
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 19, no. 1, pp. 299–312 (2015)
DOI: 10.7155/jgaa.00359

Every graph admits an unambiguous bold
drawing1
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Abstract

Let r and w be fixed positive numbers, w < r. In a bold drawing of a
graph, every vertex is represented by a disk of radius r, and every edge
by a narrow rectangle of width w. We solve a problem of van Kreveld [10]
by showing that every graph admits a bold drawing in which the region
occupied by the union of the disks and rectangles representing the ver-
tices and edges does not contain any disk of radius r other than the ones
representing the vertices.
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1 Introduction

The graph representations studied in Graph Drawing are “abstract,” in the
sense that the vertices are represented by (0-dimensional) points and the edges
by 1-dimensional segments or other continuous curves of width 0. Such drawings
exist only in theory.

In this note, we adopt a “realistic” view of graph drawing, proposed by Marc
van Kreveld [10]. Here the vertices will be marked by black disks of radius r and
the edges by black rectangles of width w. It is natural to assume that w < 2r,
otherwise we would never notice a vertex completely covered by an edge, and
the drawing would be ambiguous.

More precisely, let r and w be positive reals, w < 2r, and let G be a graph
whose vertices v1, . . . , vn are represented by distinct points in the plane, and
whose edges are drawn as (possibly crossing) straight-line segments. Replace
each vertex by a disk of radius r centered at vi, and each edge vivj by a rect-
angle such that its midsegment is vivj and its width, the length of its side
perpendicular to vivj , is w. We call the union of these disks and rectangles a
bold drawing of G, and denote it by D. A bold drawing is said to be unambiguous
if it satisfies the following two conditions.

1. No two disks representing vertices of G intersect.

2. The set D contains no disk of radius r other than the disks representing
its vertices.

The first condition is equivalent to saying that 2r is smaller than the minimum
distance between two points vi and vj . The second condition guarantees that
no disk representing a vertex is completely hidden by the rest of the drawing.

It was shown in [10] that if w > r, then the maximum degree of the vertices
of all graphs that admit an unambiguous bold drawing is bounded from above
by a constant depending only on w and r. On the other hand, van Kreveld
proved that if w < r, any star consisting of a central vertex connected to an
arbitrary number of other vertices admits an unambiguous bold drawing.

He also raised the question whether there exists a fixed pair of values w, r
such that with these parameters every finite graph admits an unambiguous bold
drawing. According to van Kreveld’s above mentioned result, if such a pair
exists, it must satisfy w < r. The aim of this note is to answer this question in
the affirmative in the following strong sense.

Theorem 1 Let w and r be any positive constants with w < r. Then, for
every positive integer n, the complete graph Kn admits an unambiguous bold
drawing, in which the vertices are represented by disks of radius r and the edges
by rectangles of width w.

In the next statement, we describe our construction in full detail (see Fig. 1).
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Figure 1: Construction for Theorem 2

Theorem 2 Let w and r be any positive constants with w < r. Let C be a circle
of radius 1 around the origin, and let vi (1 ≤ i ≤ n) denote the intersection point
of C and the ray obtained from the positive x-axis by a counterclockwise rotation
through angle δi, where δ = min( 1

2 , 1−
w
r ).

For every n, there exists a sufficiently small ε = ε(n) > 0 such that replacing
each vi by a disk of radius εr centered at vi and each edge vivj by a rectangle of
width εw with midsegment vivj, the union of these disks and rectangles contains
no disk of radius εr other than the ones representing the vertices.

Theorem 2 immediately implies Theorem 1. Indeed, if we choose ε(n) > 0 so
small that in addition to the property in Theorem 2, it satisfies the inequality
2εr < min1≤i<j≤n |vivj | = |vn−1vn|, and we scale up the drawing described in
Theorem 2 by a factor of 1/ε, then we obtain a bold drawing of Kn that meets
both requirements for unambiguity stated above.

In [10], van Kreveld listed seven properties that a “good” bold drawing of a
graph G must satisfy. These include the two conditions for unambiguous draw-
ings stated above, so that every “good” bold drawing of G is also unambiguous.
It is easy to see that if we choose the constant ε(n) small enough, then our
drawing of Kn will also meet the five additional properties formulated in [10].

Before turning to the proof, we would like to argue that in some sense we
are “forced” to consider constructions of the type described in Theorem 2. We
say that a set of points in the plane is in general position if no three of them
are collinear. According to the Erdős-Szekeres theorem [7], for any integer K,
every sufficiently large set of points in general position in the plane contains
K elements that form the vertex set of a convex K-gon. This readily implies,
that for any K there exists N(K) such that any set of N(K) points in general
position has K elements that lie on a convex curve whose total turning angle
is small. By rotating the coordinate axes if necessary, the coordinates of these
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points can be written as (xi, f(xi)), where x1 < x2 < . . . < xK and f(x) is
a smooth convex function whose derivative is bounded by a small constant.

Let γ =
√
5+1
2 ≈ 1.618, the golden ratio. Color the triples (i, j, k), 1 ≤ i <

j < k ≤ K, with red, blue, or green, according to whether
xk−xj
xj−xi is at most

γ−1, belongs to the interval (γ−1, γ), or is at least γ, respectively. According
to Ramsey’s theorem [9, 4], for every n ≥ 4 we can choose K = K(n) so
large that there is a sequence 1 ≤ i1 < i2 < . . . < in ≤ K with the property
that all triples determined by its members are of the same color. It is easy
to check that there exists no sequence of length 4 such that all of its triples
are blue. Therefore, we can assume that all triples determined by the sequence
1 ≤ i1 < i2 < . . . < in ≤ K are red or all of them are green. In the first case the
distances xi+1 − xi decrease, in the second one increase at least exponentially
fast, as i grows (1 ≤ i ≤ n). Summarizing: for every n ≥ 4, there is an integer
N with the property that from any set of N points in general position in the
plane we can select a sequence of length n which lies on an arc of a convex
curve with small total turning angle and the distances between its consecutive
elements decrease at least exponentially. (We can reverse the numbering of the
elements, if necessary.) Suppose now that KN admits an unambiguous bold
drawing. Applying the last statement to the centers of the disks representing
the vertices, we obtain an unambiguous bold subdrawing of a complete graph
Kn such that the centers of the disks representing its vertices lie on a convex
curve and the distances between them are fast decreasing. Our construction in
Theorem 2 is motivated by this observation.

The proof of Theorem 2 is somewhat subtle. In Sect. 2, we introduce some
definitions that simplify the presentation and we state two easy but useful lem-
mas that can be proved by direct computation. The heart of the proof lies in
Lemma 3, stated and established in Sect. 3. After this preparation, the proof
of Theorem 2 presented in Sect. 4 is rather straightforward.

Several graph drawing programs for straight-line drawing offer the option
to draw the vertices and the edges bold (see, for example, NEATO [6]). Some
algorithmic aspects of bold drawing were addressed in [10]. In particular, given
a drawing of a graph G with possibly crossing straight-line edges, van Kreveld
applied a line segment intersection algorithm [1], [2], [5] to find the smallest w
for which, if we draw the edges as closed rectangles of width w, we find three
edges, not all incident to the same vertex, such that the corresponding rectangles
have a point in common. Duncan, Efrat, Kobourov, and Wenk [3] presented an
efficient algorithm to determine the largest w, for a given planar embedding of
a graph G, such that G admits an equivalent drawing in which the edges are
represented by nonoverlapping, not necessarily straight bold curves of width w.

2 Terminology and two preliminary lemmas

In the rest of this note, w and r are fixed positive numbers with w < r. Through-
out the next two sections, we also fix the parameter ε > 0, which will be varied
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only in Sect. 4, in the proof of Theorem 2.
First, we introduce some notation and terminology. Let v be a point in the

plane, and let R1, . . . , Rs be a set of infinite rays (half-lines) emanating from v,
listed in clockwise order. Assume that all rays Ri point into the same half-plane
bounded by a line passing through v. Replace v by a closed disk of radius εr
centered at v, and replace each Ri by a closed one-way infinite half-strip of
width εw with Ri as its mid-ray. The union of the disk and these half-strips
is called a palm and is denoted by P = P (v,R1, . . . , Rs). The point v is said
to be the apex of the palm, the half-strips are said to be its fingers, and the
largest angle between the rays defining two (not necessarily consecutive) fingers
is the angle of the palm. Note that the sides of the half-strips perpendicular to
their mid-rays do not contribute to the boundary of P , as they are completely
covered by the disk of radius εr centered at v.

If we go far enough from v, the fingers start to bifurcate. For any two
consecutive fingers corresponding to the rays Ri and Ri+1, we define the distance
from v at which they bifurcate, as the maximum radius of a disk centered at v
with the property that its intersection with the complement of the union of the
fingers (half-strips) is connected. Analogously, for any two (two-way infinite)
strips S and S′ such that their midlines cross at a point v, we define the distance
from v at which they bifurcate as the maximum radius of a disk centered at v
with the property that its intersection with the complement of S ∪ S′ has at
most two connected components.

The following two simple statements can be established by straightforward
trigonometric calculations.

v

α/2

εw

εw

α/2 εw

εw

εw

2 sin
α

2

Figure 2: For Lemma 1

Lemma 1 Let S and S′ be two strips of width εw such that their midlines cross
at a point v and the angle between them is α ≤ π

2 . Then

1. S ∪ S′ contains no disk of radius εw;

2. S and S′ bifurcate at distance εw
2 sin α

2
from v;
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3. any two consecutive fingers of a palm such that the angle between the rays
defining them is α ≤ π/2 bifurcate at distance εw

2 sin α
2

from the apex.

Proof: Let p denote one of the two points at which S and S′ bifurcate. Consider
the right angled triangle determined by v, p, and the foot of the perpendicular
dropped from p to the midline of S. The angle of this triangle at v is α

2 , and
the length of the side opposite to v is εw

2 . Therefore, we have |vp| = εw
2 sin α

2
; see

Fig. 2. This proves part 2, and hence part 3.
To see part 1, it is enough to notice that, by symmetry, the center of the

largest disk contained in S ∪ S′ belongs to the line vp. If this disk is tangent
to a boundary line of S (as in Fig. 2), its radius is smaller than the width of
S, which is εw. Otherwise, we have α > π

3 , and the radius of this disk is equal
to the distance between its center and p, which is at most |vp|. However, |vp|
is a strictly decreasing function of α in the interval (π3 ,

π
2 ], so that its value is

strictly smaller than its value at α = π
3 , which is εw. 2

Lemma 2 Let P = P (v,R1, . . . , Rs) be a palm as above, and assume that its
angle is smaller than 2 arcsin 1

4 <
π
6 . Let P ⊃ P denote the union of the disk

of radius εr centered at v and the convex hull of the union of the first and last
fingers, corresponding to R1 and Rs.

Then no disk of radius εr contained in P intersects the disk of radius εr
centered at the apex v of P . Hence, the same is true for P instead of P .

Proof: Suppose that the statement is false. Let α be the smallest angle for
which there are a palm P satisfying the conditions and a disk D of radius εr
in P that intersects the disk of radius εr centered at v. By minimality, D must
be tangent to both boundary rays of P and must also be tangent to the disk of
radius εr centered at v; see Fig. 3. Let p denote the center of D. Consider the
right angled triangle, marked in the figure, which is determined by v, p, and the
foot of the perpendicular dropped from p to the midline of the first finger R1.
The angle of this triangle at v is α

2 . Therefore, we have

sin
α

2
=
εr − εw/2

2εr
≥ 1

4
,

provided that w < r. This contradicts the choice of α. 2

3 The main lemma

As in the previous section, w, r, and ε are fixed positive constants, w < r. The
main component of the proof of Theorem 2 is the following lemma, which guar-
antees that if the angles between the consecutive fingers of a palm P decrease
sufficiently fast, then P cannot contain a disk of radius εr. The proof of this
fact requires some detailed calculations, but heuristically it is clear that in this
case only the first two fingers play an important role, and the situation is similar
to the setting of Lemma 1, part 1.
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Figure 3: For Lemma 2

Lemma 3 Let δ = min( 1
2 , 1 −

w
r ), and let P = P (v,R1, . . . , Rs) be a palm of

angle α < δ1/2. Let αi denote the angle between Ri and Ri+1, and assume that
for every i (1 ≤ i < s) we have αi+1

αi
≤ δ .

Then P contains no disk of radius εr.

Proof: If the fingers corresponding to Ri and Ri+1 bifurcate at distance di
from v, then they share a boundary point pi with |vpi| = di (1 ≤ i < s). These
points are called points of bifurcation. It follows from the condition about the
ratios αi+1/αi that d1 < d2 < d3 < . . . is a fast increasing sequence. If P has
at most 2 fingers, then Lemma 3 is true by Lemma 1, part 1. Therefore, we
can assume that s, the number of fingers, is at least 3 and that we have already
proved the lemma for all palms with fewer than s fingers.

Suppose that |vp1| = d1 = min1≤i<s di ≤ εr. Then P is the union of two
palms P (v,R1) and P (v,R2, . . . , Rs), each having fewer than s fingers, so that
any disk of radius εr other than the one centered at v must belong to one of
them. Thus, in this case we are done, by induction. From now on assume that
p1 and hence all other points pi lie outside of the disk of radius εr centered at
v. Note that the part of the ray vpi beyond the point pi does not belong to P .
In fact, it lies in an infinite open cone Ci, symmetric about vpi, which belongs
to the complement of P . By rotating the coordinate system if necessary, we can
assume without loss of generality that Rs is parallel to the positive x-axis, so
that all other rays R1, . . . , Rs−1 point into the positive quadrant x, y ≥ 0. Then
it makes sense to talk about the lower and the upper boundary of a finger. The
cone Ci is bounded by two half-lines: one belongs to the lower boundary of the
finger corresponding to Ri and the other to the upper boundary of the finger
corresponding to Ri+1.

Suppose for contradiction that P contains a disk D of radius εr, other than
the disk of radius εr centered at v. It follows from Lemma 2 that D cannot
intersect the disk of radius εr centered at v. We also know that D must have a
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Figure 4: For Lemma 3
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point that belongs only to the first finger, but not to the second one, otherwise
we can remove the first finger and obtain a contradiction using the induction
hypothesis.

Let P be the same as in Lemma 2, and let P ′ ⊃ P denote the region obtained
from P by deleting all points that belong to the infinite cone C1 with apex p1.
Let D′ be a disk of maximum radius in P ′ with the property that it has a point
that belongs to the first finger of P , but not to the interior of the second one.
Let q′ and r′ denote the center and the radius of D′. By our assumption, we
have that r′ ≥ εr, and it follows from Lemma 2 that D′ does not intersect the
disk of radius εr centered at v.

It is easy to verify that

1. p1 lies on the boundary of D′;

2. D′ is tangent to the lower (horizontal) boundary half-line of P ;

3. D′ is tangent either to the upper boundary half-line of the second finger
or to the upper boundary half-line of P . See Fig. 4 parts (a) and (b).

Indeed, it follows from the maximality of D′ that D′ is “fixed” by the boundary
of P ′. One point cannot fix a disk. The same is true for two points, one lying
on the lower, one on the upper boundary half-line of P . In other words, if D′ is
tangent to the lower and to the upper boundary half-lines of P , by maximality,
it must also touch the boundary of the cone Ci.

Suppose first that D′ is tangent to the upper boundary half-line of P and
to the upper boundary half-line of C1; see Fig. 4 (a). If condition 1 is not
satisfied, that is, D′ touches a point of the upper boundary half-line of C1 other
than p1, then D′ must lie entirely in the first finger, and its radius cannot
exceed εw/2 < εr, which is impossible. Therefore, condition 1 is satisfied and,
unless D′ also satisfies condition 2, D′ can be enlarged without violating the
requirements.

Suppose next that D′ is not tangent to the upper boundary half-line of P .
Then D′ must be tangent to the lower boundary half-line of P and to the lower
boundary half-line of C1; see Fig. 4 (b). Moreover, the point at whichD′ touches
the lower boundary half-line of C1 must be p1, otherwise D′ cannot have a point
that belongs to the first finger of P , but not to the interior of the second one. If
D′ has such a point strictly above the upper boundary of the second finger then
it could be slightly enlarged without violating the conditions. Indeed, q′ belongs
to the locus of all points equidistant from p1 and the (horizontal) supporting
line of the lower boundary half-line of P , which is a parabola Π with a vertical
axis of symmetry. If q′ is on the left side of this parabola, then we can enlarge
the radius of D′ by moving q′ along Π slightly to the left, if it is on the right
side of Π, then by moving it slightly to the right. Therefore, we can conclude
that D′ must be tangent to the upper boundary of the second finger at point
p1, and condition 3 holds.

Now we can easily complete the proof of Lemma 3.
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If conditions 1, 2, and the first option in condition 3 hold, then consider the
triangle vp1q

′. Using that δ ≤ 1/2, we obtain

∠vp1q
′ =

π

2
− α1

2
≤ π

2
− δα1

2(1− δ)

<
π

2
− α1

2
(δ + δ2 + . . .+ δs−2)

≤ π

2
− α2 + α3 + . . .+ αs−1

2
= ∠vq′p1 .

This yields that |vq′| < |vp1|. As was used above, the angle α1 between R1

and R2 is larger than α2 + . . .+αs−1, the angle between R2 and Rs. Therefore,
the fingers corresponding to R2 and Rs bifurcate at a point p′ which is farther
away from v than p1 is. This implies that |vq′| < |vp1| < |vp′|. The points v, q′,
and p′ are collinear, so that it follows from the last inequality that q′ lies in the
interior of the second finger. Since r′ = |q′p1| is equal to the distance of q′ from
the upper boundary half-line of the second finger, we obtain that r′ < εw < εr,
which is a contradiction.

In the other case, when conditions 1, 2, and the second option in condition 3
hold, just like in the first case, we have |vq′| < |vp1|. (In fact, it is easy to argue
that the part of the parabola Π which lies below the line vp1 and to the left of
the line through p1 perpendicular to Rs is entirely contained in the interior of
the circle through p1 centered at v. The point q′ belongs to this arc.)

Let v0 denote the intersection point of the supporting lines of the upper
boundary ray of the first finger (that corresponds to R1) and the lower boundary
ray of the last finger (that corresponds to Rs). The points v0, v, and q′ are
collinear. Using the notation α = α1 + . . .+ αs−1, we have

r′ = |v0q′| sin
α

2
= (|v0v|+ |vq′|) sin

α

2
< (|v0v|+ |vp1|) sin

α

2

≤
(

εw

2 sin α
2

+
εw

2 sin α1

2

)
sin

α

2
=
εw

2

(
1 +

sin α
2

sin α1

2

)
.

Here we used Lemma 1, part 2 to estimate |vp1|.
In view of the assumption on the angles between consecutive fingers, we have

that
α = α1 + α2 + . . .+ αs−1 = α1(1 + δ + . . .+ δs−2) <

α1

1− δ
.

Hence, the above upper bound on r′ can be rewritten as

r′ <
εw

2

(
1 +

sin α1

2(1−δ)

sin α1

2

)
<
εw

2

(
1 +

α1

2(1−δ)

sin α1

2

)
.

Using the Taylor series of the sinx function, it is easy to verify that, given any
δ, 0 < δ < 1, the inequality sin α1

2 > α1

2(1+δ) holds for all α1 ≤ δ1/2. By the
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assumptions in the lemma, this condition is satisfied, so that we have

r′ <
εw

2

(
1 +

1 + δ

1− δ

)
=

εw

1− δ
.

By our choice of δ, we have δ ≤ 1− w
r . That is,

r′ <
εw

1− δ
≤ εr ,

the desired contradiction. 2

4 The proof of Theorem 2

In the previous two sections, apart from n, w, and r, we also fixed the constant
ε > 0. In the proof of Theorem 2 presented in this section, we keep n, w, and r
fixed, but we will vary ε.

Let S(ε) denote the union of the disks of radius εr representing the vertices
vi (1 ≤ i ≤ n) and the rectangles of width εw representing the edges vivj (1 ≤
i < j ≤ n).

For a given vi, consider the rectangles representing the edges incident to vi
and extend them to one-way infinite half-strips pointing away from vi. More
precisely, for any j > i, let Ri,j denote the ray −−→vivj emanating from vi and
pointing to the direction of vj . Let Fi,j(ε) be the half-strip of width εw, the
mid-ray of which is Ri,j . The union of the disk of radius εr centered at vi and
the sets Fi,j(ε) for all j > i is denoted by Pi(ε). Any two distinct half-strips
Fi,j(ε) and Fi,j′(ε) bifurcate at a certain distance from vi. Let %i(ε) denote the
maximum of these

(
n−1
2

)
distances plus εr.

0 1

vk

δk

vj

δj

vi

δi

Ri,j
Ri,k

Figure 5: For Proof of Theorem 2

Let us fix a small ε > 0 such that the following three conditions are satisfied.
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1. No three rectangles representing distinct edges, not all of which are inci-
dent to the same vertex, have a point in common.

2. Any rectangle representing an edge vjvk is disjoint from any disk of radius
%i(ε) centered at vi, for all i 6= j, k.

3. For every pair i 6= j, the disk of radius %i(ε) centered at vi is disjoint from
the disk of radius %j(ε) centered at vj .

It follows from the second condition that no rectangle representing an edge vjvk
can intersect any disk representing a vertex vi with i 6= j, k. The last condition
implies that the disk of radius %i(ε) centered at vi cannot contain any disk of
radius εr representing a vertex vj with j 6= i. If three edges share an interior
point, then the first condition cannot be satisfied. The next lemma shows that
in our case this cannot occur.

Lemma 4 Let v1, v2, . . . , vn be n points with nonnegative coordinates which lie
on the unit circle around the origin O and are listed in clockwise order. Assume
that ∠vi+1Ovi+2

∠viOvi+1
≤ 1

2 , for every i ≥ 1. Then no three distinct segments vavb
share an interior point.

Proof: Let p denote the point (1, 0). Using the assumption on the angles,
it follows that |vivi+1| ≥ |vip|, for every i. Consider two edges vivk and vjvl
that cross at a point q, for some 1 ≤ i < j < k < l ≤ n. We have |vivj | ≥
|vjp| > |vjvl| > |vjq|. The triangles vivjq and vlvkq are similar, so that the
above inequality implies that |vkvl| > |vkq|. Suppose now for contradiction that
a third edge vavb passes through q with a < i and j < b < k. Since |vbvk| ≥
|vkp| > |vkvl|, in view of the last inequality we obtain |vbvk| > |vkq|. This in
turn implies that ∠qvbvk < ∠vbvkq, and hence ∠qvbvk < π

2 . However, then the
y-coordinate of va must be smaller than the y-coordinate of q, contradicting the
fact that a < i. 2

Since ε is fixed, in notation we can drop the parameter ε. In particular,
instead of S(ε), %i(ε), and Pi(ε), from now on we will write S, %i, and Pi, re-
spectively.

Suppose for contradiction that the set S contains a disk D of radius εr which
is not one of the disks representing the vertices. Where can such a disk D lie?
The only possibility is that for some i (1 ≤ i ≤ n), it lies in the part of S
contained in the disk of radius %i centered at vi. Otherwise, by the conditions
listed above, D would be contained in the union of two strips of width w,
contradicting part 1 of Lemma 1. Observe that the part of S contained in the
disk of radius %i centered at vi is exactly the same as the part of Pi contained
in the disk of radius %i centered at vi. Therefore, to finish the proof of Theorem
2, it is sufficient to show that no set Pi contains a disk of radius εr (1 ≤ i ≤ n).

To see this, notice that for every i 1 ≤ i ≤ n, the set Pi can be written as the
union of at most two palms of angle smaller than δ (see the beginning of Sect. 2).
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We have P1 = P (v1, R1,2, R1,3, . . . , R1,n), Pn = P (vn, Rn,1, Rn,2, . . . , Rn,n−1),
and

Pi = P (vi, Ri,1, Ri,2, . . . , Ri,i−1) ∪ P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n) ,

for every i, 1 < i < j,. If i 6= 1, n, then the smallest angle between a finger of
P (vi, Ri,1, Ri,2, . . . , Ri,i−1) and a finger of P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n) is the
angle between Ri,1 and Ri,n, which is equal to π− δ−δn

2 > π− δ
2 . It follows from

here that the fingers corresponding to Ri,1 and Ri,n bifurcate within the disk
of radius εr centered at vi. This, in turn, implies that any disk D of radius εr
which lies in Pi and is different from the disk representing vi is entirely contained
in one of the two palms comprising Pi. Applying Lemma 3 to this palm, we
obtain the desired contradiction. The only thing that remains to be checked is
that the conditions of the lemma about the angles α and αi are satisfied.

The maximum angle of the palms of the form P (vi, Ri,i+1, Ri,i+2, . . . , Ri,n)
and
P (vi, Ri,1, Ri,2, . . . , Ri,i−1), for 1 ≤ i ≤ n, is the angle of P (vn, Rn,1, Rn,2, . . . , Rn,n−1),
which is equal to

∠v1vnvn−1 =
∠v10vn−1

2
=
δ − δn−1

2
<
δ

2
,

so that the condition on the angle of the palm is satisfied. (Here 0 denotes the
origin, the center of the circle containing all points vi.) As for the condition
on the angles αi, we have that the angle between two consecutive rays Ri,t and
Ri,t+1 is equal to

∠vt0vt+1

2
=
δt − δt+1

2
=

1− δ
2

δt .

Analogously, the angle between Ri,t+1 and Ri,t+2 is equal to 1−δ
2 δt+1. Hence,

all ratios αs
αs+1

are equal to δ, and the conditions of Lemma 3 are satisfied.

This completes the proof of Theorem 2.
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Frati, and Deniz Sarıöz for valuable discussions, and to Deniz Sarıöz and Rose
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