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Abstract

We consider the problems of hypergraph and minor crossing minimiza-
tion, and point out relationships between these two problems that have
not been exploited before.

In the first part of this paper, we present new complexity results re-
garding the corresponding edge and vertex insertion problems. Based
thereon, we present the first planarization-based heuristics for hypergraph
and minor crossing minimization. Furthermore, we show how to apply
these techniques to hypergraphs arising in real-world electrical circuits.

The experiments in this paper show the applicability and strength of
this planarization approach, considering established benchmark sets from
electrical network design. In particular, we show that our heuristics lead to
roughly 40–70% less crossings compared to the state-of-the-art algorithms
for drawing electrical circuits.
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(a) Electrical circuit C (b) Minor G (c) Realizing graph G′

Figure 1: The electrical circuit (a) cannot be drawn without crossings. By
(b) computing a minor, and (c) considering a realizing graph, we obtain an
equivalent but planar circuit.

1 Introduction

Crossing number research is a vivid field for over six decades; see [42] for an
extensive bibliography. Most research was done with respect to the traditional
crossing number: intuitively, given a graph, draw it into the plane with the
least number of edge crossings. In recent years, several further crossing numbers
have surfaced, either because of their theoretical appeal or their applicability in
practical problems. In this paper, we bind together theoretical research based on
the so-called minor crossing number, and practical demands often summarized
under variants of hypergraph crossing numbers.

We will define those notions formally in the succeeding section. For now it
shall suffice to say that the minor crossing number of G is the smallest crossing
number of any graph G′ that has G as its (graph) minor. This concept has been
studied mostly only in the context of theoretical lower and upper bounds [2–4],
but was never before tackled algorithmically. We will exploit the connection
between this crossing number and those of hypergraphs.

Besides their theoretical appeal, these problems occur, e.g., for crossing min-
imal layouts of electrical circuits [4]. Consider Figure 1. Usually, the exact
topology of such a circuit C is not interesting for the connected subgraphs that
have the same electric potential. Hence we can “merge” these vertices into one
vertex (which is exactly the central operation to obtain a minor G), compute
the minor crossing number mcr(G) and expand the graph accordingly to obtain
G′. In this example, we can observe the connection to hypergraphs: by seeing
the impedances on the wires as vertices, we can interpret the wires on the same
potential as hyperedges, i.e., edges with multiple incident vertices.

Outline and Contribution. We recapitulate the definition of the (minor)
crossing number, and introduce formal definitions for the hypergraph crossing
numbers in Section 2. Like the traditional crossing number, all crossing number
variants considered herein are NP-hard to compute and we point out relation-
ships between those measures.

For the traditional crossing number, its corresponding edge and vertex inser-
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tion problems (see below for formal definitions) have turned out to be polynomial-
time solvable and they have become a useful tool both in theory and in practice.
After a brief introduction into this topic in Section 3, we define the corresponding
insertion problems for our considered crossing numbers in Section 4. We prove
some of them to be NP-hard, while obtaining exact polynomial algorithms for
others.

Those algorithms then allow us to establish novel heuristics for our cross-
ing number minimization problems in Section 5. Thereafter in Section 6, we
outline additional properties and algorithmic adaptions to consider the prac-
tical application of drawing real-world electrical circuits. Both latter sections
include experiments, where we demonstrate the algorithms’ applicabilities and
strengths in practice.

In the final section, we conclude with sketching how to adopt exact (ex-
ponential time) approaches based on integer linear programs to our crossing
number variants and collect some open problems.

2 Minor and Hypergraph Crossing Numbers

A drawing of a graph G on the plane is a one-to-one mapping of each vertex to
a point in R2 and each edge to a curve between its two endpoints. The curve
is not allowed to contain other vertices than its two endpoints. A crossing is
a common point of two curves, other than their endpoints, and no three edges
cross at a common point. The (traditional) crossing number cr(G) then is the
smallest number of crossings in any drawing of G.

2.1 Minor Crossing Number

A graph G is a minor of a graph G′, denoted by G � G′, if and only if G can
be obtained from G′ by a series of minor operations. Such an operation is to
either (i) delete an edge or a vertex and its incident edges, or (ii) contract an
edge v1v2, thereby unifying the two incident vertices into a new vertex v which
is incident to all former neighbors of v1 and v2. The latter operation is called
edge contraction.

Symmetrically, we can define the inverse minor operations. Graph G is a
minor of G′, if and only if we can obtain G′ from G by a series of the following
operations: We either (i) introduce a new edge or a new vertex, probably inci-
dent to some vertices in the graph, or (ii) we replace some vertex v by an edge
v1v2, and for each neighbor u ∈ N(v) of v we introduce an edge v1u, v2u, or
both. We call the latter operation vertex split.

Definition 1 (Minor Crossing Number) The minor crossing number
mcr(G), sometimes also called minor-monotone crossing number, is the small-
est crossing number of any graph G′ that has G as its minor, i.e., mcr(G) :=
minG�G′ cr(G′).

Let G′ be a graph obtaining this minimum, i.e., G � G′ and cr(G′) =
mcr(G). We say G′ is a realizing graph of mcr(G).
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(a) Subset-standard (b) Edge-standard, tree-
based

(c) Edge-standard, point-
based

Figure 2: A hypergraph, drawn using different drawing styles.

Clearly, we always have mcr(G) ≤ cr(G). A central property of this number
is that, unlike the traditional crossing number, it is monotonously decreasing
with respect to the minor relation; if G � G′, we have mcr(G) ≤ mcr(G′). The
following observation is well-known and easy to see.

Observation 1 Consider a cubic graph G, i.e., a graph where each vertex has
degree 3. We have mcr(G) = cr(G).

In [32], Hliněný showed that the crossing number problem remains NP-
complete when considering cubic graphs. Hence the minor crossing number
problem is NP-complete as well.

2.2 Hypergraph Crossing Number

A hypergraph G = (V, E) differs from an ordinary graph in that instead of
edges—which have exactly two incident vertices—we consider hyperedges: A
hyperedge h ∈ E is a proper subset of V (i.e., h ⊂ V ) with |h| ≥ 2. See,
e.g., [36] for details. Hypergraph crossing numbers have, sometimes implicitly,
been used in various different variations before, but to our knowledge lack a
clear over-arching definition.

There are two major variants on how to draw hypergraphs [38], cf. Figure 2:
the subset-standard and the edge-standard. The first variant becomes very con-
fusing with more hyperedges, and it is ambiguous how to define a consistent
notion of crossings. Hence, most applications, e.g., [26, 37, 39], focus on the
edge-standard, which allows two sub-variants: In the tree-based drawing style,
each hyperedge h is drawn as a tree-like structure of lines whose leaves are the
incident vertices of h. If we restrict the tree-like structure of every hyperedge
to be a star, we obtain the point-based drawing style.

Based on these drawing styles, we can define a tree-based transformation to
obtain a traditional graph L from G. For each hyperedge h ∈ E we introduce a
set of associated hypervertices Vh, which form the branching points of the line
tree. Each vertex v ∈ h is connected to exactly one n ∈ Vh, and all hypervertices
Vh are tree-wise connected. We denote the set of all graphs L obtainable by
such transformations by L(H) and can naturally define:

Definition 2 (Tree-based Hypergraph Crossing Number) Let G be a
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hypergraph. We define the tree-based hypergraph crossing number as thcr(G) :=
minL∈L(G) cr(L).

We further define the point-based transformation Λ(H) as the special tree-
based transformation where each hyperedge has exactly one associated hyper-
vertex, i.e., Λ(G) := (V ∪ E , EE) with EE := {vh : v ∈ h ∈ E}. Clearly, this
leads to the point-based drawing style and the definition:

Definition 3 (Point-based Hypergraph Crossing Number) Let G be a
hypergraph. We define the point-based hypergraph crossing number as phcr(G) :=
cr(Λ(G)).

Both hypergraph crossing numbers have the elegant property that they are
equivalent to the traditional crossing number if all hyperedges have cardinality 2.
Because of this property, computing thcr(H) and phcr(H) is NP-hard. Thinking
in terms of graph minors, we furthermore observe:

Observation 2 For any L ∈ L(G) we have Λ(G) � L, i.e., the point-based
transformation of G is the minor of any tree-based transformation of G.

We can define point-based hypergraph planarity of G as phcr(G) = 0 straight-
forwardly, which is equivalent to Zykov planarity [36]. It can be efficiently tested
by transforming G into Λ(G) in linear time and applying any traditional linear-
time planarity testing algorithm to Λ(G). Analogously, tree-based hypergraph
planarity can be defined as thcr(G) = 0. Since any L ∈ L(G) is planar if and
only if Λ(G) is planar, all three planarity definitions are equivalent.

Obviously, the point-based hypergraph crossing minimization of G is equiv-
alent to the traditional crossing minimization on the graph Λ(G). Hence we will
focus on computing thcr(G).

2.3 Restricted Minor Crossing Number and Relationships

Let G � G′. Then, each vertex v in G corresponds to a subset of vertices
in G′ which we call split vertices of v. We may say v is expanded into these
split vertices. Now, let G = (V,E) be a graph and W ⊆ V a vertex subset.
We can define a special minor relation: G is a W -minor of G′, denoted by
G �W G′, if and only if we can obtain G′ from G by only expanding vertices
of W . This leads to the more general W -restricted minor crossing number
mcrW (G), i.e., the smallest crossing number over all graphs G′ with G �W G′.
Clearly mcrV (G) = mcr(G). Since vertices with degree less than 4 are irrelevant
for the differences between the traditional and the minor crossing number, we
have:

Theorem 3 Let G = (V, E) be a hypergraph and Ê := {h ∈ E : |h| ≥ 4}.
The tree-based hypergraph crossing number of G is equivalent to the Ê-restricted
minor crossing number of Λ(G), i.e., thcr(G) = mcrÊ(Λ(G)).

Hence, computing the tree-based hypergraph crossing number of G is equiva-
lent to finding a realizing graph Λ′ �Ê Λ(G) with smallest crossing number, i.e.,



196 Chimani, Gutwenger Hypergraph and Minor Crossing Number Problems

(a) Edge crosses vertex

(b) Vertex crosses vertex

Figure 3: New types of crossings. Both (a) and (b) give three visualizations:
On the left, we see a situation for the traditional crossing number. We require
less crossings for the minor crossing number by allowing novel crossing types
(middle) that lead to a realizing graph structure depicted on the right—the
expansion trees, in these examples simple edges, are drawn bold.

we may obtain Λ′ by only expanding hypervertices of degree at least 4. In the
following, we will always consider an undirected graph G = (V,E) with W ⊆ V ,
and we are interested in mcrW (G). We can assume deg(v) ≥ 4 for all v ∈W .

For the following algorithms, there are two points of view which are helpful
when discussing the problem of minor crossing numbers:

1. We can replace each vertex v ∈W , with neighborhood N(v), by an expansion
tree Tv that is incident to all vertices—or their respective expansion trees—
of N(v). The vertices of Tv are exactly the split vertices of v. The W -
restricted minor crossing number problem can then be reformulated as finding
a tree expansion G′, i.e., a graph obtained by such transformations, with
smallest crossing number.

2. In the traditional crossing number problem, only edges are allowed to cross.
For the minor crossing number, edges are also allowed to cross through ver-
tices, and moreover vertices may even “cross” other vertices; cf. Figure 3.
Such crossings are equivalent to crossings between an expansion tree and a
traditional edge, or between two expansion trees, respectively.

3 Preliminaries for Insertion Problems

Edge and vertex insertions provide strong tools to tackle the traditional cross-
ing number problem both in theory and in practice. They led to approximation
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algorithms for special graph classes and are the central ingredient of the pla-
narization method, the family of the most successful crossing number heuristics.
Recall that for crossing-free drawings (of connected planar graphs), we define
embeddings as the equivalence classes over all possible drawings w.r.t. the cyclic
order of the edges around their incident vertices [21].

In the edge insertion problem, we are given a planar graph G and an addi-
tional edge e not yet in G. We want to insert e into a planar embedding of G
using the least possible number of crossings, i.e., find a drawing of G + e with
the least possible number of crossings subject to the constraint that the drawing
induced by G (i.e., when deleting the image of e from the drawing) is planar.
This is equivalent to the question for the smallest number of crossings of G+ e
such that all crossings occur on e.

Analogously, we define the vertex insertion problem: Given a planar graph
G = (V,E) and a vertex subset U ⊆ V , draw G together with a new vertex,
connected to all vertices of U , with the least number of crossings such that the
drawing induced by G is planar. We will always denote the new vertex by u.

Both problems come in two flavors, with fixed and with variable embedding.
In the former, the embedding of G in the final drawing is prespecified, and both
the edge and the vertex insertion problem can be easily solved by considering
shortest distances in the dual graph of G [21]. When considering the variable
case, the problems include finding an embedding that allows the overall smallest
number of crossings. Still, both edge [31] and vertex [16] insertions can be solved
in polynomial time (the former even in linear time), but require much more
complicated algorithms and data structures; see the next section.

Computing the exact crossing number is already NP-hard for a graph like
G + e where G is planar [8, 10]. However, we remark that an optimal solution
to an insertion problem (with variable embedding) approximates the crossing
number of the augmented graph [7, 9, 19, 33]; see also Section 7. In fact, the
proof of [7, 9] (independently of our only slightly earlier publication [12]) even
uses the concept of edge insertion w.r.t. the minor crossing number (although
not algorithmically) to lower bound the number of required crossings for G+ e.

3.1 Decomposition Trees

We briefly introduce two important graph decomposition structures, namely
BC- and SPR-trees, which we will need in Section 4 for presenting our optimal
minor edge insertion algorithm.

Let G be a connected graph. The BC-tree B of G is a tree with two different
node types B and C: For each cut vertex in G, B contains a unique corresponding
C-node, and for each block, i.e., a maximal two-connected subgraph or a bridge,
in G a unique corresponding B-node. Two nodes in B are adjacent if and only if
they correspond to a block b and a cut vertex c, such that c ∈ b. It is well-known
that the size of B is linear in the size of G, and that B can be constructed in
linear time, by computing the biconnected components of G; see [35,41].

Based thereon, we can further decompose each non-trivial block G′ (i.e.,
a block that is not a bridge) via an SPQR-tree [23, 24] into its triconnected
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components: While SPQR-trees are more complicated than BC-trees, they also
only require linear size and can be constructed in linear time [29, 34]. This
data structure is particularly interesting, as it directly encodes all (exponen-
tially many) planar embeddings of G′. We use the definition from [11,18] which
does not use Q-nodes, and therefore call the decomposition SPR-tree for con-
ciseness. In a nutshell, each tree node corresponds to a skeleton, a “sketch” of
G′ where certain subgraphs are replaced by virtual edges; a skeleton’s structure
is restricted to only three simple types. By repeatedly merging the skeletons of
adjacent nodes (at their virtual edges representing each other), we can obtain
the original graph.

Definition 4 (SPR-tree) Let G′ be a biconnected graph with at least three
vertices. The SPR-tree T of G′ is the (unique) smallest tree satisfying the
following properties:

i. Each node ν in T corresponds to a skeleton Sν = (Vν , Eν) which is a
“sketch” (minor, in fact) of G′: Certain subgraphs are replaced by single
virtual edges. The non-virtual edges are referred to as original edges.

ii. The tree has three different node types with specific skeleton structure:

S: The skeleton is a simple cycle; it represents a serial component.

P: The skeleton consists of two vertices and multiple edges between them;
it represents a parallel component.

R: The skeleton is a simple triconnected graph. Note that a planar tri-
connected graph has a unique embedding (up to mirroring).

iii. For the edge νµ in T we have: Sν contains a virtual edge eµ that represents
the subgraph described by Sµ, and vice versa.

iv. We can obtain the original graph G′ by iteratively merging the skeletons
of adjacent tree nodes: For the edge νµ in T , let eµ (eν) be the virtual
edge in ν (µ) representing the subgraph described by Sµ (Sν , respectively).
Clearly, both edges eµ and eν connect the same vertices, say u and v. We
obtain a merged graph (Vν ∪ Vµ, Eν ∪ Eµ \ {eµ, eν}) by gluing the graph
together at u and v and removing eµ and eν .

Observe that the merge operation guarantees that the end vertices of a
virtual edge are in fact a 2-cut, i.e., their removal decomposes the graph into
two or more components. In fact, the skeletons are exactly the triconnected
components of G′ discussed in [34].

4 Edge and Vertex Insertion for the Minor Cross-
ing Number

We are now ready to present our core theoretical results on insertion problems
in the context of our crossing number variants. In the following, we will always
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consider the W -restricted variant of the minor crossing number. Yet, all our
results also hold for the special case that W is the complete set V , i.e., the
pure minor crossing number. We summarize our results in the following table,
subject to the precise definitions discussed below.

minor ... insertion fixed embedding variable embedding

edge O(|V |) [Theorem 4] O(|V |) [Theorem 5]
vertex O(|V | · |U |) [Theorem 6] ?
tree NP-hard [Theorem 7]

Table 1: Summary of complexity results for insertion problems w.r.t. mcrW .
G = (V,E) is the planar graph into which to insert an edge e /∈ E or a vertex u /∈
V (with edges incident to some U ⊆ V ). Note that all entries hold independently
whether W = V or not.

To formally define our insertion problems, we need one additional definition.
Two embeddings Γ of G and Γ′ of G′ (G � G′) are consistent, if we can obtain
Γ by performing the necessary minor operations stepwise on G′ and Γ′ in the
natural way: Merge adjacent vertices v1 and v2 with their respective cyclic
orders πv1 = 〈v1v2, e1, . . . , edeg(v1)−1〉 and πv2 = 〈v2v1, f1, . . . , fdeg(v2)−1〉 of
their incident edges. Then, the new vertex v will have the cyclic order πv =
〈e1, . . . , edeg(v1)−1, f1, . . . , fdeg(v2)−1〉.

4.1 Minor Edge Insertion

Definition 5 (Minor Edge Insertion) Given a planar graph G = (V,E), two
non-adjacent vertices s, t ∈ V , and a vertex subset W ⊆ V . The W -restricted
minor edge insertion problem is to find the W -restricted minor crossing number
of the graph G+st := (V,E∪{st}) under the restriction that all crossings occur
on the new edge st.

If we additionally require that the solution after removing st is an embedding
consistent with some prespecified embedding Γ of G, we have the fixed embed-
ding scenario, denoted by MEI-F; otherwise, we have the variable embedding
scenario and denote the problem as MEI-V.

As noted before, the corresponding problems concerning the traditional
crossing number can be solved in linear time (see [21, 31]). We will show that
both MEI-F and MEI-V can also be solved to optimality in linear time. Our
task is to find a tree expansion G′ of G along with an insertion path connecting
s and t, i.e., an ordered list of edges of G′ that are crossed when inserting e.
Observe that it is never necessary to expand s or t.

Theorem 4 MEI-F can be solved to optimality in linear time.

Proof: Let Γ be the prespecified embedding of G. We define a directed graph
DΓ,s,t = (N,A) as follows. Its vertex set N contains a vertex nϕ for each face
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ϕ in Γ and a vertex nv for each vertex v ∈ W ∪ {s, t}. Each arc a ∈ A has an
associated cost ca ∈ {0, 1}; we have the following arcs:

• For each pair ϕ,ϕ′ of adjacent faces in Γ, we have two arcs nϕnϕ′ and
nϕ′nϕ with cost 1.

• For each vertex v ∈ W \ {s, t} and face ϕ incident to v we have an arc
nvnϕ with cost 1 and an arc nϕnv with cost 0.

• Finally, we have arcs nsnϕ for each face ϕ incident to s and nϕ′nt for each
face ϕ′ incident to t; all these arcs have cost 0.

Then, the solution to MEI-F is the length of a shortest path p in DΓ,s,t from ns
to nt: Each arc nϕnϕ′ in p corresponds to crossing an edge separating ϕ and ϕ′;
each sub-path nϕnv, nvnϕ′ corresponds to splitting vertex v and crossing the
edge resulting from the split. We call p the insertion path for the new edge st.

In a planar graph, the number of edges and faces are both of order O(|V |).
Therefore both the number of vertices N and arcs A in DΓ,s,t are in O(|V |)
as well. Hence, we can apply breadth first search (BFS) for finding a shortest
path in DΓ,s,t requiring only O(|V |) time. We remark that BFS can easily be
extended to graphs with 0/1-arc costs. �

Theorem 5 MEI-V can be solved to optimality in linear time.

Proof: In order to solve MEI-V, we adapt the algorithm by Gutwenger et al. [31]
which solves the problem for the traditional crossing number, i.e., W = ∅ and
no vertex splits are possible. They showed that it is sufficient to consider the
shortest path1 B0, v1, B1, . . . , vk, Bk in the BC-tree B of G, such that B0 (Bk)
is a block containing s (t, respectively), and independently compute optimal
edge insertion paths in the blocks Bi from vi to vi+1 (0 ≤ i ≤ k, v0 = s,
and vk+1 = t). This is also true when we are allowed to split the vertices W :
Assume we already found an optimal embedding and insertion path for each
block. We obtain an embedding of the full graph and a full insertion path simply
by concatenating the respective insertion paths in the blocks and identifying the
respectively last visited faces of the adjacent blocks; alternately crossing edges
from different blocks or splitting (and crossing through) a cut vertex vi would
result in unnecessary crossings.

Thus, we can restrict ourselves to a biconnected graph G. Let T be the SPR-
tree of G. We consider the shortest path p = µ1, . . . , µh in T from a node µ1

whose skeleton contains s to a node µh whose skeleton contains t. Let Si be
the skeleton of µi (1 ≤ i ≤ h). The representative rep(v) of a vertex v ∈ G
in a skeleton Si is either v itself if v ∈ Si, or the virtual edge e ∈ Si whose
expansion graph contains v. If W = ∅, the exact algorithm [31] only considers
the R-nodes—triconnected skeletons with therefore unique embeddings—on p
and independently computes optimal edge insertion paths in fixed embeddings

1Note that, if s and t are cut vertices, they both lie in multiple blocks; we are interested
in the closest pair.
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of the respective skeletons from rep(s) to rep(t). If the representative is an edge,
we assume that a virtual vertex is placed on this edge and serves as start- or
endpoint of the insertion path.2

This approach is invalid if W 6= ∅: An optimal insertion path in a skeleton
Si might cross through an endpoint a of the edge representing t in Si, and
continuing this path from a in Si+1 might save one or even more crossings.

As a first step, we compute and store up to 9 insertion paths for each R-node
µ ∈ p: If rep(s) in µ’s skeleton S is an edge es = ab, we consider up to three
sources: es is always a source, a (b) is a source if a ∈ W (b ∈ W , respectively).
Analogously, we have up to three targets et, c, d. Each source/target pair gives
rise to a possible insertion path (considering the minor crossing number, of
course). Each such path can be computed by slightly modifying the search
network introduced for MEI-F: Recall that S allows only a unique embedding
(up to mirroring), and hence MEI-F seems applicable. However, it may contain
virtual edges other than es, et. Let f = vw be such a virtual edge, representing
a subgraph H that contains v, w. We know that H + vw is planar. In [31] it
was shown that any planar embedding of H + vw allows the same minimum
number of crossings when asking for an insertion path from one side of vw to
the other, without crossing vw itself—called “crossing through H”. This is
clear by observing that removing a (v, w)-edge-cut in H in any embedding of H
separates H into two disjoint subgraphs. Hence a minimum such cut resembles
a possible insertion path. Since this also holds for (v, w)-{node,edge}-cuts, we
can simply expand each virtual edge f 6∈ {es, et} by an arbitrary embedding of
the subgraph represented by f .

For all non-R-nodes along p, we know a crossing-free insertion path for any
source/target combination. Now, with these up to 9 paths per node in p, we can
deduce the full insertion path by simple dynamic programming over the length
of p. Observe that at µ1, we only have the unique source s. For increasing
i = 1, . . . , h, we compute the insertion paths Pi from s to the up to three
targets et, c, d at µi. Clearly, P1 are the solutions stored at µ1. We obtain Pi,
i > 1, by joining the solution paths Pi−1 to those stored at µi

3 and storing the
cheapest path for each target. The number of crossings is the sum of the so-
joined paths, with an additional crossing if the source at µi was a vertex. Ph will
consist of a single insertion path from s to t—our optimum insertion solution—
and a corresponding optimum embedding is induced by the embeddings of the
skeletons along p.

This algorithm can be implemented to run in linear time. �

4.2 Minor Vertex Insertion

Definition 6 (Minor Vertex Insertion) Given a planar graph G = (V,E)

2Recall that we will require no crossings for S- and P-nodes, as the respective insertion
path will only consist of a single face adjacent to both rep(s) and rep(t): for S-nodes there is
only a unique embedding of the skeleton cycle, for P-nodes we can pick an embedding where
the considered virtual edges are consecutive.

3Clearly, in such a join, the target in Pi−1 has to coincide with the source in µi.
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and two vertex subsets U,W ⊆ V . Let u /∈ V be a new vertex, and E′ the
new edges connecting each vertex of U to u. The W -restricted minor vertex
insertion problem is to find the W -restricted minor crossing number of the
graph G+ u := (V ∪ {u}, E ∪E′) under the restriction that all crossings occur
on the new edges E′.

Analogously to before, if we additionally require that the solution after re-
moving u and E′ is an embedding consistent with some prespecified embedding
Γ of G, we have the fixed scenario, denoted by MVI-F. Otherwise, i.e., in the
variable scenario, we denote the problem as MVI-V.

Note that in the above setting, the new vertex u cannot be an element of W
and it is thus not allowed to be replaced by an expansion tree—we will consider
the latter case in the next section under the term tree insertion.

The vertex insertion problem for the traditional crossing number where all
embeddings are considered—and therefore a special case of MVI-V—has been
shown to be polynomially solvable [16]. Yet, the algorithm’s intricate structure
seems to not readily allow a generalization towards minor crossing numbers. The
complexity of MVI-V remains unknown. For the fixed embedding, the problem
can be solved in O(|V | · |U |) time when considering the traditional crossing
number. An analogous algorithm, together with the ideas of Theorem 4, can be
used to show:

Theorem 6 MVI-F is solvable in O(|V | · |U |) time.

Proof: We can solve the vertex insertion problem with fixed embedding for
the traditional crossing number by considering the dual graph GD of G w.r.t.
the given embedding Γ. Each vertex in GD is labeled with a number which is
initially 0. We then start a BFS for each v ∈ U , augmenting GD with edges
between v and its incident faces. The labels in GD are incremented by their
BFS-depth minus 1, for each different v. Finally, each vertex of GD holds the
sum of the shortest distances between itself and the vertices U . We then simply
pick a vertex of GD with smallest number and insert the new vertex v into the
corresponding face in Γ.

Using the ideas from solving MEI-F, we can use the same algorithm but
allow edges to cross through vertices. Since all inserted edges are incident to
v, they will not cross each other in any optimal vertex insertion. Therefore,
no conflicting edge-vertex crossings can occur, other than ones based on paths
with equal length. Such conflicts can easily be resolved by choosing any of the
conflicting paths for both inserted edges. Observe that crossing through a vertex
w, when several inserted edges come from the same face ϕ, require only one
crossing each: Let e1, . . . , edeg(w) be the edges incident to w in the order specified
by Γ and let e1, edeg(w) be those bordering ϕ. We can construct a realizing graph
of embedded G, by replacing w by a path of vertices w1, .., wdeg(w) where each
edge ei, 1 ≤ i ≤ deg(w), becomes incident to vertex wi. The correctness and
running time of the algorithm follows. �
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4.3 Minor Tree Insertion

In the minor vertex insertion problem, the new vertex was not allowed to be
part of W and could thus not be expanded. The following problem distinguishes
itself from the minor vertex insertion exactly in the fact that it allows to replace
u by an expansion tree.

Definition 7 (Minor Tree Insertion) Given a planar graph G = (V,E)
and two vertex subsets U,W ⊆ V . Let u /∈ V be a new vertex, and E′ the new
edges connecting each vertex of U to u. The W -restricted minor tree insertion
problem is to find the (W ∪{u})-restricted minor crossing number of the graph
G+ u := (V ∪ {u}, E ∪E′) under the restriction that all crossings occur on the
new edges E′ or the new vertex u.

Again we distinguish between the variants for fixed (MTI-F) and variable
(MTI-V) embeddings. Like MVI-F and MVI-V, it is a natural generalization
of the vertex insertion problem for the traditional crossing number. Yet, the
seemingly simple extension to allow u to be expanded renders the problem NP-
hard. In fact, it turns out to be already NP-hard for a fixed embedding with
W = ∅, i.e., we want a tree-wise interconnection of U w.r.t. the traditional
crossing number.

Theorem 7 MTI-F and MTI-V are NP-hard, even for W = ∅ (i.e., traditional
crossing number) and W = V (i.e., unrestricted minor crossing number).

Proof: We can restrict ourselves to MTI-F. Since planar 3-connected graphs
have a unique planar embedding (and its mirror), NP-hardness for MTI-F (in
particular also for 3-connected graphs) implies NP-hardness for MTI-V. Consider
the following problem:

Planar Steiner Tree (PST). Given a planar graph D, integral posi-
tive edge weights w, and a vertex subset R ⊂ V (D) called terminals.
Find a minimum-weight tree T that contains all terminals.

This problem was shown to be NP-hard in the strong sense [27], i.e., there
are hard instances where the maximum edge weight wmax is bounded by a
polynomial in the size of D.

We will transform any PST instance (with polynomially bounded wmax)
into a corresponding MTI-F instance with W = ∅. Choose any embedding
of D and augment the graph greedily by additional edges to obtain a planar
triangulated graph D′ (i.e., each face is a triangle). The new edges get high
enough costs such that they will not be chosen in any optimal solution, say
w′max := wmax · |E(D)|+ 1.

Let G be the dual graph of D′. Any edge in G obtains the same weight as its
dual edge in D′. For each terminal t ∈ R, let ϕt be the corresponding face in G
and we introduce a star of degree 3 into ϕt, i.e., we add a new vertex vt with
edges incident to the three vertices bordering ϕt. Collect all these new vertices
in the set U , set the weight of all these new star edges to 0, and let G′ be the
graph resulting from all these additions.
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Recall that D′ and G′ are triconnected and thus have unique embeddings.
Now consider the traditional crossing number with edge weights, i.e., a crossing
between two edges of weights w1 and w2 counts as w1 · w2 crossings. In this
setting, we can also ask the tree insertion problem (insert a given tree structure,
where each inserted edge has weight 1) without the need for any graph minor
operations. Then, this tree insertion problem w.r.t. (G′, U) is equivalent to
solving the given PST problem for D′ and hence D.

It remains to transform the edge weighted insertion instance (which requires
weight 0 for the star edges) into a proper non-weighted instance. First, observe
that wmax and w′max are both polynomial in the size of D. It is easy to see
that any optimally inserted solution tree will cross at most 2 out of 3 star edges
around any given vertex of U . We can hence scale all edge weights by a factor
of 3|R|, and set the weights of the star edges to 1. An optimum solution to this
scaled problem induces an optimum solution to its unscaled variant. Still the
weights in the scaled version are polynomially bounded, and we can replace each
edge e in G′ of weight we with we parallel edges. Subdividing these edges leaves
a simple graph G′′. The graph again only grows polynomially and we hence
have NP-hardness for MTI-F with W = ∅. We can observe that the SPR-tree of
G′′ consists of a single R-node with skeleton G′, multiple P-nodes adjacent to
it, and (due to the subdivisions) S-nodes adjacent to these P-nodes. Hence all
the possible embeddings of the graph only differ in the order of the subdivided
parallel edges—since this order is irrelevant when mapping the solution back
into the weighted problem, we also have NP-hardness for MTI-V.

Now, consider the case W = V , i.e., all vertices, not only the new vertex
u, are allowed to be expanded. We replace each vertex w with degree > 3 by
a large-enough grid of maximum degree 3—similar to the brick-wall style grids
used in the proof of [32]—and attach w’s incident edges to these substructures
(at the outside of the grid, far-enough away from each other). We already know
from Observation 1 that for graphs with maximum degree 3, expanding vertices
does not influence the crossing number. �

Furthermore, recall that computing thcr(G) is a special case of aW -restricted
minor crossing number. By the above proof we also get in particular:

Corollary 8 Let G = (V, E) be a hypergraph and h 6∈ E a hyperedge not yet
in G. Computing thcr(G + h) under the side condition that G has to be drawn
planar is NP-hard, independent on whether a specific embedding of G is given
or not.

5 Heuristic (W -restricted) Minor Crossing Min-
imization

The planarization method is a well-known and successful heuristic for traditional
crossing minimization; see [13, 30] for experimental studies. First, a planar
subgraph is computed; then the remaining edges are inserted one after another
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(a) Dummy on target (b) Dummy near target (c) Dummy near source and target

Figure 4: Modification of insertion paths ending at dummy vertices. Bold solid
edges are part of expansion trees, dummy-vertices are denoted by squares. The
lines with the arrow heads in the left figures (“before”) show where the currently
considered edge to insert attaches to T . The right figures (“after”) show the
new T after the insertion took place.

by computing edge insertion paths and inserting the edges accordingly, i.e., edge
crossings are replaced by dummy vertices of degree 4.

In order to apply the algorithms from the previous section in a planarization
approach for computing mcrW (G), we need to generalize them, since the inser-
tion of edges expands vertices into trees. Furthermore, edges of G and edges
resulting from vertex splits get subdivided by dummy vertices during the course
of the planarization. We call the resulting paths edge paths and tree paths, re-
spectively. Hence, we are not simply given two vertices s and t but two vertex
sets S and T , and we have to find an insertion path connecting a vertex of S
with a vertex of T . Thereby, S (T ) is the set of all split vertices of s (t) and
all dummy vertices on tree or edge paths starting at a split vertex of s (t). The
dummy vertices in these last sets have the property that a simple extension of
the expansion tree is sufficient to connect an insertion path to a correct split
vertex; see Figure 4 for a visual description.

Before we discuss the details, we give an overview of the planarization ap-
proach for mcrW (G).

(1) Compute a planar subgraph Ḡ = (V, Ē) of G.

(2) For each edge e = st ∈ E \ Ē:

(a) Compute S and T .

(b) Find an insertion path p from S to T in Ḡ.

(c) Insert e into Ḡ according to p by splitting vertices if required and
introducing new dummy vertices for crossings.

It remains to show how to generalize the edge insertion algorithms. In the
fixed embedding scenario, we simply introduce a super start vertex s∗ connected
to all vertices in S, and a super end vertex t∗ connected from all vertices in T
in the search network.

The following proposition shows the key property for generalizing the vari-
able embedding case.
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Proposition 9 The following properties hold:

1. The blocks of Ḡ containing a vertex in S (T ) and the cut vertices of Ḡ
contained in S (T ) form a subtree of the BC-tree of Ḡ.

2. Let T be the SPR-tree of a block of Ḡ. The nodes of T whose skeletons
contain a vertex in S (T ) form a subtree of T .

This allows us to compute the shortest paths in the BC- and SPR-trees in
a similar way as described above (Theorem 5). The only difference is that we
consider blocks and skeletons containing any vertex in S (or T ). The computa-
tion of insertion paths in R-node skeletons is generalized as for the fixed case if
several vertices of S or T are contained.

In [13,30], two improvement techniques for the traditional planarization ap-
proach are described which are both also applicable in our case. The permutation
strategy calls step (2) several times and processes the edges in E \E′ in random
order. The post-processing strategy successively removes an edge path and tries
to find a better insertion path. This can also be done for tree paths which in fact
is a key optimization of our approach, since it allows us to introduce crossings
between two tree expansions as well. Finally, we remark that we also contract
tree paths during the algorithm if they no longer contain a dummy vertex and
thus become redundant.

5.1 Experimental Results

We implemented our algorithms as part of the open-source Open Graph Drawing
Framework (OGDF, [14]). We conducted two series of experiments on an Intel
Xeon E5430 (2.67 GHz) Linux system with 8 GB RAM.

The first experiment uses the well-known Rome benchmark set [22], which
has been used for many studies on the traditional crossing number, e.g., [6, 13,
30]. It consists of 11528 real-world graphs with 10–100 vertices. We restricted
ourselves to the 8013 non-planar graphs with at least 30 vertices; they have an
average density of 1.34. Our main focus was to investigate how the minor cross-
ing number compares to the traditional crossing number in real-world settings.
Figure 5 shows the average crossing numbers and minor crossing numbers per
graph size, both for the fixed and variable embedding cases (using 25 permu-
tations and post-processing). We can see that the minor crossing minimization
leads to roughly 35% less crossings on average. Both diagrams look nearly iden-
tical, although the absolute crossing numbers for fixed embedding are of course
a bit higher. In both cases, for the large graphs, the realizing graphs have about
10% more vertices than the original graphs, and roughly 8% of the graphs’ ver-
tices are substituted by expansion trees. All graphs can be solved clearly under
half a second for the fixed embedding case and under 20 seconds for the variable
case. For the latter, the 100-vertex graphs required 3.3 seconds on average.

We also considered the number of original vertices that were expanded and
the total number of vertex splits. Figure 6 shows the results for the variable
embedding case (the results for fixed embedding look quite similar). The average
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Figure 5: Results for the Rome graphs.
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Figure 6: Number of expanded vertices and overall vertex splits for the Rome
graphs (variable embedding).

number of expanded vertices grows to 8 for the largest graphs (that is also 8%
of their vertices), and the total number of vertex splits is only slightly larger
(by about 1.5 for the largest graphs), implying that only few vertices are split
several times.

The second set of experiments deals with hypergraphs. Therefore we chose
all hypergraphs from the Iscas’85, ’89, and ’99 benchmark sets of real-world
electrical networks4 with up to 500 vertices in their point-based expansion. Ta-
ble 2 summarizes our heuristic results for these graphs, considering both phcr,
using our traditional crossing minimizer [30], and thcr. The times are given in
seconds. We can clearly see the benefit of considering the tree-based drawing
style, as compared to the relatively large point-based crossing numbers. Fur-
thermore, these fewer crossings even lead to faster computation times (by a
factor of about 2) for the generally harder tree-based crossing number.

6 Applications to Electrical Circuits

In the introduction, we motivated the hypergraph crossing number by consider-
ing drawings of electrical circuit designs. On a chip, the most important criteria
for realizing such circuits is a small required area, leading to compact but con-
fusing edge routings. But as stated in [25], a readable drawing with few edge

4As some of these benchmark sets are hard to obtain, we collected all of them at http:

//www.ae.uni-jena.de/Research/ElectricalNetworks.html.

http://www.ae.uni-jena.de/Research/ElectricalNetworks.html
http://www.ae.uni-jena.de/Research/ElectricalNetworks.html
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FIX VAR
name |V | |E| |E(Λ)| phcr time thcr time phcr time thcr time

Is
c
a
s’

8
5 c17 4 11 16 0 0.02 0 0.00 0 0.00 0 0.00

c432 153 196 489 323 3.54 169 2.25 314 5:46.84 170 3:28.47
c499 170 243 578 543 15.48 215 6.94 486 23:12.51 200 10:30.50

Is
c
a
s’

8
9

s208a 111 122 300 29 0.15 20 0.09 28 8.37 18 6.10
s27a 12 17 33 0 0.00 0 0.00 0 0.00 0 0.00
s298 127 136 385 233 4.03 86 1.66 217 5:08.03 78 2:06.11
s344 164 184 448 64 0.47 41 0.38 57 39.03 37 27.08
s349 165 185 453 66 0.60 42 0.48 61 50.01 38 32.61
s382 173 182 500 226 1.79 82 1.31 206 3:09.76 90 1:47.50
s386a 158 172 511 820 21.78 300 11.99 805 34:00.86 266 15:04.97
s400 177 186 518 234 2.45 95 1.41 224 4:24.24 88 1:55.05
s420a 233 252 632 91 0.69 52 0.57 81 1:31.69 49 50.66
s444 196 205 569 229 2.62 81 1.54 218 3:38.78 86 2:07.42
s510 210 236 640 1237 1:17.04 524 27.34 1197 111:59.36 504 38:14.45
s526a 209 218 675 631 14.35 247 6.72 621 32:20.34 224 13:15.49

Is
c
a
s’

9
9

b01 43 47 128 37 0.11 20 0.10 31 5.32 20 3.26
b02 25 27 73 14 0.01 8 0.02 12 0.79 8 0.64
b03 148 156 432 138 0.88 57 0.74 133 1:32.56 58 45.59
b06 42 50 134 62 0.16 25 0.12 59 7.88 27 4.22
b08 166 179 493 328 7.47 161 3.85 339 10:09.06 157 3:52.97
b09 167 169 472 183 1.38 78 0.80 177 2:04.45 70 57.48
b10 183 200 553 500 10.79 245 6.16 475 14:17.70 209 8:40.14

Table 2: Results for real-world electrical circuits. E(Λ) denotes the edges of the
point-based transformation.

crossings is beneficial for debugging, teaching, presentation, and documentation
purposes. This is further strengthened by the fact that gate-level descriptions
may be automatically synthesized from other, e.g., register-transfer level, de-
scriptions. Furthermore, according to [1], the crossing number of a graph seems
to be a good estimate for the required area on a chip.

In this section, we will hence consider the real-world problem of drawing
electrical circuit designs, in particular gate- and register-transfer-level networks.
The truth is that there are often several additional properties required for such
drawings. We will focus on these properties and show how to adopt our algo-
rithms.

The problem of finding a crossing minimal drawing for such circuit designs
was, e.g., tackled in [25, 26], the latter of which also gives a short overview
on previous approaches. The currently best known approach [26] is based on
Sugiyama’s three-stage algorithm [40] of layering the graph, performing crossing
minimizations between adjacent layers, and finally assigning coordinates.

6.1 Circuit Network

Gate-level networks are composed of several components; see Figure 7 for an
example: Logical gates perform specified logical operations, like NOT, AND,
NOR, etc. A corresponding electrical component takes one or more input signals
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s

s

i

o

Figure 7: An electrical circuit (left) and its transformation into a graph for
the restricted minor crossing number problem (right). Circles denote original
vertices, squares denote the hypervertices from the point-based expansion. We
allow the minor relations on the black vertices, the white vertices (input and
output gates) are merged into the vertices si and so, respectively.

on its in-ports and outputs a single signal on its out-port. An input gate receives
its input signal from outside of the network. Hence it has no explicit in-port and
a single out-port. Conversely, an output gate outputs a resulting signal to the
outside of the network. It has no explicit out-port and a single in-port. Gates
are connected via wires. Each wire connects a single out-port to one or more
in-ports. We will never have a wire directly connecting two out-ports: If the
ports do not have the equivalent signal, this would result in a circuit failure.

For higher abstraction levels (register-transfer level, etc.), we may also con-
sider operational components, which represent logical networks that perform
more complex computations, like a 4-bit ADDER. Such components may have
multiple out-ports, and the order of the in- and out-ports may be crucial.

Drawing requirements. A drawing of such a circuit has to follow certain
established norms. The most common of which is that the input and output
gates are drawn on opposing borders of the drawing, say inputs on the top,
outputs on the bottom, and all other gates and wires in between. In terms of
graph drawing we can deduce the following drawing requirements:

DR1. Input and output gates have to lie on the outer face of the drawing.

DR2. Consider the cyclic order of the input and output gates on the outer
face. All input gates have to occur consecutively. This induces the same
property for the output gates.

Consider a planarization and an embedding of a hypergraph resembling a
circuit. If the embedding satisfies the above two properties, we can easily find a
drawing of the circuit where the input and output gates are on opposing borders,
and where all other wires and gates are in-between.
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Furthermore, for each operational component the order of its ports has to
be retained by the drawing. If no order is given, we always require that the
component’s in-ports are consecutive in the embedding (and hence so are its
out-ports).

In the aforementioned currently best known crossing minimization algorithm
for electrical circuits, the drawings furthermore have the property that they
are drawn upward, i.e., the y-coordinate increases monotonically for each edge,
when traversing it from its source vertex to one of its target vertices. This is an
intrinsic property of Sugiyama-based algorithms, and it is unspecified whether
this property is a requirement or a mere side-effect. In our context we will not
take upwardness into account.

However, building on the results of this paper, Chimani et al. [15] describe
an approach for drawing directed hypergraphs that is based on upward pla-
narization [17]. If electrical circuits shall be drawn in an upward fashion, that
approach is favorable; however, regarding crossing minimization of circuits with-
out the upward property, the heuristics presented here are much stronger: For
example—apart from the fact that the upward drawing restriction may already
force more crossings—we use optimal edge insertion in the variable embedding
scenario, whereas current upward planarization techniques can only consider
fixed embeddings.

6.2 From Circuit Networks to Hypergraphs

Clearly, the gates in a (gate-level) circuit C correspond to vertices V in a hy-
pergraph G = (V, E). We partition V into the sets I, O, and L, corresponding
to the input, output, and logical gates, respectively. For each wire we have a
hyperedge connecting the vertices corresponding to the gates connected by this
wire; cf. Figure 7.

We start with the point-based transformation Λ(G) = (V ∪ E , EE) of this
hypergraph and would want to solve the Ê-restricted minor crossing number
problem on Λ(G), where Ê := {h ∈ E : |h| ≥ 4}. However, this translation itself
would not yet guarantee the drawing requirements discussed above. Therefore
we first modify Λ(G) into the graph Λ+ as follows: we unify all input vertices
into a vertex si, all output vertices into a vertex so, and we introduce a new
edge siso. We then have to solve the problem of finding “mcrsiso

Ê
(Λ+)”, which

we define as the Ê-restricted minor crossing number of Λ+ under the restriction
that the edge siso has no crossings. Assuming we (exactly or heuristically) solve
this crossing minimization problem, we obtain a planarization of Λ+, where
hypervertices might be expanded into subtrees.

We can deduce a drawing for the circuit C by reinterpreting the hyperedges
as wires; it remains to reintroduce the input and output vertices. Since the edge
siso has no crossings, we know that si and so lie in a common face incident to
siso, which we choose as our outer face. We can then choose a (conceptually
arbitrarily small) crossing free region around si and place the input vertices on
their corresponding edges next to si; we do the analogous for the output vertices.
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After removing siso, we finally obtain a drawing of the circuit C where all inputs
and outputs lie on the outside (DR1), and the input vertices occur consecutively
(DR2). Hence we obtain a valid drawing of C and can deduce:

Proposition 10 Given a circuit C, let ccr(C) be the crossing number of the
circuit C under the drawing requirements DR1 and DR2. Let Λ+ be its trans-
formed graph as described above. We have: ccr(C) = mcrsiso

Ê
(Λ+).

It remains to solve the restricted minor crossing number problem, as de-
scribed in the section hereafter.

Note that more complex operational components with multiple in- and out-
ports can be modeled by subgraphs as follows: Each port is represented by a
vertex. If the order of the vertices is given, we connect the vertices accordingly
via a cycle. If the order is specified and if it is furthermore important whether
this order occurs clockwise or counterclockwise, we can reuse the machinery
of embedding constraints and their planarization, as described in [28]. If, on
the other hand the order is not specified at all, we connect all in-port vertices
to a new vertex, all out-ports to a second new vertex, and then connect both
new vertices. In any case, we have to forbid any crossings through these new
subgraphs (using essentially the same technique described below for the edge
siso). In the following, we will not consider complex ports and operational
components, but note that the aforementioned upward planarization approach
also allows port constraints, as described in [15].

6.3 Crossing Minimization of Circuit Designs

We have to augmented our above algorithms regarding mcrW (G) in order to
restrict the use of the edge siso. The simplest possibility to enforce the restric-
tion is to assign a crossing weight k = min(|I|, |O|) + 1 to the restricted edge,
or to replace the edge by a parallel substructure of that thickness. An optimal
solution will then never cross through siso or its replacement, since it is cheaper
to cross over all other edges incident to si or so, close to these vertices.

Although this strategy suffices, we prefer a method which does not require
edge costs or the enlargement of the graph: The key concept of the insertion
algorithm is to find a shortest path in the dual of the graph (or within sub-
graphs). To forbid the crossing of an edge then means to remove its dual from
the routing network. It is obvious that this strategy still always allows us to
find an insertion path. We have:

Proposition 11 The edge insertion problem corresponding to mcrsiso
Ê

can be
solved in linear time, both in the fixed and the variable embedding scenario.

6.4 Experimental Results

Again, we implemented our algorithms using OGDF [14] and ran our tests
on the same Xeon Linux system we used in Section 5.1. We chose all hyper-
graphs from the established synthesized sequential benchmark set Synth [5],
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FIX VAR
circuit #gates time ccr-1 ccr-10 time ccr-1 ccr-10 ccr [26] red.

S
y
n
t
h

add6 229 0.14 94 68 4.98 70 64 112 42.9%
adr4 147 0.06 40 40 1.29 63 41 74 44.6%
alu1 85 0.02 42 42 0.78 36 36 60 40.0%
alu2 189 0.13 181 128 9.15 140 121 243 50.2%
alu3 218 0.20 190 166 12.34 226 183 331 44.7%
co14 145 0.05 36 33 0.91 33 32 52 38.5%
dk17 168 0.12 159 138 7.70 131 116 188 38.3%
dk27 78 0.02 43 40 0.38 43 34 45 24.4%
dk48 194 0.21 204 170 14.43 171 166 290 42.8%
mish 215 0.10 12 11 0.43 11 10 49 79.6%
radd 121 0.04 38 29 0.56 30 24 37 35.1%
rckl 338 0.40 192 186 18.89 164 157
rd53 134 0.08 85 69 1.73 75 75 126 40.5%
vg2 185 0.10 92 86 5.85 74 74 131 43.5%
x1dn 186 0.10 85 78 6.34 80 74 134 44.8%
x9dn 203 0.15 115 100 4.34 77 77 158 51.3%
z4 125 0.04 48 43 0.72 47 41 66 37.9%
Z9sym 438 7.81 1074 917 473.87 824 763 1802 57.7%

Is
c
a
s’
8
5

c17 4 0.00 1 1 0 1 1
c432 153 0.41 453 409 23.92 471 368
c499 170 1.55 708 574 145.22 578 546
c880 357 3.18 910 716 471.94 787 701
c1196 516 75.37 2195 1998 3720.44 2008 1765
c1238 495 117.85 2460 2353 8968.46 2252 2068
c1355 514 2.99 756 684 240.23 708 561
c1908 855 20.16 1571 1382 1999.33 1335 1328

Table 3: Test results for the Synth and Iscas’85 benchmark circuits. FIX and
VAR denote whether the insertion algorithms assume a prespecified embedding
or not, ccr-1 and ccr-10 are the obtained circuit crossing numbers after 1 and
10 runs, respectively. Where available, the last two columns give the previously
best reported values for ccr in [26] and our relative reduction thereto.

and the Iscas’85, Iscas’89, and Itc’99 benchmark sets of real-world electri-
cal networks5. In the latter, we considered all graphs with up to 1000 gates.
This leads to hypergraphs with up to 1800 vertices and 2800 edges in their
point-based transformations.

Tables 3 and 4 show our results. For both the fixed and the variable embed-
ding versions, we give the runtime (in seconds) for one run, and the resulting
number of crossings after one (ccr-1) and after 10 randomized runs (ccr-10).
In each run, we also applied the postprocessing described in Section 5. The
last two columns show the previously best known number of crossings reported
by Eschbach et al. [26] and the relative reduction of this number achieved by
our best result; empty cells in these columns refer to instances not considered
in [26].

Our algorithm clearly outperforms the results summarized in [26]. The best

5We collected all these benchmark sets at http://www.ae.uni-jena.de/Research/

ElectricalNetworks.html.

http://www.ae.uni-jena.de/Research/ElectricalNetworks.html
http://www.ae.uni-jena.de/Research/ElectricalNetworks.html
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Figure 8: Comparison of computing ccr between a single run of our fixed em-
bedding planarizer (FIX) and the algorithm of [26] (EGB06).

results we obtained for each circuit required on average 42% less crossings for
the Synth instances, and even 71.3% less crossings for the Iscas’89 instances.

Comparing our experimental results with the results obtained by [26] re-
garding runtime is difficult, since the experiments were carried out on different
machines.6 They used a (not further specified) 2 GHz Linux PC with 1 GB
RAM. Nevertheless, it is worthwhile to compare our fastest heuristic (fixed em-
bedding with a single run, FIX) with their results (EGB06)—baring in mind
that our machine is surely faster. Figure 8 shows the obtained number of cross-
ings (left vertical axis) as well as the runtimes (right vertical axis) for all the
circuits considered in [26] (the instances are sorted by increasing number of
crossings with EGB06). FIX clearly dominates EGB06 with respect to number
of crossings (for many graphs, it achieves 1.5–2 times less crossings) and is also
faster (for some graphs up to a factor of 10). Even taking the different perfor-
mance of the machines into account, FIX is definitely competitive w.r.t. running
time.

Eschbach et al. [26] report on further experiments with an additional, time-
consuming optimization technique called windows optimization, which required
about 40–150 times more runtime for most instances. However, they could not
achieve any significant improvements. On the other hand, our more time-con-
suming heuristics (using several permutations with fixed or variable embedding;

6Unfortunately, the source code of [26] is not publicly available, so we could not re-run
their experiments on our machine.
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FIX VAR
circuit #gates time ccr-1 ccr-10 time ccr-1 ccr-10 ccr [26] red.

Is
c
a
s’

8
9

s27 12 0.00 1 1 0.00 1 1
s208 102 0.04 39 38 0.48 34 34 162 79.0%
s208a 111 0.03 40 31 0.44 29 28
s298 127 0.13 140 116 5.50 128 116 428 72.9%
s344 164 0.09 109 89 3.27 94 76
s349 165 0.14 94 80 4.72 83 76
s382 173 0.17 145 122 4.60 129 110 357 69.2%
s386 158 0.51 449 360 25.37 385 310 904 65.7%
s400 177 0.18 149 140 7.18 138 121 400 69.8%
s420 210 0.13 120 83 5.67 96 84
s420a 233 0.16 87 83 5.30 78 75
s444 196 0.19 125 119 7.63 118 105
s510 210 1.40 857 764 164.35 716 678
s526 208 0.38 327 288 26.93 296 275
s526a 209 0.60 324 264 30.38 279 272
s641 374 0.97 394 394 65.63 425 385
s713 389 1.10 404 374 49.45 384 354
s820 275 27.27 1566 1378 1129.80 1603 1346
s832 273 15.90 1673 1527 2058.63 1360 1360
s838 420 0.59 281 269 24.35 277 247
s838a 477 0.73 187 170 19.60 172 158
s953 401 14.47 1936 1728 1918.05 1671 1555
s1196 533 106.63 2104 2016 4333.75 2005 1805
s1423 726 2.23 402 386 90.63 381 342

It
c

’9
9

b01 40 0.01 37 31 0.38 32 29
b02 25 0.00 16 11 0.03 11 9
b03 137 0.06 80 73 1.77 72 66
b04s 570 3.79 694 645 407.00 758 612
b05s 872 20.58 1567 1472 4218.66 1399 1312
b06 46 0.02 48 45 0.46 52 41
b07s 403 1.34 564 543 138.64 484 484
b08 150 0.30 250 196 11.86 232 181
b09 156 0.10 101 101 2.57 124 92
b10 166 0.46 355 299 36.79 313 300
b11s 462 11.88 1414 1182 2016.01 1366 1216
b13s 309 0.30 173 148 12.84 175 137

Table 4: Test results for the Iscas’89 and Itc’99 benchmark circuits. FIX and
VAR denote whether the insertion algorithms assume a prespecified embedding
or not, ccr-1 and ccr-10 are the obtained circuit crossing numbers after 1 and
10 runs, respectively. Where available, the last two columns give the previously
best reported values for ccr in [26] and our relative reduction thereto.
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using variable instead of fixed embedding) can reduce the number of crossings
considerably (there are only a few exceptions when considering FIX vs. VAR).

We conclude with Figure 9, visually showcasing the benefit of our stronger
crossing minimization in contrast to a published drawing of [25].

7 Conclusions and Open Problems

We have presented the first heuristics for minor and hypergraph crossing min-
imization based on the well-known planarization approach. To this end, we
considered the complexity of insertion problems over graph minors. In par-
ticular, we showed how to insert edges optimally in polynomial time in these
scenarios, both in the case of fixed and variable embeddings. Furthermore, we
showed that while inserting a non-expandable vertex into a fixed embedding is
polynomial-time solvable, inserting expandable vertices is NP-hard even in very
restricted settings. An adaption to electrical circuits demonstrates the strength
of our approach, leading to much better results than the current state-of-the-art
for a large benchmark set of real-world circuits.

Considering the topics discussed in this paper there are (at least) three
different aspects for further research we deem interesting:

Complexity of MVI-V. MVI-V with W = ∅ is known to be polynomial [16].
Thereby, despite the fact that the different inserted edges would prefer distinct
embeddings, it turns out that one can find a single embedding satisfying all de-
mands “well enough”. When considering the case W 6= ∅, there is the additional
problem that different inserted edges would want to split vertices differently. It
is unclear if it is possible to find the best-possible tree expansion in polynomial
time.

Approximations for minor crossing number. For the traditional crossing
number, the solution of an edge or vertex insertion problem (G, st) or (G,U)
(with variable embedding) was shown to approximate the crossing numbers of
the augmented graphs G+e [7,9,33] and G+u [19], respectively. Does a similar
connection hold for the minor crossing number and its insertion problems?

Exact algorithms based on integer linear programs (ILPs). In recent
years, two different ILP formulations for solving the traditional crossing mini-
mization problem to optimality in practice were presented [6,20]. Conceptually,
they are based on binary variables for each edge pair, encoding whether these
edges cross or not. Several types of constraints then encode the feasibility of
the resulting solution.

Without going into details, we could extend both approaches using the fol-
lowing idea: any expandable vertex v is substituted by deg(v) vertices V ′v , one
for each edge originally incident to v. Furthermore, we add additional deg(v)−2
new vertices V ′′v for each v. Adding edges between the nodes Vv := V ′v ∪ V ′′v
allows to build all possible treewise connections between V ′v . For each of these
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(a) Layout from [25]; vertices recolored and background grid removed: 30 crossings
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(b) A drawing realizing our computed planarization: 18 crossings

Figure 9: Example graph rd84 from [25] (not part of the official Synth bench-
mark set).
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possible edges we add a binary variable that encodes whether the edge is chosen
or not. Two things remain. First, we add well-known undirected cut con-
straints X (V ◦) ≥ 1 for all ∅ 6= V ◦ ⊂ Vv to ensure that each original v becomes
a connected tree expansion. Thereby, X (V ◦) denotes the sum over all variables
corresponding to edges between vertices of V ◦ and Vv \V ◦. Second, the original
constraints of the ILP formulations have to become “deactivated” if any of the
edges considered in them is one of our new edges and not chosen. This can
be trivially achieved by subtracting the corresponding edge variable xe (or its
negation 1− xe) from the constraint in a suitable fashion.

Yet, this näıve formulation is of no use in practice due to its sheer number of
additional variables and the relatively weak constraints (due to the deactivation
possibility). Hence the question is: Does there exist a practically relevant ILP
formulation for the minor crossing number?
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