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Abstract

Consider the continuum of points on the edges of a network, i.e., a
connected, undirected graph with positive edge weights. We measure
the distance between these points in terms of the weighted shortest path
distance, called the network distance. Within this metric space, we study
farthest points and farthest distances. We introduce optimal data struc-
tures supporting queries for the farthest distance and the farthest points
on trees, cycles, uni-cyclic networks, and cactus networks. Using only
linear space and construction time, we support farthest-point queries in
Θ(k) time for trees, in Θ(logn) time for cycles, and in Θ(k + logn) time
for uni-cyclic networks and cactus networks, where n is the size of the
network and k is the number of farthest-points.
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1 Introduction

Consider the continuum of points on the edges of a network, i.e., a graph with
positive edge weights. We measure the distance between these points in terms
of the weighted shortest path distance, called the network distance. Within this
metric space, we study farthest points and farthest distances.

Decisions where to place facilities are often complex and involve optimization
of multiple criteria. Our data structures enable decision makers to quickly
compare farthest distances from potential locations, which may constitute an
essential factor, e.g., impacting emergency response times for a possible location
of a new hospital. Furthermore, our results provide a heat-map of farthest
distances illuminating the aspect of centrality of the network at hand and,
thereby, serve as a visual aid for decision makers.

We introduce optimal data structures supporting queries for the farthest
distance and the farthest points on trees, cycles, uni-cyclic networks, and cactus
networks. We begin with data structures for simple networks and then use them
as building blocks for more complex networks. With this modular approach we
can easily extend our results as new building blocks become available.

The remainder of this section is organized as follows. In Section 1.1, we set
the stage for this work by making our notions of networks, points along networks,
and network distance precise. In Section 1.2, we summarize related work. In
Section 1.3, we outline our main contributions and the structure of this work.

1.1 Preliminaries and Problem Definition

We call a simple, finite, undirected graph with positive edge weights a network.
Unless stated otherwise, we consider only connected networks. Let G = (V,E)
be a network with n vertices and m edges, where V is the set of vertices and
E is the set of edges. We write uv to denote an edge with endpoints u, v ∈ V
and we write wuv to denote its weight. A point p on edge uv subdivides uv into
two sub-edges up and pv with wup = λwuv and wpv = (1 − λ)wuv, where λ is
the real number in [0, 1] for which p = λu+ (1− λ)v. We write p ∈ uv when p is
on edge uv and p ∈ G when p is on some edge of G.

As illustrated in Figure 1, we measure distance between points p, q ∈ G as the
weighted length of a shortest path from p to q in G, denoted by dG(p, q). We say
that p and q have network distance dG(p, q). The points on G and the network
distance form a metric space. Within this metric space, we study farthest points
and farthest distances. We call the largest network distance from some point p on
G the eccentricity of p and denote it by eccG(p), i.e., eccG(p) = maxq∈G dG(p, q).
A point p̄ on G is farthest from p if and only if dG(p, p̄) = eccG(p). We omit the
subscript G whenever the network is understood from the context.

We extend the definition of shortest path trees from graphs to networks.
When we say we cut an edge ab at a point p ∈ ab we mean that we introduce two
new vertices x and y and replace the edge ab with two edges ax and yb of weight
wax = wap and wyb = wpb. If p coincides with an endpoint of ab, then one of
ax and yb has weight zero and is omitted. Let s be some point on a network
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Figure 1: In the network shown in (a), the network distance from p = 1
4u+ 3

4v
to q = 1

2s+ 1
2 t is d(p, q) = 10. This distance is achieved along the shortest path

(blue) from p to q depicted in (b). The eccentricity of p is ecc(p) = 12 and the
farthest point from p lies along the edge xs, as indicated by the shortest path
tree from p (orange) and its extension (orange ∪ green) illustrated in (c).

G, and let Ts be the shortest path tree of s in G. We split each non-Ts edge ab
at the farthest point from s on ab and add the resulting edges ax and yb to Ts.
The resulting tree is called the extended shortest path tree [26] of s in G; this
tree encapsulates both the eccentricity of s in G and the farthest points from s
in G, as illustrated in Figure 1c.

We aim to construct data structures for a fixed network G supporting the
following queries. Given a point p on G, what is the eccentricity of p? What is
the set of farthest points from p in G? We refer to the former as an eccentricity
query and to the latter as a farthest-point query. Both queries consist of the
query point p represented by the edge uv containing p and the value λ ∈ [0, 1]
such that p = λu+ (1− λ)v. We report farthest points in the same format, i.e.,
for each farthest point p̄ from p, we state an edge xy containing p̄ and a value
µ ∈ [0, 1] specifying the exact position of p̄ along xy.

We study trees, cycles, uni-cyclic networks, and cactus networks. A uni-
cyclic network is a network with exactly one simple cycle. A cactus network
is a network in which no two simple cycles share an edge or, in other words, a
network where each edge is contained in at most one simple cycle.

1.2 Related Work

Our data structures implicitly represent (generalized) farthest-point network
Voronoi diagrams, where the sites are the entire continuum of points along
a network [3]. Usually, Voronoi diagrams are defined with respect to a finite
set of sites representing points of interest in some metric space [27, 1]. The
existing research on Voronoi diagrams on networks covers a wide range of queries
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including queries for the closest [12, 28], the farthest [26, 7], and the k-th nearest
neighbors [21, 8, 31] among a finite set of sites. We refer the reader to Okabe
et al. [27], Taniar and Rahayu [31], Okabe and Suzuki [25], and Okabe and
Sugihara [24] for guides through the literature on network Voronoi diagrams.

Network Voronoi diagrams relate to center problems from location analysis [12,
25]. Let G = (V,E) be a network. A center [11] of G is a vertex v that
minimizes the network distance to any other vertex, i.e., maxu∈V d(u, v) =
minx∈V maxu∈V d(u, x). An absolute center a generalizes a center in that it
may be placed anywhere along edges of the network, i.e., maxu∈V d(u, a) =
minp∈G maxu∈V d(u, p). A continuous absolute center is a point c with minimal
eccentricity, i.e., maxp∈G d(p, c) = minq∈G maxp∈G d(p, q) = minq∈G ecc(q).

Our results draw three ingredients from the literature on center problems:
First, the absolute center [14] plays a crucial role when querying for farthest
points in a tree network, as we shall see in Section 2.1. Second, the decomposition
of cactus networks into blocks, branches, and hinges [17, 23, 5, 2] helps us exploit
their tree structure [16, 19, 10] in Section 3. Third, viewing the network from
different perspectives [13, 20, 23, 2] allows us to process branches and blocks
independently, as explained in Sections 2.3 and 3.

Conversely, our constructions solve some center problems en passant : We
obtain the absolute center of a uni-cyclic network [13] as a by-product when
building our data structure for queries in uni-cyclic networks. While it was
known how to locate a single continuous absolute center in a cactus network in
linear time [2], we produce the entire set of these centers in O(n) time improving
the O(m2 log n) bound for general networks with n vertices and m edges [15].

A comprehensive summary of the literature about center problems is beyond
the scope of this work. We refer readers interested in this sub-field of location
analysis to a wealth of surveys [29, 33, 34, 18, 22], as well as to treatments of
more recent results in the books by Kincaid [19], Tansel [32], and Shi [30].

1.3 Structure and Results

We introduce data structures supporting eccentricity queries and farthest-points
queries for trees, cycles, uni-cyclic networks, and cactus networks. Table 1
summarizes the characteristics of these data structures and compares them to
our previous result for general networks [3]. The data structures presented in
this work have optimal size and construction times, as well as optimal query
times. The lower bounds of Ω(log n) stem from reducing predecessor search to
locating the sub-edge containing a query point along a subdivided edge.

The remainder of this work is organized as follows. In Section 2, we introduce
data structures for trees, cycles, and uni-cyclic networks. In Section 3, we
construct data structures supporting eccentricity queries and farthest-point
queries on cactus networks. Our approach is to reduce a cactus network to smaller
networks having a sufficiently simple structure such that the data structures
and query algorithms of Section 2 can be applied. In Section 4, we discuss
directions for future research on closing the gap between general networks and
cactus networks in Table 1.
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Network Eccentricity Farthest-Point Size Construction

Tree Θ(1) Θ(k) Θ(n) Θ(n)
Cycle Θ(1) Θ(log n) Θ(n) Θ(n)

Uni-Cyclic Θ(log n) Θ(k + log n) Θ(n) Θ(n)
Cactus Θ(log n) Θ(k + log n) Θ(n) Θ(n)

General Θ(log n) Θ(k + log n) O(m2) O(m2 log n)

Table 1: The traits of the data structures for queries in different types of networks,
where n is the number of vertices, m is the number of edges, and k is the number
of farthest-points. The data structures for trees, cycles, uni-cyclic networks,
and cactus networks are the matter of this work, whereas the data structure for
general networks was introduced in previous work [3]

2 Trees, Cycles, and Uni-Cyclic Networks

In this section, we introduce data structures for farthest-point queries in trees
and cycles. We then combine these two structures to support queries in uni-cyclic
networks, i.e., networks with exactly one simple cycle. These data structures
have linear size and construction times while providing optimal query times, and
they serve as building blocks for our data structure for cactus networks.

2.1 Trees

The layout of farthest points on a tree hinges on the position of the absolute
center. This point subdivides a tree into sub-trees where all points in a given
sub-tree have their farthest points in other sub-trees. Conversely, each sub-tree
has a set of leaves that are farthest from the absolute center and these leaves
will be farthest from points in other sub-trees.

On tree networks, every farthest point is a leaf and the point c whose farthest
leaves are closest is an absolute center [11, 20]. In other words, an absolute center
on a tree T is a point with minimal eccentricity, i.e., ecc(c) = ming∈T ecc(g).
We say that two leaves l and l′ of T are most distant when they realize the
maximum distance between two points on T , i.e., d(l, l′) = maxa,b∈T d(a, b).

Theorem 1 (Handler [14]) Every tree has exactly one absolute center midway
along any path connecting two most distant leaves and we can locate the absolute
center of a tree with n vertices in O(n) time.

Handler [14] determines the absolute center of a tree with two rounds of
breadth-first-search: The first breadth-first-search starts from an arbitrary leaf
l. With this search, we determine a farthest leaf l̄ from l. We then start the
second breath-first-search from l̄ to determine a farthest leaf l̂ from l̄. Handler
[14] shows that l̄ and l̂ are most distant leaves and that the absolute center is

located midway on the path from l̄ to l̂.
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Figure 2: A tree T where all edges have unit weight unless indicated otherwise.
The absolute center c splits T into two sub-trees T1 (orange) and T2 (blue). The
farthest distance from c is ecc(c) = 11.5 and c has three farthest leaves: c̄1 and
c̄2 in T1; and c̄3 in T2. According to Lemma 1, c̄3 is farthest from every point
on sub-tree T1, whereas c̄1 and c̄2 are farthest from every point on sub-tree T2.

c v1

v2

v3 v4
c̄1

c̄2

c̄5

c̄6

c̄7

c̄3

c̄4

Figure 3: A tree T where all edges have unit weight. The absolute center c is
located at a vertex and splits T into four sub-trees T1 (blue), T2 (orange), T3
(green), and T4 (red). The farthest distance from c is ecc(c) = 6 and c has seven
farthest leaves: c̄1, c̄2, and c̄3 in T1; c̄4 in T2; c̄5, c̄6, and c̄7 in T3; and none in T4.
Let L1 = {c̄1, c̄2, c̄3}, L2 = {c̄4}, L3 = {c̄5, c̄6, c̄7}, and L4 = ∅. According to
Lemma 1, the leaves in L2∪L3∪L4 are farthest from all points on T1, the leaves
in L1 ∪L3 ∪L4 are farthest from all points on T2, and the leaves in L1 ∪L2 ∪L4

are farthest points from all points on T3. All points on the red sub-tree T4 share
their farthest points with the absolute center c, since L4 = ∅.
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We split a tree T at its absolute center c into sub-trees as follows. When c
lies on an edge uv with u 6= c 6= v, we split T into two sub-trees: the sub-tree
T1 containing the sub-edge uc, and the sub-tree T2 containing the sub-edge cv.
When c lies on a vertex with neighbors v1, v2, . . . , vr, we split T into r sub-trees
T1, T2, . . . , Tr, where sub-tree Ti contains the sub-edge cvi. Figures 2 and 3
demonstrate splitting trees at their absolute center and illustrate the following
lemma that relates absolute centers with farthest points.

Lemma 1 Let T be a tree with absolute center c, let Ti be one of the sub-trees
obtained by splitting T at c, and let p be a point on Ti with p 6= c. The farthest
distance from p in T is ecc(p) = d(p, c) + ecc(c) and the farthest points from p
are precisely the farthest leaves from c outside of Ti.

Proof: We show that every path from p to a farthest leaf p̄ passes through c.
Let l and l̄ be two most distant leaves of T . According to Theorem 1, c is

located midway along the path from l to l̄ with ecc(c) = d(c, l) = d(c, l̄). When
splitting T at c, the leaves l and l̄ end up in different sub-trees. Assume, without
loss of generality, that l and p lie in different sub-trees, which implies that c lies
on a path from p to l, i.e., d(p, l) = d(p, c) + d(c, l).

c

l

l′

p

p̄

q

Figure 4: The impossible layout of the paths in a tree T where a point p on T
has a farthest point p̄ such that the shortest path from p to p̄ avoids the absolute
center c of T . According to Theorem 1, the absolute center c is located midway
on a path between two most distant leaves l and l̄. The path from p to one of
these leaves—l in this case—passes through c.

Assume, for the sake of a contradiction, that p has a farthest leaf p̄ and the
path in T from p to p̄ avoids c, i.e., p̄ is in the same sub-tree as p. Let q be the
meeting point of the path from c to p̄ with the path from p to p̄. Figure 4 shows
this (impossible) constellation in which we have

d(p, q) + d(q, p̄) = d(p, p̄) = ecc(p) ≥ d(p, l) = d(p, q) + d(q, l) ,

which implies d(q, p̄) ≥ d(q, l), i.e., l is no farther away from q than q̄.
Since q lies on the path from p to p̄ and this path avoids c, we have q 6= c

and, thus, d(c, q) > 0. We arrive at a contradiction via

d(c, p̄) = d(c, q) + d(q, p̄) > d(q, p̄) ≥ d(q, l) = d(q, c) + d(c, l) > d(c, l) ,

which implies that p̄ is farther away from c than the farthest leaf l.
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Therefore, every path from p to any farthest leaf must contain the absolute
center c of T . The farthest distance we can travel along a path from p through c
is d(p, c) +d(c, l) = d(p, c) + ecc(c). Conversely, every farthest leaf from c outside
of Ti achieves this distance and, thus, is farthest from p. �

We perform eccentricity queries on tree networks as follows. Let T be a
tree with absolute center c. Consider an eccentricity query from a point p
on edge uv where u is closer to c than v, i.e., d(c, u) < d(c, v). The shortest
path from p to c leads through u, i.e., d(p, c) = wpu + d(u, c), and we have
ecc(p) = d(p, c) + ecc(c) = wpu + d(u, c) + ecc(c). Thus, we can determine the
eccentricity of p in constant time, provided that we know the eccentricity of c
and the network distance from c to every vertex of T .

We perform farthest-point queries on T as follows. Let T1, T2, . . . , Tr be the
sub-trees obtained by splitting T at c. For i = 1, 2, . . . , r, let Li denote the set
of farthest leaves from c in sub-tree Ti, i.e., Li := {l ∈ Ti | ecc(c) = d(c, l)}. For
a farthest-point query from the absolute center c, we report all leaves in Li for
all i = 1, 2, . . . , r. For a farthest-point query from a point p on sub-tree Ti with
p 6= c, we report all leaves in each Lj with j 6= i as farthest points of p. For a
query point with k farthest points, this takes O(k) time, provided that we know
the sets of farthest leaves L1, L2, . . . , Lr and provided that we can identify the
sub-tree among T1, T2, . . . , Tr containing the query point in constant time.

The description of eccentricity queries and farthest-point queries on trees
suggests which auxiliary data should be pre-computed. For a given tree T with
n vertices, we first locate the absolute center c of T in O(n) time using Handler’s
Algorithm [14]. Using a breadth-first-search from c, we perform three tasks:
we compute the distances from c to every vertex of T , we label each edge with
an index indicating its sub-tree, and we determine the farthest leaves in each
sub-tree, which yields the sets L1, L2, . . . , Lr. Altogether, we spend O(n) time
to obtain our data structure, which is summarized in the following theorem.

Theorem 2 (Tree Data Structure) Let T be a tree network with n vertices.
There is a data structure with O(n) construction time supporting eccentricity
queries on T in constant time and farthest-point queries on T in O(k) time,
where k is the number of farthest-points.

By storing the lengths of the lists L1, L2, . . . , Lr alongside with their sum
σ = Σr

i=1|Li|, the data structure from Theorem 2 also allows us to count the
number of farthest points from any query point in a tree network in constant
time: the number of farthest points from the absolute center c is σ and the
number of farthest points from a query point p 6= c in sub-tree Ti is σ − |Li|.

2.2 Cycles

Let C be a cycle network and let wC be the sum of all edge weights of C. Each
point p on C has exactly one farthest point p̄ located on the opposite side of
C with ecc(p) = d(p, p̄) = wC/2. We call p̄ the antipodal of p in C. Supporting
eccentricity queries on C amounts to calculating and storing the value wC/2.
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To support farthest-point queries, we subdivide C at the antipodal of each
vertex and store a pointer from each vertex to its antipodal and vice versa. To
compute this subdivision, we first locate the antipodal v̄ for some initial vertex
v by walking a distance of wC/2 from v along C. As illustrated in Figure 5, we
then sweep a point p from the position of v to the position of v̄ along C while
maintaining the antipodal p̄. During this sweep we subdivide C at p whenever p̄
hits a vertex and at p̄ whenever p hits a vertex. The entire sweep takes linear
time, thus, the resulting data structure occupies linear space.

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

p

p̄

v̄5

v̄6

(a) Sweeping along the cycle.

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

v̄5

v̄6

v̄7

v̄4

(b) The subdivision.

Figure 5: A sweep along cycle C starting from v1 and the resulting subdivision.
For instance, any point on sub-edge v5v̄2 has its antipodal on sub-edge v̄5v2.

Using the subdivided network, we answer farthest-point queries as follows.
For a query point p on edge uv of C, we first locate the sub-edge ab containing p
using binary search. This takes O(log n) time for a cycle with n vertices, since we
subdivide uv at most n times. Let ā and b̄ be farthest from a and b, respectively.
The farthest point p̄ from p is located on sub-edge āb̄ at distance wap from ā.

Lemma 2 (Cycle Data Structure) Let C be a cycle network with n vertices.
There is a data structure with construction time O(n) supporting eccentricity
queries on C in constant time and farthest-point queries on C in O(log n) time.

One might wonder if there is a way to improve the time for farthest-point
queries in Lemma 2. The following lemma shows that it is impossible, unless we
make additional assumptions about the edge weights or our model of computation.

Lemma 3 Answering farthest-point queries on a cycle with n vertices requires
Ω(log n) comparisons for any data structure supporting such queries.

Proof: We show the claim via a reduction from the static predecessor search
problem. Let x1, x2, . . . , xn be real values with 0 < x1 < x2 < · · · < xn < 1.
Determining the predecessor of any query value ξ ∈ (0, 1) among x1, x2, . . . , xn
requires Ω(log n) comparisons for any data structure supporting such queries.
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We construct a cycle from our instance of predecessor search, as illustrated in
Figure 6. We begin with two vertices u and v connected by an edge of weight one.
We subdivide this edge at the points pi with distance xi from u for i = 1, 2, . . . , n.
Finally, we add another edge e from u to v of weight one to complete the cycle.

u v
pn−1 pnp1 p2 pi pi+1

q̄ξ

qξ
ξ1− ξ

Figure 6: Reducing a predecessor search to a farthest-point query on a cycle.

To answer a predecessor query for ξ, we perform a farthest-point query from
the point qξ with distance ξ from v on the edge e. The antipodal q̄ξ of qξ has
distance ξ from u. Thus, the endpoint of the edge pipi+1 containing q̄ξ that is
closer to u corresponds to the predecessor of ξ among x1, x2, . . . , xn.

There can be no data structure supporting farthest-point queries on C in
o(log n) time, since it would support predecessor queries in o(log n) time. �

The bound from Lemma 3 extends to uni-cyclic and cactus networks and,
thereby, justifies the claim that our data structures achieve optimal query times.

2.3 Uni-Cyclic Networks

A network with exactly one simple cycle is called uni-cyclic [13]. As illustrated in
Figure 7, every uni-cyclic network U consists of a cycle C with trees T1, T2, . . . , Tl
attached to C at vertices v1, v2, . . . , vl, respectively. We refer to each tree Ti as
a branch of U and to the vertex vi as the hinge of branch Ti.

8

11

8
9

T4

T3

T1

T4

T3

T1

T2

v5

v3

8

v1

v4

v2

8

Figure 7: A uni-cyclic network with four branches. Edges have weight one
whenever no weight is indicated.
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Our data structure for uni-cyclic networks consists of two adjoint data
structures: one for queries from the branches and one for queries from the cycle.
These data structures are based on the following contractions. For each branch
T with hinge v in a uni-cyclic network U , we represent the longest paths in U
starting at hinge v and leading out of T by an edge vv′ (to a dummy vertex
v′) of weight wvv′ = eccU\T (v). We call the tree consisting of T and the edge
vv′ the perspective of T from U denoted by perU (T ). Similarily, we define the
perspective of U from the cycle C denoted by perU (C) as the network consisting
of C with an additional edge vt to a dummy vertex t for each branch T with
hinge v. The edge vt represents the paths starting from hinge v leading into a
branch T and, thus, has weight wvt = eccT (v). Figure 8 summarizes the different
perspectives for the network from Figure 7.

v′4

25

v′1
28 v′2

25

v′3

24
v3

v1

v4

v2

8

(a) The perspective from each branch.

8

11

8
9

t4
t3

t1

t2

6
12

38v5

v3

8

v1

v4

v2

(b) The perspective from the cycle.

Figure 8: Viewing the network in Figure 7 from the branches (a) and the cycle (b).

The data structure for queries from the branches T1, T2, . . . , Tl consists of the
tree data structures for per(T1), per(T2), . . . , per(Tl) from Section 2.1. Consider
a point p on branch Ti. An eccentricity query from p in per(Ti) yields the
eccentricity of p in U . A farthest-point query from p in per(Ti) reports the
farthest points from p that are located in Ti and this query reports the dummy
vertex v′i whenever p has farthest points outside of Ti. As we shall explain later,
we obtain the farthest points from p outside of Ti using a query from the hinge
of Ti in our data structure for the cycle perspective per(C).

The data structure for queries from the cycle C consists of two components:
the first component reports the farthest points from C on C itself, using the
data structure for cycles from Section 2.2 on C ignoring the remainder of U .
The second component reports which branches among T1, T2, . . . , Tl, if any,
contain farthest points by supporting queries for the farthest among the branch-
representing dummy vertices t1, t2, . . . , tl from any query point on C in the cycle
perspective per(C). We call this type of query a farthest-branch query.
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2.3.1 Farthest-Branch Queries

We consider the perspective perU (C) for the cycle C of a uni-cyclic network.
The vertices t1, t2, . . . , tl represent the compressed branches of U in perU (C)
and are connected to the hinges v1, v2, . . . , vl, respectively. Furthermore, let v̄i
denote the farthest point on C from hinge vi, i.e., dC(vi, v̄i) = eccC(vi).

We call a vertex ti relevant if there exists a point p on C that has ti as a
farthest vertex among t1, t2, . . . , tl, and we call ti irrelevant otherwise. Knowing
which of t1, t2, . . . , tl are relevant allows us to perform farthest-branch queries,
i.e., report all branches containing farthest points from a query point on C.

Lemma 4 The vertex ti is relevant if and only if ti is a farthest vertex from v̄i
among t1, t2, . . . , tl, i.e., d(ti, v̄i) = maxlj=1 d(tj , v̄i).

Proof: We show both directions via indirection. When ti is irrelevant no point
on C—including v̄i—has ti as a farthest vertex among t1, t2, . . . , tl.

vj

vi

v̄i

ti

tj

Figure 9: The constellation where vj lies on the clockwise path from vi to v̄i.

Conversely, let there be some vertex tj that is farther away from v̄i than ti,
i.e., d(v̄i, ti) < d(v̄i, tj). As illustrated in Figure 9, vj lies either on the clockwise
or counter-clockwise path from ti to v̄i. Since either path is a shortest path, we
have d(ti, v̄i) = d(ti, vj) + d(vj , v̄i). Thus, tj is farther from vj than ti, as

d(ti, vj) = d(ti, v̄i)− d(v̄i, vj) < d(tj , v̄i)− d(v̄i, vj) = d(tj , vj) .

Now ti is irrelevant, as tj is farther from any point p on C than ti, since

d(p, ti) ≤ d(p, vj) + d(vj , ti) < d(p, vj) + d(vj , tj) = d(p, tj) .
�

According to Lemma 4, a vertex ti is irrelevant when there is some other
vertex tj with d(ti, v̄i) < d(tj , v̄i). In this case, we say that ti is dominated by
tj and write ti ≺ tj . Algorithm 1 below computes the relevant vertices using
dominance. We begin with a circular list containing the vertices t1, t2, . . . , tl in
the order as the hinges v1, v2, . . . , vl appear along the cycle C. We traverse the
list in counterclockwise order and delete vertices whenever they are dominated
by their successor (succ) or their predecessor (pred). We mark a vertex t
as processed if we can neither remove t nor any of its neighbors based on this
criteria. As we shall see in the proof of Theorem 3, each irrelevant vertex t
becomes the neighbor of some vertex dominating t throughout this process.
Therefore, considering only immediate neighbors is sufficient.
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Algorithm 1: Determining the relevant vertices

input : The vertices t1, t2, . . . , tl stored in a circular list.
output : The relevant vertices among t1, t2, . . . , tl.

1 Mark each t1, t2, . . . , tl as unprocessed;
2 t← t1;
3 while t is unprocessed do
4 if t ≺ pred(t) or t ≺ succ(t) then
5 t← succ(t);
6 delete(pred(t));

7 else if pred(t) ≺ t then delete(pred(t));
8 else if succ(t) ≺ t then delete(succ(t));
9 else /* t ⊀ pred(t) ⊀ t ⊀ succ(t) ⊀ t */

10 Mark t as processed;
11 t← succ(t);

12 end

13 end

Invariant 1 The following invariants hold whenever Algorithm 1 marks a vertex
as processed in Line 10.

(i) Every marked vertex t dominates none of its current neighbors, i.e., we
have pred(t) ⊀ t and succ(t) ⊀ t.

(ii) Every marked vertex t is dominated by none of its current neighbors, i.e.,
we have t ⊀ pred(t) and t ⊀ succ(t).

Proof: Assume, for the sake of a contradiction, that there is a marked vertex
ti with a neighbor tj such that ti ≺ tj or tj ≺ ti when Line 10 is executed.
Assume, without loss of generality, that tj has been marked after ti or that tj
has never been marked so far. When we marked ti as processed, ti and tj were
not neighbors. When tj became a neighbor of ti, the previous neighbor tk of ti
was either deleted in Line 6 with tj assuming the role of variable t in Line 5 or
tk was deleted in Lines 8 with t = tj . In both cases variable t would be at tj
with ti as direct neighbor and we would have deleted ti in Line 7 or in Line 8
before marking any other vertex as processed. Therefore, we have never marked
ti, which contradicts our assumption. �

We pre-compute the distances from v1 to all other vertices along C while
constructing per(C). This allows us to compare distances along C in constant
time and, thus, enables us to determine in constant time whether one vertex
dominates another. We are prepared to proof the correctness of Algorithm 1.

Theorem 3 Let S be the perspective of a uni-cyclic network U from its cycle C,
and let t1, t2, . . . , tl be the vertices of S representing the l branches of U given in
clockwise order. Algorithm 1 computes all relevant vertices among t1, t2, . . . , tl
in O(l) time, provided that checking for dominance takes constant time.
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Proof: In each iteration of the while-loop of Algorithm 1, we either delete some
vertex or we mark the vertex stored in t as processed ensuring that it will never
assume the role of t again. Therefore, Algorithm 1 terminates in O(l) steps,
provided that checking for dominance is a constant time operation.

Algorithm 1 never deletes a relevant vertex, since we only delete vertices
that are dominated and, thus, irrelevant. Consider the circular list of those
vertices that remain after Algorithm 1 terminates. We assume, for the sake of a
contradiction, that this list contains irrelevant vertices.

Let t be a relevant vertex and let tcw be the first irrelevant vertex in clockwise
direction from t, and let tccw be the first irrelevant vertex in counterclockwise
direction from t. Since no vertex in the final list dominates any of its neighbors
by Invariant 1, the final list contains at least four vertices with at least one vertex
between t and tcw and at least one vertex between t and tccw. The argument
below remains valid when tcw and tccw coincide. Let v̄, v̄cw and v̄ccw be the
farthest point on C from t, tcw, and tccw, respectively. We distinguish the two
cases illustrated in Figure 10, based on the relative positions of t, v̄, and v̄ccw.

t

v

v̄

tccw

t′
vccw

v′

v̄′ v̄ccw

(a) The point v̄ccw lies clockwise
between t and v̄.

t

v

v̄

tccw

vccw

v̄ccw

tcw

vcw

v′′ t′′

v̄′′

v̄cw

(b) The point v̄ccw lies counterclockwise
between t and v̄.

Figure 10: The cyclic order of the vertices t, tccw, tcw, t′, t′′, and their corre-
sponding antipodal points in the two cases from the proof of Theorem 3.

Consider the case when the point v̄ccw lies on the clockwise path from t to
v̄, as illustrated in Figure 10a. Let t′ := pred(tccw) be the clockwise neighbor
of tccw and let v̄′ be the farthest point from t′ on C. The vertices v̄ccw, v̄′,
and v̄ appear clockwise in this order along C, which implies that v̄ccw lies on a
shortest path from t to v̄′, i.e., d(t, v̄′) = d(t, v̄ccw) +d(v̄ccw, v̄

′). Furthermore, we
have tccw ≺ t and t′ ⊀ t, since tccw was the first dominated vertex in clockwise
direction from t. Together, this yields

d(tccw, v̄ccw)
tccw≺t
< d(t, v̄ccw) = d(t, v̄′)− d(v̄′, v̄ccw)

t′⊀t
≤ d(t′, v̄′)− d(v̄′, v̄ccw) = d(t′, v̄ccw) ,
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which implies d(tccw, v̄ccw) < d(t′, v̄ccw), i.e., tccw ≺ t′. This contradicts In-
variant 1, because tccw remained in the circular list when Algorithm 1 terminated
and, thus, tccw must be marked, yet tccw is dominated by its neigbhour t′.

Consider the case when v̄ccw lies on the counterclockwise path from t to v̄, as
illustrated in Figure 10b. This implies that the vertices t, tcw, tccw, and v̄ appear
clockwise in this order (with potentially tcw = tccw). Therefore, v̄cw also lies on
the counterclockwise path from t to v̄. Similarly, to the above, we derive the
contradiction tcw ≺ t′′ where t′′ := succ(tcw) is the counterclockwise neighbor
of tcw. Therefore, tcw (and thus tccw) cannot exist and there are no irrelevant
vertices in the circular list produced by Algorithm 1. �
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(a) A uni-cyclic network.
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(b) The farthest-branch subdivision.

Figure 11: The farthest-branch subdivision (b) of the uni-cyclic network from
(a). The sub-edges in (b) are shaded in a colour matching their farthest branch.
On black sub-edges, no branch contains farhtest points—instead, the farthest
point lies on the opposite side of the cycle. In this example, no points on the
cycle have farthest points in branch T2, i.e., t2 is irrelevant.

We have a circular list of the relevant vertices among t1, t2, . . . , tl. Using this
list, we pre-process S to support farthest-branch queries as follows. We pick any
relevant vertex ti and traverse C counterclockwise starting from v̄i keeping track
of the farthest branch. Since ti and its counterclockwise successor tj = succ(ti)
are relevant, v̄i has ti as its farthest branch and v̄j has tj as its farthest branch.
At some point pij between v̄i and v̄j the farthest branch changes from ti to tj ;
we subdivide C at pij and store ti as farthest branch for the (sub)edges from
v̄i to pij . We continue subdividing C in this fashion into at most l chains, one
for each relevant vertex. Using a binary search on these chains, we answer
farthest-branch queries in O(log l) time. Figure 11 illustrates an example of this
subdivision for the network from Figure 7. As in all figures in this section, edges
have unit weight unless indicated otherwise.

Theorem 4 Let U be a uni-cyclic network with n vertices and cycle C of length l.
There is a data structure with construction time O(n) supporting farthest-branch
queries from any query point on C in O(log l) time.
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2.3.2 Queries in Uni-Cyclic Networks

We perform an eccentricity query from a point q on U as follows. When q lies on
some branch T , we use the tree data structures for the perspective T ′ = per(T )
from T , as eccT ′(q) = eccU (q) by construction of T ′. When q lies on the cycle
C, we first compute the distance dB := maxli=1 d(q, ti) from q to the farthest
vertex among t1, t2, . . . , tl in the perspective S = per(C) from C, using our
data structure for farthest-branch queries in S. Then, we compute the farthest
distance eccC(q) from q on C, using the cycle data structure for C. The greater
distance of the two is the eccentricity of q in S and, thus, the eccentricity of q in
U , i.e., eccU (q) = eccS(q) = max{dB , eccC(q)}. This way, we answer eccentricity
queries from branches in constant time and from the cycle in O(log l) time.
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(a) Two queries form the cycle.
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(c) Cascading the queries into the branches.
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(d) Querying for the antipodal of q.

Figure 12: The farthest-point queries from the points q (salmon) and q′ (ocker)
on the cycle of a uni-cyclic network (a). We perform a farthest-branch query for
both query points (b) and then cascade the queries into the perspectives from
the branches (c) and into the cycle (d) as needed.

We perform a farthest-point query from a point q on the cycle C of U as
illustrated in Figure 12. We first determine the farthest distance from q to
any point in a branch of U with a farthest-branch query from q in S and we
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determine the farthest distance from q to any point on C with a corresponding
eccentricity query. Comparing these distances reveals where we find the farthest
points from q in U . We then report the antipodal of q on C if it is farthest and
then cascade the query in each branch containing farthest points. More precisely,
if T was a branch containing farthest points from q then perform a farthest-point
query from v′ in the perspective T ′ = perU (T ) of U from T , where v′ is the
vertex representing the exterior of T . The farthest leaves from v′ in T ′ are also
farthest from any point outside of T that has farthest points in T .

We perform a farthest-point query from a point q on a branch T of U with
hinge v as follows. We begin with a farthest-point query in the perspective
T ′ = per(T ) of U from T . This reports all farthest points from q in T and,
potentially, the point v′ representing the exterior of T . When cascading the
query from T ′ into the perspective S = per(C) of U from the cycle C, we need to
perform a farthest-point query in S from the vertex t representing T . However,
we have no structure to support this query directly. Instead, we query from v in
S, which leads to a good case and a bad case.

q

Ti

vi

vj

Tj

(a) A query from a branch Ti.

q 6

Ti

vi v′i

(b) Query in the perspective from Ti.

5

4

3

vit

vj

tj

(c) Cascading the query into per(C).

7
vj

Tj

v′j

(d) Cascading the query into branch Tj .

Figure 13: A farthest-point query from a branch Tj of a unicyclic network (a).
We perform a farthest-point query in the perspective from the branch containing
the query point (b). We cascade the query into the perspective from the cycle (c)
and then into another branch Tj as needed (d).
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(a) A query from a branch Ti.

7

q
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vi

v′i

(b) Query in the perspective from Ti.

5
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10
vi

vj

ti

tj

bad case!

(c) Farthest-branch query leads back into Ti.

5

3

vi

vj
tj

(d) Fixed farthest-branch query.

6

Tj

vj v′j

(e) Query continues in correct branch Tj .

Figure 14: The bad case for a farthest-point query from a branch Ti (red) of
a unicyclic network (a). We perform a farthest-point query in the perspective
from the branch containing the query point (b). We cascade the query into
the perspective from the cycle (c), however, this query sends us back into the
red branch, since the red branch is farthest on the entire cycle. To fix this, we
remove the edge tivi representing the red branch Ti (d) and repeat the query
in the resulting network. This time, we obtain the correct branch Tj where we
cascade the query (e) to determine the farthest points in this (blue) branch.
Observe that the fixed network (d) is irrelevant for queries from other branches
which will use the normal perspective from the cycle (c).
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In the good case, shown in Figure 13, v has some farthest point in S other
than t, which means that the farthest points from t are the farthest points from
v (potentially excluding t itself). In the bad case, shown in Figure 14, t is the
only farthest point from v in S. Fortunately, the bad case can only appear for
exactly one branch of U , as t being the only farthest vertex from v implies that
t is farthest from all other vertices of S as well. Therefore, we can deal with the
bad case by computing the farthest points from v in the network S − vt (during
the preprocessing phase) and storing the result with v. We use this only when
cascading a query from T into S, i.e., when we know that there are farthest
points from the query point q outside of T .

Theorem 5 (Uni-Cyclic Data Structure) Let U be a uni-cyclic network
with n vertices and a cycle of length l. There is a data structure with size
and construction time O(n) supporting eccentricity queries from the branches of
U in O(1) time, eccentricity queries from the cycle in O(log l) time, farthest-point
queries from branches in O(k) time, and farthest-point queries from the cycle in
O(k + log l) time, where k is the number of farthest-points.

3 Cactus Networks

In this section, we construct a data structure supporting eccentricity queries
and farthest-point queries on cactus networks. Recall that a cactus network is a
network in which no two simple cycles share an edge.

h

v

u

(a) A cactus network G with 7 bags.

hB

(b) The tree structure T (G) of G.

Figure 15: A cactus network (a) with its tree structure (b). The blocks and
branches are indicated in colours and the hinges connecting them are marked as
empty discs. For example, the green edges form a block and the red edges form
a branch. Vertex h is a hinge, because h is a cut-vertex contained in more than
one bag; vertex v is a cut-vertex but not a hinge, since v is only contained in
the yellow branch; and vertex u is not a cut-vertex and, thus, also not a hinge.

The following notions prove useful when describing cactus networks; examples
are shown in Figure 15. A cut-vertex is a vertex whose removal increases the
number of connected components, a block is a maximal connected sub-graph
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without cut-vertices and with at least three vertices, and a branch is a (maximal)
tree that remains when removing the edges of all blocks and all resulting isolated
vertices. We treat blocks and branches in a similar fashion, so we refer to a
sub-network B as a bag when B is either a block or a branch. Decomposing a
network with n vertices into its blocks and branches takes O(n) time [17]. A
hinge is a vertex contained in more than one bag. The tree structure of a cactus
network G, denoted by T (G), is the tree whose vertices are the hinges and bags
of G where a hinge h is connected to a bag B when h lies in B [16].

(a) The bag-cuts of the green block.

B

(b) Arcs in T (G) of the bag-cuts in (a).

(c) The bag-cut and the co-bag-cut of B.

hB

(d) Arcs in T (G) of the cuts in (c).

Figure 16: The bag-cuts of the green block (a) together with their corresponding
arcs (of matching colour) in the tree structure (b). The bag-cut (salmon) and
co-bag-cut (light green) corresponding to the two arcs of an edge from B to h in
the tree structure (d) and in the network itself (c).

Let B be a bag containing hinge h. The component containing h after
removing all edges of B is called the bag-cut of B at h, denoted by bcut(B, h).
The component containing h after removing all edges of bcut(B, h) is called the
co-bag-cut of B at h, denoted by co-bcut(B, h). Figure 16 gives examples of
bag-cuts and co-bag-cuts for the cactus network from Figure 15. We view an
(undirected) edge from B to h in the tree structure as two (directed) arcs B → h
and h→ B. As illustrated in Figures 16c and 16d, we associate bcut(B, h) with
B → h and we associate co-bcut(B, h) with h→ B. We use this correspondence
as orientation. For example, we store the eccentricity of h in bcut(B, h) with
the arc B → h and the eccentricity of h in co-bcut(B, h) with the arc h→ B.
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3.1 Eccentricity Queries

To support eccentricity queries on a bag B of a network G, we compress the
bag-cuts of B like we compress the branches of uni-cyclic networks: for any hinge
h ∈ B we replace bcut(B, h) with a vertex ĥ and an edge hĥ whose weight is the
largest distance from h to any point in bcut(B, h), i.e., whĥ = eccbcut(B,h)(h).
We refer to the resulting network as the perspective of G from B, denoted by
perG(B). The perspective of G from bag B preserves farthest distances of G,
i.e., we have eccperG(B)(p) = eccG(p) for all p on B.

B∗

h∗

(a) The bag-cuts of the starting bag B∗.

B∗

h∗

eccbcut(B∗,h∗)(h
∗)

ĥ∗

(b) The perspective from B∗.

Figure 17: A schematic view of the construction of the perspective per(B∗) from
the initial bag B∗. For every hinge h∗ of B∗, the bag-cut bcut(B∗, h∗) is replaced

with an edge h∗ĥ∗ weighted with the largest distance from h∗ into bcut(B∗, h∗).
The extended shortest path trees from the hinges of B∗ are outlined as arrows
from the hinges of the network. An arrow pointing into the co-bag-cut of bag B
at hinge h means that we obtain the extended shortest path tree from h into
co-bcut(B, h) as a by-product of the construction of the perspective from B∗.

The perspective from a branch T is a tree, since per(T ) results from attaching
pendant edges to the tree T . The perspective from a block C of a cactus network
is a uni-cyclic network, since per(C) results from attaching pendant edges to the
cycle C. Since we already have efficient data structures for trees and uni-cyclic
networks, the challenge lies in constructing these perspectives in linear time.

As illustrated in Figure 17, we first construct the perspective per(B∗) of an
arbitrary bag B∗ by computing the extended shortest path tree of each hinge
h∗ of B∗ in bcut(B∗, h∗). This takes linear time using a modified breadth-first
search from each hinge h∗ where we cut each simple cycle C at the antipodal
v̄ of the vertex v where we first enter C. Using the data structure for queries
in per(B∗) and the extended shortest path trees from the hinges of B∗, we
then construct the perspectives from the bags adjacent to B∗ and continue in a
breadth-first search fashion. Next, we describe the propagation step.
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B∗

B′

h∗

(a) The bag-cuts of neighboring bag B′.

B′

h∗
?

(b) The missing weight in per(B′).

B∗

h∗

(c) The desired query in co-bcut(B∗, h∗).

B∗

h∗

eccbcut(B∗,h∗)(h
∗)

ĥ∗

(d) The actual query in per(B∗).

Figure 18: A schematic view of the construction of the perspective of a bag B′

neighboring the initial bag B∗. From the construction of per(B∗), we already
have the distance information for the bag-cuts (blue) of B′ at all hinges except for
the one at h∗ (green) and we have the distances for all co-bag-cuts of neighbors
of B′ (yellow) other than co-bcut(B∗, h∗) (red). To obtain the missing value
eccco-bcut(B∗,h∗)(h

∗) we would like to query from h∗ in co-bcut(B∗, h∗), but

instead we perform a query from ĥ∗ in per(B∗) to avoid constructing a data
structure for co-bcut(B∗, h∗).

Let B′ be a bag neighboring B∗ at hinge h∗, as shown in Figure 18. For all
hinges h′ of B′ with h′ 6= h∗, the extended shortest path tree of h′ in bcut(B′, h′)
is a sub-tree of the extended shortest path tree of h∗ in bcut(B∗, h∗). So we know

the weight of the edge ĥ′h′ in per(B′), where ĥ′ represents bcut(B′, h′). At hinge
h∗, we have the extended shortest path trees of h∗ in every co-bag-cut at h∗

except for co-bcut(B∗, h∗), the one leading back into B∗. The eccentricity of h∗

in bcut(B′, h∗) is the largest distance from h∗ into any co-bag-cut co-bcut(B, h∗)
for all bags B neighboring B′ at h∗, i.e.,

eccbcut(B′,h∗)(h
∗) = max

{
eccco-bcut(B,h∗)(h

∗)

∣∣∣∣ B is a bag with
h∗ ∈ B 6= B′

}
. (1)
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We need the value eccco-bcut(B∗,h∗)(h
∗) to compute per(B′). The differ-

ence between the perspective perG(B∗) of G from B∗ and the perspective
perco-bcut(B∗,h∗)(B

∗) of co-bcut(B∗, h∗) from B∗ is that the latter lacks the

edge ĥ∗h∗ where ĥ∗ represents bcut(B∗, h∗) in perG(B∗). We avoid construct-
ing perco-bcut(B∗,h∗)(B

∗) using the following observation. The farthest points

from ĥ∗ in perG(B∗, h∗) are also farthest from h∗ in perco-bcut(B∗,h∗)(B
∗) =

perG(B∗, h∗)− ĥ∗h∗, but they are closer by wh∗ĥ∗ , i.e.,

eccco-bcut(B∗,h∗)(h
∗) = eccper(B∗)−ĥ∗h∗(h

∗)

= eccper(B∗)(ĥ
∗)− wh∗ĥ∗

= eccper(B∗)(ĥ
∗)− eccbcut(B∗,h∗)(h

∗) .

Consider the extended shortest path tree from ĥ∗ in perG(B∗). Removing

the edge ĥ∗h∗ from this tree yields the extended shortest path tree from h∗

in perG(B∗) − ĥ∗h∗ = co-bcut(B∗, h∗). We obtain eccco-bcut(B∗,h∗)(h
∗) with a

constant time query from ĥ∗ in perG(B∗), as illustrated in Figure 18d.
Finally, we obtain the missing value eccbcut(B′,h∗)(h

∗) by taking the maximum
in Equation (1). However, we need to avoid a dependence on the number of bags
containing h∗, i.e., the degree of h∗ in the tree structure. We augment the arcs
of T (G) with the following during the construction of B∗: When we compute the
extended shortest path trees from the hinges of B∗, we store eccco-bcut(B,h)(h)
with arc h→ B in T (G). These values are, at first, unknown for arcs in T (G) on
paths towards B∗. With each hinge vertex we store the largest and second largest
known value among its adjacent arcs in T (G) and two bags B1 and B2 attaining
these values. How does this help us compute the maximum in Equation (1)?
When we learn of the missing value eccco-bcut(B∗,h∗)(h

∗) at h∗ in T (G), we have
three cases depending on whether h∗ has farthest points in the direction of
B∗ or, if not, in the direction of B′. First, eccco-bcut(B∗,h∗)(h

∗) could be larger
than eccco-bcut(B1,h∗)(h

∗) in which case eccbcut(B′,h∗)(h
∗) = eccco-bcut(B∗,h∗)(h

∗).
Second, eccco-bcut(B∗,h∗)(h

∗) could be strictly smaller than eccco-bcut(B1,h∗)(h
∗)

with B1 6= B′ in which case eccbcut(B′,h∗)(h
∗) = eccco-bcut(B1,h∗)(h

∗). Third,
eccco-bcut(B∗,h∗)(h

∗) could be strictly smaller than eccco-bcut(B1,h∗)(h
∗) with

B1 = B′ in which case eccbcut(B′,h∗)(h
∗) = eccco-bcut(B2,h∗)(h

∗). With the
aforementioned bookkeeping, we can handle each of the three cases in constant
time and consequently construct per(B′) in time proportional to the size of B′.

We construct per(B′) re-using the construction of per(B∗) and the augmented
tree structure. In the same way, we construct the perspectives from all other
neighbors of B∗, then all perspectives from the neighbors of all neighbors of
B∗ and so forth for an overall construction time of O(n). We inherit the query
times from the data structures of trees and uni-cyclic networks; in summary this
yields the following theorem for eccentricity queries in cactus networks.

Theorem 6 Let G be a cactus network with n vertices. There is a data structure
with O(n) size and construction time supporting eccentricity queries on G in
O(1) time from branches and in O(log l) time from blocks of size l.
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3.2 Farthest-Point Queries

Consider a farthest-point query from a point q in bag B, as illustrated in
Figure 19. First, we perform a farthest-point query from q in the farthest-point
data structure of the perspective of G from B. This query yields all farthest-
points from q inside B and it returns the vertex ĥ representing the bag-cut
bcut(B, h) when q has farthest points in bcut(B, h). Any path from q to a
farthest point q̄ in bcut(B, h) passes through h, hence q̄ is also farthest from h in
bcut(B, h). Recall that bcut(B, h) consists of the co-bag-cuts co-bcut(B′, h) of
the bags B′ neighboring B at h. To find all farthest points from q in bcut(B, h),
we cascade the query into the co-bag-cuts co-bcut(B′, h) of those neighbors B′

of B that contain farthest points from h in bcut(B, h), i.e., eccco-bcut(B′,h)(h) =
eccbcut(B,h)(h). For the decision into which co-bag-cuts to cascade, we consult
the eccentricity values stored with the arcs of the tree structure.

q

(a) A query from q with its farthest points.

q

(b) Query in the perspective from
the bag containing q.

(c) Cascading the query in adjacent bags. (d) Cascading the query further.

Figure 19: Answering a farthest-point query from q using the perspectives. Query
points are indicated with orange circles, farthest-points with orange squares. To
process the query, we first query for q in the perspective from the bag containing
the query point (b). Then we cascade the query into adjacent bags that lead to
further farthest points (c and d). We show only two cascaded queries, to report
all farthest points, we need five more cascaded queries.

Assume we cascade a query from q into the co-bag-cut co-bcut(B′, h), as in
Figures 19c and 19d. To query for the farthest points from h in co-bcut(B′, h),

we perform a farthest-point query from ĥ′ in per(B′), where ĥ′ is the vertex

representing bcut(B′, h) in per(B′). The farthest points from ĥ′ in per(B′) are

also farthest from h in per(B′)− ĥ′h, which corresponds to co-bcut(B′, h). Since
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ĥ′ is a pendant vertex in per(B′), this query takes time proportional to the

number of farthest-points in per(B′). The farthest points from ĥ′ in per(B′) that
lie in B′ are farthest points form the original query point q, and those farthest
points from ĥ′ in per(B′) that represent bag-cuts adjacent to B′ indicate where
we have to continue our search for other farthest points from q. We propagate
the query from q to the bags of G along paths to farthest points from q. However,
we might visit Ω(n) bags before we reach one that contains a farthest point from
q. We improve the query time by introducing shortcuts in the tree structure to
bypass long chains of bags without farthest points.

q

(a) A query from q with its farthest points. (b) Traversal of the tree structure.

Figure 20: The traversal of the tree strucuture (b) during a farthest-point query
(a). The bags containing farthest-points are colored red, the bags where two
paths to farthest points split are colored yellow, and all other blocks are colored
gray. In blue, we highlight the arcs visited during the query and, in green, we
highlight a shortcut bypassing several gray bags.

Consider a co-bag-cut co-bcut(B, h) of bag B at hinge h. This co-bag-
cut corresponds to the arc from h to B in the tree structure and all bags in
co-bcut(B, h) are in the sub-tree Th→B reachable from h through B. To give a
visual idea of our shortcuts, imagine we do the following: First, we color a bag B′

in Th→B red when B′ contains farthest points from h in co-bcut(B, h). Second,
we color an uncolored bag B′ in Th→B orange when two paths from h to red bags
split at B′. Finally, we color the remaining bags black. We seek to bypass black
bags, since these are irrelevant for our query. For now, we only consider arcs of
Th→B leading away from h. The shortcut for arc h′ → B′ in Th→B leads to the
first arc h′′ → B′′ where B′′ is the closest orange or red descendant of h′. The
shortcuts reachable from h form a directed tree where all vertices representing
bags are either yellow or red; following all shortcuts in this tree takes time O(r)
where r is the number of red bag vertices in Th→B. Using these shortcuts, the
number of bags visited when reporting farthest points from h in co-bcut(B, h)
is linear in the number of bags containing these farthest points. Figure 20 shows
an example of a farthest-point query with and without shortcuts.
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?

B

h

ĥ

(a) The missing shortcut.

B

h

ĥ

(b) We do not place a shortcut when
the perspective from B contains any
farthest points within B itself.

B

h

ĥ

(c) We do not introduce a shortcut when
there are farthest points in several ad-
jacent bag-cuts.

B

h

ĥ

(d) When only one bag-cut contains
farthest-points, we take a closer look at
its co-bag-cuts.

B

h

ĥ

h′

(e) We do not introduce a shortcut
when several co-bag-cuts contain far-
thest points.

B′
B

h

ĥ

h′

(f) We introduce a shortcut when only
one co-bag-cut contains farthest points.

Figure 21: Determining a missing shortcut into a co-bag-cut of B at h, where
the shortcuts for all co-bag cuts of the other hinges of B are known (a). We

consider the farthest points from ĥ in per(B): we place no shortcut when (b)
there are farthest points in B, when (c) paths to farthest points split at B, and
when (d,e) all farthest points lie in multiple co-bag-cuts of the same adjacent
bag-cut. We only place a shortcut when (f) all farthest points lie in a single
co-bag cut co-bcut(B′, h′). In this case, the shortcut from co-bcut(B, h) leads
to the target of the shortcut into co-bcut(B′, h′).
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How can we determine these shortcuts efficiently? Recall that the propagation
scheme starts at some bag B∗ where we first compute the extended shortest
path tree of each hinge h in B∗ in bcut(B∗, h∗). We first consider only the arcs
of T (G) leading away from B∗. The arcs leading to leaf bags of T (G) need no
shortcuts. Consider an arc h→ B and assume that all other arcs in the sub-tree
Th→B already have their shortcuts, as illustrated in Figure 21. We distinguish
three cases using a query in per(B): First, there could be farthest points from ĥ

in B (red case). Second, there could be farthest points from ĥ in two bag cuts

of B (orange case). Third, all farthest points from ĥ could lie in a single bag cut
bcut(B, h′) (black or orange case). In the first two cases, we introduce a trivial
shortcut, i.e., the shortcut from h → B points to h → B. In the third case,
we inspect the information stored at the arcs incident to hinge h′ to determine
whether the farthest points from ĥ in bcut(B, h′) lie in multiple co-bag-cuts at h′

(orange case) or in a single co-bag-cut co-bcut(B′, h′) (black case). In the black
case, we introduce a shortcut from h → B to the destination of the shortcut
from h′ → B′. We obtain all shortcuts in the tree structure leading away from
B∗ without increasing our asymptotic bound on the size and construction time.

We employ our breadth-first-search propagation scheme to construct the
shortcuts in the tree structure for arcs pointing towards B∗. At any hinge h
of B∗, we are only missing the shortcut for the arc h → B∗. With a query in
per(B∗), we can immediately determine whether the red, the orange or the black
case from above applies; no shortcuts towards B∗ are required for this step.
With all shortcuts of the arcs from the hinges of B∗ in place, we can compute
the shortcuts towards B∗ for the hinges of all blocks neighboring B∗, then all
hinges of the bags neighboring the neighbors of B∗ and so forth.

Placing the shortcuts during the construction of our data structure for
eccentricity queries takes only constant additional time and space per shortcut.
How much time does a farthest-point query take? First, we have to perform a
farthest-point query in the perspective from the bag containing the query point.
Then, we follow shortcuts towards bags containing more farthest points. The
farthest-point queries in the perspective of subsequent bags B′ take time linear
in the number of farthest-points in per(B′), since we query from pendant vertices
of per(B′). Moreover, as all visited blocks are either orange or red, the number
of visited blocks is linear in the number of red blocks, i.e., blocks containing
farthest points. Altogether, this yields a query time of O(k) from branches and
O(k + log l) from blocks of size l.

Theorem 7 Let G be a cactus network with n vertices. There is a data structure
with O(n) size and construction time supporting farthest-point queries on G in
O(k) time from branches and in O(k + log l) time from blocks of size l, where k
is the number of farthest-points.



38 Bose et al. Farthest-Point Queries in Cactus Networks

4 Conclusions and Future Work

In previous work [3], we obtain a data structure with O(m2 log n) construction
time for any network with n vertices and m edges, and with optimal query times
for eccentricity queries and farthest-point queries. In this work, we improve
the construction time to O(n) for certain classes of networks without sacrificing
optimal query time. In future work, we aim to achieve o(m2 log n) construction
time for more general classes of networks such as planar networks, k-almost-
trees [10], and series-parallel graphs [6].
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