . , n must be placed in that column so that there are m numbers in the
column which are greater than every number above them. If there is a number
m below a column in the empty grid, then the numbers 1, . . . , n must be placed
in that column so that there are m numbers in the column which are greater
than every number below them. The restrictions for the numbers in rows are
defined analogously based on the numbers left or right of the row. Then each
number m outside the grid corresponds to the number of visible skyscrapers in
the row or column adjacent to m which are visible from the location of m. See
Figure 3 for an example of a skyscraper puzzle.

We consider a visibility representation based on skyscraper puzzles in which
there is just a single column in which to place numbers. Any such configuration
corresponds to a semi-bar visibility graph. Any numbers above (resp. below)
the column are the number of semi-bars which are longer than all semi-bars
above (resp. below) them.

We show how to count the number of edges in any semi-bar visibility graph by
using the numbers above and below the column in its skyscraper configuration.
Furthermore we extend the skyscraper analogy to k-visibility graphs to show a
similar result for semi-bar k-visibility representations.

2.3 Arc, circle, and semi-arc visibility graphs

An interesting extension of bar visibility graphs is the concept of arc visibility
graphs introduced by Hutchinson [5], who defined a non-degenerate cone in the
plane to be a 4-sided region of positive area with two opposite sides being arcs
of circles concentric about the origin and the other two sides being (possibly
intersecting) radial line segments. Two concentric arcs a1 and a2 are then said
to be radially visible if there exists a cone that intersects only these two arcs
and whose two circular ends are subsets of the two arcs.

A graph is then called an arc visibility graph if its vertices can be represented
by pairwise disjoint arcs of circles centered at the origin such that two vertices
are adjacent in the graph if and only if their corresponding arcs are radially
visible. Circle visibility graphs are defined in nearly the same way, with the
difference that vertices can be represented as circles as well as arcs. Note that
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Figure 3: An example of a skyscraper puzzle from the Eighth World Puzzle
Championship.

all arc visibility graphs are also circle visibility graphs. Figure 4 shows an arc
visibility graph and its arc visibility representation.

In any arc visibility graph, the arcs can be expressed uniquely as a set of
polar coordinates {(ri, α) : αi,1 ≤ α ≤ αi,2} such that ri is positive, αi,1 is in the
interval [0, 2π), and 0 ≤ αi,2 − αi,1 < 2π. We call the endpoints corresponding
to the coordinates (ri, αi,1) and (ri, αi,2) the negative and positive endpoints of
arc ai, respectively.

We also examine arc k-visibility graphs and circle k-visibility graphs, where
cones are allowed to intersect k additional arcs and circles. If a cone intersects
the same arc in two disjoint regions, then it counts as two intersections. Figure 5
shows the arc 1-visibility graph of the arc visibility representation shown in
Figure 4.

We can also define semi-arc k-visibility graphs to be arc k-visibility graphs
in which every arc’s negative endpoint lies on the x-axis. It follows by definition
that all bar k-visibility graphs are also arc k-visibility graphs and all semi-bar
k-visibility graphs are also semi-arc k-visibility graphs. Indeed let G be a graph
on n vertices that has a bar k-visibility representation in which the horizontal
endpoints of bar i are ai ≥ 0 and bi > ai and the height of bar i is hi > 0.
Define M = max1≤i≤n {ai, bi}. For each i, draw the arc of radius hi centered at
the origin between the angles π aiM and π biM . Then the resulting drawing is an
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Figure 4: An arc visibility graph and its arc visibility representation.

arc k-visibility representation of G.

Alternatively there exist arc k-visibility graphs which are not bar k-visibility
graphs. The graph K5 is not planar, so it is not a bar 0-visibility graph. However
K5 has an arc visibility representation. For example consider the sightlines
between the five arcs having endpoints (1, 0) and (1, π2 ), (2, π6 ) and (2, 2π3 ),
(3, π4 ) and (3, 5π4 ), (4, π3 ) and (4, 7π4 ), and (5, 0) and (5, π2 ). Since each pair of
arcs is radially visible in this representation, then K5 is an arc 0-visibility graph.

When considering arc and circle k-visibility graphs, we make two assump-
tions.

Assumption 2 If two endpoints of two arcs have the same angular coordinate,
then we can move one slightly without deleting any edges in the arc k-visibility
graph. So we assume that no two arcs have endpoints with the same angular
coordinate since we are maximizing the number of edges.

Assumption 3 If there are two arcs that are the same distance from the origin,
then we can slightly increase the radius of one so that their radii are different
without affecting the arc k-visibility graph. Therefore we also assume that no
two arcs are the same distance away from the origin. We then label the arcs
with a1, a2, . . . , and an, where ai is given to the arc with the ith greatest radius.

Any circle can be turned into an arc without deleting any edges, but this
could possibly add edges. As we are interested in upper bounds on the number of
edges and the chromatic number of arc and circle k-visibility graphs, then we will
prove bounds for arc k-visibility graphs which will also hold for circle k-visibility
graphs. Therefore we can assume that arc or circle k-visibility representations
only contain arcs.
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Figure 5: An arc 1-visibility graph and its arc 1-visibility representation.

In the next section we prove an upper bound of (k + 1)(3n − k − 2) for
n ≥ 4k + 4 on the number of edges and an upper bound of 6k + 6 on the
chromatic number of arc and circle k-visibility graphs. Since K4k+4 is a bar
k-visibility graph [1], then the maximum number of edges in any arc or circle
k-visibility graph on n ≤ 4k + 4 vertices is

(
n
2

)
.

3 Bounds on edges, chromatic number, and thick-
ness

Dean et al. [1] showed that the thickness of any bar k-visibility graph is at
most 2k(9k− 1) for k > 0. The following lemma provides a lower bound on the
maximum thickness of bar k-visibility graphs.

Lemma 4 There exist bar k-visibility graphs with thickness at least k + 1 for
all k ≥ 0.

Proof: Consider m disjoint planar subgraphs of a bar k-visibility graph G
with n vertices. It is well known that an n-vertex planar graph has at most
3n− 6 edges, so it follows that the number of edges in G is at most m(3n− 6).
Hartke et al. [4] showed that if G has n ≥ 4k + 4 vertices, then G has at most
(k + 1)(3n− 4k − 6) edges. Dean et al. [1] showed that this bound is sharp, so
we consider a bar k-visibility graph with (k + 1)(3n− 4k − 6) edges. Therefore
m(3n− 6) ≥ (k+ 1)(3n− 4k− 6). It then follows that Θ(G) ≥ (k+ 1) 3n−4k−6

3n−6 .

Fix k and choose n > 4k2+4k+6
3 so that (k+1) 3n−4k−6

3n−6 > k. Then Θ(G) ≥ k+1.
�



JGAA, 19(1) 345–360 (2015) 353

To bound the thickness of semi-bar k-visibility graphs, we define a one-bend
construction as in [3]. We will assume no pair of semi-bars have the same length
since we can change the lengths without deleting edges in the k-visibility graph.

Definition 5 The underlying semi-bar k-visibility graph Gk of S is the graph
with semi-bar k-visibility representation S.

Consider a semi-bar k-visibility representation S of Gk in which semi-bars
are horizontal with all right endpoints on the same vertical line and all left
endpoints on different vertical lines. We construct a one-bend drawing from S
as Felsner and Massow did in [3]. In this drawing each edge consists of two
segments connected at an endpoint.

To create a one-bend drawing of Gk, first widen the bars so that they are
rectangles while keeping their lengths constant. Each vertex v in the graph now
corresponds to a rectangle Rv. Next draw each vertex on the midpoint of the
left side of each rectangle. Then take the leftmost endpoint, say u, of each edge
e = {u, v}.

Then project v orthogonally onto the nearest side of Ru, and call this pro-
jection v′. Note that the line between v and v′ is a sightline between Ru and
Rv. Choose ε to be less than the minimum distance between any two endpoints
of bars in S. Take vε on the side of Ru containing v′ so that the length of v′vε
is ε. Let e be the union of the two line segments uvε and vεv. Note that if two
edges share an endpoint, then by definition they will not intersect anywhere
other than their common endpoint. See Figure 6.

Figure 6: A one-bend drawing.

Theorem 6 If G is a semi-bar k-visibility graph with k ≥ 1, then Θ(G) ≤ 2k.

Proof: The main idea of this proof is the next lemma:
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Lemma 7 For k ≥ 1 and any bar B in a semi-bar k-visibility representation,
there are at most 2k−1 longer bars in the representation with edges crossing B.

Proof. If there are k + 1 or more longer bars on one side of B with edges
crossing B, then the bar farthest from B on that side would have an edge
crossing at least k + 1 bars (B and the k bars on that side closest to B), a
contradiction of k-visibility. Therefore there are at most k longer bars on each
side of B with edges crossing B.

Assume that there are k longer bars on each side of B with edges crossing
B. Now consider the top-most and bottom-most bars B1 and B2 respectively
among those 2k bars. From our assumption there must be bars b1 and b2 on
the lower and upper sides of B respectively which are shorter than B such that
B1 has an edge with b1 and B2 has an edge with b2. Assume without loss of
generality that b1 is shorter than b2. This implies that the edge from B1 to b1
must cross b2, so this edge crosses k + 1 bars. This is a contradiction, which
implies that there are not k longer bars on each side of B with edges crossing
B. This completes the proof. 4

Given a one-bend drawing of G, start coloring the bars and any edges con-
nected to them in decreasing order of bar length using 2k colors. We can use
2k − 1 colors to color each of the longest 2k − 1 bars. For each bar, color its
previously uncolored edges with the same color assigned to the bar. Suppose at
least i bars have been colored for i ≥ 2k − 1. Edges from longer bars colored
with at most 2k − 1 colors will cross the (i + 1)st longest bar, so we color this
bar with a remaining color. Intersections only happen within bars, so the final
coloring of edges produces 2k planar subgraphs. This completes the proof of
Theorem 6. �

We now prove a lower bound on the maximum thickness of semi-bar k-
visibility graphs.

Theorem 8 For all k ≥ 0, there exist semi-bar k-visibility graphs with thickness
at least

⌈
2
3 (k + 1)

⌉
.

The proof of Theorem 8 is analogous to the proof of Lemma 4; the only
difference is the sharp upper bound on the number of edges in a semi-bar k-
visibility graph with n vertices, which Felsner and Massow [3] proved was (k +
1)(2n− 2k − 3) for n ≥ 2k + 2.

3.1 Arc and circle k-visibility graphs

Dean et al. found upper bounds on the number of edges and the chromatic num-
ber of bar k-visibility graphs [1]. Here we set upper bounds on these properties
for arc, circle, and semi-arc k-visibility graphs.

It will suffice to find an upper bound on the number of edges of arc k-
visibility graphs since any circles can be turned into arcs without deleting any
edges. Consider an edge {u, v} in the arc k-visibility graph, and let U and V
be the arcs corresponding to u and v.
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We define the angular coordinate of a line of sight in the following manner.
Previously we assigned unique angular coordinates to the points on each arc.
Now we can associate each line of sight with the smallest angular coordinate of
its two endpoints. We will call this number the angular coordinate of the line
of sight. Note that the angular coordinate of a line of sight can vary between 0
and 4π.

Let `({u, v}) denote the radial line segment between U and V whose angular
coordinate is the infimum of the angular coordinates of all lines of sight between
U and V . If `({u, v}) contains the negative endpoint of U (respectively V ) then
we call {u, v} a negative edge of U (respectively V ).

If `({u, v}) does not contain the negative endpoint of U or V , then it must
contain the positive endpoint of some arc B that blocks the k-visibility between
U and V before the endpoint. In this case we call `({u, v}) a positive edge of B.

Lemma 9 By definition, there are at most k + 1 positive edges and at most
2k + 2 negative edges corresponding to each arc. Therefore, there are at most
(3k + 3)n edges in a circle or arc k-visibility graph with n vertices.

Theorem 10 In a circle or arc k-visibility graph with n vertices, there are at
most (k + 1)(3n− k − 2) edges for n > 4k + 4 and

(
n
2

)
edges for n ≤ 4k + 4.

Proof: Suppose that n > 4k + 4, since the maximum number of edges is
(
n
2

)
for n ≤ 4k + 4. Since we may assume that the circle k-visibility graph is an
arc k-visibility graph, then name the arcs a1, a2, . . . , an in increasing order of
distance from the center of the circle.

Lemma 9 gives an upper bound of 3n(k + 1) edges. However arcs an, an−1,
. . ., an−k have at most k + 1, k + 2, . . ., 2k + 1 negative edges respectively and
0, 1, . . ., k positive edges respectively. Therefore the upper bound on edges can
be improved to

(3k + 3)n− 2

k+1∑
i=1

i = (k + 1)(3n− k − 2).

�

Remark 11 Note that letting k = 0 produces an upper bound of 3n− 2 on the
number of edges that a circle or arc visibility graph can have.

These upper bounds on the number of edges of circle k-visibility graphs give
an upper bound on their chromatic numbers.

Corollary 12 If G is a circle k-visibility graph, then χ(G) ≤ 6k + 6.

The proof of the last corollary is nearly identical to the proof for bar k-
visibility graphs by Dean et al. since every subgraph of G has a vertex of degree
at most 6k + 5 [1].
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Theorem 13 In semi-arc k-visibility graphs on n vertices, the maximum num-
ber of edges is

(
n
2

)
for n ≤ 3k+ 3 and at most (k+ 1)(2n− k+2

2 ) for n > 3k+ 3.

Proof: If n ≤ 3k + 3, then Kn is a semi-arc k-visibility graph (see Figure 7).
If n > 3k + 3, then let G be a graph on n vertices with semi-arc k-visibility
representation S. Every edge in G can be drawn as a visibility segment in S
intersecting the positive endpoint of at least one of the semi-arcs in the edge.
Since edges in the representation can cross at most k arcs that are not in the
edge, then at most 2k+ 2 edges can be drawn intersecting the positive endpoint
of each arc. However the k+1 outermost arcs have at most k+1, k+2, . . . , 2k+1
edges respectively that can be drawn intersecting their positive endpoint, which
implies the upper bound. �

Figure 7: A semi-arc k-visibility representation with n vertices and (k+1)(2n−
3k+6

2 ) edges for n ≥ 3k + 3.

Corollary 14 If G is a semi-arc k-visibility graph, then χ(G) ≤ 4k + 4.

Again, the proof of the last corollary is like the proof for bar k-visibility
graphs since every subgraph of G has a vertex of degree at most 4k+ 3 [1]. The
construction in Figure 7 implies the next lower bound.

Theorem 15 The maximum number of edges in a semi-arc k-visibility graph
is at least (k + 1)(2n− 3k+6

2 ) for n ≥ 3k + 3.

4 Counting edges in semi-bar k-visibility graphs

In this section we derive a formula for counting the number of edges in semi-bar
k-visibility graphs. For the final formula semi-bars are allowed to have the same
lengths, but we first consider the case when the lengths are different.
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Let G = (V,E) be a semi-bar 0-visibility graph with n vertices. Then G
has some semi-bar visibility representation SG = {sv}v∈V of disjoint horizontal
segments with right endpoints on the y-axis (semi-bars) such that for all a, b ∈ V
all semi-bars between sa and sb are shorter than both sa and sb if and only if
{a, b} ∈ E.

Let the function A(S) be the number of semi-bars in S which are taller
than all semi-bars above them, and U(S) be the number of semi-bars in S
which are taller than all semi-bars under them. These are analogous to the
numbers above and below each column in skyscraper puzzles. Moreover if all
semi-bars have different lengths, then SG corresponds to a permutation of the
integers {1, . . . , n} with the topmost bar of SG representing the first term of
the permutation. The function A(S) corresponds to the number of left-to-right
maxima in the permutation, while U(S) corresponds to the number of right-to-
left maxima in the permutation.

For each s ∈ S let a(s) = 1 if s is taller than all semi-bars above it and let
a(s) = 0 otherwise. So a(s) = 1 precisely when the term in the permutation
corresponding to s is a left-to-right maximum. Let u(s) = 1 if s is taller than
all semi-bars under it and let u(s) = 0 otherwise. Then A(S) =

∑
s∈S a(s) and

U(S) =
∑
s∈S u(s).

Lemma 16 If SG is any semi-bar visibility representation of G and all semi-
bars in SG have different lengths, then the number of edges in G is 2n−A(SG)−
U(SG).

Proof: Pick an arbitrary semi-bar visibility representation SG of G. For each
v ∈ V , count how many edges in E include v and some w for which sw is
taller than sv. Then each v contributes 2 − a(sv) − u(sv) edges, so there are
2n−A(SG)− U(SG) total edges. �

We now extend this formula to all semi-bar k-visibility graphs. Let Gk =
(V,E) be a semi-bar k-visibility graph. Then Gk has a semi-bar k-visibility rep-
resentation SGk

= {sv}v∈V of disjoint horizontal semi-bars with right endpoints
on the y-axis such that for all a, b ∈ V , all but at most k semi-bars between sa
and sb are shorter than both sa and sb if and only if {a, b} ∈ E. Define {sa, sb}
to be a j-visibility edge if all but exactly j semi-bars between sa and sb are
shorter than both sa and sb.

Let the function Aj(S) be the number of semi-bars in S which are taller than
all but at most j semi-bars above them, and Uj(S) be the number of semi-bars
in S which are taller than all but at most j semi-bars under them. For each
s ∈ S let aj(s) = 1 if s is taller than all but at most j semi-bars above it and
let aj(s) = 0 otherwise. Let uj(s) = 1 if s is taller than all but at most j
semi-bars under it and let uj(s) = 0 otherwise. Then Aj(S) =

∑
s∈S aj(s) and

Uj(S) =
∑
s∈S uj(s).

Call an unordered pair of semi-bars {sa, sb} a j-bridge if sa is the same
height as sb and all but exactly j semi-bars between sa and sb are shorter than
sa. A semi-bar can be contained in at most two j-bridges for each j. Let Brj(S)
denote the number of j-bridges in S.
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Theorem 17 If SGk
is any semi-bar k-visibility representation of Gk, then the

number of edges in Gk is

2(k + 1)n−
k∑
j=0

(Aj(SGk
) + Uj(SGk

) +Brj(SGk
)).

Proof: Pick an arbitrary semi-bar k-visibility representation SGk
ofGk. Fix j ≤

k, and for each v ∈ V , count how many j-visibility edges include sv and some sw
for which sw is at least as tall as sv. Then each v contributes 2−aj(sv)−uj(sv)
j-visibility edges, but the j-visibility edge between sa and sb is double counted
whenever {sa, sb} is a j-bridge. So there are 2n−Aj(SGk

)−Uj(SGk
)−Brj(SGk

)

total j-visibility edges in SGk
. Then there are 2(k + 1)n −

∑k
j=0(Aj(SGk

) +
Uj(SGk

) +Brj(SGk
)) total edges in Gk. �

Since Felsner and Massow showed a tight upper bound of (k+1)(2n−2k−3)
on the number of edges in semi-bar k-visibility graphs with n ≥ 2k+ 2 vertices,
then Theorem 17 implies the next corollary.

Corollary 18 If SGk
is any semi-bar k-visibility representation of G with n ≥

2k + 2 vertices, then

k∑
j=0

(Aj(SGk
) + Uj(SGk

) +Brj(SGk
)) ≥ (k + 1)(2k + 3).

5 Open Problems

The results in this paper leave open questions beyond the ones mentioned in
[1, 3, 4].

Question 19 What is the maximum number of edges in a semi-arc k-visibility
graph on n vertices for n > 3k + 3?

We conjecture that the bound in Theorem 15 is tight.

Conjecture 20 The maximum number of edges in a semi-arc k-visibility graph
on n vertices is (k + 1)(2n− 3k+6

2 ) for n ≥ 3k + 3.

This conjecture would also imply the next conjecture.

Conjecture 21 K3k+4 is not a semi-arc k-visibility graph.

Proof: By Conjecture 20, a semi-arc k-visibility graph on 3k + 4 vertices can
have at most 1

2 (k + 1)(9k + 10) edges, which is less than 1
2 (3k + 3)(3k + 4). �

There are also similar open questions about arc k-visibility graphs.

Question 22 What is the maximum number of edges in an arc k-visibility graph
on n > 4k + 4 vertices?

Question 23 What is the largest complete arc k-visibility graph?
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