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Abstract

Divide-and-conquer approximation algorithms for vertex ordering
problems partition the vertex set of graphs, compute recursively an
ordering of each part, and “glue” the orderings of the parts together.
The computed ordering is specified by a decomposition tree that de-
scribes the recursive partitioning of the subproblems. At each internal
node of the decomposition tree, there is a degree of freedom regarding
the order in which the parts are glued together.

Approximation algorithms that use this technique ignore these de-
grees of freedom, and prove that the cost of every ordering that agrees
with the computed decomposition tree is within the range specified
by the approximation factor. We address the question of whether an
optimal ordering can be efficiently computed among the exponentially
many orderings induced by a binary decomposition tree.

We present a polynomial time algorithm for computing an opti-
mal ordering induced by a binary balanced decomposition tree with
respect to two problems: Minimum Linear Arrangement (MINLA) and
Minimum Cutwidth (MINCW). For 1/3-balanced decomposition trees
of bounded degree graphs, the time complexity of our algorithm is
O(n??), where n denotes the number of vertices.

Additionally, we present experimental evidence that computing an
optimal orientation of a decomposition tree is useful in practice. It
is shown, through an implementation for MINLA, that optimal orien-
tations of decomposition trees can produce arrangements of roughly
the same quality as those produced by the best known heuristic, at a
fraction of the running time.
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1 Introduction

The typical setting in vertex ordering problems in graphs is to find a lin-
ear ordering of the vertices of a graph that minimizes a certain objec-
tive function [GJ79, Al.3,pp. 199-201]. These vertex ordering problems
arise in diverse areas such as: VLSI design [HL99], computational biol-
ogy [K93], scheduling and constraint satisfaction problems [FD], and linear
algebra [R70]. Finding an optimal ordering is usually NP-hard and therefore
one resorts to polynomial time approximation algorithms.

Divide-and-conquer is a common approach underlying many approxima-
tion algorithms for vertex ordering problems [BL84, LR99, Ha89, RAK91,
ENRS00, RR98]. Such approximation algorithms partition the vertex set
into two or more sets, compute recursively an ordering of each part, and
“glue” the orderings of the parts together. The computed ordering is speci-
fied by a decomposition tree that describes the recursive partitioning of the
subproblems. At each internal node of the decomposition tree, there is a
degree of freedom regarding the order in which the parts are glued together.
We refer to determining the order of the parts as assigning an orientation to
an internal decomposition tree node since, in the binary case, this is equiv-
alent to deciding which child is the left child and which child is the right
child. We refer to orderings that can be obtained by assigning orientations
to the internal nodes of the decomposition trees as orderings that agree with
the decomposition tree.

Approximation algorithms that use this technique ignore these degrees of
freedom, and prove that the cost of every ordering that agrees with the com-
puted decomposition tree is within the range specified by the approximation
factor. The questions that we address are whether an optimal ordering can
be efficiently computed among the orderings that agree with the decompo-
sition tree computed by the divide-and-conquer approximation algorithms,
and whether computing this optimal ordering is a useful technique in prac-
tice.

Contribution. We present a polynomial time algorithm for computing
an optimal orientation of a balanced binary decomposition tree with respect
to two problems: Minimum Linear Arrangement (MINLA) and Minimum
Cutwidth (MINCW). Loosely speaking, in these problems, the vertex or-
dering determines the position of the graph vertices along a straight line
with fixed distances between adjacent vertices. In MINLA, the objective is
to minimize the sum of the edge lengths, and in MINCW, the objective is
to minimize the maximum cut between a prefix and a suffix of the vertices.
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The corresponding decision problems for these optimization problems are
NP-Complete [GJ79, problems GT42,GT44]. For binary 1/3-balanced de-
composition trees of bounded degree graphs, the time complexity of our
algorithm is O(n??), and the space complexity is O(n), where n denotes the
number of vertices.

This algorithm also lends itself to a simple improvement heuristic for
both MINLA and MINCW: Take some ordering 7, build a balanced decompo-
sition tree from scratch that agrees with 7, and find its optimal orientation.
In the context of heuristics, this search can be viewed as generalizing local
searches in which only swapping of pairs of vertices is allowed [P97]. Our
search space allows swapping of blocks defined by the global hierarchical
decomposition of the vertices. Many local searches lack quality guarantees,
whereas our algorithm finds the best ordering in an exponential search space.

The complexity of our algorithm is exponential in the depth of the de-
composition tree, and therefore, we phrase our results in terms of balanced
decomposition trees. The requirement that the binary decomposition tree
be balanced does not incur a significant setback for the following reason.
The analysis of divide-and-conquer algorithms, which construct a decompo-
sition tree, attach a cost to the decomposition tree which serves as an upper
bound on the cost of all orderings that agree with the decomposition tree.
Even et al. [ENRS00] presented a technique for balancing binary decompo-
sition trees. When this balancing technique is applied to MINLA the cost
of the balanced decomposition tree is at most three times the cost of the
unbalanced decomposition tree. In the case of the cutwidth problem, this
balancing technique can be implemented so that there is an ordering that
agrees with the unbalanced and the balanced decomposition trees.

Interestingly, our algorithm can be modified to find a worst solution that
agrees with a decomposition tree. We were not able to prove a gap between
the best and worst orientations of a decomposition tree, and therefore the
approximation factors for these vertex ordering problems has not been im-
proved. However, we were able to give experimental evidence that for a
particular set of benchmark graphs the gap between the worst and best
orientations is roughly a factor of two.

Techniques. Our algorithm can be interpreted as a dynamic programming
algorithm. The “table” used by the algorithm has entries (¢, ), where t is a
binary decomposition tree node, and « is a binary string of length depth(t),
representing the assignments of orientations to the ancestors of ¢ in the
decomposition tree. Note that the size of this table is exponential in the
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depth of the decomposition tree. If the decomposition tree has logarithmic
depth (i.e. the tree is balanced), then the size of the table is polynomial.

The contents of a table entry (¢, «) is as follows. Let M denote the set of
leaves of the subtree rooted at t. The vertices in M constitute a contiguous
block in every ordering that agrees with the decomposition tree. Assigning
orientations to the ancestors of ¢ implies that we can determine the set L of
vertices that are placed to the left of M and the set R of vertices that are
placed to the right of M. The table entry (¢, «) holds the minimum local cost
associated with the block M subject to the orientations « of the ancestors of
t. This local cost deals only with edges incident to M and only with the cost
that these edges incur within the block M. When our algorithm terminates,
the local cost of the root will be the total cost of an optimal orientation,
since M contains every leaf of the tree.

Our ability to apply dynamic programming relies on a locality property
that enables us to compute a table entry (¢, «) based on four other table
entries. Let t; and to be the children of ¢ in the decomposition tree, and
let o € {0,1} be a possible orientation of ¢. We show that it is possible to
easily compute (t, ) from the four table entries (¢;, « - o), where i € {1, 2},
o€ {0,1}.

The table described above can viewed as a structure called an orien-
tations tree of a decomposition tree. Each internal node ¢ = (¢, ) of this
orientations tree corresponds to a node ¢ of the decomposition tree, and a
string « of the orientations of the ancestors of ¢ in the decomposition tree.
The children of ¢ are the four children described above, so the value of each
node of the orientations tree is locally computable from the value of its four
children. Thus, we perform a depth-first search of this tree, and to reduce
the space complexity, we do not store the entire tree in memory at once.

Relation to previous work. For MINLA, Hansen [Ha89] proved that de-
composition trees obtained by recursive a-approximate separators yields an
O(a - logn) approximation algorithm. Since Leighton and Rao presented an
O(log n)-approximate separator algorithm, an O(log?n) approximation fol-
lows. Even et al. [ENRS00] gave an approximation algorithm that achieves
an approximation factor of O(lognloglogn). Rao and Richa [RR98] im-
proved the approximation factor to O(logn). Both algorithms rely on com-
puting a spreading metric by solving a linear program with an exponential
number of constraints. For the cutwidth problem, Leighton and Rao [LR99]
achieved an approximation factor of O(log?n) by recursive separation. The
approximation algorithms of [LR99, Ha89, ENRS00] compute binary 1/3-
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balanced decomposition trees so as to achieve the approximation factors.

The algorithm of Rao and Richa [RR98| computes a non-binary non-
balanced decomposition tree. Siblings in the decomposition tree computed
by the algorithm of Rao and Richa are given a linear order which may
be reversed (i.e. only two permutations are allowed for siblings) . This
means that the set of permutations that agree with such decomposition
trees are obtained by determining which “sibling orderings” are reversed
and which are not. When the depth of the decomposition tree computed
by the algorithm of Rao and Richa is super-logarithmic and the tree is
non-binary, we cannot apply the orientation algorithm since the balancing
technique of [ENRS00] will create dependencies between the orientations
that are assigned to roots of disjoint subtree.

Empirical Results. Our empirical results build on the work of Petit [P97].
Petit collected a set of benchmark graphs and experimented with several
heuristics. The heuristic that achieved the best results was Simulated An-
nealing. We conducted four experiments as follows. First, we computed
decomposition trees for the benchmark graphs using the HMETIS graph
partitioning package [GK98]. Aside from the random graphs in this bench-
mark set, we showed a gap of roughly a factor of two between worst and
best orientations of the computed decomposition trees. This suggests that
finding optimal orientations is practically useful. Second, we computed sev-
eral decomposition trees for each graph by applying HMETIS several times.
Since HMETIS is a random algorithm, it computes a different decomposition
each time it is invoked. Optimal orientations were computed for each de-
composition tree. This experiment showed that our algorithm could be used
in conjunction with a partitioning algorithm to compute somewhat costlier
solutions than Simulated Annealing at a fraction of the running time. Third,
we experimented with the heuristic improvement algorithm suggested by us.
We generated a random decomposition tree based on the ordering computed
in the second experiment, then found the optimal orientation of this tree.
Repeating this process yielded improved the results that were comparable
with the results of Petit. The running time was still less that Simulated
Annealing. Finally, we used the best ordering computed as an initial solu-
tion for Petit’s Simulated Annealing algorithm. As expected, this produced
slightly better results than Petit’s results but required more time due to the
platform we used.
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Organization. In Section 2, we define the problems of MINLA and MINCW
as well as decomposition trees and orientations of decomposition trees. In
Section 3, we present the orientation algorithm for MINLA and MINCW. In
Section 4 we propose a design of the algorithm with linear space complexity
and analyze the time complexity of the algorithm. In Section 5 we describe
our experimental work.

2 Preliminaries

2.1 The Problems

Consider a graph G(V, E) with non-negative edge capacities c(e). Let n =
|[V| and m = |E|. Let [i..j] denote the set {i,i + 1,...,5}. A one-to-
one function 7 : V' — [1..n] is called an ordering of the vertex set V. We
denote the cut between the first i nodes and the rest of the nodes by cut, (i),
formally,

cut (i) = {(u,v) € E : mw(u) <iand 7(v) > i}.

The capacity of cut, (i) is denoted by c(cutr(7)). The cutwidth of an ordering
7 is defined by
cw(G,m) = max c(cutr(7)).
i€[l..n—1]
The goal in the Minimum Cutwidth Problem (MINCW) is to find an ordering
7 with minimum cutwidth.

The goal in the Minimum Linear Arrangement Problem (MINLA) is to
find an ordering that minimizes the weighted sum of the edge lengths. For-
mally, the the weighted sum of the edge lengths with respect an ordering m
is defined by:

la(G,m) = Z c(u,v) - |7(u) —m(v)|.

(u,v)EE
The weighted sum of edge lengths can be equivalently defined as:
la(G,m) = Z c(cuty (7))
1<i<n
2.2 Decomposition Trees

A decomposition tree of a graph G(V, E) is a rooted binary tree with a map-
ping of the tree nodes to subsets of vertices as follows. The root is mapped
to V, the subsets mapped to every two siblings constitute a partitioning of
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the subset mapped to their parent, and leaves are mapped to subsets con-
taining a single vertex. We denote the subset of vertices mapped to a tree
node t by V(t). For every tree node t, let T'(t) denote the subtree of T,
the root of which is t. The inner cut of an internal tree node ¢ is the set of
edges in the cut (V(¢1), V(t2)), where t; and to denote the children of ¢t. We
denote the inner cut of t by in_cut(t).

Every DFS traversal of a decomposition tree induces an ordering of V'
according to the order in which the leaves are visited. Since in each internal
node there are two possible orders in which the children can be visited,
it follows that 2"~! orderings are induced by DFS traversals. Each such
ordering is specified by determining for every internal node which child is
visited first. In “graphic” terms, if the first child is always drawn as the left
child, then the induced ordering is the order of the leaves from left to right.

2.3 Orientations and Optimal Orientations

Consider an internal tree node t of a decomposition tree. An orientation of
t is a bit that determines which of the two children of ¢ is considered as its
left child. Our convention is that when a DF'S is performed, the left child is
always visited first. Therefore, a decomposition tree, all the internal nodes
of which are assigned orientations, induces a unique ordering. We refer to
an assignment of orientations to all the internal nodes as an orientation of
the decomposition tree.

Consider a decomposition tree T of a graph G(V, E). An orientation of
T is optimal with respect to an ordering problem if the cost associated with
the ordering induced by the orientation is minimum among all the orderings
induced by T.

3 Computing An Optimal Orientation

In this section we present a dynamic programming algorithm for computing
an optimal orientation of a decomposition tree with respect to MINLA and
MINCW. We first present an algorithm for MINLA, and then describe the
modifications needed for MINCW.

Let T denote a decomposition of G(V, E). We describe a recursive al-
gorithm orient(t,«) for computing an optimal orientation of 7' for MINLA.
A say that a decomposition tree is oriented if all its internal nodes are as-
signed orientations. The algorithm returns an oriented decomposition tree
isomorphic to T'. The parameters of the algorithm are a tree node t and
an assignment of orientations to the ancestors of ¢. The orientations of the
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ancestors of ¢ are specified by a binary string o whose length equals depth(t).
The ith bit in « signifies the orientation of the ith node along the path from
the root of T to t.

The vertices of V (t) constitute a contiguous block in every ordering that
is induced by the decomposition tree T. The sets of vertices that appear to
the left and right of V' (t) are determined by the orientations of the ancestors
of ¢t (which are specified by a)). Given the orientations of the ancestors of ¢,
let L and R denote the set of vertices that appear to the left and right of
V (t), respectively. We call the partition (L, V(t), R) an ordered partition of
V.

Consider an ordered partition (L,V (t), R) of the vertex set V and an
ordering 7 of the vertices of V(¢). Algorithm orient(t,«) is based on the
local cost of edge (u,v) with respect to (L,V(t),R) and w. The local cost
applies only to edges incident to V(¢) and it measures the length of the
projection of the edge on V(t). Formally, the local cost is defined by

c(u,v) - |m(u) —w(v)]  if u,v € V(t)

) ifueV(t)andv e L
c(u,v) - (V)| = m(u)) ifueV(t)and v e R
0 otherwise.

local_costy, v (4), rx (U, V) =

Note that the contribution to the cut corresponding to L U V(¢) is not
included.
Algorithm orient(t, ) proceeds as follows:

1. If t is a leaf, then return 7'(¢) (a leaf is not assigned an orientation).

2. Otherwise (¢ is not a leaf), let ¢; and ¢2 denote children of ¢. Compute
optimal oriented trees for 7T'(¢;) and T'(t2) for both orientations of t.
Specifically,

(a) TO(t1) = orient(t;,a - 0) and T(t2) = orient(t2, a - 0).
(b) T'(t1) = orient(t1,a - 1) and T'(t2) = orient(ts, a - 1).

3. Let my denote the ordering of V(t) obtained by concatenating the
ordering induced by 7°(¢;) and the ordering induced by T9(t3). Let

costy = > ek lOCGl—COStL,V(t),R,wo(€)~

4. Let m; denote the ordering of V(t) obtained by concatenating the
ordering induced by T'(t5) and the ordering induced by T*(t1). Let
costy = > .cp local_costr vy rr (€). (Note that here the vertices of
V(t9) are placed first.)
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5. If costg < costy, the orientation of ¢ is 0. Return the oriented tree T’
the left child of which is the root of T°(¢1) and the right child of which
is the root of T(t).

6. Otherwise (costg > costy), the orientation of ¢t is 1. Return the oriented
tree T” the left child of which is the root of T (t3) and the right child
of which is the root of T (t1).

The correctness of the orient algorithm is summarized in the following claim
which can be proved by induction.

Claim 1: Suppose that the orientations of the ancestors of ¢ are fixed as
specified by the string a. Then, Algorithm orient(t,«) computes an optimal
orientation of T'(¢). When t is the root of the decomposition tree and « is an
empty string, Algorithm orient(t, «) computes an optimal orientation of 7.

An optimal orientation for MINCW can be computed by modifying the
local cost function. Consider an ordered partition (L,V(t), R) and an or-
dering 7 of V(t). Let V;(t) denote that set {v € V(t) : w(v) <i}. Let E(t)
denote the set of edges with at least one endpoint in V' (¢). Let i € [0..]V (t)]].
The ith local cut with respect to (L, V(t), R) and an ordering 7 of V(¢) is
the set of edges defined by,

local_cutr, v ), R),» (1) = {(u,v) € E(t) : w € LUV;(t) and v € (V(t)-Vi(t))UR}.
The local cutwidth is defined by,

local_cw((L,V (t),R),m) = max Z c(u,v).
€0Vl e€local_cut p v 1), )~ (9)

The algorithm for computing an optimal orientation of a given decom-
position tree with respect to MINCW is obtained by computing cost, =
local_cw((L,V (t), R),7,) in steps 3 and 4 for o =0, 1.

4 Designing The Algorithm

In this section we propose a design of the algorithm that has linear space
complexity. The time complexity is O(n??) if the graph has bounded degree
and the decomposition tree is 1/3-balanced.
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4.1 Space Complexity: The Orientation Tree

We define a tree, called an orientation tree, that corresponds to the recursion
tree of Algorithm orient(t,«). Under the interpretation of this algorithm as a
dynamic program, this orientation tree represents the table. The orientation
tree T corresponding to a decomposition tree 1" is a “quadary” tree. Every
orientation tree node ¢ = (t,a) corresponds to a decomposition tree node
t and an assignment « of orientations to the ancestors of t. Therefore,
every decomposition tree node t has 22€P1(®) “images” in the orientations
tree. Let t; and ¢y be the children of ¢ in the decomposition tree, and let
o € {0,1} be a possible orientation of ¢t. The four children of (¢,«) are
(t;ya-o), wherei € {1,2}, o € {0,1}. Figure 1 depicts a decomposition tree
and the corresponding orientation tree.

The time complexity of the algorithm presented in Section 3 is clearly at
least proportional to the size of the orientations tree. The number of nodes
in the orientations tree is proportional to Y,y 2depth(v) where the depth(v)
is the depth of v in the decomposition tree. This implies the running time
is at least quadratic if the tree is perfectly balanced. If we store the entire
orientations tree in memory at once, our space requirement is also at least
quadratic. However, if we are a bit smarter about how we use space, and
never store the entire orientations tree in memory at once, we can reduce
the space requirement to linear.

The recursion tree of Algorithm orient(root(T'), ¢) is isomorphic to the
orientation tree T. In fact, Algorithm orient(root(T), ) assigns local costs
to orientation tree nodes in DFS order. We suggest the following linear
space implementation. Consider an orientation tree node t = (¢, ). Assume
that when orient(t, ) is called, it is handed a “workspace” tree isomorphic
to T'(t) which it uses for workspace as well as for returning the optimal
orientation. Algorithm orient(t, o) allocates an “extra” copy of T'(t), and
is called recursively for each of it four children. Each call for a child is
given a separate “workspace” subtree within the two isomorphic copies of
T'(t) (i.e. within the workspace and extra trees). Upon completion of these
4 calls, the two copies of T'(t) are oriented; one corresponding to a zero
orientation of ¢ and one corresponding to an orientation value of 1 for t.
The best of these trees is copied into the “workspace” tree, if needed, and
the “extra” tree is freed. Assuming that one copy of the decomposition tree
is used throughout the algorithm, the additional space complexity of this
implementation satisfies the following recurrence:

space(t) = sizeof(T(t)) + max _space(t').
¢ child of ¢
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Figure 1: A decomposition tree and the corresponding orientation tree. The
four node decomposition tree is depicted as a gray shadow. The corre-
sponding orientation tree is depicted in the foreground. The direction of
each non-root node in the orientation tree corresponds to the orientation of
its parent (i.e. a node depicted as a fish swimming to the left signifies that
its parent’s orientation is left). The label of an edge entering a node in the
orientation tree signifies whether the node is a left child or a right child and
the orientation of its parent.
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Since sizeof(T'(t)) < 24PMT®) it follows that
space(t) < 2 - 20epth(T(®))

The space complexity of the proposed implementation of orient(T, o) is sum-
marized in the following claim.

Claim 2: The space complexity of the proposed implementation is O(2%Pth(T))_
If the decomposition tree is balanced, then space(root(T")) = O(n).

4.2 Time Complexity

Viewing Algorithm orient(t, ) as a DFS traversal of the orientation tree 7'(t)
corresponding to 7T'(t) also helps in designing the algorithm so that each visit
of an internal orientation tree node requires only constant time. Suppose
that each child of ¢ is assigned a local cost (i.e. cost(left(o)), cost(right(o)),
for 0 = 0,1). Let ¢; and ¢2 denote the children of t. Let (L, V (), R) denote
the ordered partition of V' induced by the orientations of the ancestors of ¢
specified by a. The following equations define costy and cost;:

costy = cost(left(0)) + cost(right(0))
V()] - c(V(t1), R) + [V (
costy = cost(left(1)) + cost(right(1))
HV(E)] - c(V(t2), R) + [V (t2)| - (L, V(t1))

(1)
tr)| - e(L, V(t2))

We now describe how Equation 1 can be computed in constant time. Let
in_cut(t) denote the cut (V(¢t1),V(t2)). The capacity of in_cut(t) can be
pre-computed by scanning the list of edges. For every edge (u,v), update
in_cut(lca(u,v)) by adding ¢(u,v) to it.

We now define outer cuts. Consider the ordered partition (L, V (t), R)
corresponding to an orientation tree node t. The left outer cut and the right
outer cut of ¢ are the cuts (L, V(t)) and (V(t), R), respectively. We denote
the left outer cut by left_cut(t) and the right out cut by right_cut(t).

We describe how outer cuts are computed for leaves and for interior
nodes. The capacity of the outer cuts of a leaf t are computed by considering
the edges incident to ¢ (since ¢ is a leaf we identify it with a vertex in V).
For every edge (t,u), the orientation of the orientation tree node along the
path from the root to ¢ that corresponds to lca(t,u) determines whether the
edge belongs to the left outer cut or to the right outer cut. Since the least
common ancestors in the decomposition tree of the endpoints of every edge
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are precomputed when the inner cuts are computed, we can compute the
outer cuts of a leaf £ in O(deg(t)) time.

The outer cuts of a non-leaf ¢ can be computed from the outer cuts of
its children as follows:

c(left_cut(t)) = c(left_cut(left(0))) + c(left_cut(right(0))) — c(in_cut(t))
c(right_cut(t)) = c(right_cut(left(0))) + c(right_cut(right(0))) — c(in_cut(t))

Hence, the capacities of the outer cuts can be computed while the orientation
tree is traversed. The following reformulation of Equation 1 shows that costy
and cost; can be computed in constant time.

costy = cost(left(0)) + cost(right(0)) (2)
HV (t2)] - e(right-cut(tr))) + [V (t1)] - e(left-cut(t2)))
costy = cost(left(1)) + cost(right(1))

+|V (t1)] 'c(right_cut(tg)) |V (t2)] 'c(left_cut(tAl))

Minimum Cutwidth. An adaptation of Equation 1 for MINCW is given
below:

costy = max {local_cw(L,V(t1),V(T2) UR) + ¢(L,V (t2)
local_cw(L UV (t1), V(1s), R) + c¢(V(t1), R)
costy =max {local_cw(L,V (t2),V(T1) U R) + (L, V (t1)
local_cw(L UV (t2), V(T1), R) + ¢(V (t2), R)}.

)

9

-— = = =

These costs can be computed in constant time using the same technique
described for MINLA.

Now we analyze the time complexity of the proposed implementation of
Algorithm orient(t, o). We split the time spent by the algorithm into two
parts: (1) The pre-computation of the inner cuts and the least common
ancestors of the edges, (2) the time spent traversing the orientation tree T
(interior nodes as well as leaves).

Precomputing the inner cuts and least common ancestors of the edges
requires O(m - depth(T')) time, where depth(T') is the maximum depth of the
decomposition tree T. Assume that the least common ancestors are stored
and need not be recomputed.

The time spent traversing the orientation tree is analyzed as follows. We
consider two cases: Leaves - the amount of time spent in a leaf ¢ is linear in
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the degree of t. Interior Nodes - the amount of time spent in an interior node
t is constant. This implies that the complexity of the algorithm is linear in

1T — leaves(T)| + Z deg(t).
tAeleaves(f)

Every node t € T has 29¢Pth(1) “images” in T. Therefore, the complexity in
terms of the decomposition tree 1" equals

Z odepth(t) + Z odepth(t) - deg(t).
teT—leaves(T) teleaves(T)

If the degrees of the vertices are bounded by a constant, then the complexity
is linear in

Z 2depth(t)'

teT

This quantity is quadratic if T" is perfectly balanced, i.e. the vertex sub-
sets are bisected in every internal tree node. We quantify the balance of a
decomposition tree as follows:

Definition 1: A binary tree T is p-balanced if for every internal node t € T'
and for every child ¢’ of ¢

p- VO <V(E) <A —p)- V()
The following claim summarizes the time complexity of the algorithm.

Claim 3: If the decomposition tree T is p balanced, then
Z odepth(t) < nﬁ,
teT

where [ is the solution to the equation
L _ 5 3
s= (1) @

Observe that if p € (0,1/2], then 3 > 2. Moreover, 3 increases as p increases.
Proof: The quantity which we want to bound is the size of the orientation
tree. This quantity satisfies the following recurrence:

A1 if t is a leaf
F(T@) = { 2F(T(t1)) + 2f(T(t2)) otherwise.
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Define the function f;(n) as follows

[, (n) =max{f(T): T is a-balanced and has n leaves}.

The function f;(n) satisfies the following recurrence:

A1 ifn=1
fp(n) = { max{2f;(n’) + 2f;(n —n'):n/ € [[pn]..(n — [pn])]} otherwise

We prove that f;(n) < n® by induction on n. The induction hypothesis, for
n =1, is trivial. The induction step is proven as follows:

fin) = max{2f3() +2f5(n—n') 0’ € [[pn]..(n — [pn])]}
< max{2(n)? +2(n—n)? 10’ € [[pn]..(n — [pn))]}
< max{Q(x)ﬁ +2n—=x)%:xepn,n— pn]}

2(pn)? + 2(n — pn)P
= 207 (7 + (1-p)?)
The first line is simply the recurrence that f;(n) satisfies; the second line
follows from the induction hypothesis; in the third line we relax the range
over which the maximum is taken; the fourth line is justified by the convexity
of 2% 4 (n — x)? over the range = € [pn,n — pn] when § > 2; in the fifth line
we rearrange the terms; and the last line follows from the definition of 5. O

We conclude by bounding the time complexity of the orientation algo-
rithm for 1/3-balanced decomposition trees.

Corollary 4: If T is a 1/3-balanced decomposition tree of a bounded degree,
then the orientation tree T of T has at most n%? leaves.

Proof: The solution of Equation (4) with p=1/3 is f < 2.2. O

For graphs with unbounded degree, this algorithm runs in time O(m -
27epth(T)) which is O(m - n'/1082(1/1=P)) " Alternatively, a slightly different
algorithm gives a running time of n” in general (not just for constant de-
gree), but the space requirement of this algorithm is O(nlogn). It is based
on computing the outer cuts of a leaf of the orientations tree on the way
down the recursion. We omit the details.
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5 Experiments And Heuristics

Since we are not improving the theoretical approximation ratios for the
MINLA or MINCW problems, it is natural to ask whether finding an optimal
orientation of a decomposition tree is a useful thing to do in practice. The
most comprehensive experimentation on either problem was performed for
the MINLA problem by Petit [P97]. Petit collected a set of benchmark graphs
and ran several different algorithms on them, comparing their quality. He
found that Simulated Annealing yielded the best results. The benchmark
consists of 5 random graphs, 3 “regular” graphs (a hypercube, a mesh, and
a binary tree), 3 graphs from finite element discretizations, 5 graphs from
VLSI designs, and 5 graphs from graph drawing competitions.

5.1 Gaps between orientations

The first experiment was performed to check if there is a significant gap
between the costs of different orientations of decomposition trees. Conve-
niently, our algorithm can be easily modified to find the worst possible ori-
entation; every time we compare two local costs to decide on an orientation,
we simply take the orientation that achieves the worst local cost. In this
experiment, we constructed decomposition trees for all of Petit’s benchmark
graphs using the balanced graph partitioning program HMETIS [GK98].
HMETIS is a fast heuristic that searches for balanced cuts that are as small
as possible. For each decomposition tree, we computed four orientations:

1. Naive orientation - all the decomposition tree nodes are assigned a zero
orientation. This is the ordering you would expect from a recursive
bisection algorithm that ignored orientations.

2. Random orientation - the orientations of the decomposition tree nodes
are chosen randomly to be either zero or one, with equal probability.

3. Best orientation - computed by our orientation algorithm.

4. Worst orientation - computed by a simple modification of our algo-
rithm.

The results are summarized in Table 1. On all of the “real-life” graphs, the
best orientation had a cost of about half of the worst orientation. Further-
more, the costs on all the graphs were almost as low as those obtained by
Petit (Table 5), who performed very thorough and computationally-intensive
experiments.
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Notice that the costs of the “naive” orientations do not compete well
with those of Petit. This shows that in this case, using the extra degrees
of freedom afforded by the decomposition tree was essential to achieving a
good quality solution. These results also motivated further experimentation
to see if we could achieve comparable or better results using more iterations,
and the improvement heuristic alluded to earlier.

5.2 Experiment Design
We ran the following experiments on the benchmark graphs:

1. Decompose & Orient. Repeat the following two steps k times, and
keep the best ordering found during these k iterations.

(a) Compute a decomposition tree T' of the graph. The decompo-
sition is computed by calling the HMETIS graph partitioning
program recursively [GK98]. HMETIS accepts a balance param-
eter p. HMETIS is a random algorithm, so different executions
may output different decomposition trees.

(b) Compute an optimal orientation of 7. Let m denote the ordering
induced by the orientation of T'.

2. Improvement Heuristic. Repeat the following steps k' times (or until
no improvement is found during 10 consecutive iterations):

(a) Let my denote the best ordering 7 found during the Decompose
& Orient step.

(b) Set ¢ =0.
(¢) Compute a random p-balanced decomposition tree 7" based on ;.
The decomposition tree T” is obtained by recursively partitioning

the blocks in the ordering m; into two contiguous sub-blocks. The
partitioning is a random partition that is p-balanced.

(d) Compute an optimal orientation of T”. Let ;41 denote the or-
dering induced by the orientation of T”. Note that the cost of
mi+1 18 not greater than the cost of the ordering ;. Increment ¢
and return to Step 2c, unless i = k' — 1 or no improvement in the
cost has occurred for the last 10 iterations.

3. Simulated Annealing. We used the best ordering found by the Heuris-
tic Improvement stage as an input to the Simulated Annealing program
of Petit [P97].
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Preliminary experiments were run in order to choose the balance parameter
p. In graphs of less than 1000 nodes, we simply chose the balance parameter
that gave the best ordering. In bigger graphs, we also restricted the balance
parameter so that the orientation tree would not be too big. The parameters
used for the Simulated Annealing program were also chosen based on a few
preliminary experiments.

5.3 Experimental Environment

The programs have been written in C' and compiled with a gcc compiler. The
programs were executed on a dual processor Intel P-III 600MHz computer
running under Red Hat Linux. The programs were only compiled for one
processor, and therefore only ran on one of the two processors.

5.4 Experimental Results

The following results were obtained:

1. Decompose & Orient. The results of the Decompose & Orient stage
are summarized in Table 2. The columns of Table 2 have the following
meaning: “UB Factor” - the balance parameter used when HMETIS
was invoked. The relation between the balance parameter p and the
UB Factor is (1/2 — p) - 100. “Avg. OT Size” - the average size of the
orientation tree corresponding to the decomposition tree computed by
HMETIS. This quantity is a good measure of the running time with-
out overheads such as reading and writing of data. “Avg. L.A. Cost”
- the average cost of the ordering induced by an optimal orientation of
the decomposition tree computed by HMETIS. “Avg. HMETIS Time
(sec)” - the average time in seconds required for computing a decompo-
sition tree, “Avg. Orienting Time (sec)” - the average time in seconds
required to compute an optimal orientation, and “Min L.A. Cost” -
the minimum cost of an ordering, among the computed orderings.

2. Heuristic Improvement. The results of the Heuristic Improvement
stage are summarized in Table 3. The columns of Table 3 have the
following meaning: “Initial solution” - the cost of the ordering com-
puted by the Decompose & Orient stage, “10 Iterations” - the cost of
the ordering obtained after 10 iterations of Heuristic Improvements,
“Total Iterations” - The number iterations that were run until there
was no improvement for 10 consecutive iterations, “Avg. Time per It-
eration” - the average time for each iteration (random decomposition
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and orientation), and “Final Cost” - the cost of the ordering computed
by the Heuristic Improvement stage.

The same balance parameter was used in the Decompose & Orient
stage and in the Heuristic Improvement stage. Since the partition is
chosen randomly in the Heuristic Improvement stage such that the
balance is never worse than p, the decomposition trees obtained were
shallower. This fact is reflected in the shorter running times required
for computing an optimal orientation.

3. Simulated Annealing. The results of the Simulated Annealing program
are summarized in Table 4.

5.5 Conclusions

Table 5 summarizes our results and compares them with the results of Pe-
tit [P97]. The running times in the table refer to a single iteration (the
running time of the Decompose & Orient stage refers only to orientation
not including decomposition using HMETIS). Petit ran 10-100 iterations on
an SGI Origin 2000 computer with 32 MIPS R10000 processors.

Our main experimental conclusion is that running our Decompose &
Orient algorithm usually yields results within 5-10% of Simulated Annealing,
and is significantly faster. The results were improved to comparable with
Simulated Annealing by using our Improvement Heuristic. Slightly better
results were obtained by using our computed ordering as an initial solution
for Simulated Annealing.

5.6 Availability of programs and results

Programs and output files can be downloaded from
http://www.eng.tau.ac.il/~guy/Projects/Minla/index.html.
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