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1-Planarity of Graphs with a Rotation System
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Abstract

A graph is 1-planar if it can be drawn in the plane such that each edge
is crossed at most once. 1-planarity is known NP-hard, even for graphs of
bounded bandwidth, pathwidth, or treewidth, and for near-planar graphs
in which an edge is added to a planar graph. On the other hand, there is
a linear time 1-planarity testing algorithm for maximal 1-planar graphs
with a given rotation system.

In this work, we show that 1-planarity remains NP-hard even for
3-connected graphs with (or without) a rotation system. Moreover, the
crossing number problem remainsNP-hard for 3-connected 1-planar graphs
with (or without) a rotation system.
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1 Introduction

Planar graphs have attracted researchers since the 1930’s. There are numerous
results on planar graphs such as forbidden minors, duality, efficient planarity
tests, and straight line drawings, see [9, 17, 21]. More recently, researchers have
investigated “beyond” planar graphs which generalize planar graphs by restric-
tions on crossings. A particular example is 1-planar graphs which can be drawn
in the plane with at most one crossing per edge. 1-planar graphs were intro-
duced by Ringel [24] and appear when a planar graph and its dual are drawn
simultaneously. Here an edge and its dual cross.

1-planar graphs have recently received much interest. For every graph G
there is a 1-planar graph which is obtained from G by subdividing edges. It was
independently shown by several authors that a 1-planar graph with n vertices
has at most 4n−8 edges [4,6,11,22] and this upper bound is tight. However, there
are 1-planar graphs with only 2.64n edges [7], in which any further edge destroys
1-planarity. 1-planar graphs are 6-colorable [5]. They do not admit straight-line
drawings, which are excluded by so-called B- and W-configurations [25]. In the
absence of these configuration there is a linear time algorithm to convert an
embedded 1-planar graph into a straight-line drawing [16]. Also, 3-connected
1-planar graphs can be drawn straight-line on quadratic area with the exception
of at most one edge in the outer face [1], whereas all 1-planar graphs admit a
special bar 1-visibility representation on quadratic area, in which each vertical
line of an edge crosses at most one horizontal bar of a vertex and vice versa [6].

1-planarity is NP-hard. This was proved first by Korzhik and Mohar [18]
and improved to hold for graphs of bounded bandwidth, pathwidth, or treewidth
by Bannister et al. [2], and for near planar graphs by Cabello and Mohar [8],
where a near planar graph is obtained from a planar graph by the addition of
one edge. The parameterized complexity of the problem with respect to several
parameters was addressed in [2].

On the other hand, there is a linear time 1-planarity testing algorithm if the
graphs are maximal 1-planar and are given with a rotation system by Eades
et al. [10]. A graph is maximal 1-planar if the addition of an edge destroys
1-planarity. A rotation system describes the cyclic ordering of the edges at the
vertices as obtained from a drawing. The algorithm of Eades et al. follows the
edges in counter-clockwise order as given by the rotation system and decides
that there is a planar face if there is a simple cycle around a face and a crossing
if a vertex is traversed twice in a cycle.

A rotation system is the common output of a planarity test. It is used to
compute planar embeddings and straight-line planar drawings in linear time
[9, 17, 21]. A planar embedding partitions the plane into regions, called faces,
and is specified by the cyclic ordering of the vertices and edges around each
face. For planar graphs a rotation system and an embedding can be taken as
synonyms, and one can be computed from the other in linear time. Rotation
systems play a crucial role in this work.

A rotation system makes the essential difference to the complexity of upward
planarity testing. A directed graph is upward planar if it can be drawn in
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the plane such that the curves of the edges are monotonically increasing in y-
direction. Garg and Tamassia [14] showed that upward planarity testing of a
graph is NP-hard. However, there is a linear time algorithm if a rotation system
is given [3, 9]. In contrast, the NP-hard crossing number problem [13] remains
NP-hard even with a given rotation system [23]. There is a parallel situation
for 1-planarity.

We show that 1-planarity testing remains NP-hard even for 3-connected,
2-planar graphs with a given rotation system. Our NP-reduction is general
enough to hold without a rotation system, and it can be modified to show that
the crossing number problem remains NP-hard even for 1-planar graphs. Our
proof is by reduction from the planar 3-SAT problem [20] and is simpler than the
one by Korzhik and Mohar [18]. In our reduction, we introduce a “membrane
technique” and directly encode the truth value of a literal by an edge crossing.
Hence, given a rotation system, the borderline between tractable and intractable
instances of 1-planarity is between maximal and 3-connected graphs.

The paper is organized as follows: We recall the basic notions in Section 2.
Our main result - the NP-hardness of 1-planarity with a given rotation system
- is presented in Section 3. In Section 4, we sharpen the NP-hardness result to
3-connected 2-planar graphs and improve upon the crossing number problem in
Section 5. We conclude with some open problems in Section 6.

2 Preliminaries

We consider simple undirected graphs G = (V,E) with n vertices and m edges.
A drawing of a graph is a mapping of G into the plane such that the vertices are
mapped to distinct points and each edge to a Jordan arc between its endpoints.
A drawing is plane if (the Jordan arcs of) the edges do not cross and it is k-
plane if each edge is crossed at most k times. In 1-plane drawings, crossings of
edges with the same endpoint are excluded. A graph is 1-planar if it admits a
1-planar drawing.

Each plane (1-plane) drawing of a graph implies a rotation system. The
rotation at a vertex is the clockwise ordering of its incident edges as implied by
the drawing. A rotation system consists of the rotations of all vertices. However,
a given rotation system of a graph may not allow for a plane (1-plane) drawing,
even if the graph is planar (1-planar), as K4 (K5) with all vertices in the outer
face shows. We call a rotation system planar (1-planar) if it admits a plane
(1-plane) drawing.

Similar to planar embeddings, a 1-planar embedding specifies the faces in a
1-planar drawing. A face in a 1-planar embedding is given by a cyclic list of
edges and edge segments, which occur in the case of a crossing. Then an edge
consists of two segments. A 1-planar embedding uniquely implies a 1-planar
rotation system. However, a 1-planar rotation system does not uniquely define
a 1-planar embedding nor does it determine the pairs of crossing edges. In
fact, we shall use this “gap” to show that deciding whether a rotation system is
1-planar is NP-hard.
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Let G be a 1-planar embedded graph and denote by G× its planarization.
G× is obtained from G by replacing each pair e = {u, v} and e′ = {u′, v′} of
crossing edges by a new vertex of degree four joined to u, v, u′, and v′. Then,
G× is a planar embedded graph, where its embedding is inherited from the
embedding of G.

Finally, recall that the planar 3-SAT problem specializes the standard 3-
SAT problem, such that the bipartite graph (X ∪ C,M) is planar, where X =
{X1, X2, . . . , Xi} is the set of variables and C = {C1, C2, . . . , Cj} is the set of
clauses and there is an edge {Xi, Cj} if the variable Xi occurs as a positive or
negative literal in Cj . Planar 3-SAT is known to be NP-hard [20].

3 NP-hardness of 1-Planarity Testing

In this section, we reduce planar 3-SAT to 1-planarity using gadgets for literals,
variables and clauses. The key idea is a “membrane technique” and the encoding
of truth values of variables by crossings. The membrane covering a clause C
has five slots for the connection of its literals. Each connection forms a “Y”
and crosses two edges of the membrane if the upper part is used and one edge if
the lower part is used, respectively. The latter case corresponds to a satisfiable
assignment of C.

The U-graphs from [18] are used as basic building blocks of our reduction,
see Fig. 1 for an example. The vertices labeled 3, 2, 1, b, b − 1, b − 2 are called
boundary vertices and an edge connecting two boundary vertices is called bound-
ary edge. Korzhik and Mohar [18] proved that a U-graph has a unique 1-planar
embedding if it has at least b ≥ 6 boundary vertices. In our reduction, we attach
barrier edges and gadgets for variables (V-gadgets) and clauses (C-gadgets) to
the boundary vertices and we assume that the number of boundary vertices is
always at least 6 and sufficiently large for the case at hand.

(a)
. . .
. . .
. . .

. . .

. . .

. . .

. . . 3 2 1 b b− 1 b− 2 . . .

(b)

3 2 1 b b− 1b− 2

Figure 1: (a) The U-graph and (b) its abbreviation.

Let G be the planar embedded graph corresponding to a planar 3-SAT ex-
pression α. In the following, we construct a graph G∗S endowed with a rotation
system that is 1-planar if and only if α is satisfiable (see Fig. 2 for an example).
The rotation system can be obtained directly from the given drawings. Let G∗

be the dual graph of G. First, we transform G∗ into a U-supergraph G∗S as
described in [19]. The construction replaces every vertex of G∗ with a U-graph.
Two adjacent vertices of G∗ are connected in G∗S by a set of l edges between
distinct endpoints, called barriers, where we choose l ≥ 7 for reasons which will
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be described later. A U-supergraph has a unique 1-planar embedding [18]. For
every vertex v of G that represents a clause (resp. variable), we add a C-gadget
(resp. V-gadget) to G∗S . Let v be a vertex of G and f the corresponding face
in G∗, and let F ′ be the set of vertices of G∗ on the boundary of f . In G∗S ,
the vertices in F ′ are replaced by U-graphs F ′U . In our construction, we attach
each C- or V-gadget to an arbitrary U-graph in F ′U such that the gadget lies
inside the face of G∗S that corresponds to v in G. Fig. 2(b) shows an example in
which V-gadget X1 is attached to U-graph Uf1 . Finally, for every edge between
a clause and a variable vertex in G, we add a path, called rope, between the
corresponding C- and V-gadgets in G∗S . For the number of edges of a rope,
we choose two more edges than the number of edges of a barrier. As we will
see later, a rope acts as a communication line that “passes” a crossing at a V-
gadget to the C-gadgets at its other end. In fact, we construct a simultaneous
embedding of G and its dual G∗ by drawing our gadgets and the U-supergraph
altogether.

A simple example for G∗S is given in Fig. 2. The graph is obtained from
a planar 3-SAT instance consisting of two clauses C1, C2 and three variables
X1, X2, X3 with the corresponding planar graph G, see Fig. 2(a). The vertices
of G are depicted as circles and the edges as straight-line segments, the vertices
of the dual graph G∗ as squares and the edges as curled lines. Fig. 2(b) shows
G∗S , which is obtained from G and G∗. The shaded rectangles represent the
U-graphs, which are connected by the barriers, drawn as a bundle of lines. The
semi-ellipses are the C- and V-gadgets with the corresponding labels. The ropes
are depicted as dashed lines. For the reasoning later on, we need that boundary
edges in U-graphs are not crossed.

(a)

X1 X2 X3

C1

C2

f1 f2

f3

(b)

X1 X2 X3

C1

C2

Uf1 Uf2

Uf3

Figure 2: Example for the 1-planar graph constructed in the reduction.
(a) The plane drawing of a planar 3-SAT expression and its dual graph.
(b) The corresponding U-supergraph G∗S with the clause and variable gadgets.
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Lemma 1 In a 1-planar drawing of G∗S respecting the given rotation system, a
boundary edge of a U-graph is never crossed.

Since we need the structure of the C- and V-gadgets in order to prove Lemma 1,
we postpone the proof until all the necessary definitions are made.

First, we consider C-gadgets used for the clauses, see Fig. 3 for an example.
The gadget is attached to consecutive boundary vertices b1, . . . , b6 of a U-graph.
These vertices form the clause base. The vertices v1, v2, v3 are the variable
vertices, where each vertex corresponds to a literal in the clause. Hence, there
are always three variable vertices. A variable vertex is connected to two vertices
of the clause base by anchor edges. Additionally, a variable vertex is connected
to the corresponding V-gadget via a rope. The edge from a variable vertex to
the rope is called variable edge ({vi, ti} for i = 1, 2, 3 in Fig. 3(a)). We introduce
a path from b1 to b6, called membrane, which consists of the membrane vertices
m1, . . . ,m4 connected by membrane edges.

U

b1 b2 b3 b4 b5 b6

v1 v2

v3

m1 m2 m3 m4

t1 t2

t3

(a) U

C

(b)

Figure 3: (a) A clause gadget and (b) its abbreviation.

In the following lemma, we need that the rope crosses at least one edge of a
V-gadget. In Lemma 4, we will show that this precondition is always fulfilled.

Lemma 2 In every 1-planar drawing of G∗S respecting the given rotation sys-
tem, at least one incident edge of each vertex v1, v2, v3 of a C-gadget is crossed by
a membrane edge if the rope crosses at least one edge of the attached V-gadget.

Proof: Without loss of generality, we consider v1. The first possibility to avoid
a crossing of an adjacent edge of v1 with a membrane edge is to cross a different
edge of the rope other than {v1, t1}. A rope connects the C-gadget with a
V-gadget with a barrier in between. In a 1-planar drawing, every edge of the
rope must cross an edge of the barrier and an edge of the attached V-gadget by
assumption. The size of a rope is the size of a barrier plus two. Hence, there
is only one rope edge left to cross, namely, the variable edge {v1, t1}. Thus, to
avoid a crossing of v1’s edges with the membrane, the membrane needs to be
drawn “around” the whole rope of v1, i. e., the face enclosed by the membrane
and the clause base must include the whole rope. The membrane, consisting of
five edges, must then be routed through at least one barrier, consisting of at
least seven edges, which is impossible. �
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From the proof of Lemma 2 we obtain that there are only two possibilities
for a variable vertex v: (A) Both anchor edges of v are crossed by a membrane
edge and its variable edge is not crossed by a membrane edge. (B) The variable
edge of v is crossed by a membrane edge and none of its two anchor edges is
crossed by a membrane edge. If (B) holds, we say that a variable vertex lies
inside, as seen in Fig. 3(a), where vertices v1 and v2 lie inside. If (A) holds, a
variable vertex lies outside, e.g., vertex v3 lies outside in Fig. 3(a). As a direct
consequence of (A) and (B), in a 1-planar drawing it is not possible that all
three variable vertices of a C-gadget lie outside at the same time, as this would
require six membrane edges to be crossed. We exploit this property to encode if
a clause represented by the C-gadget is satisfied, i. e., it is satisfied if and only
if at least one variable vertex lies inside, which holds if and only if a 1-planar
drawing is possible.

The V-gadget for a variable consists of several literal gadgets (L-gadgets),
which are attached consecutively to the same U-graph. L-gadgets are similar to
C-gadgets and come in two flavors, namely, a positive and a negative version,
Fig. 4(a) depicts a positive L-gadget. The truth value of a single literal is
encoded by a crossing of a certain edge of an L-gadget. An L-gadget has a
positive literal vertex l+ and a negative literal vertex l− that are connected to
three and two, respectively, consecutive boundary vertices of a U-graph via
anchor edges. Vertex l+ is connected to a rope vertex via a clause edge, named
“Clause” in Fig. 4(a). Additionally, l+ is adjacent to the negative literal vertex
of a neighboring L-gadget of the same V-gadget (“In” in Fig. 4(a)). Similarly,
vertex l− is connected to the positive literal vertex of another neighboring L-
gadget (“Out” in Fig. 4(a)). As in C-gadgets, boundary vertices b1 and b7 in
an L-gadget are connected by a membrane, consisting of the membrane vertices
m1,m2,m3. In a negative L-gadget the clause edge is incident to the negative
literal vertex l− instead of the positive literal vertex l+. Intuitively, the clause
edge propagates the truth assignment of the literal via a rope to the clause in
which the literal occurs. If the clause edge crosses the membrane, the literal is
assigned false and the variable edge at the other end of the rope does not cross
the membrane at the clause gadget. Otherwise, the literal is assigned true. The
edges marked “In” and “Out” propagate the truth assignment of the literal to
the other L-gadgets of the same variable to ensure a consistent truth value, i. e.,
either all positive or all negative L-gadgets cross their membranes. To ensure a
consistent truth value, we additionally need the terminal L-gadget which is an
L-gadget with no connection to a rope. The terminal L-gadgets are placed at
the beginning and end of a series of L-gadgets.

Lemma 3 In every 1-planar drawing of G∗S respecting the given rotation sys-
tem, at least one incident edge of each vertex l+ and l− of an L-gadget is crossed
by a membrane edge.

Proof: Vertex l+ is adjacent to the l− vertex of the neighboring L-gadget, now

referred to as l̂−. In order to avoid a crossing between any edge adjacent to
l+ and a membrane edge, the membrane has to be drawn such that it encloses
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l̂−. However, this is not possible, since then the edges from l̂− to the boundary
vertices have to be crossed by the edges of two membranes. The argument for
l− is analogous. �

Similar to the variable vertices in C-gadgets, a literal vertex lies inside if its
“In” edge is crossed by a membrane edge, which implies that its clause edge
(if existent) is crossed by another membrane edge (l+ in Fig. 4(c)). A literal
vertex lies outside if all its anchor edges are crossed by membrane edges (l+ in
Fig. 4(a)).

(a)

U
b1 b2 b3 b4 b5 b6 b7

l+

l−

m1 m2 m3

In(I) Clause(C)

Out(O)

(b)

I C

O (c)

U
b1 b2 b3 b4 b5 b6 b7

l+

l−

m1 m2 m3

In(I) Clause(C) Out(O)

Figure 4: A 1-planar embedding of a positive literal gadget if the variable is (a)
true or (c) false, respectively. (b) Abbreviation for “true” of a positive literal
gadget.

I

O
I

O
I

O
I

O

I

O

I
O

C C
C C

p1 p2 p3 p4

t1 x x′ ¬x ¬x′ t2

(a)

(b)

X

C
C C

C

Figure 5: (a) A variable gadget consisting of two positive followed by two
negative gadgets which are enclosed by two terminal gadgets. The value of the
variable is true. (b) Its abbreviation.

Let X be a variable of a planar 3-SAT expression and let v ∈ V be the
vertex in G that corresponds to X. We construct the V-gadget of X as follows
(see Fig. 5(a) for the result). The V-gadget is attached to a U-graph U that is
adjacent to the face corresponding to v in G∗S . First, attach a terminal gadget t1
to U . Then, subsequently attach a positive or negative L-gadget depending on
the occurrences of X according to a total order obtained from the rotation
system of v, such that ropes attached to the V-gadget do not cross. Fig. 6
shows an example of how the ordering of L-gadgets in the V-gadget for variable
X is obtained from the rotation system of the vertex representing X. Suppose
the V-gadget is attached to U2 (shown by the dotted semi-ellipses in Fig. 6),
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then the ordering of the L-gadgets from left to right is a, d, c, d. If it is attached
to U4 (shown by the dashed semi-ellipses in Fig. 6), then the ordering is d, a, b, c.

(a)

U1

U2

U4

U3X

a

d

b

c

Figure 6: The rotation system of X determines the ordering of L-gadgets
a, b, c, d of a V-gadget representing a variable X.

Intuitively, the planarity of G is preserved in G∗S . Append the second termi-
nal t2. For each L- and terminal gadget, connect its “In” edge with the “Out”
edge of its immediate neighbor, where “In” of t1 is connected to “Out” of t2 by
a path, called outer membrane. The number of edges of the outer membrane is
one above the number of occurrences of X.

Finally, we consider barriers and ropes. By the size of a barrier or rope
we refer to the number of their edges. Korzhik and Mohar [18] proved that
barriers of size at least 7 result in unique 1-planar embedded U-supergraphs.
Let l be the maximum number of occurrences of a variable in the given SAT
expression. For the size of the barriers we choose max{7, l + 2}. Note that the
size of the outer membrane of a V-gadget is one above the number of times
the corresponding variable occurs in the expression. Consequently, an outer
membrane has strictly fewer edges than a barrier. Thus, an outer membrane
can never cross a barrier. For every edge of G, a rope connecting the V-gadget
with the C-gadget is introduced in G∗S . More precisely, a rope always connects
one of the literal vertices of an L-gadget with one of the variable vertices of a
C-gadget such that the planar rotation system of G is respected. The size of
a rope is the size of a barrier plus 2. Figure 7 shows an example for a rope
r = {l+, r1}, {r1, r2}, . . . , {r8, v} of size 9. A rope crosses each edge of a barrier
exactly once. Then, the rope crosses either two edges of a V-gadget (Fig. 7(b))
or one edge of a V-gadget and one edge of a C-gadget (Fig. 7(a)). Crossings of
the first and last edge of a rope (e. g., {l+, r1}, {r8, v} of r) propagate the truth
assignment of the literal at the one end to the clause at the other end. Consider
again Fig. 7(a), where the positive L-gadget x, belonging to the V-gadget of
variable X, is connected to C-gadget C. In the figure, X is assigned true as
l+ lies outside. The rope propagates the truth assignment to the clause, where
variable vertex x can then lie inside and, hence, the clause is satisfied by X.
Consider now Fig. 7(b), where the variable X is assigned false and, hence, l+
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lies inside. Consequently, edge {l+, r1} is crossed by the membrane of x and
edge {r1, r2} is crossed by the outer membrane {p, p′}. Hence, every remaining
edge of r is crossed by the barrier and, therefore, the variable vertex of C must
lie outside, representing that the clause is not satisfied by x. Now suppose that
every literal of the clause is assigned false. Thus, all three variable vertices of
C lie outside. However, then there is no 1-planar drawing of C and, hence, no
1-planar drawing of G∗S . Hence, C and thus the whole 3-SAT expression is not
satisfiable.

(a)

x . . .

. . .

l+
p

p′

v

r1 r2 r7 r8

C

(b)

. . .

. . .

x

l+
l− p

p′
v

r1 r2 r3 r8

C

Figure 7: From left to right: Fragment of a variable gadget that shows a literal
gadget and a part of its outer membrane, a barrier drawn as curled lines, and
a clause gadget. (a) The literal x is true, hence the clause represented by the
C-gadget on the right is satisfied by v. (b) The literal x is false, hence the clause
is not satisfied by v.

We are now ready to prove Lemma 1:

Proof: Denote by f a triangular face adjacent to a boundary edge of G∗S .
The lemma holds for the U-supergraph, i. e., G∗S without C- and V-gadgets,
and ropes as the U-supergraph has a unique 1-planar embedding. Let f be a
triangular face adjacent to a boundary edge. Due to the unique embedding, no
U-graph of the U-supergraph can be drawn inside f (cf. Fig. 1(a)). The same
also holds for every vertex v of a rope, a C-, or a V-gadget, as in each case v
has at least degree two. If v lies inside f , it would cause at least two crossings
of a boundary edge. Consequently, a boundary edge can only be crossed if a
whole rope, C-, or V-gadget lies inside f . In the case of C- and V-gadgets,
this is impossible even for the membrane or outer membrane of V-gadgets, as
the rotation system forces the first and last edges of the membrane to leave
one of its endpoints outside f . These two edges alone would already cause two
crossings of the boundary edge. Similarly, as a rope connects a V-gadget with
a C-gadget, it cannot be drawn inside f . �

Before we can prove the main theorem, we need two additional lemmata.

Lemma 4 Let x be an L-gadget of a V-gadget X. Then, in every 1-planar
drawing of G∗S respecting the given rotation system, the rope attached to x is
crossed by the outer membrane of X.

Proof: In order to avoid a crossing of the rope, the outer membrane of X
has to be drawn “around” the C-gadget that is connected to x, i. e., the outer



JGAA, 19(1) 67–86 (2015) 77

membrane encloses the C-gadget. However, then the outer membrane needs
to cross at least one barrier, which is impossible since the size of the outer
membrane is less than the size of a barrier. �

Lemma 5 Let X be a V-gadget. In every 1-planar drawing of G∗S respecting the
given rotation system, all positive literal vertices l+ of X’s L-gadgets lie inside
if and only if all negative literal vertices l− of X’s L-gadgets lie outside.

Proof: Let x1 and x2 be any positive or negative L-gadget as part of X and let
l+1 , l

−
1 (l+2 , l

−
2 ) be the literal vertices of x1 (x2). By Lemma 3, each of these literal

vertices lies either inside or outside. It is not possible that both a positive and
a negative literal vertex lie outside since a membrane of an L-gadget has size
4, whereas the literal vertices have a total of 5 anchor edges. Now suppose for
contradiction that both l+1 and l−2 lie outside. As l+1 lies outside, l−1 lies inside
and, consequently, the “Out” edge of l−1 is crossed by the membrane of x1. Let
l+3 be the positive literal vertex connected to l−1 via its “Out” edge. Vertex l+3
is “tugged” outside, i. e., l+3 cannot lie inside as its “In” edge (which is the same
edge as the “Out” edge of l−1 ) is already crossed. If l+3 = l+2 , then l+2 lies outside
and, hence, l−2 must lie inside, a contradiction. Otherwise, l+3 belongs either to
a terminal gadget or to another L-gadget. If l+3 belongs to a terminal gadget t,
then the negative literal vertex l−3 of t must lie inside. Via the outer membrane,
the information that l−3 lies inside is propagated to the other terminal gadget t′

by the same mechanism that governs the ropes. Hence, the negative literal
vertex of t′ lies inside and the positive one lies outside. If l+3 belongs to another
L-gadget, then also the negative literal vertex lies inside and the positive one
lies outside. By subsequently applying these arguments, we eventually arrive at
x2 and can conclude that l−2 must also lie inside, a contradiction. The reasoning
is analogous if l−1 and l+2 lie outside. �

Theorem 1 1-planarity is NP-hard for a graph with a given rotation system.

Proof: A planar 3-SAT expression α is satisfiable if and only if the graph G∗S
obtained from α is 1-planar.
“⇒”: Draw the V-gadgets according to a satisfying truth assignment of the
variables, i. e., the positive literal vertices of a variable gadget lie outside if
and only if the corresponding variable is assigned true. Then, every C-gadget
has a variable vertex that can lie inside and, thus, has a 1-planar drawing due
to (A) and (B).
“⇐”: We obtain a truth assignment of the variables from a 1-planar drawing
of G∗S as follows. A variable is assigned true if and only if the positive literal
vertices of the corresponding V-gadget lie outside. The so obtained assignment is
consistent by Lemma 5. In each C-gadget, at least one variable vertex lies inside.
This vertex is connected, via a rope, to a literal vertex of a V-gadget which
necessarily lies outside. Thus, the corresponding variable satisfies the clause at
hand. Hence, the obtained truth assignment satisfies the 3-SAT expression. �

The reduction in the proof of Theorem 1 does not need the rotation sys-
tem. The U-graphs have a unique 1-planar embedding and thus a fixed rotation
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system, and the rotation system of the C- and V -gadgets is fixed. Therefore,
a 1-planar drawing of G∗S would imply the used rotation system, and our con-
struction for the NP-hardness proof goes through without the rotation system.
Thus, we have an alternative proof to Theorem 5 in [18]. The only variable part
comes from the planar embeddings of G. Each embedding uniquely defines its
dual G∗, and conversely. The graph G∗S is constructed from G∗ and conversely
G∗S implies G∗ and fixes the embedding and the rotation system.

Note that the graph G∗S is 2-planar independent of the satisfiablity of the
given 3-SAT expression. It suffices to stretch each rope to cross one more edge.

Corollary 1 It is NP-hard to decide whether a graph G is 1-planar, even if G
is 2-planar.

In contrast, 1-planarity is solvable in linear time for embedded graphs. Given
an embedding of a graph G we first check whether an edge occurs in more than
two faces. Then, we compute the planarization G× of G and check its planarity.

4 Triconnected Graphs

We wish to push the NP-hardness of 1-planarity even further and increase
connectivity. For this, we use the reduction from Section 3 and expand the
constructed graph so that it is 3-connected. Note that the graphs in the NP-
hardness proofs in [18] and [2] are at most 2-connected. The graph G∗S consists
of a U-subgraph G∗U and of C- and V-gadgets and ropes. G∗U is an expansion
of the dual graph G∗ whose vertices are U -graphs and adjacent vertices are
connected by barriers consisting of l ≥ 7 edges, which end at different boundary
vertices. As the dual G∗ is connected and each U-graph is 5-connected [18], G∗U
is 5-connected. The breaking points of G∗S are the gadgets and ropes, which
consist of paths (with a branching) between U-graphs. Hence, G∗S is (only)
2-connected and not 3-connected, since membranes in clause gadgets have split
pairs.

(a)

v w

(b)

Uv Uw

r1

r2

fl f ′l

Figure 8: (a) A 2-connected graph is transformed into (b) a 3-connected graph
by replacing the vertices by U-graphs and the edge by a ladder. The wave line
is a path from v to w.

For 3-connectivity, we expand the C-and V-gadgets and the ropes of G∗S and
obtain the graph G3. Let V ∗ and E∗ be the set of vertices and edges of G∗S ,
respectively, that are not part of a U-graph. In a nutshell, every vertex of V ∗
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is replaced by a U-graph with at least six boundary vertices and every edge of
E∗ is replaced by a gadget called ladder. Let e = {v, w} be an edge in E∗, see
Fig. 8(a). In G∗S , there is a path (wave lines) between v and w which does not
contain e. Replace v and w by U-graphs Uv and Uw and replace e by a ladder
consisting of two rung vertices r1, r2 and five ladder edges, see Fig. 8(b).
The two faces enclosed by the ladder edges and the boundary edges of Uv and Uw

denoted by fl and f ′l are called ladder faces. Note that the ladder is connected to
two distinct boundary vertices of Uv and Uw, respectively. Further, we need to
make sure that G3 respects the rotation system of G∗S . Let v ∈ V ∗ be a vertex in
G∗S . By construction, the minimum degree of v is two and the maximum degree
is five. We replace v by a U-graph Uv with six boundary vertices. Every edge
incident to v is replaced by a ladder that is connected to Uv such that the cyclic
order of the ladders around Uv in G3 respects the rotation system of v in G∗S as
shown in Fig. 9. In G∗S , every C- and V-gadget, and every barrier is attached
to a U-graph U . As the edges that connect the gadget with U are replaced by
ladders, we add one additional boundary vertex to U for every ladder to which
it is connected.

(a)

v

e1
e2

e3e4

e5

(b)

Uv

L1
L2

L3L4

L5

Figure 9: A vertex of degree 5 and its incident edges are replaced by a U-graph
and 5 ladders. The wave lines are paths chosen arbitrarily to represent that the
graph in (a) is 2-connected but not 3-connected, e. g., both endpoints of e5 form
a split pair. The graph in (b) is 3-connected.

As an example, Fig. 10 shows an L-gadget after the transformation. We
obtain G3 by replacing all gadgets analogously, and so remove all break points.
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(a)

U
b1 b2 b3 b4 b5 b6 b7

l+

l−

m1 m2 m3

In(I) Clause(C)

Out(O)

(b)

U
b1 b∗1 b2 b∗2 b3 b∗3 b4 b∗4 b5 b∗5 b6 b∗6 b7 b∗7

Ul−

Ul+

Um1
Um2

Um3

LI LC

LO

Figure 10: A 1-planar embedding of (a) a positive literal gadget if the variable
is true and (b) the positive literal gadget transformed into a 3-connected graph.

Corollary 2 The graph G3 obtained from G∗S is 3-connected.

What is left to show is that G∗S is 1-planar if and only if G3 is 1-planar. If
G∗S has a 1-planar drawing, we can replace G∗S by G3 where two crossing edges
that do not belong to a U-graph are replaced by two “crossing ladders” as shown
in Fig. 12(b). By this, we obtain:

Corollary 3 The rotation system of G3 is 1-planar if the rotation system of
G∗S is 1-planar.

For the converse, we need to examine other properties of G3.

Lemma 6 In a 1-planar drawing of G3 respecting the given rotation system,
the ladder edges belonging to a ladder never cross each other.

Proof: As the rotation system is fixed, Fig. 11(b) shows the only way a ladder
can be drawn such that ladder edges cross (apart from the symmetric case
where Uw is “twisted”). Uv is enclosed by face f in Fig. 11(b). As G3 is 3-
connected there is a path p from Uv to Uw that is edge disjoint to the ladder.
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By construction, p is neither incident to b3 nor to b4. Thus, p starts within f
and ends outside f , which is not possible in a 1-planar drawing as the ladder
edges are already crossed. The symmetric case with Uw is analogous. �

(a)

Uv Uw

b1 b2 b3

b4
b5b6

b1b2b3

b4
b5 b6

(b)

Uv Uw

b5 b6b4

b3
b2 b1

f

b1b2b3

b4
b5 b6

Figure 11: A 3-connected graph consisting of two U-graphs and a ladder. Note
that the third path from Uv to Uw is omitted to avoid cluttering the image. The
graphs in (a) and (b) have the same rotation system.

Lemma 6 ensures that fl and f ′l (see Fig. 8(b)) are well defined, i. e., they
always exist and are enclosed by ladder edges.

Lemma 7 Assume that G3 has a 1-planar drawing respecting the given rotation
system. Let fl and f

′
l be the two ladder faces of ladder L. If a vertex v lies inside

fl or f
′
l , v can only be a rung vertex of another ladder.

Proof: Without loss of generality, let v be the vertex that lies inside ladder
face fl and let Uv be the U-graph adjacent to fl. Suppose for contradiction that
v is not a rung vertex. As in the construction of G3, every vertex was replaced
by a U-graph, v can only be the boundary vertex of a U-graph U . As no edge
between two boundary vertices can be crossed (Lemma 1), U must completely
lie inside fl. Remember that U corresponds to a vertex w in G∗S , in which every
vertex and in particular w has at least degree two. Every edge incident to w has
been replaced by a ladder and thus there are at least four edges connected to
U in G3. Now assume that only U and no other U-graph lies inside fl. Face fl
is bounded by three ladder edges and boundary edges of U , the latter of which
are not crossed by Lemma 1. Hence, the four edges connected to U must cross
the three ladder edges of L, a contradiction. If other U-graphs besides U are
within fl a similar reasoning also leads to a contradiction. �

Lemma 8 Let L1 (L2) be a ladder with ladder faces fl1, f
′
l1 (fl2, f

′
l2) and rung

vertices r1, r
′
1 (r2, r

′
2). If r1 lies inside fl2 then r′1 must lie inside f ′l2, and

r2 and r′2 lie inside fl1 and f ′l1, respectively. The symmetric case where r1 lies
inside f ′l2 holds analogously.

Proof: Let Ul2 be the U-graph adjacent to fl2. For contradiction, suppose that
r2 lies outside f ′l2. r1 has degree three and all edges incident to r1 end outside
fl2 by Lemma 7. Face fl2 is bounded by three ladder edges and boundary edges
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of Ul2, the latter of which must not be crossed by Lemma 1. Thus, in a 1-planar
drawing one of the ladder edges e incident to r1 must cross edge {r2, r′2}. By
assumption, e 6= {r1, r2}. Let Ul1 be the U-graph connected to e. Consequently,
Ul1 lies within f ′l2, a contradiction to Lemma 6. Hence, edge {r1, r2} must cross
{r′2, r2}, and thus r2 lies within f ′l2. Analogously, r2 and r′2 lie within fl1 and
f ′l1, respectively. �

From Lemma 6, 7 and 8 we obtain:

Corollary 4 Let L be a ladder. In a 1-planar drawing of G3 respecting the
given rotation system, either no ladder edge of L is crossed or all of its ladder
edges are crossed by ladder edges from another single ladder.

The two possible 1-planar drawings of a ladder are depicted in Figures 8(b) and
12(b). We are now ready to conclude our proof.

(a)

v

w

x

y
(b)

Uv

Uw

Ux

Uy

Figure 12: A crossing in (a) a 2-connected graph is replaced by (b) a 3-connected
graph.

Lemma 9 The rotation system of G∗S is 1-planar if and only if the rotation
system of G3 is 1-planar.

Proof:
“⇒”: Follows from Corollary 3.
“⇐”: In the 1-planar drawing of G3, there are two types of crossing: the ones
of the K4s in the U-graphs and, by Cor. 4, the crossings between two ladders.
By inverting the construction of G3, we obtain a 1-planar drawing of G∗S where
two “crossing ladders” are replaced by the two corresponding crossing edges. �

Hence, 3-connectivity does not change the hardness of 1-planarity.

Theorem 2 1-planarity is NP-hard even if the graph is 3-connected and is
given with a rotation system.

As before, our construction does not depend on the rotation system and the
graphs are 2-planar.

Corollary 5 It is NP-hard to decide whether a 3-connected graph G is 1-
planar, even if G is 2-planar.



JGAA, 19(1) 67–86 (2015) 83

5 Crossing Number

In this section, we use our membrane technique for an improvement on the
crossing number problem to 1-planar graphs with a given rotation system. The
crossing number problem asks whether there is a drawing of a graph in the
plane with at most k edge crossings. The NP-hardness was first proved by
Garey and Johnson [13] using graphs with parallel edges and vertices of high
degree. Hliněný [15] improved the NP-hardness result to simple cubic graphs,
and Pelsmajer et al. [23] showed that it remains NP-hard for a rotation system
[23].

Theorem 3 Crossing number is NP-hard for 1-planar graphs with a given ro-
tation system.

Proof: We reduce from the NP-complete planar vertex cover problem [12]. Its
input is a planar graph G = (V,E) and a non-negative integer k and it asks
whether there is a subset V ′ ⊆ V with |V ′| ≤ k such that every edge of G is
incident to at least one vertex in V ′. V ′ is then called a vertex cover of G.

Fix any planar embedding of G. As in Section 3, we start by transforming
G into a U -supergraph G∗S . Again, each pair of U-graphs corresponding to
adjacent vertices of G∗ is connected by l = 7 barrier edges. In the following,
we describe the single type of a gadget, which is attached to the U-graphs of
G∗S for every vertex of G in the same way as C- and V-gadgets were attached
in the reduction of Sect. 3. Consider v ∈ V of degree d. See Fig. 13 for an
example of the gadget in the case of d = 3. The gadget for v is attached to
boundary vertices b1, . . . , bd+3 of a U-graph and contains the membrane vertices
m1, . . . ,md and the connector vertex cv. There is a path, called membrane,
from b1 via m1, . . . ,md to bd+2. We introduce d + 1 anchor edges connecting
cv to the vertices b2, . . . , bd+2. For every edge {u, v} ∈ E we add a path from
cu to cv consisting of exactly l + 1 edges, called rope. We can choose the
rotation system at cv according to the embedding of G such that the ropes do
not cross. In general, a gadget has two possible 1-planar embeddings, where
cv is placed inside, i. e., the membrane is crossed by the d ropes, or outside,
i. e., the membrane is crossed by the d + 1 anchor edges. Note that the latter
case yields one more crossing. Given a 1-planar embedding of G∗S , we define the
set V ′ ⊆ V containing exactly those vertices v, whose corresponding connector
vertices cv are placed outside. For every edge {u, v} ∈ E, the rope connecting
cu with cv has to cross l barrier edges. As it consists of only l + 1 edges, it has
only one edge left for crossing a membrane. Thus, at least one of the vertices cu
or cv must be placed outside and V ′ is a vertex cover of G. As each U-graph has
a unique 1-planar embedding, let C be the constant number of crossings they
contain. The total number of crossings of all membranes is

∑
v∈V deg(v) = 2m

plus the number of connector vertices placed outside. Additionally, each of the
l·m barrier edges are crossed by a rope. Now let k′ = C + (2 + l)m+ k.

If there is a 1-planar embedding of G∗S with at most k′ crossings, at most k
connector vertices can be placed outside, i. e., V ′ is a vertex cover with |V ′| ≤ k.
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(a)

b1 b2 b3 b4 b5 b6

cv

m1 m2 m3

b1 b2 b3 b4 b5 b6

cv

m1 m2 m3

(b)

Figure 13: The gadget for proving that crossing number is NP-hard for 1-
planar graphs.

Conversely suppose there is a vertex cover V ′ with |V ′| ≤ k. Specify the 1-planar
embedding by placing exactly those connector vertices cv outside with v ∈ V ′.
Then the resulting embedding of G∗S has exactly C + (2 + l)m+ k crossings. �

By using the construction from this chapter and adapting the number of
crossings in the proof of Theorem 3, we can extend Theorem 3.

Theorem 4 Crossing number is NP-hard for 1-planar graphs with a given ro-
tation system, even if the graphs are 3-connected.

6 Conclusion

We have improved upon the NP-hardness of 1-planarity and added a rotation
system, 3-connectivity and 2-planarity. The known tractable case treats max-
imal 1-planar graphs with a rotation system [10]. Maximal 1-planar graphs
are 2-connected, and may contain vertices of degree two [7]. Are there other
tractable instances, e.g., with a given rotation system and k-connectivity for
k = 4, 5, 6? Is maximal 1-planarity testing tractable if the input is a graph? For
our proofs, we introduced a “membrane” and “ladder” technique which may be
useful in NP-hardness proofs, e. g., for k-planarity.

Acknowledgements

We would like to thank the anonymous referees for their careful reading and
useful comments.



JGAA, 19(1) 67–86 (2015) 85

References

[1] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov. Straight-line drawings
of 3-connected 1-planar graphs. In S. Wismath and A. Wolff, editors, GD
2013, volume 8242 of LNCS, pages 83–94. Springer, 2013. doi:10.1007/

978-3-319-03841-4_8.

[2] M. J. Bannister, S. Cabello, and D. Eppstein. Parameterized complexity
of 1-planarity. In F. Dehne, R. Solis-Oba, and J.-R. Sack, editors, WADS
2013, volume 8037 of LNCS, pages 97–108. Springer, 2013. doi:10.1007/
978-3-642-40104-6_9.

[3] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/
bf01188716.

[4] R. Bodendiek, H. Schumacher, and K. Wagner. Über 1-optimale Graphen.
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