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Abstract

We tackle the problem of constructing increasing-chord graphs span-
ning point sets. We prove that, for every point set P with n points, there
exists an increasing-chord planar graph with O(n) Steiner points spanning
P . The main intuition behind this result is that Gabriel triangulations
are increasing-chord graphs, a fact which might be of independent inter-
est. Further, we prove that, for every convex point set P with n points,
there exists an increasing-chord graph with O(n logn) edges (and with no
Steiner points) spanning P .
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1 Introduction

A proximity graph is a geometric graph that can be constructed from a point
set by connecting points that are “close”, for some local or global definition
of proximity. Proximity graphs constitute a topic of research in which the
areas of graph drawing and computational geometry nicely intersect. A typical
graph drawing question in this topic asks to characterize the graphs that can
be represented as a certain type of proximity graphs. A typical computational
geometry question asks to design an algorithm to construct a proximity graph
spanning a given point set.

Euclidean minimum spanning trees and Delaunay triangulations are famous
examples of proximity graphs. Given a point set P , a Euclidean minimum
spanning tree of P is a geometric tree with P as vertex set and with minimum
total edge length; the Delaunay triangulation of P is a triangulation T such
that no point in P lies inside the circumcircle of any triangle of T . From
a computational geometry perspective, given a point set P with n points, a
Euclidean minimum spanning tree of P with maximum degree five exists [16]
and can be constructed in O(n log n) time [5]; also, the Delaunay triangulation
of P exists and can be constructed in O(n log n) time [5]. From a graph drawing
perspective, every tree with maximum degree five admits a representation as a
Euclidean minimum spanning tree [16] and it is NP-hard to decide whether a tree
with maximum degree six admits such a representation [9]; also, characterizing
the class of graphs that can be represented as Delaunay triangulations is a deeply
studied question, which still eludes a clear answer; see, e.g., [7, 8]. Refer to the
excellent survey by Liotta [14] for more on proximity graphs.

While proximity graphs have constituted a frequent topic of research in graph
drawing and computational geometry, they gained a sudden peak in popularity
even outside these communities in 2004, when Papadimitriou et al. [19] devised
an elegant routing protocol that works effectively in all the networks that can be
represented as a certain type of proximity graphs, called greedy graphs. For two
points p and q in the plane, denote by pq the straight-line segment having p and
q as end-points, and by |pq| the length of pq. A geometric path (v1, . . . , vn) is
greedy if |vi+1vn| < |vivn|, for every 1 ≤ i ≤ n−1. A geometric graph G is greedy
if, for every ordered pair of vertices u and v, there exists a greedy path from u
to v in G. A lot is known about the existence of greedy graphs spanning given
point sets and about the possibility of representing graphs as greedy graphs;
see, e.g., [3, 11, 13, 18, 19]. A result strictly related to our paper is that, for
every point set P , the Delaunay triangulation of P is a greedy graph [18].

In this paper we study self-approaching and increasing-chord graphs, that
are types of proximity graphs defined by Alamdari et al. [2].

A geometric path P = (v1, . . . , vn) is self-approaching from v1 to vn if, for
every three points a, b, and c in this order on P from v1 to vn (possibly a,
b, and c are internal to segments of P), we have |bc| < |ac|. The geometric
path in Figure 1 is self-approaching from v1 to vn. A geometric graph G is
self-approaching if, for every ordered pair of vertices u and v, G contains a
self-approaching path from u to v.
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Figure 1: A geometric path P = (v1, . . . , vn) that is self-approaching from v1
to vn, since for every three points a, b, and c in this order on P from v1 to vn,
we have |bc| < |ac|. Path P = (v1, . . . , vn) is not self-approaching from vn to
v1 (and thus it is not increasing-chord between v1 and vn), since for the three
points a, b, and c shown in the illustration we have |ba| > |ca|.

A geometric path P = (v1, . . . , vn) is increasing-chord between v1 and vn
if it is self-approaching both from v1 to vn and from vn to v1; equivalently, P
is increasing-chord if, for every four points a, b, c, and d in this order on P
from v1 to vn, we have |bc| < |ad| (from which the name increasing-chord). A
geometric graph G is increasing-chord if, for every pair of vertices u and v, G
contains an increasing-chord path between u and v. Observe that, by definition,
an increasing-chord graph is also self-approaching.

The study of self-approaching and increasing-chord graphs is motivated by
their relationship with greedy graphs (by definition, a self-approaching graph is
also greedy), and by the fact that such graphs have a small geometric dilation,
namely at most 5.3332 for self-approaching graphs [12] and at most 2.094 for
increasing-chord graphs [20].

Alamdari et al. [2] considered three types of problems about self-approaching
and increasing-chord graphs.

1. Complexity of recognizing self-approaching and increasing-chord graphs:
Alamdari et al. [2] showed how to test inO(n) time (inO(n log2 n/ log log n)
time) whether an n-vertex path in R2 (resp. in R3) is self-approaching.
They also exhibit an Ω(n log n) lower bound for the same problem in R3.
Further, they proved that it is NP-hard to test the existence of a self-
approaching path between two given vertices in a geometric graph in R3

and left open the intriguing problem of determining the complexity of
testing whether a geometric graph is self-approaching or increasing-chord
in two or more dimensions.

2. Realizability of a given abstract graph as a self-approaching or increasing-
chord graph: Alamdari et al. [2] characterized the class of trees that can be
realized as self-approaching graphs; recently, Nöllenburg et al. [17] proved
that planar triangulations can be realized as increasing-chord graphs, that
planar 3-trees can be realized as increasing-chord planar graphs, and that
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triconnected planar graphs can be realized as increasing-chord graphs in
the hyperbolic plane.

3. Existence of a self-approaching and increasing-chord graph spanning a
given point set: Alamdari et al. [2] showed how to construct, for every
point set P with n points in R2, an increasing-chord graph that spans P
and uses O(n) Steiner points (which are extra points that are added to
the input point set). They also proved that the Delaunay triangulation of
a point set is not always a self-approaching graph.

In this paper we focus our attention on the third type of problem above, i.e.,
on the problem of constructing self-approaching and increasing-chord graphs
spanning given point sets in R2. We prove two main results.

• We show how to construct, for every point set P with n points, an
increasing-chord planar graph with O(n) Steiner points spanning P . This
answers a question of Alamdari et al. [2] and improves upon their result
mentioned above, since our increasing-chord graphs are planar (while the
increasing-chord graphs constructed in [2] are not, although they have
thickness at most two) and contain increasing-chord paths between ev-
ery pair of points, including the Steiner points (which is not the case for
the graphs in [2]). It is interesting that our result is achieved by studying
Gabriel triangulations, which are proximity graphs strongly related to De-
launay triangulations (the Gabriel graph of a point set P is a subgraph of
the Delaunay triangulation of P ). On the way to proving our main result,
we show that Gabriel triangulations are increasing-chord graphs, which is
not the case, in general, for Delaunay triangulations [2].

• We show that, for every convex point set P with n points, there exists an
increasing-chord graph that spans P and that has O(n log n) edges (and
no Steiner points).

The rest of the paper is organized as follows. In Section 2 we give some
preliminaries. In Section 3 we show how to construct increasing-chord planar
graphs with few Steiner points spanning given point sets. In Section 4 we show
how to construct increasing-chord graphs with few edges spanning given convex
point sets. Finally, in Section 5 we conclude and suggest some open problems.

2 Definitions and Preliminaries

A geometric graph (P, S) consists of a point set P in the plane and of a set S
of straight-line segments (called edges) between points in P . A geometric graph
is planar if no two of its edges cross. A planar geometric graph partitions the
plane into connected regions called faces. The bounded faces are internal and
the unbounded face is the outer face. A geometric planar graph is a triangulation
if every internal face is delimited by a triangle and the outer face is delimited
by a convex polygon.
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Let p, q, and r be points in the plane. We denote by ∠pqr the angle defined
by a clockwise rotation around q bringing pq to coincide with qr.

A convex combination of a set of points P = {p1, . . . , pk} is a point
∑
αipi

where
∑
αi = 1 and αi ≥ 0 for each 1 ≤ i ≤ k. The convex hull HP of P is

the set of points that can be expressed as a convex combination of the points
in P . A convex point set P is such that no point is a convex combination of
the others. Let P be a convex point set and ~d be a directed straight line not
orthogonal to any line through two points of P . Order the points in P as their
projections appear on ~d; then the minimum point and the maximum point of P
with respect to ~d are the first and the last point in such an ordering. We say
that P is one-sided with respect to ~d if the minimum and the maximum point
of P with respect to ~d are consecutive along the boundary of HP . See Figure 2.
A one-sided convex point set is a convex point set that is one-sided with respect
to some directed straight line ~d.

The proof of our first lemma gives an algorithm to construct an increasing-
chord planar graph spanning a one-sided convex point set.

p1=p

p2

p3
pn−1
pn=q

~d

Figure 2: A convex point set that is one-sided with respect to a directed straight
line ~d.

Lemma 1 Let P be any one-sided convex point set with n points. There exists
an increasing-chord planar graph spanning P with 2n− 3 edges.

Proof: Assume that P is one-sided with respect to the positive x-axis ~x. Such
a condition can be met after a suitable rotation of the Cartesian axes. Let
p1, p2, . . . , pn be the points in P , ordered as their projections appear on ~x.
Assume that p2, p3, . . . , pn−1 are above the straight line through p1 and pn, as
the case in which they are below such a line is symmetric.

We show by induction on n that an increasing-chord planar graphG spanning
P exists, in which all the edges on the boundary of HP are in G.

If n = 2 then the graph with a single edge p1p2 is an increasing-chord planar
graph spanning P .

Next, assume that n > 2 and let pj be a point with largest y-coordinate in
P (possibly j = 1 or j = n). Point set Q = P \ {pj} is convex, one-sided with
respect to ~x, and has n−1 points. By induction, there exists an increasing-chord
planar graph G′ spanning Q in which all the edges on the boundary of HQ are
in G′. Let G be the graph obtained by adding vertex pj and edges pj−1pj and
pjpj+1 to G′ (where pn+1 = p0 and p−1 = pn). We have that G is planar, given
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that G′ is planar and that edges pj−1pj and pjpj+1 are on the boundary of HP .
Further, all the edges on the boundary of HP are in G. Moreover, G contains
an increasing-chord path between every pair of points in Q, by induction; also,
G contains an increasing-chord path between pj and every point pi in Q, as
one of the two paths on the boundary of HP connecting pj and pi is both x-
and y-monotone, and hence increasing-chord, as proved in [2]. Finally, G is a
maximal outerplanar graph, hence it has 2n− 3 edges. �

The Gabriel graph of a point set P is the geometric graph that has an edge
pq between two points p and q if and only if the closed disk whose diameter is
pq contains no point of P \ {p, q} in its interior or on its boundary. A Gabriel
triangulation is a triangulation that is the Gabriel graph of its point set P . We
say that a point set P admits a Gabriel triangulation if the Gabriel graph of P
is a triangulation. A triangulation is a Gabriel triangulation if and only if every
angle of a triangle delimiting an internal face is acute [10]. See [10, 14, 15] for
more properties about Gabriel graphs.

In Section 3 we will prove that every Gabriel triangulation is increasing-
chord. A weaker version of the converse is also true, as proved in the following.

Lemma 2 Let P be a set of points and let G(P, S) be an increasing-chord graph
spanning P . Then all the edges of the Gabriel graph of P are in S.

Proof: Suppose, for a contradiction, that there exists an increasing-chord graph
G(P, S) and an edge uv of the Gabriel graph of P such that uv /∈ S. Then
consider any increasing-chord path P = (u = w1, w2, . . . , wk = v) in G. Since
uv /∈ S, it follows that k > 2. Assume w.l.o.g. that w1, w2, and wk appear in this
clockwise order on the boundary of triangle (w1, w2, wk). Since the closed disk
with diameter uv does not contain any point in its interior or on its boundary,
it follows that ∠wkw2w1 < 90◦. If ∠w2w1wk ≥ 90◦, then |w1wk| < |w2wk|, a
contradiction to the assumption that P is increasing-chord. If ∠w2w1wk < 90◦,
then the altitude of triangle (w1, w2, wk) incident to wk hits w1w2 in a point h.
Hence, |hwk| < |w2wk|, a contradiction to the assumption that P is increasing-
chord which proves the lemma. �

3 Increasing-Chord Planar Graphs with Few
Steiner Points Spanning Point Sets

In this section we show that, for any point set P , one can construct an increasing-
chord planar graph G(P ′, S) such that P ⊆ P ′ and |P ′| ∈ O(|P |).

Our proof consists of two main ingredients. The first one is that Gabriel
triangulations are increasing-chord graphs. The second one is a result of Bern
et al. [4] stating that, for any point set P , there exists a point set P ′ such that
P ⊆ P ′, |P ′| ∈ O(|P |), and P ′ admits a Gabriel triangulation. Combining these
two facts proves our main result.

The proof that Gabriel triangulations are increasing-chord graphs consists
of two parts. In the first one, we prove that geometric graphs having a θ-path
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between every pair of points are increasing-chord. In the second one, we prove
that every Gabriel triangulation contains a θ-path between every pair of points.

We introduce some definitions. The slope of a straight-line segment uv is
the angle spanned by a clockwise rotation around u that brings uv to coincide
with the positive x-axis. Thus, if θ is the slope of uv, then θ + k · 360◦ is also
the slope of uv, ∀k ∈ Z. A straight-line segment uv is a θ-edge if its slope is
in the interval [θ − 45◦; θ + 45◦]. Also, a geometric path P = (p1, . . . , pk) is a
θ-path from p1 to pk if pipi+1 is a θ-edge, for every 1 ≤ i ≤ k − 1. Consider a
point a on a θ-path P from p1 to pk. Then the subpath Pa of P from a to pk
is also a θ-path. Moreover, denote by Wθ(a) the closed wedge with an angle of
90◦ incident to a and whose delimiting lines have slope θ−45◦ and θ+45◦; then
we have that Pa is contained in Wθ(a), which easily follows from the fact that
pipi+1 is a θ-edge, for every 1 ≤ i ≤ k−1 (see Figure 3). We have the following:

a
pk

p1 Wθ(a)

Figure 3: Wedge Wθ(a) contains path Pa.

Lemma 3 Let P be a θ-path from p1 to pk, for some angle θ. Then P is
increasing-chord.

Proof: Lemma 3 in [12] states the following (see also [1]): A curve C with end-
points p and q is self-approaching from p to q if and only if, for every point a on
C, there exists a closed wedge with an angle of 90◦ incident to a and containing
the part of C between a and q. As observed before the lemma, for every point
a on P, the closed wedge Wθ(a) with an angle of 90◦ incident to a and whose
delimiting lines have slope θ − 45◦ and θ + 45◦ contains the subpath Pa of P
from a to pk. Hence, by Lemma 3 in [12], P is self-approaching from p1 to pk.
An analogous proof shows that P is self-approaching from pk to p1, given that
P is a (θ + 180◦)-path from pk to p1. �

We now prove that Gabriel triangulations contain θ-paths.

Lemma 4 Let G be a Gabriel triangulation on a point set P . For every two
points s, t ∈ P , there exists an angle θ such that G contains a θ-path from s
to t.

Proof: Consider any two points s, t ∈ P . Rotate G clockwise of an angle φ so
that y(s) = y(t) and x(s) < x(t). Observe that, if there exists a θ-path from s
to t after the rotation, then there exists a (θ + φ)-path from s to t before the
rotation.
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A θ-path (p1, . . . , pk) in G is maximal if there is no z ∈ P such that pkz is a
θ-edge. For every maximal θ-path P = (p1, . . . , pk) in G, pk lies on the boundary
of HP . To prove this, assume the converse, for a contradiction. Since G is a
Gabriel triangulation, the angle between any two consecutive edges incident to
an internal vertex of G is smaller than 90◦, thus there is a θ-edge incident to
pk. This contradicts the maximality of P. A maximal θ-path (s = p1, . . . , pk)
is high if either (a) y(pk) > y(t) and x(pk) < x(t), or (b) pipi+1 intersects the
vertical line through t at a point above t, for some 1 ≤ i ≤ k−1. Symmetrically,
a maximal θ-path (s = p1, . . . , pk) is low if either (a) y(pk) < y(t) and x(pk) <
x(t), or (b) pipi+1 intersects the vertical line through t at a point below t, for
some 1 ≤ i ≤ k − 1. High and low (θ + 180◦)-paths starting at t can be defined
analogously. The proof of the lemma consists of two main claims.

Claim A. If a maximal θ-path Ps starting at s and a maximal (θ + 180◦)-
path Pt starting at t exist such that Ps and Pt are both high or both low, for
some −45◦ ≤ θ ≤ 45◦, then there exists a θ-path in G from s to t.

Claim B. For some −45◦ ≤ θ ≤ 45◦, there exist a maximal θ-path Ps
starting at s and a maximal (θ+ 180◦)-path Pt starting at t that are both high
or both low.

Observe that Claims A and B imply the lemma.

We now prove Claim A. Suppose that G contains a maximal high θ-path
Ps starting at s and a maximal high (θ + 180◦)-path Pt starting at t, for some
−45◦ ≤ θ ≤ 45◦. If Ps and Pt share a vertex v ∈ P , then the subpath of Ps from
s to v and the subpath of Pt from v to t form a θ-path in G from s to t. Thus, it
suffices to show that Ps and Pt share a vertex. For a contradiction assume the
converse. Let ps and pt be the end-vertices of Ps and Pt different from s and t,
respectively. Recall that ps and pt lie on the boundary of HP . Denote by ~ls and
~lt the vertical half-lines starting at s and t, respectively, and directed toward
increasing y-coordinates; also, denote by qs and qt the intersection points of ~ls
and ~lt with the boundary of HP , respectively. Finally, denote by Q the curve
obtained by following the boundary of HP clockwise from qs to qt.

Assume that x(ps) ≥ x(t), as in Figure 4(a). Path Ps starts at s and passes

through a point rs on ~lt (possibly rs = qt), given that x(ps) ≥ x(t). Path Pt
starts at t and either passes through a point rt on ~ls, or ends at a point pt on
Q, depending on whether x(pt) ≤ x(s) or x(pt) > x(s), respectively. Since Ps is
x-monotone and lies in HP , it follows that rt and pt are above or on Ps; also, t
is below Ps given that Ps is a high path. It follows Ps and Pt intersect, hence
they share a vertex given that G is planar.

Analogously, if x(pt) ≤ x(s), then Ps and Pt share a vertex.

If x(pt) = x(ps), then ps and pt are the same point, hence Ps∪Pt is a θ-path
from s to t.

Next, if x(s) < x(pt) < x(ps) < x(t), as in Figure 4(b), then the end-points
of Ps and Pt alternate along the boundary of the region R that is the intersection
of HP , of the half-plane to the right of ~ls, and of the half-plane to the left of ~lt.
Since Ps and Pt are x-monotone, they lie in R, thus they intersect, and hence
they share a vertex.
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qt
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Pt

Pt
Ps

~ls ~lt

pt

rs
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qs
qt

rt

Pt

Ps

~ls ~lt

pt
ps

s t

qs
qt

PtPs

~ls ~lt
ps=a1

pt=aha2

(a) (b) (c)

Figure 4: Paths Ps and Pt intersect if: (a) x(ps) ≥ x(t), (b) x(s) < x(pt) <
x(ps) < x(t), and (c) x(s) < x(ps) < x(pt) < x(t).

Finally, assume that x(s) < x(ps) < x(pt) < x(t), as in Figure 4(c). Let
a1, . . . , ah be the clockwise order of the points along Q, starting at ps = a1
and ending at ah = pt. By the assumption x(ps) < x(pt) we have h ≥ 2. We
prove that a1a2 is a θ-edge. Suppose, for a contradiction, that a1a2 is not a
θ-edge. Since the slope of a1a2 is larger than −90◦ and smaller than 90◦, it
is either larger than θ + 45◦ and smaller than 90◦, or it is larger than −90◦

and smaller than θ − 45◦. First, assume that the slope of a1a2 is larger than
θ+45◦ and smaller than 90◦, as in Figure 5(a). Since the slope of sa1 is between
θ−45◦ and θ+45◦, it follows that a1 is below the line composed of sa2 and a2t,
which contradicts the assumption that a1 is on Q. Second, if the slope of a1a2
is larger than −90◦ and smaller than θ − 45◦, then we distinguish two further
cases. In the first case, represented in Figure 5(b), the slope of a1t is larger than
θ − 45◦, hence a2 is below the line composed of sa1 and a1t, which contradicts
the assumption that a2 is on Q. In the second case, represented in Figure 5(c),
the slope of a1t is in the interval [−90◦; θ − 45◦]. It follows that the slope of
ta1 is in the interval [90◦; θ + 135◦]; since the slope of tah is smaller than the
one of ta1, we have that Pt is not a (θ + 180◦)-path. This contradiction proves
that a1a2 is a θ-edge. However, this contradicts the assumption that Ps is a
maximal θ-path, and hence concludes the proof of Claim A.

s t

~ls ~lt
a2

a1

θ s t

~ls ~lt

a2

a1

θ s
t

~ls ~lt

a2

a1

θ

ah

(a) (b) (c)

Figure 5: Illustration for the proof that a1a2 is a θ-edge.

We now prove Claim B. First, we prove that, for every θ in the interval
[−45◦; 45◦], there exists a maximal θ-path starting at s that is low or high.
Indeed, it suffices to prove that there exists a θ-edge incident to s, as such an
edge is also a θ-path starting at s, and the existence of a θ-path starting at s
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implies the existence of a maximal θ-path starting at s. Consider a straight-
line segment eθ that is the intersection of a directed half-line incident to s with
slope θ and of a disk of arbitrarily small radius centered at s. If eθ is internal
to HP , then consider the two edges e1 and e2 of G that are encountered when
rotating eθ around s counter-clockwise and clockwise, respectively. Then e1
or e2 is a θ-edge, as the angle spanned by a clockwise rotation bringing e1 to
coincide with e2 is smaller than 90◦, given that G is a Gabriel triangulation,
and eθ is encountered during such a rotation. If eθ is outside HP , which might
happen if s on the boundary of HP , then assume that the slope of eθ is in the
interval [0◦; 45◦] (the case in which the slope of eθ is in the interval [−45◦; 0◦]
is analogous). Then the angle spanned by a clockwise rotation bringing eθ to
coincide with st is at most 45◦. Since st is in interior or on the boundary of HP ,
an edge e1 of G is encountered during such a rotation, hence e1 is a θ-edge. An
analogous proof shows that, for every θ in the interval [−45◦; 45◦], there exists
a maximal (θ + 180◦)-path starting at t that is low or high.

Second, we prove that, for some θ ∈ [−45◦; 45◦], there exist a maximal
low θ-path and a maximal high θ-path both starting at s. All the maximal
(−45◦)-paths (all the maximal (45◦)-paths) starting at s are low (resp. high),
given that every edge on these paths has slope in the interval [−90◦; 0◦] (resp.
[0◦; 90◦]). Thus, let θ be the smallest constant in the interval [−45◦; 45◦] such
that a maximal high θ-path exists. We prove that there also exists a maximal
low θ-path starting at s. Consider an arbitrarily small ε > 0. By assumption,
there exists no high (θ − ε)-path. Hence, from the previous argument there
exists a low (θ− ε)-path P. If ε is sufficiently small, then no edge of P has slope
in the interval [θ − 45◦ − ε; θ − 45◦). Thus every edge of P has slope in the
interval [θ − 45◦; θ + 45◦ − ε), hence P is a maximal low θ-path starting at s.

Since there exist a maximal high θ-path starting at s, a maximal low θ-path
starting at s, and a maximal (θ + 180◦)-path starting at t that is low or high,
it follows that there exist a maximal θ-path Ps starting at s and a maximal
(θ + 180◦)-path Pt starting at t that are both high or both low. This proves
Claim B and hence the lemma. �

Lemma 3 and Lemma 4 immediately imply the following.

Corollary 1 Any Gabriel triangulation is increasing-chord.

We are now ready to state the main result of this section.

Theorem 1 Let P be a point set with n points. One can construct in O(n log n)
time an increasing-chord planar graph G(P ′, S) such that P ⊆ P ′ and |P ′| ∈
O(n).

Proof: Bern, Eppstein, and Gilbert [4] proved that, for any point set P , there
exists a point set P ′ with P ⊆ P ′ and |P ′| ∈ O(n) such that P ′ admits a Gabriel
triangulation G. Both P ′ and G can be computed in O(n log n) time [4]. By
Corollary 1, G is increasing-chord, which concludes the proof. �
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We remark that o(|P |) Steiner points are not always enough to augment
a point set P to a point set that admits a Gabriel triangulation. Namely,
consider any point set B with O(1) points that admits no Gabriel triangulation.
Construct a point set P out of |P |/|B| copies of B placed “far apart” from each
other, so that any triangle with two points in different copies of B is obtuse.
Then a Steiner point has to be added inside the convex hull of each copy of B
to obtain a point set that admits a Gabriel triangulation.

4 Increasing-Chord Graphs with Few Edges
Spanning Convex Point Sets

In this section we prove the following theorem;

Theorem 2 For every convex point set P with n points, there exists an increasing-
chord geometric graph G(P, S) such that |S| ∈ O(n log n).

The main idea behind the proof of Theorem 2 is that any convex point set
P can be decomposed into some one-sided convex point sets P1, . . . , Pk (which
by Lemma 1 admit increasing-chord spanning graphs with linearly many edges)
in such a way that every two points of P are part of some Pi and that

∑ |Pi| is
small. In order to perform such a decomposition, we introduce the concept of
balanced (~d1, ~d2)-partition.

Let P be a convex point set and let ~d be a directed straight line not or-
thogonal to any line through two points of P . See Figure 6. Let pmin(~d) and

pmax(~d) be the minimum and maximum point of P with respect to ~d, respec-

tively. Let P1(~d) be composed of those points in P that are encountered when

walking clockwise along the boundary of HP from pmin(~d) to pmax(~d), where

pmin(~d) ∈ P1(~d) and pmax(~d) /∈ P1(~d). Analogously, let P2(~d) be composed of
those points in P that are encountered when walking clockwise along the bound-
ary of HP from pmax(~d) to pmin(~d), where pmax(~d) ∈ P2(~d) and pmin(~d) /∈ P2(~d).

Let ~d1 and ~d2 be two directed straight lines not orthogonal to any line
through two points of P , where the clockwise rotation that brings ~d1 to coincide
with ~d2 is at most 180◦. The (~d1, ~d2)-partition of P partitions P into subsets

Pa = P1(~d1) ∩ P1(~d2), Pb = P1(~d1) ∩ P2(~d2), Pc = P2(~d1) ∩ P1(~d2), and Pd =

P2(~d1) ∩ P2(~d2). Note that every point in P is contained in one of Pa, Pb,

Pc, and Pd. A (~d1, ~d2)-partition of P is balanced if |Pa| + |Pd| ≤ |P |
2 + 1 and

|Pb| + |Pc| ≤ |P |
2 + 1. We now argue that, for every point set P , a balanced

(~d1, ~d2)-partition of P always exists, even if ~d1 is arbitrarily prescribed.

Lemma 5 Let P be a convex point set and let ~d1 be a directed straight line not
orthogonal to any line through two points of P . Then there exists a directed
straight line ~d2 that is not orthogonal to any line through two points of P such
that the (~d1, ~d2)-partition of P is balanced.
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~d

pmin(
~d)

pmax(~d)
P1(~d)

P2(~d)

Figure 6: Subsets P1(~d) and P2(~d) of a point set P determined by a directed

straight line ~d.

Proof: Denote by q1 = pmin(~d1), q2, . . . , ql, ql+1 = pmax(~d1) the points of P

encountered when walking clockwise on the boundary of HP from pmin(~d1) to

pmax(~d1). Also, denote by r1 = pmax(~d1), r2, . . . , rm, rm+1 = pmin(~d1) the points

of P encountered when walking clockwise on the boundary of HP from pmax(~d1)

to pmin(~d1).

Initialize ~d2 to be a directed straight line coincident with ~d1. When ~d2 = ~d1,
we have Pa = {q1, q2, . . . , ql}, Pd = {r1, r2, . . . , rm}, Pb = ∅, and Pc = ∅. We

now rotate ~d2 clockwise until it is opposite to ~d1 (that is, parallel and pointing in

the opposite direction). As we rotate ~d2, sets P1(~d2) and P2(~d2) change, hence

sets Pa, Pb, Pc, and Pd change as well. When ~d2 is opposite to ~d1, we have
Pa = ∅, Pd = ∅, Pb = {q1, q2, . . . , ql}, and Pc = {r1, r2, . . . , rm}. We will argue

that there is a moment during such a rotation of ~d2 in which the corresponding
(~d1, ~d2)-partition of P is balanced. Assume that at any time instant during the

rotation of ~d2 the following hold (see Figs. 7(a)–(b)):

• Pb = {q1, q2, . . . , qj} (possibly Pb is empty);

• Pa = {qj+1, qj+2, . . . , ql} (possibly Pa is empty);

• Pc = {r1, r2, . . . , rk} (possibly Pc is empty);

• Pd = {rk+1, rk+2, . . . , rm} (possibly Pd is empty); and

• qj+1 and rk+1 are the minimum and maximum point of P with respect to
~d2, respectively.

The assumption is indeed true when ~d2 starts moving, with j = 0 and k = 0.
As we keep on rotating ~d2 clockwise, at a certain moment ~d2 becomes or-

thogonal to qj+1qj+2 or to rk+1rk+2 (or to both if qj+1qj+2 and rk+1rk+2 are
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~d2
~d1

q1

qj

qj+1

ql
rk

rk+1

r1

rmPb

Pa

Pd

Pc

qj+1

qj+2

qj

~d2

rk

rk+1

rk+2

~d2

(a) (b)

Figure 7: (a) Sets Pa, Pb, Pc, and Pd at a certain time instant during the rotation

of ~d2. (b) The slope of ~d2 with respect to the slopes of the lines orthogonal to
qjqj+1, to qj+1qj+2, to rkrk+1, and to rk+1rk+2.

parallel). Thus, as we keep on rotating ~d2 clockwise, sets Pa, Pb, Pc, and Pd
change. Namely:

If ~d2 becomes orthogonal first to qj+1qj+2 and then to rk+1rk+2, then as ~d2
rotates clockwise after the position in which it is orthogonal to qj+1qj+2, we
have

• Pb = {q1, q2, . . . , qj , qj+1};

• Pa = {qj+2, qj+3, . . . , ql} (possibly Pa is empty);

• Pc = {r1, r2, . . . , rk} (possibly Pc is empty);

• Pd = {rk+1, rk+2, . . . , rm} (possibly Pd is empty); and

• qj+2 and rk+1 are the minimum and maximum point of P with respect to
~d2, respectively.

If ~d2 becomes orthogonal first to rk+1rk+2 and then to qj+1qj+2, then as ~d2
rotates clockwise after the position in which it is orthogonal to rk+1rk+2, we
have that Pa and Pb stay unchanged, that rk+1 passes from Pd to Pc, and that

qj+1 and rk+2 are the minimum and maximum point of P with respect to ~d2,
respectively.

If ~d2 becomes orthogonal to qj+1qj+2 and rk+1rk+2 simultaneously, then as
~d2 rotates clockwise after the position in which it is orthogonal to qj+1qj+2, we
have that qj+1 passes from Pa to Pb, that rk+1 passes from Pd to Pc, and that

qj+2 and rk+2 are the minimum and maximum point of P with respect to ~d2,
respectively.

Observe that:

1. whenever sets Pa, Pb, Pc, and Pd change, we have that |Pa| + |Pd| and
|Pb|+ |Pc| change at most by two;
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2. when ~d2 starts rotating we have that |Pa|+ |Pd| = |P |, and when ~d2 stops
rotating we have that |Pa|+ |Pd| = 0;

3. when ~d2 starts rotating we have that |Pb| + |Pc| = 0, and when ~d2 stops
rotating we have that |Pb|+ |Pc| = |P |; and

4. |Pa|+ |Pb|+ |Pc|+ |Pd| = |P | holds at any time instant.

By continuity, there is a time instant in which |Pa| + |Pd| = b|P |/2c and
|Pb| + |Pc| = d|P |/2e, or in which |Pa| + |Pd| = b|P |/2c + 1 and |Pb| + |Pc| =
d|P |/2e − 1. This completes the proof of the lemma. �

We now show how to use Lemma 5 in order to prove Theorem 2.
Let P be any point set. Assume that no two points of P have the same

y-coordinate. Such a condition is easily met after rotating the Cartesian axes.
Denote by ~l a vertical straight line directed toward increasing y-coordinates.
Each of P1(~l) and P2(~l) is convex and one-sided with respect to ~l. By Lemma 1,

there exist increasing-chord graphs G1 = (P1(~l), S1) and G2 = (P2(~l), S2) with

|S1| < 2|P1(~l)| and |S2| < 2|P2(~l)|. Then graph G(P, S1 ∪ S2) has less than

2(|P1(~l)|+ |P2(~l)|) = 2|P | edges and contains an increasing-chord path between

every pair of vertices in P1(~l) and between every pair of vertices in P2(~l). How-
ever, G does not have increasing-chord paths between any pair (a, b) of vertices

such that a ∈ P1(~l) and b ∈ P2(~l).
We now present and prove the following claim.

Claim 1 Consider a convex point set Q and a directed straight line ~d1 not
orthogonal to any line through two points of Q. Then there exists a geometric
graph H(Q,R) that contains an increasing-chord path between every point in

Q1(~d1) and every point in Q2(~d1), such that |R| ∈ O(|Q| log |Q|).

The application of the claim with Q = P and ~d1 = ~l provides a graph
H(P,R) that contains an increasing-chord path between every pair (a, b) of

vertices such that a ∈ P1(~l) and b ∈ P2(~l). Thus, the union of G and H is
an increasing-chord graph with O(|P | log |P |) edges spanning P . Therefore, the
above claim implies Theorem 2.

We give an inductive algorithm to construct H. Let f(Q, ~d1) be the number
of edges that H has as a result of the application of our algorithm on a point
set Q and a directed straight-line ~d1. Also, let f(n) = max{f(Q, ~d1)}, where
the maximum is among all point sets Q with n = |Q| points and among all the

directed straight-lines ~d1 that are not orthogonal to any line through two points
of Q.

Let Q be any convex point set with n points and let ~d1 be any directed
straight line not orthogonal to any line through two points of Q. By Lemma 5,
there exists a directed straight line not orthogonal to any line through two points
of Q and such that the (~d1, ~d2)-partition of Q is balanced.

Let Qa = Q1(~d1) ∩ Q1(~d2), let Qb = Q1(~d1) ∩ Q2(~d2), let Qc = Q2(~d1) ∩
Q1(~d2), and let Qd = Q2(~d1) ∩Q2(~d2).
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Point set Qa ∪Qc is convex and one-sided with respect to ~d2. By Lemma 1
there exists an increasing-chord graph H1(Qa ∪ Qc, R1) with |R1| < 2(|Qa| +
|Qc|) edges. Analogously, by Lemma 1 there exists an increasing-chord graph
H2(Qb ∪Qd, R2) with |R2| < 2(|Qb|+ |Qd|) edges.

Hence, there exists a graph H3(Q,R1∪R2) with |R1∪R2| < 2(|Qa|+ |Qc|+
|Qb| + |Qd|) = 2|Q| = 2n edges containing an increasing-chord path between
every point in Qa and every point in Qc, and between every point in Qb and
every point in Qd. However, G does not have an increasing-chord path between
any point in Qa and any point in Qd, and does not have an increasing-chord
path between any point in Qb and any point in Qc.

By Lemma 5, we have |Qa| + |Qd| ≤ n
2 + 1 and |Qb| + |Qc| ≤ n

2 + 1. By

definition, we have f(Qa∪Qd, ~d1) ≤ f(|Qa|+ |Qd|) ≤ f(n2 +1). Analogously, we

have f(Qb∪Qc, ~d1) ≤ f(|Qb|+|Qc|) ≤ f(n2 +1). Hence, f(n) ≤ 2n+2f(n2 +1) ∈
O(n log n). This proves the claim and hence Theorem 2.

5 Conclusions

We considered the problem of constructing increasing-chord graphs spanning
point sets. We proved that, for every point set P , there exists a planar increasing-
chord graph G(P ′, S) with P ⊆ P ′ and |P ′| ∈ O(|P |). We also proved that, for
every convex point set P , there exists an increasing-chord graph G(P, S) with
|S| ∈ O(|P | log |P |).

Despite our research efforts, the main question on this topic remains open:

Open Problem 1 Is it true that, for every (convex) point set P , there exists
an increasing-chord planar graph G(P, S)?

One of the directions we took in order to tackle this problem is to assume
that the points in P lie on a constant number of straight lines. While a simple
modification of the proof of Lemma 1 allows us to prove that an increasing-chord
planar graph always exists spanning a set of points lying on two straight lines,
it is surprising and disheartening that we could not prove a similar result for
sets of points lying on three straight lines. The main difficulty seems to lie in
the construction of planar increasing-chord graphs spanning sets of points lying
on the boundary of an acute triangle.

Open Problem 2 Is it true that, for every set P of points lying on the bound-
ary of an acute triangle, there exists an increasing-chord planar graph G(P, S)?

Gabriel graphs naturally generalize to higher dimensions, where empty balls
replace empty disks. In Section 3 we showed that, for points in R2, every Gabriel
triangulation is increasing-chord. Can this result be generalized to higher di-
mensions?

Open Problem 3 Is it true that, for every point set P in Rd, any Gabriel
triangulation of P is increasing-chord?
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Finally, it would be interesting to understand if increasing-chord graphs with
few edges can be constructed for any (possibly non-convex) point set:

Open Problem 4 Is it true that, for every point set P , there exists an increasing-
chord graph G(P, S) with |S| ∈ o(|P |2)?
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