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Abstract

A problem that arises in drawings of transportation networks is to
minimize the number of crossings between different transportation lines.
While this can be done efficiently under specific constraints, not all solutions
are visually equivalent. We suggest merging single crossings into block
crossings, that is, crossings of two neighboring groups of consecutive lines.

Unfortunately, minimizing the total number of block crossings is
NP-hard even for very simple graphs. We give approximation algorithms
for special classes of graphs and an asymptotically worst-case optimal al-
gorithm for block crossings on general graphs. Furthermore, we show that
the problem remains NP-hard on planar graphs even if both the maximum
degree and the number of lines per edge are bounded by constants; on
trees, this restricted version becomes tractable.
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(a) 12 pairwise crossings. (b) 12 pairwise crossings grouped into
3 block crossings.

Figure 1: Optimal orderings of a metro network.

1 Introduction

A well-known visualization problem is creating drawings of transportation net-
works like metro maps. An important part of such networks are transportation
lines that connect different points using streets or railway tracks of the underlying
network. It is easy to model such networks by graphs. The vertices are stations or
intersections and the edges represent railway tracks or road segments connecting
the vertices. The lines then become paths in the graph. In many metro maps
and other transportation networks some edges are used by several lines. Usually,
to visualize such networks, lines that share an edge are drawn individually along
the edge in distinct colors. Often, some lines must cross, and it is desirable to
draw the lines with few crossings. The metro-line crossing minimization problem
has been introduced [5] in 2006. The goal is to order the lines along each edge
such that the number of crossings is minimized. So far, the focus has been on
the number of crossings and not on their visualization, although two line orders
with the same crossing number may look quite differently; see Figure 1.

Our aim is to improve the readability of metro maps by computing line orders
that are aesthetically more pleasing. To this end, we merge pairwise crossings
into crossings of blocks of lines minimizing the number of block crossings in the
map. Informally, a block crossing is an intersection of two neighboring groups of
consecutive lines sharing the same edge; see Figure 1b. We consider two variants
of the problem. In the first variant, we want to find a line ordering with the
minimum number of block crossings. In the second variant, we want to minimize
both pairwise and block crossings.

1.1 Motivation

Although we present our results in terms of the problem of metro-map visual-
ization, crossing minimization between paths on an embedded graph is used in
various fields. In very-large-scale integrated (VLSI) chip layout, a wire diagram
should have few wire crossings [18]. Another application is the visualization of
biochemical pathways [26]. In graph drawing, the number of edge crossings is
considered one of the most popular aesthetic criteria. Recently, a lot of research,
both in graph drawing and information visualization, has been devoted to edge
bundling. In this setting, some edges are drawn close together—like metro lines—
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(a) No unavoid-
able vertex cross-
ings.

(b) An unavoid-
able vertex cross-
ing in the center
of the vertex.

Figure 2: Consistent line orders
with and without unavoidable ver-
tex crossings.
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Figure 3: Lines `1 and `3 have an un-
avoidable crossing on edge (v3, v4) that
could also be placed on (v4, v5). Avoid-
able crossings (such as `2 and `3) are for-
bidden in solutions with monotone block
crossings.

which emphasizes the structure of the graph [10, 20, 25]. Block crossings can
greatly improve the readability of bundled graph drawings.

1.2 Problem Definition

The input consists of an embedded graph G = (V,E), and a set L = {`1, . . . , `|L|}
of simple paths in G. We call G the underlying network and the paths lines.
Note that the embedding of G does not necessarily have to be planar; we are only
interested in the clockwise order of edges incident to a vertex. The vertices of
G are stations and the endpoints v0, vk of a line (v0, . . . , vk) ∈ L are terminals.
For each edge e = (u, v) ∈ E, let Le = Luv be the set of lines passing through e.
At an interior point of an edge e, the order of lines is defined by a sequence
π = [π1, . . . , πn] with {π1, . . . , πn} = Le. For i ≤ j < k, a block move (i, j, k) on
the sequence π = [π1, . . . , πn] of lines on e is the exchange of two consecutive
blocks πi, . . . , πj and πj+1, . . . , πk. Interpreting edge e = (u, v) as being directed
from u to v, we define a line order, π0(e), . . . , πt(e)(e), on e as follows. The
initial sequence, π0(e), is the order of lines Le at the beginning of e (that is,
at vertex u), πt(e)(e) is the order at the end of e (that is, at vertex v), and,
for i = 1, . . . , t(e), the sequence πi(e) is an ordering of Le that is derived from
πi−1(e) by a block move. A line order with these properties that consists of t+ 1
sequences gives rise to t block crossings.

Following previous work [1, 23], we use the edge crossings model, that is,
we do not hide crossings under station symbols if possible. Two lines sharing
at least one common edge either do not cross or cross each other on an edge
but never in a vertex; see Figure 2a. For pairs of lines sharing a vertex but no
edges, crossings at the vertex are allowed and not counted as they exist in any
solution. We call such crossings unavoidable vertex crossings; see Figure 2b. If
the line orders on the edges incident to a vertex v produce only edge crossings
and unavoidable vertex crossings, we call them consistent in v. Line orders for
all edges are consistent if they are consistent in all vertices. Formally, we check
consistency of line orders in a vertex v by considering each edge e incident to v.
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At the end of e at vertex v the order of the lines in Le is fixed. The other edges
e1, . . . , ek incident to v together contain all lines of Le that do not terminate
in v. The combined order of these lines on edges e1, . . . , ek must be the same as
their order on e; otherwise, lines of Le would cross in v.

The block crossing minimization (BCM) problem is defined as follows.

Problem 1 (BCM) Let G = (V,E) be an embedded graph and let L be a set
of lines on G. For each edge e ∈ E, find a line order π0(e), . . . , πt(e)(e) such
that the line orders on all edges are consistent and the total number of block
crossings,

∑
e∈E t(e), is minimum.

Note that crossings between edges of G are allowed. As the lines on two
crossing edges cross in any case, there is no need to count such crossings.

In this paper, we restrict our attention to instances with two properties.
First, the intersection of two lines, that is, the edges and vertices they have in
common, forms a path (path intersection property). This includes the cases
that the intersection is empty or a single vertex, but excludes pairs of lines that
have two or more disjoint intersections. Second, any line terminates at vertices
of degree one and no two lines terminate at the same vertex (path terminal
property). The first property is introduced for simplicity of presentation; our
results do hold for the general case (after straightforward reformulation), as
every common subpath of two lines can be considered individually. The second
property, as shown by Nöllenburg [23], is equivalent to restricting each line to
be placed in a prescribed outermost position (left or right side) in its terminal.
The restriction is introduced to improve readability of metro-map visualizations;
it has been utilized in several earlier works [2, 4, 23]. We call the underlying
network without the vertices of degree one and their incident edges the skeleton.
Due to the path terminal property, crossings of lines occur only on edges of the
skeleton.

If both properties hold, a pair of lines either has to cross, that is, a crossing
is unavoidable, or it can be kept crossing-free, that is, a crossing is avoidable;
see Figure 3. The orderings that are optimal with respect to pairwise crossings
are exactly the orderings that contain just unavoidable crossings (Lemma 2 in
the paper of Nöllenburg [23]); that is, any pair of lines crosses at most once, in
an equivalent formulation. Intuitively, double crossings of lines can easily be
eliminated by rerouting the two lines, thus decreasing the number of crossings.
As this property is also desirable for block crossings, we use it to define the
monotone block crossing minimization (MBCM) problem. Note that feasible
solutions of MBCM must have the minimum number of pairwise crossings.

Problem 2 (MBCM) Given an instance (G = (V,E),L) of BCM, find a
feasible solution that minimizes the number of block crossings subject to the
constraint that any two lines cross at most once.

There are instances for which BCM allows fewer block crossings than MBCM
does; see Figure 4 in Section 2.
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Table 1: Overview of our results for BCM and MBCM.

graph class
BCM MBCM

(skeleton)

single edge 11/8-approx. [12] 3-approx. Sec. 2
path 3-approx. Sec. 3.1 3-approx. Sec. 3.2
tree ≤ 2|L| − 3 cross. Sec. 4 ≤ 2|L| − 3 cross. Sec. 4
upward tree 6-approx. Sec. 4.2 6-approx. Sec. 4.2

general graph O(|L|
√
|E|) cross. Sec. 5 O(|L|

√
|E|) cross. Sec. 5

bounded degree & edge multiplicity

tree FPT Sec. 6.1 FPT Sec. 6.1
planar graph NP-hard Sec. 6.2 NP-hard Sec. 6.2

1.3 Our Contribution

We introduce the new problems BCM and MBCM. To the best of our knowledge,
ordering lines by block crossings is a new direction in graph drawing. So far
BCM has been investigated only for the case that the skeleton, that is, the graph
without terminals, is a single edge [3], while MBCM is a completely new problem.
Table 1 summarizes our results.

We first analyze MBCM on a single edge (Section 2), exploiting, to some
extent, the similarities to sorting by transpositions [3]. Then, we use the notion
of good pairs of lines, that is, lines that should be neighbors, for developing an
approximation algorithm for BCM on graphs whose skeleton is a path (Section 3);
we properly define good pairs so that changes between adjacent edges are taken
into account. Yet, good pairs cannot always be kept close; we introduce a good
strategy for breaking pairs when needed.

Unfortunately, the approximation algorithm does not generalize to trees. We
do, however, develop a worst-case optimal algorithm for trees (Section 4). It
needs 2|L| − 3 block crossings and there are instances in which this number
of block crossings is necessary in any solution. We then use our algorithm for
obtaining approximate solutions for MBCM on the special class of upward trees.

As our main result, we present an algorithm for obtaining a solution for BCM
on general graphs (Section 5). We show that the solutions constructed by our
algorithm contain only monotone block moves and are, therefore, also feasible
solutions for MBCM. We show that our algorithm always yields O(|L|

√
|E|)

block crossings. While the algorithm itself is simple and easy to implement,
proving the upper bound is non-trivial. Next, we show that the bound is tight;
we use a result from projective geometry for constructing worst-case examples
in which any feasible solution contains Ω(|L|

√
|E|) block crossings. Hence, our

algorithm is asymptotically worst-case optimal.

Finally, we consider the restricted variant of the problems in which the
maximum degree ∆ as well as the maximum edge multiplicity c (the maximum
number of lines per edge) are bounded (Section 6). For the case where the
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underlying network is a tree, we show that both BCM and MBCM are fixed-
parameter tractable with respect to the combined parameter ∆ + c. On the
other hand, we prove that both variants are NP-hard on general graphs even if
both ∆ and c are constant.

1.4 Related Work

Line crossing problems in transportation networks were first studied by Benkert
et al. [5], who considered the metro-line crossing minimization problem (MLCM)
on a single edge. Recently, Fink and Pupyrev showed that the general version of
MLCM is NP-hard even on caterpillar graphs [15]; no efficient algorithms are
known for the case of two or more edges. The problem has, however, been studied
under additional restrictions. Bekos et al. [4] addressed the problem on paths and
trees. They also proved hardness of a variant, called MLCM-P, in which all lines
must be placed outermost in their terminals. Okamoto et al. [24] presented exact
(exponential-time) and fixed-parameter tractable algorithms for MLCM-P on
paths. Fink and Pupyrev presented a polynomial-time approximation algorithm
for this variant and showed that it is fixed-parameter tractable with respect to
the number of crossings on general graphs [15]. For general graphs with the path
terminal property, Asquith et al. [2], Argyriou et al. [1], and Nöllenburg [23]
devised polynomial-time algorithms. All these works are dedicated to pairwise
crossings, the optimization criterion being the number of crossing pairs of lines.

A lot of recent research, both in graph drawing and information visualization,
is devoted to edge bundling where some edges are drawn close together—like
metro lines—thus emphasizing the structure of the graph [10,17,20]. Pupyrev
et al. [25] studied MLCM in this context and suggested a linear-time algorithm
for MLCM on instances with the path terminal property.

A closely related problem arises in VLSI design, where the goal is to minimize
intersections between nets (physical wires) [18, 21]. Net patterns with fewer
crossings are likely to have better electrical characteristics and require less wiring
area as crossings consume space on the circuit board; hence, it is an important
optimization criterion in circuit board design. Marek-Sadowska and Sarraf-
zadeh [21] considered not only minimizing the number of crossings, but also
suggested distributing the crossings among circuit regions in order to simplify
net routing.

As we will later see, BCM on a single edge is equivalent to the problem of
sorting a permutation by block moves, which is well studied in computational
biology for DNA sequences; it is known as sorting by transpositions [3,9]. The task
is to find the shortest sequence of block moves transforming a given permutation
into the identity permutation. BCM is, hence, a generalization of sorting by
transpositions from a single edge to graphs. The complexity of sorting by
transpositions was open for a long time; only recently it has been shown to
be NP-hard [7]. The currently best known algorithm has an approximation
ratio of 11/8 [12]. The proof of correctness of that algorithm is based on a
computer analysis, which verifies more than 80, 000 configurations. To the best
of our knowledge, no tight upper bound for the necessary number of steps in
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sorting by transpositions is known. There are several variants of sorting by
transpositions; see the survey of Fertin et al. [14]. For instance, Vergara et al. [19]
used correcting short block moves to sort a permutation. In our terminology,
these are monotone moves such that the combined length of exchanged blocks
does not exceed three. Hence, their problem is a restricted variant of MBCM
on a single edge; its complexity is unknown. The general problem of sorting by
(unrestricted) monotone block moves has not been considered, not even on a
single edge.

2 Block Crossings on a Single Edge

For getting a feeling for the problem, we restrict our attention to the simplest
networks consisting of a single edge (the skeleton) with multiple lines passing
through it, starting and ending in leaves; see Figure 4a. Subsequently, we will
be able to reuse some of the ideas for a single edge for graphs whose skeleton is
a longer path or even a tree.

On a single edge, BCM can be reformulated as follows. We choose a direction
for the skeleton edge e = (u, v), for example, from bottom (u) to top (v). Then,
any line passing through e starts on the bottom side in a leaf attached to u and
ends at the top side in a leaf attached to v. Suppose we have n lines `1, . . . , `n.
The indices of the lines and the order of the edges incident to u and v yield an
induced order τ (as a permutation of {1, . . . , n}) of the lines on the bottom side
of e, that is, at u, and an induced order π of the lines at the top side of e; see
Figure 4a.

Given these two permutations π and τ , the problem now is to find a shortest
sequence of block moves transforming π into τ . By relabeling the lines we can
assume that τ is the identity permutation, and the goal is to sort π. This problem
is sorting by transpositions [3], which is hence a special case of BCM. Sorting
by transpositions is known to be NP-hard as Bulteau et al. [7] showed. Hence,
BCM, as a generalization, is also NP-hard.

Theorem 1 BCM is NP-hard even if the underlying network is a single edge
with attached terminals.

Sorting by transpositions is quite well investigated; Elias and Hartmann [12]
presented an 11/8-approximation algorithm for the problem. Hence, we concen-
trate on the new problem of sorting with monotone block moves; this means that
the relative order of any pair of elements changes at most once. The problems are
not equivalent; see Figure 4 for an example where dropping monotonicity reduces
the number of block crossings in optimum solutions. Hence, we do not know
the complexity of MBCM on a single edge. The problem is probably NP-hard
even on a single edge, but even for BCM (that is, sorting by transpositions) the
NP-hardness proof is quite complicated. As we are mainly interested in more
complex networks, we just give an approximation algorithm for MBCM on a
single edge. Later, we show that on general planar graphs, MBCM is indeed
NP-hard even if there are few lines per edge (see Section 6.2).
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3 2 5 4 1

1 2 3 4 5

(a) Input instance with six
pairwise crossings.

3 2 5 4 1

1 2 3 4 5

(b) Two block moves on
the central edge.

3 2 5 4 1

1 2 3 4 5

(c) Three monotone block
moves on the central edge.

Figure 4: Sorting permutation [3, 2, 5, 4, 1] by block moves and by monotone
block moves; both types of block moves are enclosed by ellipses.

In the example of Figure 4, the optimum solution contains a pair of lines
(lines 2 and 4) that cross twice. However, by replacing each of the two lines by a
large number k of parallel lines, we get an examle where saving a single block
crossing can lead to a solution in which almost every pair of lines crosses twice.
Hence, using non-monotone solutions, even if they are optimal, can cost a lot in
terms of pairwise crossings.

Next we present a simple 3-approximation algorithm for MBCM on instances
whose skeleton consists of a single edge.

2.1 Terminology

We first introduce some terminology following previous work where possible. Let
π = [π1, . . . , πn] be a permutation of n elements. For convenience, we assume
that there are extra elements π0 = 0 and πn+1 = n + 1 at the beginning of
the permutation and at the end, respectively. A block in π is a sequence of
consecutive elements πi, . . . , πj with 1 ≤ i ≤ j ≤ n. A block move (i, j, k) with
1 ≤ i ≤ j < k ≤ n on π maps π = [. . . , πi−1, πi, . . . , πj , πj+1, . . . πk, πk+1, . . . ]
to [. . . , πi−1, πj+1, . . . , πk, πi . . . , πj , πk+1, . . . ], that is, exchanges the blocks
πi, . . . , πj and πj+1, . . . , πk. As an example, let σ = [4, 2, 3, 5, 1]. The block
move (1, 3, 4) maps σ to the permutation [5, 4, 2, 3, 1].

A block move (i, j, k) is monotone if πq > πr for all i ≤ q ≤ j < r ≤ k, that
is, if every element in the first block πi, . . . , πj is greater than every element of
the second block πj+1, . . . , πk. For our example permutation σ, the block move
(1, 3, 4) is not monotone, but the block move (1, 1, 3), which maps σ to [2, 3, 4, 5, 1],
is monotone. We denote the minimum number of block moves needed to sort π
by bc(π), and the minimum number of monotone block moves needed for sorting
π by mbc(π). In our example, one can check that bc(σ) = mbc(σ) = 2.

An ordered pair (πi, πi+1) (with 0 ≤ i ≤ n) is a good pair if πi+1 = πi+1, and
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a breakpoint otherwise. In our example, permutation σ has only one good pair,
(2, 3), and five breakpoints, namely (4, 2), (3, 5), (5, 1), (0, 4), (1, 6); the latter
two because we assumed that there are extra elements 0 and n+ 1. Intuitively,
sorting π is a process of creating good pairs (or destroying breakpoints) by block
moves. The identity permutation [1, . . . , n] is the only permutation that has
only good pairs and no breakpoints.

A permutation is simple if it contains no good pairs. Any permutation can be
uniquely simplified without affecting its distance to the identity permutation [9].
This is done by “glueing” good pairs together, that is, treating the two lines as
one line and relabeling. The simplification of our example permutation σ is the
permutation [3, 2, 4, 1], where element 2 represents the elements 2 and 3 of σ.
A breakpoint (πi, πi+1) is a descent if πi > πi+1, and a gap otherwise. We use
bp(π), des(π), and gap(π) to denote the number of breakpoints, descents, and
gaps in π. In our example σ, (4, 2) is a descent, (3, 5) is a gap, and we have
bp(σ) = 5, des(σ) = 2, and gap(σ) = 3. The inverse of π is the permutation
π−1 in which each element and the index of its position are exchanged, that
is, π−1

πi
= i for 1 ≤ i ≤ n. In our example, σ−1 = [5, 2, 3, 1, 4]. A descent in

π−1, that is, a pair of elements (πi, πj) with πi = πj + 1 and i < j, is called an
inverse descent in π. Analogously, an inverse gap is a pair of elements (πi, πj)
with πi = πj + 1 and i > j + 1. For example, σ has the inverse descent (2, 1)
and the inverse gap (5, 4). Now, we give lower and upper bounds for MBCM,
that is, on mbc(π).

As there are n + 1 pairs (πi, πi+1) with 0 ≤ i ≤ n and any such pair is
either a good pair or a breakpoint, we have gp(π) + bp(π) = n + 1 for any
permutation π. The number bp(π) = n+ 1−gp(π) of breakpoints can, hence, be
interpreted as the number of missing good pairs because the identity permutation
id = [1, . . . , n] has bp(id) = 0 and gp(id) = n+ 1. The identity permutation is
the only permutation with this property. Recall that a simple permutation τ
does not have good pairs. Hence, gp(τ) = 0 and bp(τ) = n+ 1.

2.2 A Simple Approximation

A block move affects three pairs of adjacent elements. Therefore, the number of
breakpoints can be reduced by at most three in any block move. This implies
mbc(π) ≥ bc(π) ≥ dbp(π)/3e for any permutation π as Bafna and Pevzner [3]
pointed out. It is easy to see that bp(π) − 1 moves suffice for sorting any
permutation, which yields a simple 3-approximation for BCM.

We suggest the following algorithm for sorting a simple permutation π using
only monotone block moves: In each step find the smallest i such that πi 6= i
and move element i to position i, that is, exchange blocks πi, . . . , πk−1 and
πk, where πk = i. Clearly, the step destroys at least one breakpoint, namely
(πi−1 = i − 1, πi). Furthermore, the move is monotone as element i is moved
only over larger elements. Therefore, mbc(π) ≤ bp(π) and the algorithm yields
a 3-approximation. By first simplifying a permutation, applying the algorithm,
and then undoing the simplification, we can also find a 3-approximation for
permutations that are not simple.
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Theorem 2 There is a 3-approximation algorithm for MBCM on networks
whose skeleton is a single edge. The algorithm finds a sequence of block moves
in O(n

√
log n) time; reporting the corresponding sequence of permutations takes

O(n2) time.

Proof: Note that the trivial implementation of the 3-approximation runs in
O(n2) time. If we need to output the permutations after each block move, Ω(n2)
time is also necessary because there can be a linear number of block moves (for
example, for permutation [n, n− 1, . . . , 2, 1]), and it takes linear time to output
each permutation. If we are only interested in the sequence of block moves
(i, j, k), the running time can be improved by proceeding as follows.

Recall that it suffices to consider a simple permutation π. In increasing order,
we move elements i = 1, . . . , n− 1. In every step, the monotone block move is
described by (i, k − 1, k), where k is the current index of element i. Our crucial
observation is that the current index of i increases by one whenever a block
move is performed with an element j < i located to the right of i in the input
permutation. In other words, the total increase of the index of element i is the
number of inversions in π for i: the number of elements in π that are smaller
than i and located to the right of i.

It is well known that the number of inversions for each element in a permuta-
tion can be found in O(n log n) total time using, for example, Mergesort. Chan
and Pătraşcu [8] showed, however, how to solve the problem in O(n

√
log n) time.

�

Note that any future improvement of the time bound needed for counting
inversions in a permutation automatically improves the time bound stated in
the theorem.

2.3 Lower Bounds

The following observations yield better lower bounds than mbc(π) ≥ dbp(π)/3e.

Lemma 1 In a monotone block move, the number of descents in a permutation
decreases by at most one, and the number of gaps decreases by at most two.

Proof: Consider a monotone move that transfers [. . . a | b . . . c | d . . . e | f . . . ]
to [. . . a | d . . . e | b . . . c | f . . . ]; it affects three adjacencies. Suppose a descent
is destroyed between a and b, that is, a > b and a < d. Then, b < d, which
contradicts monotonicity. Similarly, no descent can be destroyed between e and
f . The fact that c passed d in a monotone move yields c > d. Hence, no gap is
destroyed between c and d. �

A similar statement holds for inverse descents and gaps.

Lemma 2 In a monotone block move, the number of inverse descents decreases
by at most one, and the number of inverse gaps decreases by at most two.
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Proof: Consider a monotone exchange of blocks πi, . . . , πj and πj+1, . . . , πk.
Note that inverse descents can only be destroyed between elements πq (i ≤ q ≤ j)
and πr (j + 1 ≤ r ≤ k). Suppose that the move destroys two inverse descents
such that the first block contains elements x+ 1 and y+ 1, and the second block
contains x and y. Since the block move is monotone, y + 1 > x and x+ 1 > y,
which means that x = y.

On the other hand, there cannot be inverse gaps between elements πq (i ≤
q ≤ j) and πr (j + 1 ≤ r ≤ k). Therefore, there are only two possible inverse
gaps between πi−1 and πr (j < r ≤ k), and between πq (i ≤ q ≤ j) and πk+1. �

Combining the lemmas, we obtain the following result.

Theorem 3 A lower bound on the number of monotone block moves needed to
sort a permutation π is

mbc(π) ≥
⌈
max(bp(π)/3,des(π), gap(π)/2,des(π−1), gap(π−1)/2)

⌉
.

2.4 An Upper Bound

To construct a better upper bound than mbc(π) ≤ bp(π), we first consider a
constrained sorting problem in which at least one of the moved blocks has unit
size; that is, we allow only block moves of types (i, i, k) and (i, k − 1, k). Let
mbc1(π) be the minimum number of such block moves needed to sort π. We
show how to compute mbc1(π) exactly. An increasing subsequence of π is a
sequence πl1 , πl2 , . . . such that πl1 < πl2 < . . . and l1 < l2 < . . . . Let lis(π) be
the size of the longest increasing subsequence of π.

Lemma 3 mbc1(π) = n− lis(π).

Proof: We first show mbc1(π) ≥ n− lis(π). Consider a monotone unit move σ =
(i, i, k) in π (σ = (i, k − 1, k) is symmetric). Let π̃ = [π1, . . . , πi−1, πi+1, . . . , πn]
be the permutation π without element πi. Clearly, lis(π̃) ≤ lis(π). If we apply σ,
the resulting permutation σπ = [π1, . . . , πi−1, πi+1, . . . , πk, πi, πk+1, . . . , πn] has
one extra element compared to π̃, and, therefore, lis(σπ) ≤ lis(π̃) + 1. Hence,
lis(σπ) ≤ lis(π) + 1, that is, a monotone unit move cannot increase the length
of the longest increasing subsequence by more than one. The inequality follows
since lis(τ) = n for the identity permutation τ .

Next, we show mbc1(π) ≤ n − lis(π). Let S = [. . . s1 . . . s2 . . . slis . . . ] be a
fixed longest increasing subsequence in π. We show how to choose a move that
increases the length of S. Let πi /∈ S be the rightmost element (that is, i is
maximum) lying between elements sj and sj+1 of S so that πi > sj+1. We move
πi rightwards to its proper position pi inside S. This is a monotone move, as πi
was chosen rightmost. If no such πi exists, we symmetrically choose the leftmost
πi with πi < sj and bring it into its proper position in S. In both cases S grows.

Together, the two inequalities yield the desired equality. �

Corollary 1 Every permutation can be sorted by n − lis(π) monotone block
moves.
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The Erdős-Szekeres theorem implies that if n ≥ (lis−1) · (lds−1) + 1, then
the longest increasing subsequence has length k ≥ lis, or there is a decreasing
subsequence of length k′ ≥ lds. With the currently known bounds, however, this
does not lead to a better approximation. There exist permutations in which
both the longest increasing and the longest decreasing subsequences have length
O(
√
n); for example, [7, 8, 9, 4, 5, 6, 1, 2, 3] is such a permutation for n = 9. The

new upper bound is O(n−√n), while the lower bound—using the number of
breakpoints—is only O(

√
n), which does not yield a constant approximation

factor (the 3-approximation can, of course, still be applied).

Another possible direction for improving the approximation factor would
be to relate the optimal solutions of BCM and MBCM, that is, to find r =
supπ{mbc(π)/bc(π)}. On one hand, mbc(π) ≤ bp(π) ≤ 3 bc(π) for all permuta-
tions, that is, r ≤ 3. On the other hand, bc(π) = d(n+1)/2e and mbc(π) = n−1
for permutation [n, n − 1, . . . , 2, 1] (see [13]), that is, r ≥ 2. If we had a con-
structive proof showing that r < 24/11 ≈ 2.18, we could combine this with the
11/8-approximation algorithm for BCM [12]. This would yield an algorithm for
MBCM with approximation factor r · 11/8 < 3.

3 Block Crossings on a Path

We consider an embedded graph G = (V,E) consisting of a path P = (VP , EP )—
the skeleton—with attached terminals. For every vertex v ∈ VP , the clockwise
order of terminals adjacent to v is given, and we assume that the path is oriented
from left to right. We say that a line starts at its leftmost vertex on P and ends
at its rightmost vertex on P . As we consider only crossings of lines sharing an
edge, we assume that the terminals connected to any path vertex v are in such
an order that first lines end at v and then lines start at v; see Figure 5. We
say that a line starts/ends above the path if its respective terminal is above
the path and that it starts/ends below the path if the respective terminal is
below the path. Similarly, we say that a line enters the path from the top or
from the bottom depending on the position of its first terminal above or the
below the path, and we say that the line leaves the path to the top or to the
bottom depending on the position of its second terminal with respect to the
path. Suppose that there are several lines that enter the path from above in
vertex v. We say that the first line entering P in vertex v from above is the
line whose terminal is leftmost since it is the first line that will join the lines
on the path. Similarly, the last line ending at v above P is the line ending in
the rightmost terminal above P at v. Symmetrically, we can define the first line
starting in v below the path and the last line ending in v below the path. We
first focus on developing an approximation algorithm for BCM. Then, we show
how to modify the algorithm for monotone block crossings.
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Figure 5: Lines starting and ending
around a vertex of the path.

b

c

a

v

Figure 6: Inheritance of a good pair;
(a, b) inherits from (c, b).

3.1 BCM on a Path

Recall that, as a generalization of sorting by transpositions, BCM on a path is
NP-hard; see Theorem 1. We suggest a 3-approximation algorithm for BCM.
Similar to the single edge case, the basic idea of the algorithm is to consider
good pairs of lines. A good pair is, intuitively, an ordered pair of lines that
will be adjacent—in this order—in any feasible solution when one of the lines
ends. We argue that our algorithm creates at least one additional good pair per
block crossing, while even the optimum creates at most three new good pairs
per crossing. To describe our algorithm we first define good pairs.

Definition 1 (Good pair) Let a and b be two lines. The ordered pair (a, b)
is a good pair if one of the following two conditions holds.

(i) Lines a and b end in the same vertex v ∈ P and a and b are consecutive
in clockwise order around v.

(ii) There are a line c and an interior vertex v of the path P such that c is the
first line that enters P in v from above, a is the last line ending in v above
P as shown in Figure 6, and (c, b) is a good pair.

(iii) Symmetrically to case (ii), there are a line c and an interior vertex v of
the path P such that c is the first line that enters P in v from below, b is
the last line ending in v below P , and (a, c) is a good pair.

Note that case (i) of the definition follows the definition of good pairs on a
single edge; compare Section 2. In case (ii) we say that the good pair (a, b) is
inherited from (c, b) and identify (a, b) with (c, b), which is possible as a and c
do not share an edge. Analogously, in case (iii) the good pair (a, b) is inherited
from (a, c) and we identify (a, b) with (a, c).

As a preprocessing step, we add two virtual lines, te and be, to each edge
e ∈ EP . Line te is the last line entering P before e from the top and the first
line leaving P after e to the top. Symmetrically, be is the last line entering P
before e from the bottom and the first line leaving P after e to the bottom.
Although virtual lines are never moved, te participates in good pairs, which
models the fact that the first line ending after an edge must be brought to the
top. Symmetrically, be participates in good pairs modeling the fact that the first
line ending after an edge must be brought to the bottom.

We now investigate some properties of good pairs.
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Lemma 4 Let e ∈ Ep be an edge and let ` ∈ Le. Then ` is involved in at most
one good pair (`′, `) for some `′ ∈ Le and in at most one good pair (`, `′′) for
some `′′ ∈ Le.

Proof: Let e = (u, v) be the rightmost edge with a line ` ∈ Le that violates the
desired property. Assume that the first part of the property is violated, that is,
there are two different good pairs (`′1, `) and (`′2, `). If ` ends at vertex v, there
clearly can be at most one of these good pairs because all good pairs have to be
of case (i).

Now, suppose that ` also exists on edge e′ = (v, w) to the right of e on P .
If both `′1 and `′2 existed on e′, we would already have a counterexample on e′.
Hence, at least one of the lines ends at v, that is, at least one of the good pairs
results from inheritance at v. On the other hand, this can only be the case for
one of the two pairs, suppose for (`′1, `). Hence, there has to be another good
pair (`′3, `) on e′, a contradiction to the choice of e. Symmetrically, we see that
there cannot be two different good pairs (`, `′′1) and (`, `′′2). �

Lemma 5 If e = (u, v) ∈ EP is the last edge before a non-virtual line ` ends
above the path, then there exists a line `′ on e that forms a good pair (`′, `) with
`. Symmetrically, if e is the last edge before ` ends below the path, then there
exists a line `′′ on e that forms a good pair (`, `′′) with `.

Proof: We suppose that ` ends above the path; the other case is analogous. We
consider the clockwise order of lines ending around v. If there is a non-virtual
predecessor `′ of `, then, by case (i) of the definition, (`′, `) is a good pair.
Otherwise, ` is the first line ending at v above the path. Then, virtual line te
that we added is its predecessor, and (te, `) is a good pair. �

In what follows, we say that a solution or an algorithm creates a good pair
(a, b) in a block crossing if the two lines a and b of the good pair are brought
together in the right order by that block crossing; analogously, we speak of
breaking a good pair if the two lines are neighbors in the right order before the
block crossings and are no longer after the crossing.

Lemma 6 There are only two possibilities for creating a good pair (a, b):
(i) Lines a and b start at the same vertex consecutively in the right order.

(ii) A block crossing brings a and b together.
Similarly, there are only two possibilities for breaking a good pair:

(i) Lines a and b end at the same vertex.
(ii) A block crossing splitting a and b.

Proof: In the interior of the common subpath of a and b, the good pair (a, b)
can only be created by block crossings because either a and b cross each other or
lines between a and b cross a or b. Hence, (a, b) can only be created without a
block crossing at the leftmost vertex of the common subpath, that is, when the
last of the two lines, say a, starts at a vertex v. In this case a has to be the first
line starting at v above P . This implies that, due to inheritance, there is a good
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e
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Figure 7: Ordering the lines on edge e in a step of the algorithm.

pair (c, b), where c is the last line ending at v above the path. It follows that
the good pair (c, b), which is identical to (a, b), existed before v. Analogously,
we get a contradiction if b is the first line starting at v below P . �

In case (i) of the lemma, we also say that (a, b) is an initial good pair.
It is easy to see that any solution, especially an optimal one, has to create all

good pairs. As we identify good pairs resulting from inheritance with the original
good pair (that is, resulting from case (i) of Definition 1), it suffices to consider
good pairs resulting from two lines ending at the same vertex consecutively
in clockwise order. As the lines must not cross in this vertex, they must be
neighbors before this vertex is reached. We show that a crossing in which a good
pair is broken cannot increase the number of good pairs at all.

Lemma 7 In a block crossing, the number of good pairs increases by at most
three. In a block crossing that breaks a good pair, the number of good pairs does
not increase.

Proof: We consider a block crossing on some edge that transforms the sequence

π = [. . . , a, b, . . . , c, d, . . . , e, f, . . .] into π′ = [. . . , a, d, . . . , e, b, . . . , c, f, . . .] ,

that is, the blocks b, . . . , c and d, . . . , e are exchanged. The only new pairs of
consecutive lines that π′ contains compared to π are (a, d), (e, b), and (c, f).
Even if these are all good pairs, the total number of good pairs increases only
by three.

Now, suppose that the block crossing breaks a good pair. The only candidates
are (a, b), (c, d), and (e, f). If (a, b) was a good pair, then the new pairs (a, d)
and (e, b) cannot be good pairs because, on one edge, there can only be one
good pair (a, ·) and one good pair (·, b); see Lemma 4. Hence, only (c, f) can
possibly be a new good pair. Since one good pair is destroyed and at most one
good pair is created, the number of good pairs does not increase. The cases that
the destroyed good pair is (c, d) or (e, f) are analogous. �

Using good pairs, we formulate our algorithm as follows; see Figure 7.
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edge e
`

a
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b
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d
f
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Figure 8: The (necessary) insertion of line ` forces breaking a good pair, that is,
(a, b) (≡ (a, c)), (d, a) (≡ (f, a) ≡ (f ′, a)), or (b, g) (≡ (b, h)), on edge e.

We traverse P from left to right. On an edge e = (u, v) ∈ EP of the path,
there are red lines that end at v above the path, green lines that end at v below
the path, and black lines that continue on the next edge. We bring the red
lines in the right order to the top by moving them upwards. Doing so, we keep
existing good pairs together. If a line is to be moved, we consider the lines below
it consecutively. As long as the current line forms a good pair with the next
line, we extend the block that will be moved. We stop at the first line that does
not form a good pair with its successor. Then, we move the whole block of lines
linked by good pairs in one block move to the top. Next, we bring the green
lines in the right order to the bottom, again keeping existing good pairs together.
There is an exception: sometimes one good pair on e cannot be kept together. If
the moved block is a sequence of lines containing both red and green lines, and
possibly some—but not all—black lines, then the block has to be broken; see
block (d, a, b, g) in Figure 8.

Note that this can only happen in one move on an edge; there can only be
one sequence containing both red and green lines because all red lines are part of
a single sequence and all green lines are part of a single sequence due to case (i)
of Definition 1. There are two cases when the sequence of good pairs has to be
broken:

(i) A good pair in the sequence contains a black line and has been created by
the algorithm previously. Then, we break the sequence at this good pair.

(ii) All pairs containing a black line are initial good pairs, that is, they have
not been created by a crossing. Then, we break at the pair that ends last of
these. When comparing the end of pairs we take inheritance into account,
that is, a good pair ends only when the last of the pairs that are linked by
inheritance ends.

After an edge has been processed, the lines ending above and below the
path are on their respective sides in the right relative order. Hence, our algo-
rithm produces a feasible solution. We show that the algorithm produces a
3-approximation for the number of block crossings. A key property is that our
strategy for case (ii) is optimal.
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Lemma 8 Let ALG and OPT be the number of block crossings created by the
algorithm and an optimal solution, respectively. Then, ALG ≤ 3 OPT.

Proof: Block crossings that do not break a good pair always increase the number
of good pairs. If we have a block crossing that breaks a good pair in a sequence
as in case (i) then there has been a block crossing that created the good pair
previously as a side effect: Each block crossing in our algorithm is caused by a
good pair of two red or two green lines that end after the current edge. In such
a crossing, there can be an additional good pair that is created unintentionally.
Hence, we can say that the destroyed good pair did not exist previously and still
have at least one new good pair per block crossing.

If we are in case (ii), that is, all good pairs in the sequence are initial good
pairs (see Figure 8), then these good pairs also initially existed in the optimal
solution. It is not possible to keep all these good pairs because the remaining
black lines have to be somewhere between the block of red lines and the block
of green lines. Hence, even the optimal solution has to break one of these good
pairs, on this edge or previously.

Let bcalg and bcopt be the numbers of broken good pairs due to case (ii) in
the algorithm and the optimal solution, respectively. In a crossing in which the
algorithm breaks such a good pair the number of good pairs stays the same
as one good pair is destroyed and another is created. On the other hand, in a
crossing that breaks a good pair the number of good pairs can increase by at
most two even in the optimal solution (actually, this number cannot increase
at all; see Lemma 7). Let gp be the total number of good pairs in the instance
according to the modified definition for monotone good pairs, and let gpinit

be the number of initial good pairs. Recall that, according to Definition 1,
good pairs resulting from inheritance are not counted separately for gp as they
are identified with another good pair. We get gp ≥ ALG−bcalg + gpinit and
gp ≤ 3 ·OPT−bcopt + gpinit. Hence, ALG ≤ 3 OPT +(bcalg − bcopt) combining
both estimates.

To prove an approximation factor of 3, it remains to show that bcalg ≤ bcopt.
First, note that the edges where good pairs of case (ii) are destroyed are exactly
the edges where such a sequence of initial good pairs exists; that is, the edges
are independent of any algorithm or solution. We show that, among these edges,
our strategy ensures that the smallest number of pairs is destroyed, and pairs
that are destroyed once are reused as often as possible for breaking a sequence
of initial good pairs.

To this end, let e′1, . . . , e
′
bcalg

be the sequence of edges, where the algorithm

destroys a new good pair of type (ii), that is, an initial good pair that has
never been destroyed before. We follow the sequence and argue that the optimal
solution destroys a new pair for each of these edges. Otherwise, there is a pair
e′i, e

′
j (with i < j) of edges in the sequence where the optimal solution uses the

same good pair p on both edges. Let p′ and p′′ be the pairs used by the algorithm
on e′i and e′j , respectively, for breaking a sequence of initial good pairs. As p′

was preferred by the algorithm over p, we know that p′ still exists on e′j . As p′

is in a sequence with p, the algorithm still uses p′ on e′′, a contradiction. �



128 Fink et al. Ordering Metro Lines by Block Crossings

We can now conclude with the following theorem.

Theorem 4 There is an O(|L|(|L|+n))-time algorithm for finding a 3-approxi-
mation for BCM on instances where the underlying network is a path of length n
with attached terminals.

The runtime analysis is simple: In O(|L|n) time, we can traverse the edges of
the path from right to left and, on each edge, determine the good pairs of lines,
resulting from lines ending together or from inheritance; for each good pair, we
also store where the pair ends (taking inheritance into account), since we need
this information in case (ii). In the following traversal from left to right, O(|L|)
time per edge is necessary for determining the order of lines on the left side of
the edge, resulting from the combination of lines continuing from the edge to
the left and lines joining the path. Additionally, there can be up to |L| block
crossings in total over the whole path; each block crossing results from some line
leaving the path. For each block crossing, we need linear time in the number of
current lines for deciding which block move should be applied. Hence, O(|L|2)
time in total suffices for all block crossings.

3.2 MBCM on a Path

The algorithm presented in the previous section does not guarantee monotonicity
of the solution. It can, however, be turned into a 3-approximation algorithm for
MBCM. To achieve this, we adjust the definition of inheritance of good pairs, as
well as the step of destroying good pairs, and we sharpen the analysis.

We first modify our definition of inheritance of good pairs. We prevent
inheritance in the situations in which keeping a pair of lines together at the end
of an edge is not possible without either having an avoidable crossing in the
following vertex or violating monotonicity. We concentrate on inheritance with
lines ending above the path; the other case is symmetric.

Suppose we have a situation as shown in Figure 9 with a good pair (a1, b).
Line c must not cross b. On the other hand it has to be below a2 near vertex v
and separate a2 and b there. Hence, bringing or keeping a2 and b together is of
no value, as they have to be separated in any solution. Therefore, we modify
the definition of good pairs, so that pair (a2, b) does not inherit from (a1, b) in
this situation; we say that line c is inheritance-preventing for (a1, b).

Apart from the modified definition of good pairs, one part of our algorithm
needs to be changed in order to ensure monotonicity of the solution. A block
move including black lines could result in a forbidden crossing that violates
monotonicity; see Figure 10. We focus on the case, where black lines are moved
together with red lines to the top. This can only occur once per edge. The case
that black lines are moved together with green lines to the bottom is symmetric.
Let b0, b1, . . . , bk be the sequence of good pairs from the bottommost red line
r = b0 on. If there is some line ` above the block b0, . . . , bk that must not be
crossed by a line bi of the block, then we have to break the sequence. We consider
such a case and assume that i is minimal. Hence, we have to break one of the
good pairs in (r, b1), (b1, b2), . . . , (bi−1, bi). Similar to case (i) in the algorithm
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Figure 9: Line c pre-
vents that (a2, b) inher-
its from (a1, b).
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Figure 10: On edge e, there are the good pairs (a, b),
(b, c), and (c, d) (≡ (c, d′)). Before line a leaves the
path, one of these good pairs must be destroyed—we
chose (b, c)—otherwise line ` would have to cross line d
twice, violating monotonicity.

for BCM, we break a pair of this sequence that is not initial. If all the pairs are
initial (case (ii)), we choose the pair (bj−1, bj) with j ≤ i minimal such that the
end vertex of bj is below the path, and break the sequence there. Note that line
` must end below the path, otherwise it would prevent inheritance of at least
one of the good pairs in the sequence. Hence, also bi ends below the path, and
bj is well-defined.

It is easy to see that our modified algorithm still produces a feasible ordering.
We now show that the solution is also monotone.

Lemma 9 The modified algorithm produces an ordering with monotone block
crossings.

Proof: We show that any pair of lines that cross in a block crossing is in the
wrong order before the crossing. Monotonicity of the whole solution then follows.
We consider moves where blocks of lines are brought to the top; the other case
is symmetric.

Suppose that a red line r is brought to the top. As all red lines that have to
leave above r have been brought to the top before, r crosses only lines that leave
below it, that is, lines that have to be crossed by r. If a black line ` is brought
to the top, then it is moved together in a block that contains a sequence of good
pairs from the bottommost red line r′ to `. Suppose that ` crosses a line c that
must not be crossed by `. Line c cannot be red because all red lines that are not
in the block that is moved at the moment have been brought to the top before.
It follows that r′ has to cross c. Hence, we can find a good pair (a, b) in the
sequence from r′ to ` such that a has to cross c but b must not cross c. In this
case, the algorithm will break at least one good pair between r′ and b. It follows
that c does not cross `, a contradiction. �

Lemma 10 Let ALGmon be the number of block crossings created by the algo-
rithm for MBCM and let OPTmon be the number of block crossings of an optimal
solution for MBCM. It holds that ALGmon ≤ 3 OPTmon.

Proof: As for the non-monotone case, all block crossings that our algorithm
introduces increase the number of good pairs, except when the algorithm breaks
a sequence of initial good pairs in case (ii). Again, also the optimal solution
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has to have crossings where such sequences are broken. In such a crossing of
case (ii), the two lines of the destroyed pair lose their partner. Hence, there is
only one good pair after the crossing, and the total number of good pairs does
not change at all; compare Lemma 7.

Hence, gp ≥ ALGmon−bcalg + gpinit and gp ≤ 3
(
OPTmon−bcopt

)
+ gpinit.

Combining both estimates, we get ALGmon ≤ 3 OPTmon +(bcalg − 3bcopt). Let
bcalg,top be the number of splits for case (ii) where the block move brings lines
to the top, and let bcalg,bot be the number of such splits where the move brings
lines to the bottom. Clearly, bcalg = bcalg,top + bcalg,bot. We get

ALGmon ≤ 3 ·OPTmon +(bcalg − 3 · bcopt)

≤ 3 ·OPTmon +(bcalg,top − bcopt) + (bcalg,bot − bcopt).

To complete the proof, we show that bcalg,top ≤ bcopt. Symmetry will then yield
that bcalg,bot ≤ bcopt.

Let e′1, . . . , e
′
bcalg,top

be the sequence of edges where the algorithm uses a new

good pair as a breakpoint for a sequence of type (ii) when lines leave to the
top, that is, a good pair that has not been destroyed before. Again, we argue
that even the optimal solution has to use a different breakpoint pair for each of
these edges. Otherwise, there would be a pair e′, e′′ of edges in this sequence
where the optimal solution uses the same good pair p on both edges. Let p′ and
p′′ be the two good pairs used by the algorithm on e′ and e′′, respectively. Let
p′ = (`′, `′′). We know that `′ leaves the path to the top and `′′ leaves to the
bottom as described in case (ii). Because all lines in the orders on e′ and e′′ stay
parallel, we know that lines above `′ leave to the top, and lines below `′′ leave
to the bottom. In particular, p′ still exists on e′′, as p stays parallel and also
still exists.

As in the description of the algorithm, let a and b be lines such that (a, b)
is the topmost good pair in the sequence for which a line c exists on e′′ that
crosses a but not b. If (a, b) is below p′ (see Figure 11a), then the algorithm
would reuse p′ instead of the new pair p′′ since (a, b) is in a sequence below p;
hence, also p′ is in the sequence and above (a, b).

Now suppose that (a, b) is above p′; see Figure 11b. Pair (a, b) is created by
inheritance because c ends between a and b. As both a and b end above the
path, separated from the bottom side of the path by p′, this inheritance takes
place at a vertex. At this vertex, a is the last line to end above the path. But
in this case, c prevents the inheritance of the good pair (a, b) because c crosses
only a, a contradiction to (a, b) being a good pair. �

We can now conclude with the following theorem.

Theorem 5 Given an instance of MBCM whose skeleton is a path of length n,
a 3-approximation can be computed in O(|L|(|L|+ n)) time.

Proof: Given Lemmas 9 and 10, it remains to analyze the running time. In
order to ensure monotonicity of the solution, our algorithm precomputes for
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(a) (a, b) is below (l′, l′′).
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(b) (a, b) is above (l′, l′′).

Figure 11: Different cases based on the pair (a, b).

each pair of lines whether the lines must or must not cross. This is done in
O(|L|2 + n) time in total by following the path, keeping track of the lines in
the order resulting from joining the path, and marking all crossings when a line
leaves the path. We then use this information to check the inheritance of a
pair of lines. For any other line that is currently active, we check whether it is
inheritance-preventing. Overall, this needs to be done only O(n) times. Hence,
the algorithm takes O(|L|(|L|+ n)) total time. �

4 Block Crossings on Trees

In the following we focus on instances of BCM and MBCM where the underlying
network is a tree. We first present an algorithm that yields a worst-case optimal
bound on the number of block crossings. Then, we consider the special class of
upward trees which have an additional constraint on the lines; for upward trees
we develop a 6-approximation for BCM and MBCM.

4.1 General Trees

Theorem 6 Given an embedded tree T = (V,E) of n vertices and a set L of
lines on T , one can order the lines with at most 2|L|−3 monotone block crossings
in O(|L|(|L|+ n)) time.

Proof: We root the given tree T at a leaf r and direct the edges away from the
root. Our algorithm processes the edges of T in breadth-first order, starting
from an edge incident to the root. In every step of the algorithm, we maintain
the following invariant: The lines in Le are in the correct order, that is, they do
not need to cross on yet unprocessed edges of T . We maintain the invariant by
crossing every pair of lines that needs to cross as soon as we see it.

The first step of the algorithm treats an edge e = (r, w) incident to the root r.
Since r is a terminal, there is only one line ` on edge e. We insert ` into the
(currently empty) orders on the edges of `, which clearly maintains the invariant.
Next we proceed with the edges incident to w.

Consider a step of the algorithm processing an edge e = (u, v). The lines
in Le are already in the correct order. We consider all unprocessed edges
(v, a), (v, b), . . . incident to v in clockwise order and build the correct orders for
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u v

a

b

c

(a) Situation before inserting `.

u v

a

b

c

`

(b) Line ` is inserted on edges (v, a) and (v, b).

Figure 12: Inserting a new line ` (bold red) into the current order on edges (v, a)
and (v, b).

them. The relative order of lines that also pass through (u, v) is kept unchanged
on the new edges. For all lines passing through v that have not been treated
before, we apply the following insertion procedure; see Figure 12.

Without loss of generality, a line ` passes through (v, a) and (v, b) so that
a precedes b in the clockwise order around v. The line is inserted at the last
position of the current orders π0(v, a), . . . , πt(v,a)(v, a) and at the first positions
of the current orders π0(v, b), . . . , πt(v,b)(v, b). This guarantees that we do not
get vertex crossings with the lines passing through (v, a) or (v, b). Then, as the
lines Lva \ ` are in the correct order close to vertex a, there exists a correct
position of ` in the order. We insert ` at the position using a single block crossing,
thus increasing t(v, a) by one. This crossing is the last one on edge (v, a) going
from v to a. Similarly, ` is inserted into Lvb.

This way we insert all the new lines and construct the correct orders on
(v, a), (v, b), . . . maintaining the invariant. We have to be careful with the
insertion order of the lines that do not have to cross. As we know the right
relative order for a pair of such lines, we can make sure that the one that has to
be innermost at vertex v is inserted first. Similarly, by considering the clockwise
order of edges around v, we know the right order of line insertions such that
there are no avoidable vertex crossings. Once all new lines have been inserted,
we proceed by processing the edges incident to v (except (u, v)).

We now prove the correctness of the algorithm. For each newly inserted
line, we create at most two monotone block crossings. The first line that we
insert into the empty orders cannot create a crossing, and the second line crosses
the first line at most once. Hence, we need at most 2|L| − 3 monotone block
crossings in total. Suppose that monotonicity is violated, that is, there is a pair
of lines that crosses twice. Then, the crossings must have been introduced when
inserting the second of those lines on two edges incident to some vertex. This,
however, cannot happen as at any vertex the two lines are inserted in the right
order by the above construction. Hence, the block crossings of the solution are
monotone.
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(a) Instance for |L| = 3. (b) The instance for |L| = 4 is created by
adding a line (bold red) to the instance
for |L| = 3.

Figure 13: Trees with 2|L| − 3 necessary crossings. By adding more lines using
the same construction by which the instance for |L| = 4 was created from the
one for |L| = 3, instances with an arbitrary number of lines can be created.

(a) Started at the leftmost edge, the algo-
rithm, produces 4 crossings.

(b) In an optimum solution one block cross-
ing suffices.

Figure 14: Worst case example for our algorithm for trees shown for five edges.
It can easily be extended to an arbitrary number of edges (and crossings).

The algorithm can be implemented to run in O(|L|(|L|+ n)) time: we need
O(|L| · n) time to traverse the tree and determine the insertion sequence of lines
and O(|L|2) time to construct the correct orders. �

Next we show that the upper bound that our algorithm yields is tight.
Consider the instance shown in Figure 13. The new bold red line in Figure 13b
is inserted so that it crosses two existing paths. The example can easily be
extended to instances of arbitrary size in which 2|L| − 3 block crossings are
necessary in any solution.

Unfortunately, there are also examples in which our algorithm creates |L| − 1
crossings while a single block crossing suffices; see Figure 14 for |L| = 5. The
extension of the example to any number of lines is straightforward. This shows
that the algorithm does not yield a constant-factor approximation.

4.2 Upward Trees

Here we introduce an additional constraint on the lines, which allows to ap-
proximate the minimum number of block crossings. Consider a tree T with a
set of lines L. The instance (T,L) is an upward tree if T has a planar upward
drawing—respecting the given embedding—in which all paths are monotone
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1 4 5 2 6 3

1 4 52 63

(a) Input with pair-
wise crossings.

1 4,5 2 6 3

1 4,52 63

(b) Simplification by
merging 4 and 5.

1 4,5 2 6 3

1 4,52 63

(c) Line ordering on
simplified instance.

1 4 5 2 6 3

1 4 52 63

(d) Simplification un-
done for solution.

Figure 15: Three steps of the algorithm for upward trees. The instance is drawn
in the style of a permutation with lines numbered from 1 to 6.

in vertical direction, and all path sources are on the same height as well as all
path sinks; see Figure 15a. Bekos et al. [4] already considered such trees (under
the name “left-to-right trees”) for the metro-line crossing minimization problem.
Note that a graph whose skeleton is a path is not necessarily an upward tree, as
the attached terminals obstruct a planar upward drawing.

Our algorithm consists of three steps. First, we perform a simplification step
that removes some lines. Second, we use the algorithm for trees presented in the
previous section on the simplified instance. Finally, we re-insert the removed
lines into the constructed order without introducing new block crossings; see
Figure 15 for an illustration of the steps of the algorithm. We first consider
MBCM and start by analyzing the upward embedding.

Given an upward drawing of T , we read a permutation π produced by the
terminals on the top similar to the case of a single edge; we assume that the
terminals produce the identity permutation on the bottom. Similar to the
single-edge case, the goal is to sort π by a shortest sequence of block moves.
Edges of T restrict some block moves on π; for example, blocks [1, 4] and [5]
in Figure 15a cannot be exchanged because there is no suitable edge with
all these lines. However, we can use the lower bound for block crossings on
a single edge; see Section 2: For sorting a simple permutation π, at least
dbp(π)/3e = d(|L|+ 1)/3e block moves are necessary. We stress that simplicity
of π is crucial here because the algorithm for trees may create up to 2|L| − 3
crossings. To get an approximation, we show how to simplify a tree.

Consider two non-intersecting paths a and b that are adjacent in both
permutations and share a common edge. We prove that one of these paths can
be removed without changing the optimal number of monotone block crossings.
First, if any other line c crosses a then it also crosses b in any solution (i).
This is implied by the monotonicity of the block crossings, by planarity, and by
the y-monotonicity of the drawing. Second, if c crosses both a and b then all
three paths share a common edge (ii); otherwise, there would be a cycle in the
graph due to planarity. Hence, given any solution for the paths L \ {b}, we can
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construct a solution for L by inserting b parallel to a without any new block
crossing. To insert b, we must first move all block crossings involving a to the
common subpath with b. This is possible due to observation (ii). Finally, we
can place b parallel to a.

To get a 6-approximation for an upward tree, we first remove lines until the
tree is simplified. Then we apply the insertion algorithm presented above, and
finally re-insert the lines removed in the first step. The number of block crossings
is at most 2|L′|, where L′ is the set of lines of the simplified instance. As an
optimal solution has at least |L′|/3 block crossings for this simple instance, and
re-inserting lines does not create new block crossings, we get the following result.

Theorem 7 On embedded upward trees, there is an 6-approximation algorithm
for MBCM. Given an upward tree with n vertices and a set L of lines on that
tree, the algorithm runs in O(|L|(|L|+ n)) time.

Proof: It remains to analyze the running time of the algorithm. Simplification
of the tree can be implemented in linear time by considering the top and bottom
permutations of the lines. Hence, the overall running time is O(|L|(|L|+ n)) by
Theorem 6. �

If we consider BCM instead of MBCM, we face the problem that we do
not know whether every solution for the simplified instance can be transformed
into a solution for the input instance without additional crossings. However,
we observe that our algorithms always finds monotone solutions for simplified
instances and, hence, they can be transformed back. Furthermore, dropping
lines can never increase the necessary number of block crossings. Hence, also for
BCM we have the lower bound of d(|L′|+ 1)/3e block crossings. Summing up,
we get a 6-approximation for BCM by using the same algorithm.

Corollary 2 On embedded upward trees, there is an 6-approximation algorithm
for BCM. Given an upward tree with n vertices and a set L of lines on that tree,
the algorithm runs in O(|L|(|L|+ n)) time.

5 Block Crossings on General Graphs

In this section, we consider general graphs. We suggest an algorithm that
achieves an upper bound on the number of block crossings and show that it is
asymptotically worst-case optimal. Our algorithm uses only monotone block
moves, that is, each pair of lines crosses at most once. The algorithm works on
any embedded graph; it just needs the circular order of incident edges around
each vertex.

The idea of the algorithm is as follows. We process the edges in an arbitrary
order. When we treat an edge, we sort the lines that traverse it. Among these
lines, we create a crossing between a pair if and only if this is the first time that
we consider this pair.

The crucial part of our algorithm is sorting the lines on an edge. We do this
in four steps: First, we build line orders on both sides of the edge and identify
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e

(a) Earlier edge cuts (at the gray boxes) define groups with respect to e. The two lines
with gray shading are merged as they are in the same group on both sides.

e

g?

(b) Sorting by insertion into the largest group g? (bold red). The merged lines always
stay together, in particular if their block crosses other lines.

Figure 16: Sorting the lines on an edge e in a step of our algorithm.

groups of lines. Then, we merge some lines if necessary. Next, we select the
largest group of lines that stay parallel on the current edge. The sorting of lines
then simply consists of inserting all other lines into the largest group. Finally,
we undo the merging step. In the following paragraphs, we describe these four
steps in detail.

An invariant. Our algorithm maintains the following invariant during the
iteration over all edges. As soon as an edge has been treated, its line order
is fixed. Each pair (`, `′) of lines that necessarily has to cross in the instance
crosses on the first common edge of ` and `′ that is treated by the algorithm;
on any other edge the pair (`, `′) is crossing-free. The relative order of ` and `′

on such an edge is the same as the one on the closer end of the edge containing
the crossing. Each pair of lines that must not cross is crossing-free on all edges
and their relative order on the processed edges is the one that is implied by a
crossing-free solution.

Suppose we currently deal with edge e and want to sort Le. Due to the path
intersection property, the edge set used by the lines in Le forms a tree on each
side of e; see Figure 16.
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Grouping lines. We cut these trees at the edges that have already been
processed. Then, each line on e starts at a leaf on one side and ends at a leaf
on the other side. Note that multiple lines can start or end at the same leaf
representing an edge that has previously been treated by the algorithm.

From the tree structure and the orders on the edges processed previously,
we get two orders of the lines, one on each side of e. Consider groups of lines
that start or end at a common leaf of the tree (such as the group of red lines
in Figure 16). All lines of a group have been seen on a common edge, and,
hence, have been sorted. Therefore, lines of the same group form a consecutive
subsequence on one side of e and have the same relative order on the other side.

Merging lines. Let g be a group of lines on the left side of e, and let g′ be a
group of lines on the right side of e. Let L′ be the (possibly empty) set of lines
starting in g on the left and ending in g′ on the right. Suppose that L′ consists
of at least two lines. As the lines of g as well as the lines of g′ stay parallel on e,
L′ must form a consecutive subsequence (in the same order) on both sides. Now,
we merge L′ into one representative, that is, we remove all lines of L′ and replace
them by a single line that is in the position of the lines of L′ in the sequences on
both sides of e. Once we find a solution, we replace the representative by the
sequence. This does not introduce new block crossings as we will see. Consider a
crossing that involves the representative of L′, that is, the representative is part
of one of the moved blocks. After replacing the representative, the sequence L′ of
parallel lines is completely contained in the same block. Furthermore, the lines
of L′ do not cross each other on edge e since they are part of the same group g.
Hence, we do not need additional block crossings. We apply this merging step
to all pairs of groups on the left and right end of e.

Sorting by insertion into the largest group. Now, we identify a group g?

with the largest number of lines after merging, and insert all remaining lines
into g? one by one. Clearly, each insertion requires at most one block crossing;
in Figure 16 we need three block crossings to insert the lines into the largest
(red) group g?. After computing the crossings, we undo the merging step and
obtain a solution for edge e.

Maintaining the invariant. Note that by building the groups and the line
orders on both sides of e, we ensure that the relative order of each pair of lines
is consistent with the line orders of edges treated by the algorithm previously. If
a pair of lines has to cross, but did not cross so far—because we did not treat a
common edge before—, the line orders on both ends will be different, resulting
in a crossing on edge e. However, if the edges did already cross on another edge,
the line orders on both sides of e will be the same and, hence, the lines stay
parallel on e.

Theorem 8 The algorithm described above computes a feasible solution for
MBCM on an instance (G = (V,E),L) in O(|E|2|L|) time. The resulting
number of block crossings is at most |L|

√
|E′|, where E′ ⊆ E is the set of edges

with at least two lines.

Proof: First, it is easy to see that no avoidable crossings are created, due to
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the path intersection property. Additionally, we treat all edges with at least two
lines, which ensures that all unavoidable crossings will be placed. Hence, we get
a feasible solution using only monotone crossings.

Our algorithm sorts the lines on an edge in O(|L||E|) time. We can build the
tree structure and find orders and groups by following all lines until we find a
terminal or an edge that has been processed before in O(|L||E|) time. Merging
lines and finding the largest group needs O(|L|) time; sorting by insertion into
this group and undoing the merging can be done in O(|L|2) time. Note that
|L| ≤ |E| due to the path terminal property.

Purely for the purpose of analyzing the total number of block crossings, we
maintain an information table T with |L|2 entries. Initially, all entries are empty.
After our algorithm has processed an edge e, we set T [`, `′] = e for each pair
(`, `′) of lines that we see together for the first time. The main idea is that
with be block crossings on edge e, we fill at least b2e new entries of T . This
ultimately yields the desired upper bound of |L|

√
|E| for the total number of

block crossings.
More precisely, let the information gain I(e) be the number of pairs of (not

necessarily distinct) lines `, `′ that we see together on a common edge e for the
first time. Clearly,

∑
e∈E I(e) ≤ |L|2. Suppose that b2e ≤ I(e) for each edge e.

Then,
∑
e∈E b

2
e ≤

∑
e∈E I(e) ≤ |L|2. Using the Cauchy-Schwarz inequality

|〈x, y〉| ≤
√
〈x, x〉 · 〈y, y〉 with x = (1)e∈E′ the all-ones vector and y = (be)e∈E′

the vector of block crossing numbers, we see that the total number of block
crossings is∑
e∈E′

be = |〈x, y〉| ≤
√
〈x, x〉 · 〈y, y〉 =

√
|E′|

∑
e∈E′

b2e ≤
√
|E′| · |L|2 = |L|

√
|E′|.

It remains to show that b2e ≤ I(e) for every edge e. We analyze the lines
after the merging step. Consider the groups on both sides of e; we number the
groups on the left side L1, . . . ,Ln and the groups on the right side R1, . . . ,Rm.
For 1 ≤ i ≤ n let li = |Li|, and for 1 ≤ j ≤ m let rj = |Rj |. Without loss of
generality, we can assume that L1 is the largest of the n+m groups. Hence, the
algorithm inserts all remaining lines into L1.

Then, be ≤ |Le| − l1. Let sij be the number of lines that are in group Li
on the left side and in group Rj on the right side of e. Note that sij ∈ {0, 1},
otherwise we could still merge lines. Then li =

∑m
j=1 sij , rj =

∑n
i=1 sij , s :=

|Le| =
∑n
i=1

∑m
j=1 sij , and be ≤ s− l1. In terms of this notation, the information

gain is I(e) = s2 −∑n
i=1 l

2
i −

∑m
j=1 r

2
j +

∑n
i=1

∑m
j=1 s

2
ij , which can be seen as

follows. From the total number s2 of pairs of lines on the edge, we have to
subtract all pairs of lines that are in the same group on the left or on the
right side of the edge; we must be careful not to subtract pairs that are in the
same group on the left and on the right side twice. By applying the following
Lemma 11 to the values sij (for 1 ≤ i ≤ n and 1 ≤ j ≤ m), we get b2e ≤ I(e).

To complete the proof, note that the unmerging step neither decreases I(e)
nor does it change be. �
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Lemma 11 For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let sij ∈ {0, 1}. Let li =
∑m
j=1 sij

for 1 ≤ i ≤ n and let rj =
∑n
i=1 sij for 1 ≤ j ≤ m such that l1 ≥ li for

1 ≤ i ≤ n and l1 ≥ rj for 1 ≤ j ≤ m. Let s =
∑n
i=1

∑m
j=1 sij, b = s − l1, and

I = s2 −∑n
i=1 l

2
i −

∑m
j=1 r

2
j +

∑n
i=1

∑m
j=1 s

2
ij. Then, b2 ≤ I.

Proof: It is easy to see that, for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, it holds that
sij(sij − s1j) ≥ 0 as sij ∈ {0, 1}. Using this property in the last line of the
following sequence of (in-)equalities, we get

I − b2 =

s2 −
n∑
i=1

l2i −
m∑
j=1

r2
j +

n∑
i=1

m∑
j=1

s2
ij

− (s2 − 2sl1 + l21
)

=

n∑
i=1

m∑
j=1

s2
ij + 2l1(s− l1)−

n∑
i=2

l2i −
m∑
j=1

rj

n∑
i=1

sij

=

n∑
i=1

m∑
j=1

s2
ij + 2l1

n∑
i=2

m∑
j=1

sij −
n∑
i=2

li

m∑
j=1

sij −
n∑
i=1

m∑
j=1

sijrj

=

n∑
i=2

m∑
j=1

sij (sij + 2l1 − li − rj)−
m∑
j=1

s1j (rj − s1j)

=

n∑
i=2

m∑
j=1

sij

sij + 2l1 − li − rj︸ ︷︷ ︸
≥0

− m∑
j=1

s1j

n∑
i=2

sij

≥
n∑
i=2

m∑
j=1

sij (sij − s1j)︸ ︷︷ ︸
≥0

≥ 0.

�

Next we show that the upper bound on the number of block crossings that
our algorithm achieves is asymptotically tight. To this end, we use the existence
of Steiner systems for building (nonplanar) worst-case examples of arbitrary size
in which many block crossings are necessary.

Theorem 9 For any prime power q, there exists a graph Gq = (Vq, Eq) with

Θ(q2) vertices and a set Lq of lines so that Ω
(
|Lq|

√
|E′q|

)
block crossings are

necessary in any solution, where E′q ⊆ Eq is the set of edges with at least two
lines.

Proof: Let q be a prime power. From the area of projective planes it is known
that an S(q2 + q + 1, q + 1, 2)-Steiner system exists [27], that is, there is a set S
of q2 + q + 1 elements with subsets S1, S2, . . . , Sq2+q+1 of size q + 1 each such
that any pair of elements s, t ∈ S appears together in exactly one set Si.
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s−0 s+0 s−q s+q t(`i)s(`i)

(a) Line `i is routed through the edges representing
s0, . . . , sq.

s− s+

(b) The order of the lines is
reverted between s− and s+.

Figure 17: Construction of the worst-case example.

We build graph Gq = (Vq, Eq) by first adding vertices s−, s+ and an edge
(s−, s+) for any s ∈ S. These edges will be the only ones with multiple lines on
them, that is, they form E′q. Additionally, we add an edge (s+, t−) for each pair
s, t ∈ S. Next, we build a line `i for each set Si as follows. We choose an arbitrary
order s0, s1, s2, . . . , sq of the elements of Si; then, we introduce extra terminals
s(`i) and t(`i) in which the new line `i =

(
s(`i), s

−
0 , s

+
0 , s
−
1 , s

+
1 , . . . , s

−
q , s

+
q , t(`i)

)
starts and ends, respectively; see Figure 17a.

As any pair of lines shares exactly one edge, the path intersection property
holds. For each s ∈ S, we order the edges around vertices s− and s+ in the
embedding so that all q + 1 lines on the edge representing s have to cross. This
is accomplished by using the reverse order of lines between s− and s+; see
Figure 17b. Then at least q/3 block crossings are necessary on each edge (using
the observation in Section 2), and, hence, (q2 + q+ 1)q/3 = Θ(q3) block crossings

in total. On the other hand, |L|
√
|E′| = (q2 + q + 1)

√
q2 + q + 1 = Θ(q3). �

6 Instances with Bounded Maximum Degree and
Edge Multiplicity

We now introduce two additional restrictions for (M)BCM. First, we consider
instances in which the maximum degree ∆ of a station is bounded by some
constant. Second, we assume that on any edge e, there is at most a constant
number c of lines, that is, |Le| ≤ c; we say that c is the maximum edge multiplicity.
For metro maps both restrictions are realistic: In the popular octilinear drawing
style, the maximum possible degree is 8. Furthermore, even in huge metro
networks, edges that are served by more than 10 lines are unlikely to occur, as
Nöllenburg [22] pointed out.

We first show that the restricted problem variants of both BCM and MBCM
can be solved in polynomial time if the underlying network is a tree. On the
other hand, we prove that the restricted variants are NP-hard on general graphs.

6.1 Restricted (M)BCM on Trees

We develop a dynamic program that solves (M)BCM on instances whose underly-
ing network is a tree. First, we root tree T = (V,E) at some arbitrary leaf r. Let
v ∈ V \{r}, and let u be the parent vertex of v. We say that a line contributes to
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v

u1 u2 u3

πvu

πu1v
πu2v

πu3v

u

(a) Subtree T [v]; the remaining instance,
which is bounded by orders πvu, πu1v,
πu2v, and πu3v is drawn bold.

v

u1 u2 u3

(b) Remaining instance of constant size for
the subtree; permutations are replaced by
edges leaving in the right order.

Figure 18: Computation of bc[v, πvu] for a subtree T [v] in the dynamic program.

subtree T [v] if at least one of its terminals is a vertex of T [v]; the line leaves the
subtree if one of its terminals is in T [v] and the other one is outside. Any line
that leaves subtree T [v] passes through edge e = (u, v). If we fix the order πvu of
lines in Le when leaving v on edge e, an optimum solution for T [v] is independent
of an optimum solution for the remaining graph; in other words, we can combine
any optimum solution for T [v] resulting in order πvu with any optimum solution
for the remaining graph resulting in the same order πvu. Let bc[v, πvu] be the
number of block crossings in an optimum solution for T [v] that results in order
πvu at vertex v on edge (u, v). If there is no feasible solution, that is, no solution
without avoidable vertex crossings and—for MBCM—without double crossings,
for the given order πvu, then we let bc[v, πvu] =∞.

If v is a leaf, then |Le| = 1, there is only one possible order πvu, and
bc[v, πvu] = 0. Now, suppose that v has children u1, . . . , uk, with k < ∆. For
computing value bc[v, πvu], we test all combinations of permutations πuiv for ui
with i = 1, . . . , k; see Figure 18a. Given such permutations, we can combine opti-
mum solutions for the subtrees T [u1], . . . , T [uk] resulting in orders πu1v, . . . , πukv

with an optimum solution for the remaining instance, which consists of the edges
(u1, v), . . . , (uk, v) and is described by the orders πu1v, . . . , πukv and πvu; see the
bold region in Figure 18a and the transformed instance shown in Figure 18b.
Let f(v, πvu, πu1v, . . . , πukv) be the number of block crossings in an optimum
solution of this remaining instance; note that this value can be computed in
constant time because the remaining instance has only constant size. Then,

bc[v, πvu] = min
πu1v,...,πukv

(
f(v, πvu, πu1v, . . . , πukv) +

k∑
i=1

bc[ui, πuiv]

)
.

Note that f(v, πvu, πu1v, . . . , πukv) =∞ if the permutations lead to an infeasible
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solution with avoidable vertex crossings or—for MBCM—double crossings. Table
bc[·, ·] has at most n · c! = O(n) entries, each of which can be computed in
constant time. Hence, we get the following theorem.

Theorem 10 BCM and MBCM can be solved optimally in O(n) time on trees
of maximum degree ∆ and maximum edge multiplicity c if both ∆ and c are
constants.

Now, we want to analyze the runtime for computing an entry bc[v, πvu]
more precisely. First, there are at most (c!)∆−1 combinations for the orders
πu1v, . . . , πukv. Second, for computing f(v, πvu, πu1v, . . . , πukv), we can try all
combinations for the orders on the edges around v. If such a combination leads
to a feasible solution, we can solve each edge—as a permutation of constant size—
individually; using breadth first search this is possible in O(

(
c
3

)
· c!) = O(c3c!)

time since there are c! permutations of length c and each permutation can
be transformed into another permutation by O(

(
c
3

)
) many block moves, each

described by a triple of positions. Overall, evaluating f(v, πvu, πu1v, . . . , πukv) is
then possible in O((c!)∆−1∆c3c!) = O((c!)∆∆c3) time. The total time for finding
an optimum solution is, hence, O(n · c! · (c!)∆−1 · (c!)∆∆c3) = O(n(c!)2∆∆c3).
As parameters c and ∆ are well-separated from n, we can conclude as follows.

Corollary 3 BCM and MBCM are fixed-parameter tractable on trees with re-
spect to the parameter c + ∆, where ∆ is the maximum degree and c is the
maximum edge multiplicity. The problems can be solved in O(n · (c!)2∆∆c3) time.

6.2 NP-Hardness of Restricted BCM and MBCM

We now show that restricted MBCM is NP-hard on general graphs. More
specifically, it is NP-hard even if the graph is planar, the maximum degree is 3,
and there is no edge with more than 11 lines.

Theorem 11 MBCM is NP-hard on planar graphs even if the maximum degree
is 3 and the maximum edge multiplicity is 11.

Proof: We show hardness by reduction from Planar 3SAT, which is known to
be NP-hard even if every variable occurs in exactly three different clauses [11]. Let
(X,C) be an instance of Planar 3SAT; that is, X is a set of variables and C is a
set of clauses consisting of literals, which are negated or unnegated variables, such
that for any clause c ∈ C (with c ⊆ X ∪ {¬x | x ∈ X}), it holds that |c| ∈ {2, 3}.
Additionally, we can assume that | {c ∈ C | x ∈ c or ¬x ∈ c} | = 3 for each x ∈ X.
Graph GXC = (X ∪ C,EXC) describing the occurrence of variables in clauses
with the edge set EXC = {{x, γ} | variable x occurs in clause γ} is planar.

We now construct an instance (G = (V,E),L) of MBCM modeling the 3SAT
instance. To this end, we take a fixed planar embedding of GXC . We replace
each variable x ∈ X in GXC by a variable gadget Vx and each clause γ ∈ C by a
clause gadget Cγ . If x ∈ γ, then the edge {x, γ} becomes an edge {vx, vγ} where
vx and vγ are vertices of the variable gadget and the clause gadget, respectively.
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C(x∨¬y∨z)

Vx Vy Vz

Ny

Figure 19: Connections of variable paths for a clause γ = (x ∨ ¬y ∨ z) where x
is false and y and z are true.

If ¬x ∈ γ, we replace edge {x, γ} by a path (vx, u, u
′, vγ) where u and u′ are

vertices of a negator gadget Nx. In both cases, we call the edges of the connection
between the gadgets the variable path. By placing the gadgets in the positions
of the respective vertices of GXC and routing the variable paths along the edges,
we get a planar embedding of G.

On every edge outside of a gadget, exactly two lines represent a literal. We say
that there the literal state is true if the lines cross in the one of the neighboring
gadgets that is farther away from the clause gadget; it is false otherwise, that
is, if the lines do not cross in the neighboring gadget farther away from the
clause gadget. We will build the gadgets in such a way that crossings occur only
within gadgets in crossing minimal solutions. Furthermore, we will connect the
lines so that each pair of lines representing a literal has to cross, that is, it can
be either in true or in false state. Figure 19 shows the connections for the
variables of a clause. Note that, if we have the state false on an edge adjacent
to a clause gadget, this means that the corresponding lines still have to cross
within this clause gadget.

We first define the properties that we need for our gadgets. In the descriptions,
we use global constants kvar, kneg, kcls, and k′cls for numbers of crossings.

Variable Gadget: The variable gadget has three port edges e1, e2, and e3 that
are part of variable paths, and each of these edges has exactly two lines
on it. These edges and lines are the only ones that leave the gadget. In a
crossing-minimal solution in which the three pairs of lines either do or do
not cross inside the gadget, there are exactly kvar crossings in the gadget.
Any solution in which some, but not all, of these pairs cross inside the
gadget has at least kvar + 1 crossings.

Negator Gadget: The negator gadget is basically a version of the variable
gadget with only two ports. There are two port edges e1 and e2, each with
a pair of lines. In crossing-minimal solutions in which both pairs either do
or do not cross inside the gadget, there are exactly kneg crossings. In the
configurations in which exactly one of the pairs crosses inside the gadget,
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there are at least kneg + 1 crossings.

Clause Gadget: The clause gadget has three (or two) port edges, each with a
pair of lines. If at least one of the pairs does not cross inside the gadget,
there are exactly kcls crossings; if all pairs cross inside the gadget, at least
kcls + 1 crossings are necessary.

We also need a version of the clause gadget with only two port edges, both
with a pair of lines. In this version, there are exactly k′cls crossings if at
least one of the pairs of lines does not cross inside the gadget; otherwise,
there are at least k′cls + 1 crossings.

Given such gadgets, we build the network that models the 3SAT instance.
We are interested only in canonical solutions, that is, solutions in which (i) all
crossings are inside gadgets and (ii) any variable gadget has exactly kvar crossings,
any negator gadget has exactly kneg crossings, and any clause gadget has exactly
kcls crossings (or k′cls crossings if the clause has just two literals), resulting in a
total number K of allowed crossings. It is easy to see that canonical solutions
are exactly the solutions with at most K crossings. We claim that, if there is a
canonical solution, the instance of 3SAT is satisfiable.

To see this, we analyze the variable gadget. As there are only kvar crossings
in a canonical solution, the pairs of lines modeling the variable values either all
cross, or all stay crossing-free. Hence, after leaving the gadget, the three pairs
all have the same state, true if they crossed, and false otherwise. As there are
no crossings outside of gadgets, this state can only change on the variable path
if it contains a negator.

Suppose a variable path contains a negator gadget. In this case two lines
`1 and `2, coming from a variable gadget, are connected by port edge e1, and
two lines `3 and `4, leaving towards a clause gadget, are connected by port edge
e2. As we consider a canonical solution, there are only two possibilities. If both
pairs do not cross inside the negator, the pair {`1, `2} has to cross in the variable
gadget and, therefore, is in true state. Then, pair {`3, `4} is in false state, as
the lines do not cross in the negator gadget. On the other hand, if both pairs
cross inside the negator, pair {`1, `2} represents false, and {`3, `4} represents
true. Hence, the negator gadget works as desired.

Finally, we consider the clause gadgets. As there are only kcls crossings (or
k′cls crossings in the version with only two literals), at least one of the variable
pairs does not cross inside the gadget, which means that it is in true state.
Hence, the clause is satisfied.

Now, suppose we are given a truth assignment that satisfies all clauses. We
want to build a canonical solution for the block crossing problem. To this
end, we fix, for each variable gadget, the order of the pairs of lines (crossing
or non-crossing) corresponding to the truth value of the variable, which is the
same for all port edges. Then, we take the appropriate solution with kvar block
crossings for this gadget. Next, for each negator gadget, there is exactly one
possible realization with kneg block crossings given the state of the pair of lines
on the ingoing port edge. Finally, for each clause gadget, there is at least one
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variable pair that did already cross, as the given truth assignment satisfies all
variables. Hence, we can realize the clause gadget with only kcls block crossings
(or k′cls block crossings in the version with two literals). Therefore, we can find a
canonical solution.

We have now seen that, assuming that there are appropriate gadgets, deciding
the satisfiability of a given instance of Planar 3SAT is equivalent to deciding
whether the corresponding instance of MBCM has a canonical solution. To
complete the proof, it remains to show how to build the gadgets with the desired
properties. We do so in lemmas 12, 13, and 14. In the constructions, no edge
contains more than 11 lines; the maximum degree of the underlying graph is 12.
We can, however, easily modify the gadgets so that the maximum degree is 3
as follows. Each gadget basically contains a central edge with all lines of the
gadget. On both sides of the central edge e of each gadget, we replace the vertex
where the lines split by a tree-like structure in which the lines split into only
two groups per step; we have indicated this modification for a negator gadget in
Figure 21. Note that this modification does neither allow to save block crossings,
nor does it make additional crossings necessary. This completes the proof. �

In the following three lemmas, we show how to build gadgets with the desired
properties for the previous hardness proof.

Lemma 12 (Negator gadget) There exists a negator gadget with 10 lines,
kneg = 5, and the claimed properties for monotone block crossings.

Proof: The negator gadget is illustrated in Figure 20a. It consists of an edge e
with 10 lines, two port edges e1 and e2 with two lines each, and 16 edges,
connected to leaves, with one line per edge. Assuming that the lines on e form
the identity permutation on the lower end of the edge, we can read different
permutations on the upper end, depending on the solution. However, the upper
permutation always follows the permutation template

πneg = [4, 8, 1, a1, a2, b1, b2, 10, 3, 7],

where {a1, a2} = {6, 9} and {b1, b2} = {2, 5}. Pairs {a1, a2} and {b1, b2} are
on port edges e1 and e2, respectively, and they are connected to a variable or
negator gadget.

The important property of the permutations of type πneg is that there are
only two ways to arrange the lines in any solution of MBCM with the minimum
number of block crossings. It is not hard to check that

• mbc(π) = 5 if π = [4, 8, 1, 6, 9, 2, 5, 10, 3, 7] or π = [4, 8, 1, 9, 6, 5, 2, 10, 3, 7]
and

• mbc(π) = 6 in the remaining cases, that is, if π = [4, 8, 1, 6, 9, 5, 2, 10, 3, 7]

or π = [4, 8, 1, 9, 6, 2, 5, 10, 3, 7].1

1These small instances of MBCM can be solved exactly by exhaustive search;
see our implementation at http://jgaa.info/accepted/2015/FinkPupyrevWolff2015.19.1/

BlockCrossings.java.

http://jgaa.info/accepted/2015/FinkPupyrevWolff2015.19.1/BlockCrossings.java
http://jgaa.info/accepted/2015/FinkPupyrevWolff2015.19.1/BlockCrossings.java
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1 2 3 4 5 6 7 8 9 10

1 34 8 10 7{6, 9}{2, 5}
e1 e2

e

(a) Negator gadget.

1 2 3 4 5 6 7 8 9 10 11

3 45 9 11{7, 10}{1, 6}
e1 e2

e

e3
{2, 8}

(b) Main part of the variable gadget.

Figure 20: Gadgets for the NP-hardness proof. Lines starting/ending in leaves
of the graph and passing through port edges (dashed)) are indicated by numbers
(or sets of two numbers for port edges).

1 2 3 4 5 6 7 8 9 10

e

Figure 21: Lower part of a negator gadget modified for maximum degree 3.

Given a canonical solution, we can assume that the pairs of lines a1, a2 and b1, b2
do not cross on edges e1 and e2 since crossings on these edges can be moved to
e without increasing the total number of block crossings in the solution. Hence,
in a canonical solution, both pairs of lines {a1, a2} and {b1, b2} either cross on e
or do not cross there. �

Lemma 13 (Variable gadget) There exists a variable gadget with 11 lines
per edge, kvar = 6, and the claimed properties for monotone block crossings.

Proof: The basic part of the variable gadget is illustrated in Figure 20b. Its
structure is similar to the negator gadget: The gadget consists of an edge e with
11 lines, three port edges e1, e2, and e3 with two lines each, and 16 edges with
one line per edge. Again, we can assume that all the crossings are located on e
in a canonical solution. The lines on e form a permutation of the template

πvar = [5, 9, 3, a1, a2, b1, b2, 11, c1, c2, 4],

where {a1, a2} = {7, 10}, {b1, b2} = {1, 6}, and {c1, c2} = {2, 8}.
One can check that



JGAA, 19(2) 111–153 (2015) 147

• mbc(π) = 6 if either π = [5, 9, 3, 7, 10, 1, 6, 11, 8, 2, 4] or, by exchanging the
lines of the marked pairs, π = [5, 9, 3, 10, 7, 6, 1, 11, 2, 8, 4], and

• mbc(π) = 7 in the remaining six cases that follow the template πvar.
In other words, in a canonical solution the pairs of lines {a1, a2}, {b1, b2}, and
{c1, c2} form either the state (true, true, false) or (false, false, true) in the
gadget. We use an additional negator—as described in Lemma 12—connected
to pair {c1, c2} by the port edge e3, so that, in a canonical solution, the variable
gadget encodes either true or false for all variable pairs at the same time. �

Lemma 14 (Clause gadget) There exists a clause gadget with six lines, kcls =
2, and the claimed properties for monotone block crossings. Furthermore, there
exists a clause gadget for only two variables with four lines, k′cls = 1, and the
claimed properties for monotone block crossings.

Proof: The clause gadget is illustrated in Figure 22a. It consists of an edge e
with 6 lines, three port edges e1, e2, and e3 with two lines each, and 6 edges
with one line per edge. The lines form a permutation of the template

πcls = [a1, a2, b1, b2, c1, c2],

where {a1, a2} = {1, 3}, {b1, b2} = {2, 5}, and {c1, c2} = {4, 6}.
One can check that
• mbc(π) = 3 if π = [3, 1, 5, 2, 6, 4] and
• mbc(π) = 2 in the remaining five cases of permutations following tem-

plate πcls.
Hence, in a crossing optimal solution, at least one of the pairs of lines, {a1, a2},
{b1, b2}, and {c1, c2}, must not cross inside the gadget, that is, the corresponding
literal must be true; see Figure 22b for an example of such a configuration.

By dropping edge e3 and the corresponding two lines 4 and 6 and renaming
line 5 to 4, we get a variant for clause gadgets with two literals. Then, we have
a permutation of the template π′cls = [a1, a2, b1, b2] where {a1, a2} = {1, 3} and
{b1, b2} = {2, 4}. One can check that
• mbc(π) = 2 if π = [3, 1, 4, 2] and
• mbc(π) = 1 in the remaining three cases following the template π′cls.

Again, in a canonical solution, at least one of the literals corresponding to pairs
{a1, a2} and {b1, b2} must be true. �

The general variant of BCM is NP-hard even for a single edge; see Theorem 1.
For constant maximum degree and edge multiplicity, however, the problem is
tractable on trees; see Theorem 10. Next we show that on general planar graphs
BCM is NP-hard even for constant maximum degree and edge multiplicity. To
this end, we modify the negator and variable gadgets; the clause gadget does not
need to be changed because the properties of the permutations we used there
still hold if we allow non-monotone block moves.

Negator gadget. The structure for the negator gadget stays the same as
described in Lemma 12. We just replace the used permutation template by

πneg = [3, a1, a2, 4, 7, b1, b2],
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1 2 3 4 5 6

e1
e2

e3

{1, 3} {2, 5} {4, 6}

e

(a) Clause gadget.

1 2 3 4 5 6

(b) Sketch of a solution for the clause gad-
get for c = (l1 ∨ l2 ∨ l3), where l1 and l3
are true and l2 is false.

Figure 22: The clause gadget for the NP-hardness proof. Lines starting/ending
in leaves of the graph and passing through port edges (dashed) are indicated by
numbers (or sets of two numbers for port edges).

where the lines {a1, a2} = {1, 6} leave the gadget on port edge e1 and the lines
{b1, b2} = {2, 5} leave the gadget on e2.

One can check that
• bc(π) = 3 if π = [3, 1, 6, 4, 7, 2, 5] or π = [3, 6, 1, 4, 7, 5, 2] and
• bc(π) = 4 in the remaining two cases for template πneg (note that we now

use non-monotone block crossings).
Hence, both pairs of lines {a1, a2} and {b1, b2} either cross in the gadget or do
not cross there in a canonical solution.

Variable gadget. Also the structure of the variable gadget stays the same as
described in Lemma 13. We just replace the used permutation template by

πvar = [6, a1, a2, b1, b2, c1, c2],

where lines a1 and a2 leave the gadget on port edge e1, b1 and b2 leave the
gadget on e2, and c1 and c2 leave it on e3; furthermore, {a1, a2} = {1, 4},
{b1, b2} = {3, 7}, and {c1, c2} = {2, 5}.

One can check that
• bc(π) = 3 if π = [6, 1, 4, 3, 7, 5, 2] or π = [6, 4, 1, 7, 3, 2, 5] and
• bc(π) = 4 in the remaining six cases for template πvar.

Hence, in a canonical solution the pairs of lines a1, a2, b1, b2, and c1, c2 form
either the state (true, true, false) or (false, false, true) in the gadget. Again,
we use an additional negator connected to pair c1, c2 by port edge e3 for ensuring
that the variable gadget encodes either true or false for all variable pairs at
the same time.

Using the new gadgets, we immediately get the reduction for BCM. We note
that we can ensure maximum degree 3 by the same construction that we used
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for MBCM. Note that both negator and variable gadget for BCM use fewer lines
compared to MBCM; the maximum number of lines on an edge is 7.

Theorem 12 BCM is NP-hard on planar graphs even if the maximum degree
is 3 and the maximum edge multiplicity is 7.

We point out that the hardness results for bounded degree and edge multi-
plicity imply that, in contrast to the case of trees, BCM and MBCM are not
fixed-parameter tractable with respect to these parameters on general graphs.
The problems could, however, be fixed-parameter tractable with respect to
different parameters such as the number of crossings.

7 Conclusion and Open Problems

We have introduced the new variants BCM and MBCM of the metro-line crossing
minimization problem in which one wants to order the lines taking more advanced
crossings into account. We have presented approximation algorithms for single
edges, paths, and upward trees. Then we have developed an algorithm that
bounds the number of block crossings on general graphs and have showed that
our bound is asymptotically tight. Finally, we have investigated the problems
under bounded maximum degree and edge multiplicity, both of which are valid
assumptions for practical purposes. Under these restrictions, we have solved
BCM and MBCM optimally on trees by giving a fixed-parameter tractable
algorithm. Additionally, we have proven that BCM and MBCM are NP-hard on
general graphs even if maximum degree and edge multiplicity are small.

Open Problems. As our results are the first for block crossing minimization,
there are still many interesting open problems. First, the complexity status of
MBCM on a single edge would be interesting to know, mainly from a theoretical
point of view. The hardness proof for BCM is quite complicated and does
not easily extend to MBCM. An improvement of the current approximation
factor 3 for MBCM on an edge is also interesting. Second, a challenging task is
to develop approximation algorithms for BCM and MBCM on general graphs.
Note that the graphs for the worst-case instances for the problems are not
planar. It is interesting to decide whether our bound on the number of necessary
block crossings is asymptotically tight for planar instances. Another important
question is whether there exists a fixed-parameter tractable algorithm for BCM
and MBCM on paths, trees, and general graphs with respect to the allowed
number of block crossings.

Recently, Bereg et al. [6] investigated the problem of drawing permutations
with few bends; they represented each element of the permutation as a line,
similar to a metro line. Also for the visual complexity of a metro line an
important criterion is the number of its bends. Hence, an interesting question is
how to visualize metro lines using the minimum total number of bends.



150 Fink et al. Ordering Metro Lines by Block Crossings

Acknowledgments

We are grateful to Sergey Bereg, Alexander E. Holroyd, and Lev Nachmanson
for the initial discussion of the block crossing minimization problem, and for
pointing out a connection with sorting by transpositions. We thank Jan-Henrik
Haunert and Joachim Spoerhase for fruitful discussions and suggestions. We
also like to thank the two anonymous reviewers of this paper for many helpful
comments and suggestions that helped improve the presentation of the final
version of the paper.



JGAA, 19(2) 111–153 (2015) 151

References

[1] E. N. Argyriou, M. A. Bekos, M. Kaufmann, and A. Symvonis. On metro-
line crossing minimization. J. Graph Algorithms Appl., 14(1):75–96, 2010.
doi:10.7155/jgaa.00199.

[2] M. Asquith, J. Gudmundsson, and D. Merrick. An ILP for the metro-line
crossing problem. In J. Harland and P. Manyem, editors, Proc. 14th Comput.:
Australian Theory Symp. (CATS’08), volume 77 of CRPIT, pages 49–56.
ACS, 2008. URL: http://crpit.com/abstracts/CRPITV77Asquith.html.

[3] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM J. Discr.
Math., 11(2):224–240, 1998. doi:10.1137/S089548019528280X.

[4] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis. Line crossing
minimization on metro maps. In S.-H. Hong, T. Nishizeki, and W. Quan,
editors, Proc. 15th Int. Symp. Graph Drawing (GD’07), volume 4875 of
LNCS, pages 231–242. Springer, 2008. doi:10.1007/978-3-540-77537-9_
24.
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