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Abstract

Given a collection of planar graphs G1, . . . , Gk on the same set V of n
vertices, the simultaneous geometric embedding (with mapping) problem,
or simply k-SGE, is to find a set P of n points in the plane and a bijection
ϕ : V → P such that the induced straight-line drawings of G1, . . . , Gk

under ϕ are all plane.
This problem is polynomial-time equivalent to weak rectilinear realiz-

ability of abstract topological graphs, which Kynčl (doi:10.1007/s00454-
010-9320-x) proved to be complete for ∃R, the existential theory of the
reals. Hence the problem k-SGE is polynomial-time equivalent to several
other problems in computational geometry, such as recognizing intersec-
tion graphs of line segments or finding the rectilinear crossing number of
a graph.

We give an elementary reduction from the pseudoline stretchability
problem to k-SGE, with the property that both numbers k and n are lin-
ear in the number of pseudolines. This implies not only the ∃R-hardness

result, but also a 22Ω(n)

lower bound on the minimum size of a grid on
which any such simultaneous embedding can be drawn. This bound is
tight. Hence there exists such collections of graphs that can be simultane-
ously embedded, but every simultaneous drawing requires an exponential
number of bits per coordinates. The best value that can be extracted

from Kynčl’s proof is only 22Ω(
√

n)

.
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1 Introduction

Given graphs G1 = (V,E1), . . . , Gk = (V,Ek) on n vertices, simultaneous geo-
metric embedding (with mapping) or simply k-SGE, is the problem of finding a
point set P ⊂ R2 of size n and a bijection ϕ : V → P such that the induced
straight-line drawings of G1, . . . , Gk under ϕ are all plane [7]. The correspond-
ing decision problem (which we also refer to as k-SGE) simply asks whether
such a point set exists. It is important to note that k is part of the input and
can thus depend on n. The problem 1-SGE amounts to planarity testing. The
problem 2-SGE is typically referred to simply as SGE. Fig. 1 shows an example
of two graphs and a 2-SGE.
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Figure 1: Graphs G1 and G2 on the same vertex set and a 2-SGE of G1 and
G2.

Early work on the topic focused on the existence of k-SGEs for restricted
graph classes. The SGE problem was originally introduced by Brass et. al [7].
They show that there is a pair of outerplanar graphs on the same vertex set
that does not admit a 2-SGE. Additionally, they give a triple of paths that does
not admit a 3-SGE. The authors also show that various other classes of graphs,
such as a pair of caterpillars, an extended star and a path, or two stars always
admit a 2-SGE. The most recent positive result is a 2-SGE construction that
works for generalizations of caterpillars with generalizations of stars, spiders
and caterpillars [9]. The question of whether any two trees admit a 2-SGE
remained open for six years, until the question was settled in the negative with
a counterexample [15]. The most recent negative result gives a tree and a path
that do not admit a 2-SGE [2]. Research has since focused on other variations of
the problem, such as simultaneous embedding with fixed edges (edges are drawn
as arbitrary simple curves, but all graphs must use identical curves for identical
edges), matched drawings (vertices have fixed y-coordinates in all drawings,
but may have different x-coordinates in each drawing), or partial simultaneous
geometric embedding (a limited number of vertices may be mapped to different
points in different drawings) [11]. The decision problem 2-SGE is NP-hard [10].
See [6] for an excellent survey.

The existential theory of the reals is the set of true sentences of the form
∃(x1, . . . , xn) : ϕ(x1, . . . , xn), where ϕ is a (∧,∨,¬)-formula over the signature
(0, 1,+, ∗, <,≤,=) interpreted over the universe of real numbers [30]. The de-
cision problem ETR asks whether a given sentence is true. The complexity
class ∃R is defined as the set of decision problems that can be reduced to ETR
in polynomial time. A problem is ∃R-hard if it is at least as hard as every
problem in ∃R, i.e., if every problem in ∃R can be reduced to it in polynomial
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time [29, 3]. A problem is ∃R-complete if it belongs to ∃R and is ∃R-hard.
It is known that NP ⊆ ∃R ⊆ PSPACE: Boolean satisfiability can be encoded
as a decision problem on a set of polynomial inequalities and Canny [8] gave a
polynomial-space algorithm for ETR.

In 2011, Kynčl [22] proved that weak rectilinear realizability of abstract topo-
logical graphs is ∃R-complete. Since this problem reduces to k-SGE in poly-
nomial time [14] and since k-SGE belongs to ∃R [10], it follows that k-SGE is
∃R-complete. The k-SGE problem is therefore polynomial-time equivalent to
many other classical problems in computational geometry, such as finding the
rectilinear crossing number of a graph [4], recognizing unit disk graphs [25],
recognizing intersection graphs of convex sets in the plane [29], recognizing in-
tersection graphs of segments [21, 24], solving the Steinitz problem [26], and
deciding the realizability of linkages [19]. We refer the reader to recent work of
Schaefer for more references and examples [29, 30].

Our contribution is an elementary self-contained construction showing the
∃R-hardness of k-SGE. It involves a direct translation of the information con-
tained in an arrangement of n pseudolines into a set of n planar graphs on a set
V of O(n) vertices, in such a way that the pseudoline arrangement is stretchable
if and only if the graphs can be simultaneously embedded. The main interesting
feature of this construction is that the size of V is linear in the number of pseu-
dolines. This implies that for some positive instances of k-SGE, representing
the point set by encoding the coordinates of each point requires an exponential
number of bits. This follows from the analogous result on realizations of order
types by Goodman, Pollack, and Sturmfels [17]. Our result improves on Kynčl’s
construction, which shows only that 2Ω(

√
n) bits are sometimes necessary.

In Section 2, we briefly recall standard results on (realizability of) order types
and (stretchability of) pseudoline arrangements. The reduction itself is given
in Section 3. Section 4 presents our results on coordinate sizes in simultaneous
embeddings.

2 Pseudolines and order types

Many combinatorial properties of a point set in the plane are captured by its
order type. The order type of a point set P ⊂ R2 is the mapping χ :

(
P
3

)
→

{−1, 0,+1}, where

χ(a, b, c) = sign

∣∣∣∣∣∣
ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣
 .

The value of χ(a, b, c) determines whether the three points a, b, c make a left turn
(+1), a right turn (−1), or are aligned (0). When χ(a, b, c) 6= 0 for all triples
a, b, c, the point set is said to be in general position and χ is called uniform.
Among other things, the order type encodes the convex hull of a point set and
whether two segments with endpoints in the point set intersect.
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Abstract order types generalize the notion of order types on planar point
sets. Knuth [20] calls uniform abstract order types CC-systems and defines
them by the following five axioms (we write χ(p, q, r) instead of χ(p, q, r) = +1
and ¬χ(p, q, r) instead of χ(p, q, r) = −1):

1. Cyclic symmetry: χ(p, q, r) =⇒ χ(q, r, p).

2. Antisymmetry: χ(p, q, r) =⇒ ¬χ(p, r, q).

3. Nondegeneracy: χ(p, q, r) ∨ χ(p, r, q).

4. Interiority: χ(t, q, r) ∧ χ(p, t, r) ∧ χ(p, q, t) =⇒ χ(p, q, r).

5. Transitivity: χ(t, s, p) ∧ χ(t, s, q) ∧ χ(t, s, r) ∧ χ(t, p, q) ∧ χ(t, q, r) =⇒
χ(t, p, r).

Abstract order types are connected to the well-studied mathematical field of
oriented matroids. Specifically, if we consider the equivalence class where χ =
−χ, then Knuth [20] proves that (equivalence classes of) uniform abstract order
types are in one-to-one correspondence with uniform acyclic rank-3 oriented
matroids. We refer the interested reader to [5] for more information on oriented
matroids. An abstract order type χ is realizable if there exists a point set in
R2 with order type χ. Not all abstract order types are realizable: the smallest
non-realizable abstract order type is the well-known Pappus arrangement on 9
points.

Order types are closely related to pseudoline arrangements. Pseudoline ar-
rangements are usually considered in the real projective plane P2, where they
can be defined as simple closed curves, every pair of which meet in exactly one
point [18]. We recall that the projective plane is the extension of the Euclidean
plane by a point “at infinity” for each direction α where the lines with direction
α are defined to intersect, and the line at infinity contains exactly the points
at infinity. For an excellent introduction to projective geometry, we refer the
interested reader to [28], but we do not assume any familiarity with projective
geometry here. Two projective pseudoline arrangements A and A′ in P2 are
isomorphic if there is a self-homeomorphism of the projective plane that turns
A into A′.

(Uniform) abstract order types correspond exactly to (simple) projective
pseudoline arrangements with a marked face. For straight-line arrangements,
the marked face corresponds to the convex hull of the point set described by the
order type. For more background on pseudoline arrangements with a marked
face and their encodings, the reader is referred to Felsner [12] (Chapter 6).

By the Folkman-Lawrence topological representation theorem [13], equiv-
alence classes of projective pseudoline arrangements correspond in one-to-one
fashion to reorientation classes of simple rank-3 oriented matroids [5]. A pseu-
doline arrangement is simple if no three pseudolines meet in the same point. A
simple projective pseudoline arrangement is stretchable if and only if it is iso-
morphic to a simple arrangement of straight lines. In 1988, Mnëv proved that
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every semialgebraic set is stably equivalent to the realization space of some rank-
3 oriented matroid [26]. Furthermore it was shown that the underlying matroid
could be made uniform (see also Lemma 4 in Shor [31]). As a by-product of these
results, the simple pseudoline stretchability problem of deciding stretchability
of a simple projective pseudoline arrangement is ∃R-complete [29].

We define uniform order type realizability as the problem of deciding whether
a given uniform abstract order type has a realization. The following lemma
summarizes the correspondence between abstract order types and pseudoline
arrangements, and the polynomial-time equivalence of the realizability and
stretchability problems. The order type realizability problem will be the starting
point of our reduction.

Lemma 1 Given a uniform abstract order type χ, we can compute in polyno-
mial time a description of a simple projective pseudoline arrangement A with
a marked face such that χ is realizable if and only if A is stretchable. Con-
versely, given a simple projective pseudoline arrangement A with a marked face,
we can compute in polynomial time a uniform abstract order type χ such that χ
is realizable if and only if A is stretchable.

3 ∃R-completeness of k-SGE

We first reproduce the reduction from weak rectilinear realizability due to
Gassner et al. [14] and then give a direct proof by reduction from the stretcha-
bility problem.

3.1 Reduction from weak rectilinear realizability

An abstract topological graph (AT-graph) is a pair (G,R) where G = (V,E) is
a graph and R ⊆

(
E
2

)
is a set of pairs of its edges. A straight-line drawing of

G is a weak rectilinear realization of (G,R) if every pair of edges that cross in
the drawing is contained in R. Deciding if an AT-graph has a weak rectilinear
realization was shown to be ∃R-complete by Kynčl [22].

Kynčl proves ∃R-hardness of weak rectilinear realizability by a reduction
from simple pseudoline stretchability. Given a simple arrangement A of m
pseudolines, Kynčl constructs an AT-graph (G,R) with G = (V,E) that admits
a weak rectilinear realization if and only if A is stretchable. In this construction,
similar to the order forcing lemma of Kratochv́ıl and Matoušek [21], there is
one edge associated with each pseudoline, but there is also a pair of edges
corresponding to each crossing between two pseudolines.

The weak rectilinear realizability problem is closely related to the k-SGE
problem. The following equivalence is analogous to the equivalence given in
Theorem 2 of [14]. Given graphs G1 = (V,E1), . . . , Gk = (V,Ek), we construct
an AT-graph (G,R) withG = (V,

⋃
iEi) and {e, f} ∈ R if and only if {e, f} 6⊆ Ei

for all i. Then G1, . . . , Gk admit a k-SGE if and only if (G,R) admits a weak
rectilinear realization. Conversely, given an AT-graph (G,R) with G = (V,E),
we construct a graph Gef = (V, {e, f}) for each pair of edges {e, f} 6∈ R. Then
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(G,R) admits a weak rectilinear realization if and only if the family F = {Gef |
{e, f} 6∈ R} admits an |F |-SGE.

Combining Kynčl’s argument with this equivalence yields the following:
given an arrangement A of m pseudolines, we can construct a set of km graphs
Gi, each on nm vertices, such that G1, . . . , Gkm admit a km-SGE if and only
if A is stretchable. Here, km = Θ(m4) and nm = Θ(m2). Fix any constant
0 < ε ≤ 1 and add an additional m4/ε isolated vertices to each graph Gi. Af-
ter this modification, nm = Θ(m4/ε) and thus km = Θ(nεm). Since this takes
polynomial time, we obtain the following:

Theorem 1 Given graphs G1 = (V,E1), . . . , Gk = (V,Ek) on n vertices, the
decision problem k-SGE is ∃R-complete for k = Ω(nε) and any constant ε > 0.

3.2 Reduction from uniform order type realizability

We will give an alternative proof of the result from the previous section via a
polynomial-time reduction from uniform order type realizability to k-SGE.

3.2.1 Radial Systems

The high-level idea is to associate one graph with each point v of the uniform
abstract order type χ so that a proper geometric embedding of the graph forces
some radial ordering of the other points around v. In a set of n points in the
plane, the radial ordering R(v) associated with the point v is simply the order
in which the n−1 other points are encountered by a counterclockwise ray sweep
around v. We will define this order up to a circular shift. This is illustrated in
Fig. 2(a). We call R the (counterclockwise) radial system of χ.

The radial system can be inferred from the order type of the point set, and
therefore can be defined even if χ is not realizable. A way to determine the
radial ordering of v is to pick another point w and first consider only the points
x such that χ(v, w, x) = +1, that is, the points on the left of the oriented line

h1

h2

h3

a

b

h4

(a)

h1
h2

h3
h4

a

b

(b)

Figure 2: (a) The radial ordering around point a is h1, h2, b, h3, h4 (up to a
circular shift) [1]. (b) In the dual, h1, h2 intersect a from above in this order
and b, h3, h4 intersect a from below in this order.
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vw. We can then sort these points using that x < x′ whenever χ(x, v, x′) = −1.
We can similarly sort the points x such that χ(v, w, x) = +1 and recover the
complete radial ordering R(v).

The radial system can also be extracted from the pseudoline arrangement
corresponding to the abstract order type. For the pseudoline v, the correspond-
ing radial ordering is constructed as follows. Starting on any point on the
pseudoline v, we first report the order of the successive intersections with pseu-
dolines coming from the same side as the marked face, followed by the order
of the intersections with the pseudolines coming from the other side. In a Eu-
clidean realization of the arrangement, this corresponds to pseudolines coming
from above and from below, respectively. This dual definition of the radial or-
derings is illustrated on Fig. 2(b). Note that the radial orderings are not the
same as the local sequences defined by Goodman and Pollack [16]. The local
sequence for a pseudoline v is simply the order of the intersections with the
other pseudolines, and correspond in the primal point set to a sweep with a line
through the point v, instead of a ray.

The relation between radial systems and order types has been studied in
depth in a more general setting in a recent paper from a superset of the current
authors [1]. It was shown in particular that the radial orderings alone are
not sufficient to recover the complete order type of a point set in the plane.
Furthermore, for point sets with a triangular convex hull, there can be as many
as n − 1 different order types having the exact same radial orderings for each
point. The reader is referred to this paper for more results and examples.

It is not too difficult to show, however, that the set of radial orderings is
sufficient to recover the order type, provided we also know the points on the
convex hull. This is a specialization of Lemma 3 in [1].

Lemma 2 ([1]) Consider a realizable abstract order type χ on n points, let S
be the set of counterclockwise radial orderings of the points, and let H be the set
of points on the convex hull. Then the pair (S,H) uniquely determines χ.

The proof is straightforward and involves three steps. We first recover the order
of the points on the convex hull by looking at the radial ordering of one of
them. Next, we recover the orientation of every triple with at least one point p
on the convex hull from the radial ordering of p. Finally, the orientations of the
remaining triples are deduced by sweeping a ray around a point on the convex
hull and then sweeping a ray around every point encountered.

3.2.2 Reduction

Before delving into the construction, we have to argue that we can assume
without loss of generality that the convex hull of the input abstract order type
χ for the realizability problem is triangular. Using Lemma 1, we can compute
a projective pseudoline arrangement A that is stretchable if and only if χ is
realizable, in such a way that the convex hull of χ corresponds to the marked
face of A. If this face is bounded by at most three pseudolines, then we are done.
Otherwise, since it is known that every projective arrangement of n pseudolines
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Figure 3: From left to right: the copy of K4, a wheel graph Wv for an order
type with convex hull h1, h2, h3, and the graph Tv. In Tv we have t1 = h1

1 = h2
3,

t2 = h2
1 = h3

3, t3 = h1
3 = h3

1, and t4 = h1
2 = h2

2 = h3
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has at least n triangular faces [23], we make such a face the marked face of A.
Applying Lemma 1 in the other direction finally gives us an abstract order type
χ′ with a triangular convex hull that is realizable if and only if χ is realizable.

We now have all the ingredients required for the reduction. For each v ∈ V
we define the wheel graph Wv on V as the union of the cycle R(v) corresponding
to the radial ordering around v, and the star connecting v to all vertices in R(v).
The purpose of including such a graph is to encode the radial ordering R(v) of
the n− 1 other points around v.

We next create the labeled graph Tv by embedding three copies ofWv into the
interior faces of a copy of K4, the complete graph on four vertices {t1, t2, t3, t4},
as shown on the left in Fig. 3. We distinguish the vertices of different copies
by adding a superscript i to the vertices of copy i. The convex hull h1

1, h
1
2, h

1
3

is embedded onto t1, t4, t3; the convex hull h2
1, h

2
2, h

2
3 is embedded onto t2, t4, t1;

and the convex hull h3
1, h

3
2, h

3
3 is embedded onto t3, t4, t2. Fig. 3 shows an exam-

ple of a wheel graph Wv and the resulting graph Tv. The graph Tv has exactly
3n − 5 vertices. The reason why we need to embed three copies of the wheel
graph Wv, and not simply one, is that the abstract order type will be preserved
only provided the convex hull is the same. We will see that three copies are
sufficient to guarantee that at least one of them will have the same convex hull
as the one specified by the original abstract order type.

Though the Tv in the example is maximal planar, this is not always the case.
We do, however, have the following.

Lemma 3 Each Tv is 3-connected.

Proof: Using symmetry it is easy to verify that Wv is 3-connected. We will
use Menger’s theorem to prove that Tv is also 3-connected. Let u be any vertex
of Wv. From every vertex u in Wv there is a path to h1, a path to h2 and
a path to h3 such that the paths share no vertex other than u. This can be
seen as follows. If u = v then we can reach each hi in one step. Otherwise,
one path traverses the cycle in a clockwise direction, one traverses the cycle in
a counterclockwise direction and one goes via v. The same holds for the copy
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of K4 (which can also be thought of as a wheel graph). It follows immediately
that there are three interior pairwise vertex-disjoint paths between every two
vertices in Tv. Hence, the lemma follows by Menger’s theorem. �

Since Tv is 3-connected, all embeddings of Tv are the same up to reflection and
the choice of the outer face. Let T be the set of all Tv.

Theorem 2 Given a abstract order type χ on a set V of n elements, we can
compute in polynomial time a set T of n graphs, each on the same set of 3n− 5
vertices, such that T admits an n-SGE if and only if χ is realizable.

Proof: Suppose that χ is realizable. Let P be a labeled point set that realizes
χ and let p(v) be the point in P that corresponds to v in χ. After possibly
reflecting P along the y-axis, the counterclockwise ray sweep around each point
p(v) ∈ P encounters the other points of P in the order R(v). Hence, by con-
struction of the wheel graphs, the induced straight-line drawing of each Wv on
P is plane. A labeled point set whose induced straight-line drawing of each
Tv is plane can now easily be constructed from three copies of P and affine
transformations.

Conversely, suppose that T has an n-SGE ϕ and consider its convex hull.
Note that the convex hull of ϕ corresponds to a mutual face of all Tv: if some
Tv does not have a face that corresponds to the convex hull, then some vertex
of Tv must have been embedded in the outer face of Tv in ϕ, which is impossible
by Lemma 3. If t1, t2, t3 is the (clockwise) outer face in ϕ, then the point set
corresponding to one of the three copies is a realization of χ. This can be seen
as follows. If t1, t2, t3 is the outer face in this clockwise order, then the triangle
h1

1, h
1
2, h

1
3 is also oriented in this clockwise order in ϕ. By Lemma 3, this triangle

must form the convex hull of each W 1
v . Hence, any swap of two elements in any

radial ordering R(v1) in ϕ will induce a crossing in the drawing of W 1
v . It follows

that ϕ is consistent with all radial orderings and therefore, from Lemma 2, it
induces a realization of χ. If a face other than t1, t2, t3 was chosen to be the
outer face in ϕ, say a face bounded by three vertices of copy one, then the point
set corresponding to the vertices of the second copy (or the third; both work)
is a realization of χ by a similar argument. This concludes the proof. �

We showed that uniform order type realizability can be reduced in polynomial
time to k-SGE. Since uniform order type realizability is ∃R-complete, it follows
that k-SGE is ∃R-hard and hence ∃R-complete by the fact that k-SGE belongs
to ∃R [10]. We finally add a suitable amount of isolated vertices as explained
in Subsection 3.1 to complete our alternative proof of Theorem 1.

We define radial system realizability as the problem of deciding whether a
given system of permutations R is the radial system of a set of points in R2.

Observation 1 Radial system realizability is ∃R-complete.

Proof: We prove that radial system realizability is polynomially equivalent to
uniform order type realizability.
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Consider an abstract order type χ. Using the method described at the be-
ginning of this section, compute an abstract order type χ′ from χ in polynomial
time such that χ′ is realizable if and only if χ is realizable and χ′ has a triangular
convex hull. Compute the radial system R of χ′. Since χ′ has a triangular convex
hull, χ′ is the only abstract order type with radial system R (Theorem 1 in [1]).
Hence, R is realizable if and only if χ is realizable.

Conversely, consider a system of permutations R on a set of n elements. We
compute in polynomial time the set T (R) of at most n − 1 uniform abstract
order types that have R as their radial system (Theorem 1 and Corollary 1
in [1]). Then R is realizable if and only if at least one uniform abstract order
type in T (R) is realizable. �

4 Simultaneous geometric embeddings requir-
ing doubly exponential grids

Many graph drawing questions involve drawing graphs on a small grid. Our
construction gives insight on the following simple problem: given a collection of
k graphs on n vertices which admit a k-SGE, can we provide any guarantee on
the size of the largest grid on which we can embed them?

Since the decision problem is ∃R-hard, it is unlikely that simultaneous ge-
ometric embeddings can all be drawn on a small grid. In fact, showing that
all collections of k = poly(n) graphs that admit a k-SGE, admit a k-SGE on a
grid of size at most exponential in a polynomial in n would directly imply that
∃R = NP , since the drawing could be encoded using a polynomial number of
bits and used as a certificate.

Our construction implies the following lower bound on the size of the smallest
grid required for a k-SGE.

Theorem 3 There exist collections of k graphs on n = Θ(k) vertices that admit

a k-SGE, every k-SGE of which requires a grid of size 22Ω(n)

.

Proof: We use a well-known construction due to Goodman, Pollack, and Sturm-
fels [17]. They construct a set of k points in the plane such that every realization

of its order type requires a grid of size 22Ω(k)

. This construction implements an
iterative squaring procedure using the multiplication gadget from Von Staudt’s
algebra of throws [27, 25].

Let χ be an order type on such a set of k points requiring a doubly exponential-
size grid. By Theorem 2, we can construct graphs T1, . . . , Tk where each Ti has
n = 3k − 5 vertices, such that every point set P that admits an k-SGE of
T1, . . . , Tk, where |P | = n, will contain a copy of a realization of χ. By defini-
tion of χ, P cannot be represented with points of integer coordinates smaller

than 22Ω(n)

. �

In the same paper, Goodman, Pollack, and Sturmfels [17] prove that every real-
izable order type in general position has a realization with coordinates bounded
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by 22O(n)

. If a set of graphs admits a k-SGE, then the resulting point set can
perturbed into general position without introducing any crossing. Finally, since
the order type of a point set determines whether two segments cross, it follows

that a k-SGE never requires coordinates larger than 22O(n)

. Hence, Theorem 3
is tight.

This is a significant improvement compared to what can be extracted from
the construction of Kynčl [22]. In the latter, an arrangement of m pseudolines
is realized via the simultaneous geometric embedding of graphs on a set of km
graphs on nm = Θ(m2) vertices. Hence although the coordinates may have

value 22Ω(m)

, this is only 22Ω(
√

nm)

.

5 Concluding remarks

We gave an alternative proof for the ∃R-hardness of k-SGE and we showed that

a k-SGE may sometimes need a grid of size 22Ω(n)

. Our hardness proof relies on
choosing k = Ω(nε), and it is not clear how to weaken this requirement. The
complexity of the cases k = O(log n) and in particular k = 2 are still open,
including whether these problems are in NP.
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