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Abstract

The cluster adjacency graph of a flat clustered graph C(G, T ) is the
graph A whose vertices are the clusters in T and whose edges connect
clusters containing vertices that are adjacent in G. A multilayer drawing

of a clustered graph C consists of a straight-line c-planar drawing of C
in which the clusters are drawn as convex regions and of a straight-line
planar drawing of A such that each vertex a ∈ A is drawn in the cluster
corresponding to a and such that no edge (a1, a2) ∈ A intersects any
cluster different from a1 and a2. In this paper, we show that every c-
planar flat clustered graph admits a multilayer drawing.
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1 Introduction

A clustered graph is a pair C(G, T ), where G is a graph, called underlying
graph, and T is a rooted tree, called inclusion tree, whose leaves are the vertices
of G. Each internal node ν of T corresponds to the subset of vertices of G,
called cluster, that are the leaves of the subtree of T rooted at ν. Throughout
the paper, we assume that each path from the root of T to any leaf has the
same number of edges, which is denoted by h(T ) (the motivation for such an
assumption will be provided later in this section). We call level of a cluster µ the
minimum number of edges in a path in T from µ to a leaf. Given a clustered
graph C(G, T ), the cluster adjacency graph at level i is the graph Ai whose
vertices are the clusters at level i and having an edge between two clusters µ
and ν if any vertex in µ and any vertex in ν are connected by an edge of G. A
clustered graph is flat if the height of T is at most two, i.e., no cluster different
from the root contains other clusters. In a flat clustered graph C(G, T ), we say
that the cluster of a vertex v of G is its parent in T and we denote it by µ(v);
also, in a flat clustered graph we call clusters only the children of the root, and
we call adjacency graph A the adjacency graph at level one; further, for any
cluster µ in T , we denote by a(µ) the vertex representing µ in A.

Clustered graphs find applications in several areas of computer science and
hence they have been widely studied from a theoretical point of view. Several
methods have been developed to compute a good clustering for a given graph
G, that is, for constructing a (usually flat) clustered graph that has G as un-
derlying graph and that has high edge density inside each cluster and few edges
connecting vertices belonging to different clusters. See [24] for a survey on graph
clustering. On the other hand, in a typical graph drawing problem, the cluster-
ing is given as part of the input, and the goal is to visualize the clustered graph
in a readable way.

Clustered planarity (also called c-planarity for short) is a concept, intro-
duced in [15], that generalizes planarity to clustered graphs and that has been
widely recognized as the standard for readability of clustered graph drawings. A
drawing of a clustered graph represents each cluster µ as a closed simple region
δµ of the plane containing all and only the vertices of µ; a drawing is c-planar
if it contains no edge crossings (i.e., the drawing of the underlying graph is
planar), no edge-region crossings (i.e., no edge intersects the border of a region
δµ more than once), and no region-region crossings (i.e., each two regions δµ
and δν representing clusters µ and ν are disjoint). Figure 1 shows a c-planar
drawing of a clustered graph. A graph is c-planar if it admits a c-planar draw-
ing. Designing an algorithm to test whether a clustered graph is c-planar (or
prove that no efficient algorithm exists) is one of the most studied and still far
from solved graph drawing problems (see [2, 3, 4, 5, 6, 8, 17, 18, 19, 20, 21]).
Assuming that a clustered graph C is c-planar, several algorithms and bounds
are known for constructing c-planar drawings of C [7, 11, 13, 23]. A particular
attention has been devoted to straight-line convex drawings, that are c-planar
drawings requiring edges to be straight-line segments and clusters to be convex
regions. Every c-planar graph admits a straight-line convex drawing [10], even
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if the shape of each cluster is fixed in advance [1]. Straight-line convex drawings
might require exponential area [14].

Figure 1: A c-planar drawing of a clustered graph.

In this paper we introduce and studymultilayer drawings of clustered graphs.
For a subset δ of the plane z = 0, we denote by δi the vertical projection of δ
on the plane z = i.

Definition 1 A multilayer drawing of a clustered graph C(G, T ) consists of a
convex straight-line drawing Γ of C in the plane z = 0 (the base layer) and, for
every 1 6 i 6 h(T ), of a straight-line planar drawing Γ(Ai) of Ai in the plane
z = i (the i-th layer), such that:

• for every 1 6 i 6 h(T ) and for every cluster µ at level i, the point ai(µ)
representing µ in Γ(Ai) is inside δiµ; and

• for every three distinct clusters µ, ν, and ρ such that µ and ν are at the
same level i, edge (ai(µ), ai(ν)) in Γ(Ai) does not intersect δiρ.

Figure 2: A multilayer drawing of a clustered graph.

Given a multilayer drawing of a clustered graph C(G, T ), tree T can be
nicely visualized as follows. Map each internal node of T corresponding to a
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cluster µ at level i to the point ai(µ), map each leaf of T corresponding to a
vertex v in G to the point in Γ representing v, and finally map each edge of T
to a straight-line segment between its end-points. The fact that every path in
T from the root to a leaf has the same length and the fact that Γ is a convex
straight-line drawing are easily shown to imply that no two edges of T cross
when visualized in this fashion. See Figure 2 for an example of a multilayer
drawing of a clustered graph together with its inclusion tree.

Multilayer drawings allow to simultaneously represent clustered graphs at
different levels of abstractions. Namely distinct layers of a multilayer drawing
represent cluster adjacency graphs at distinct levels of the inclusion tree. The
property that point ai(µ) is inside region δiµ aims at preserving the user’s mental
map while changing the level of abstraction of the visualization. Further, the
property that edge (ai(µ), ai(ν)) does not intersect region δiρ extends the absence
of edge-region crossings to the distinct layers of the visualization.

The main result of this paper is the following:

Theorem 1 Every c-planar flat clustered graph admits a multilayer drawing.

We will prove Theorem 1 by showing an inductive algorithm that constructs
a multilayer drawing of any c-planar flat clustered graph for an arbitrary drawing
of its outer face satisfying certain geometric constraints.

Remark 1. Multilayer drawings strongly resemble multilevel drawings, de-
fined by Eades and Feng in [9]. The only and yet fundamental difference between
multilayer drawings and multilevel drawings is in the geometric objects repre-
senting the vertices of graph Ai in Γ(Ai): points in multilayer drawings and
arbitrary convex shapes in multilevel drawings. As shown in [9], a multilevel
drawing of a clustered graph C can be easily obtained by first computing a
straight-line convex drawing of C in the plane z = 0, by then vertically trans-
lating each cluster µ at level i to the plane z = i, and by finally using vertical
translations of the edges of G to represent the edges of graphs Ai. This tech-
nique does not work for constructing multilayer drawings (see also Remark 2).
A major source of difficulty in the construction of multilayer drawings is that
all the edges of a graph Ai that are incident to the same vertex µ have to be
incident to the same point ai(µ) in Γ(Ai), while in a multilevel drawing each
of them can be incident to any point on the boundary of the convex shape
representing µ in Γ(Ai).

Remark 2. Not every convex straight-line drawing of a clustered graph can
be “extended” to a multilayer drawing. Figure 3 shows a convex straight-line
drawing Γ of a flat clustered graph C(G, T ) with cluster adjacency graph A such
that, in any straight-line drawing Γ(A) of A on the plane z = 1 in which a(α) is
inside region δ1α for every cluster α in T , edge (a(µ), a(ρ)) or edge (a(µ), a(τ))
of A intersects δ1ν .

Remark 3. The assumption that each path in T from the root to a leaf
has the same length is necessary for a multilayer drawing of a clustered graph
C(G, T ) to directly provide a nice visualization of T . In fact, without that
assumption, it would not hold that any edge of T connects two vertices on
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Figure 3: Illustration for Remark 2.

consecutive layers. However, if T is not such that each path from the root to
a leaf has the same length, it suffices to introduce dummy clusters until this
property is obtained. The effect of such a modification for the visualization of
T is that each edge of T is represented by a sequence of straight-line segments,
rather than by a single segment.

Remark 4. In the remainder of the paper, we will talk about multilayer
drawings as two-dimensional drawings. That is, we will construct drawings of
the cluster adjacency graph A of a flat clustered graph C(G, T ) in the plane
z = 0, rather than in the plane z = 1. This allows us to more easily argue on
whether the conditions that point a(µ) is inside δ1µ and that edge (a(µ), a(ν))
does not intersect δ1ρ are satisfied. Of course, given the two-dimensional drawing,
the three-dimensional drawing can be easily obtained by vertically translating
the drawing of A to the plane z = 1.

Organization of the paper. In Section 2 we provide some definitions and
state our main theorem, which implies Theorem 1; in Section 3 we provide some
lemmata that will be used in the subsequent sections; in Section 4 we provide an
outline of an inductive algorithm that proves our main theorem; in Sections 5
and 6 we prove the base cases and the inductive cases of such an algorithm,
respectively; finally, in Section 7 we conclude and suggest an open problem.

2 The Main Theorem

In this section we state our main theorem, which directly implies Theorem 1.

First, it suffices to restrict the attention to maximal c-planar flat clustered
graphs, that is, to c-planar flat clustered graphs C(G, T ) such that G is a maxi-
mal planar graph. Indeed, if C(G, T ) is not maximal, then it can be augmented
to a maximal clustered graph C′(G′, T ) by adding dummy edges without loosing
c-planarity [22]. Then a multilayer drawing of C′ can be constructed and the
inserted dummy edges can be deleted thus obtaining a multilayer drawing of C.
In the following, all the considered clustered graphs are flat and maximal, even
when not explicitly stated, and each clustered graph C(G, T ) is associated with
a c-planar embedding that determines the faces of G.

We will denote a clustered graph also by C(G, T,A), where A is the cluster
adjacency graph of C(G, T ). The outer face of C(G, T,A) is the clustered graph
Co(Go, To, Ao) such that Go is the cycle delimiting the outer face of G, To is
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T restricted to the clusters that contain vertices of Go, and Ao is the cluster
adjacency graph of Co(Go, To).

We introduce some geometric concepts. We denote by σ(p,R) the convex
hull of a convex region R and a point p. We denote by R1 ∪ R2 the union of
two regions R1 and R2. For any two points p and q in the plane, we denote
by h(p, q) the half-line starting at p and passing through q. In the remainder
of the paper we will call “cluster” both a vertex µ of the inclusion tree T of a
clustered graph C and the simple closed region of the plane representing µ in a
drawing of C.

Given a triangle (u, v, z), we define a side region S(u, v) as a convex region
that intersects segment uv in exactly one point and whose every other point is
internal to (u, v, z); also, we define a central region S(u, v, z) as a convex region
entirely internal to (u, v, z). See Figure 4(a). Side and central regions are used
to define extension regions. In the inductive algorithm that we will present
in the next sections, extension regions are associated to a multilayer drawing
Γ′ of a subgraph C′(G′, T ′, A′) of the clustered graph C(G, T,A) to be drawn.
The algorithm will draw the edges of A not in A′ inside the extension regions
associated with Γ′; the geometric properties of the extension regions detailed in
Definition 2 guarantee that the edges of A not in A′ do not cross edges of A′ or
clusters of T ′. Hence, on one side such geometric properties have to be strong
enough to guarantee the drawability of A, while on the other side they have to
be weak enough to ensure that they hold inductively.

u

S(u, v, z)

v

z

S(u, v)

S(z, u)

S(v, z) u R(u)

v

z

a(u)

a(z)

R(u, v)

R(z, u)

R(v, z)

µ(u)

µ(v)

µ(z)R(v)

R(z)

a(v)

(a) (b)

Figure 4: (a) Side regions S(u, v), S(v, z), and S(z, u), and central region
S(u, v, z). (b) Extension regions for a face f = (u, v, z) if µ(u), µ(v), and
µ(z) are distinct. The darker regions inside R(u, v), R(v, z), R(z, u), and
R(u) ∪R(v) ∪R(z) are S(u, v), S(v, z), S(z, u), and S(u, v, z), respectively.

Definition 2 Let Γ be a multilayer drawing of a flat clustered graph C(G, T,A).
Let f = (u, v, z) be a face of G, where vertices u, v, and z appear in this
clockwise order around f . The extension regions for f are defined as follows
(see Figure 4(b)).
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• If µ(u), µ(v), and µ(z) are all distinct, then let S(u, v, z) be a central region
and S(u, v), S(v, z), and S(z, u) be side regions inside (u, v, z) such that:

– σ(u, S(u, v, z)), σ(u, S(u, v)), and σ(u, S(z, u)) do not intersect each
other and do not intersect any cluster except for µ(u);

– σ(v, S(u, v, z)), σ(v, S(u, v)), and σ(v, S(v, z)) do not intersect each
other and do not intersect any cluster except for µ(v);

– σ(z, S(u, v, z)), σ(z, S(v, z)), and σ(z, S(z, u)) do not intersect each
other and do not intersect any cluster except for µ(z);

– for every point p ∈ S(u, v, z), segments pa(u), pa(v), and pa(z) are
in this clockwise order around p.

Then the extension regions for f are:

1. R(u, v) = σ(a(u), S(u, v)) ∪ σ(a(v), S(u, v));

2. R(v, z) = σ(a(v), S(v, z)) ∪ σ(a(z), S(v, z));

3. R(z, u) = σ(a(z), S(z, u)) ∪ σ(a(u), S(z, u));

4. R(u) = σ(a(u), S(u, v, z));

5. R(v) = σ(a(v), S(u, v, z)); and

6. R(z) = σ(a(z), S(u, v, z)).

• If µ(u) = µ(v) 6= µ(z), then let S(v, z) and S(z, u) be side regions inside
(u, v, z) such that:

– σ(v, S(v, z)) and σ(u, S(z, u)) do not intersect each other and do not
intersect any cluster except for µ(u);

– σ(z, S(v, z)) and σ(z, S(z, u)) do not intersect each other and do not
intersect any cluster except for µ(z).

Then the extension regions for f are:

1. R(v, z) = σ(a(u), S(v, z)) ∪ σ(a(z), S(v, z)); and

2. R(z, u) = σ(a(u), S(z, u)) ∪ σ(a(z), S(z, u)).

• If µ(u) = µ(v) = µ(z), then f has no extension regions.

Next, we define extensible drawings, which are used throughout the remain-
der of the paper.

Definition 3 A multilayer drawing of a flat clustered graph C(G, T,A) is called
extensible if, for each face f of G, extension regions for f can be drawn in such
a way that:

1. for each face f of G, no extension region for f intersects an edge of A,
except on its border;
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2. for each face f = (u, v, z) of G, no two distinct extension regions for
f intersect, except on their borders, unless they both comprise a central
region S(u, v, z);

3. for each two faces f1 and f2 of G, where f1 6= f2, no extension region for
f1 intersects an extension region for f2, except on its border;

4. each extension region R(u, v) for a face f = (u, v, z) of G does not intersect
any cluster other than µ(u) and µ(v); and

5. each extension region R(u) for a face f = (u, v, z) of G does not intersect
any cluster other than µ(u).

Figure 5 shows an extensible drawing of a flat clustered graph.

Figure 5: An extensible drawing of a flat clustered graph C(G, T,A). Vertices
of G are black dots and edges of G are thick lines. The borders of the clusters
are dashed lines. Vertices of A are white disks and edges of A are thin lines.
The extension regions are gray.

The inductive hypothesis of the algorithm, presented in the next section,
is that an extensible drawing of a clustered graph can be constructed for an
arbitrary extensible drawing of the outer face. Thus, we define the concept of
completing a drawing of the outer face.

Definition 4 An extensible drawing Γ of a flat clustered graph C(G, T,A) com-
pletes an extensible drawing Γo of the outer face Co(Go, To, Ao) of C if Γ co-
incides with Γo when restricted to the vertices and edges of Go, to the clusters
in To, and to the vertices and edges of Ao, if all the vertices and edges of A/Ao

lie in the extension regions of Γo, and if all the extension regions of Γ lie in the
extension regions of Γo.
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We are now ready to state our main theorem.

Theorem 2 Let C be a flat clustered graph. Then, for every extensible drawing
Γo of the outer face Co of C, there exists an extensible drawing Γ of C that
completes Γo.

Theorem 2 implies Theorem 1, since an extensible drawing is a multilayer
drawing. In the following sections, we will prove a statement which is even
stronger than the one in Theorem 2, namely that for every extensible drawing
Γo of Co, there exists an extensible drawing Γ of C that completes Γo, even
if each cluster has to be represented by an arbitrary convex shape and if each
vertex µ of A has to coincide with one of the vertices of G in µ. However,
both such conditions are not necessary for our inductive proof to work, hence
we omitted them from the statement of Theorem 2 and we invite the reader to
observe how the drawings we construct actually satisfy such conditions.

3 Geometric and Topological Tools

In this section we present some lemmata that will be useful for the proofs in the
remainder of the paper.

Consider a clustered graph C(G, T ) and, for any cluster µ ∈ T , denote by
G[µ] the subgraph of G induced by µ, that is, the subgraph of G whose vertices
are those in µ and whose edges are those connecting two vertices in µ. We say
that C(G, T ) is c-connected if, for every cluster µ ∈ T , graph G[µ] is connected.
We will make use of the following lemma.

Lemma 1 Any maximal c-planar clustered graph is c-connected.

Proof: Consider any maximal c-planar clustered graph C(G, T ) and suppose,
for a contradiction, that it is not c-connected. Then there exists a cluster µ ∈ T
such that G[µ] is not connected. Since G is a maximal planar graph, there exists
a cycle C in G such that: (i) no vertex of C belongs to µ, and (ii) in any planar
drawing Γ of G, C contains a vertex of µ in its interior and a vertex of µ in its
exterior. It follows that, in any drawing ΓC of C with no edge crossing and such
that the closed simple region µ contains all and only the vertices that belong
to µ, the boundary of µ intersects an edge of C at least twice, thus ΓC is not
c-planar. Hence, C is not c-planar, a contradiction which proves the lemma. �

In Section 6, we will manipulate a maximal c-planar flat clustered graph
C(G, T ) in two different ways.

The operation split along a separating triangle takes as an input a maximal
c-planar flat clustered graph C(G, T ) and a separating triangle (u′, v′, z′) in G
and returns two clustered graphs C1(G1, T 1) and C2(G2, T 2) defined as follows.
Graph G1 (G2) is the subgraph of G induced by all the vertices external to
(u′, v′, z′) (resp. internal to (u′, v′, z′)), by u′, by v′, and by z′; T 1 (T 2) is the
subtree of T whose clusters contain at least one vertex of G1 (resp. of G2). See
Figure 6. We have the following:
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u′
v′

z′

C(G, T )

u′ v′

z′

C1(G1, T 1)

u′
v′

z′

C2(G2, T 2)

Figure 6: Illustration for the operation “split along a separating triangle”.

Lemma 2 The following statements hold:

• C1(G1, T 1) and C2(G2, T 2) are maximal c-planar flat clustered graphs;

• the number of vertices of each of C1 and C2 is strictly less than the number
of vertices of C;

• Co and C1
o are the same clustered graph; and

• denoting by C′
o(G

′
o, T

′
o) the clustered graph such that G′

o is cycle (u′, v′, z′)
and T ′

o is the subtree of T whose clusters contain at least one vertex of
G′

o, we have that C′
o and C2

o are the same clustered graph.

Proof: Since T 1 and T 2 are subtrees of T , it follows that C1(G1, T 1) and
C2(G2, T 2) are flat clustered graphs. Since all the faces of G1 (G2), except for
the one delimited by cycle (u′, v′, z′), are also faces of G, they are all delimited
by cycles with three incident vertices. It follows that C1(G1, T 1) and C2(G2, T 2)
are maximal flat clustered graphs. Finally, a c-planar drawing of C1(G1, T 1)
(C2(G2, T 2)) can be obtained from any c-planar drawing of C(G, T ) by removing
vertices, edges, and clusters not in C1(G1, T 1) (resp. not in C2(G2, T 2)). Thus,
C1(G1, T 1) and C2(G2, T 2) are maximal c-planar flat clustered graphs.

Since (u′, v′, z′) is a separating triangle, the number of vertices of each of C1

and C2 is strictly less than the number of vertices of C.
Since the cycle delimiting the outer face of G1 is the same cycle delimiting

the outer face of G, and since T 1 contains all the clusters that contain vertices
of G1, we have that Co and C1

o are the same clustered graph.
Finally, since (u′, v′, z′) delimits both the outer face of G′

o and the outer face
of G2, and since T ′

o and T 2 contain all the clusters that contain u′, v′, or z′, we
have that C′

o and C2
o are the same clustered graph. �

The operation contraction of an internal edge takes as an input a maximal
c-planar flat clustered graph C(G, T ) with no separating triangle and an internal
edge (u′, v′) such that µ(u′) = µ(v′), and returns a clustered graph C′(G′, T ′)
defined as follows. Since G is maximal, since (u′, v′) is an internal edge, and
since G contains no separating triangle, it follows that: (i) u′ and v′ have
exactly two common neighbors, say z1 and z2, and (ii) vertices u′, z1, v

′, and
z2 appear in this clockwise order along cycle (u′, z1, v

′, z2), with edge (u′, v′) in
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the interior of such a cycle. Denote by u0 = z1, u1 = v′, u2 = z2, u3, . . . , ul and
by v0 = z2, v1 = u′, v2 = z1, v3, . . . , vm the clockwise orders of the neighbors
of u′ and of v′ in G, respectively. Contract edge (u′, v′) to a vertex w, that is,
delete u′ and v′ and their incident edges and insert a vertex w inside the face of
G′′ = G−{u, v} where u and v used to lie. The clockwise order of the neighbors
of w is (z1, v3, . . . , vm, z2, u3, . . . , ul). Denote by G′ the resulting graph. Also,
denote by T ′ the tree obtained from T be removing vertices u′ and v′ and by
inserting w as a child of µ(u′). See Figure 7. We have the following.

u′

v′

C(G, T )

z1

z2

w

C ′(G′, T ′)

z1

z2

Figure 7: Illustration for the operation “contraction of an internal edge”.

Lemma 3 The following statements hold:

• C′(G′, T ′) is a maximal c-planar flat clustered graph;

• the number of vertices of C′ is strictly less than the number of vertices of
C; and

• Co and C′
o are the same clustered graph.

Proof: By construction, T ′ has the same clusters as T , hence C′(G′, T ′) is a
flat clustered graph. All the faces of G′, except for the one in which u′ and v′

lie in G, are delimited by cycles with three incident vertices, because they are
also faces of G. Further, the cycle delimiting the face of G′ in which u′ and v′

lie in G is simple, as otherwise G would contain a separating triangle. It follows
that G′ is simple and maximal, hence C′(G′, T ′) is a maximal flat clustered
graph. Finally, a c-planar drawing Γ′ of C′(G′, T ′) can be obtained from any
c-planar drawing Γ of C(G, T ) by drawing a simple closed region D in Γ slightly
surrounding edge (u′, v′), by deleting edges (u′, v′), (u′, z1), and (u′, z2) from Γ,
by deleting the part of each edge incident to u′ or to v′ in the interior of D, and
by connecting all the points on the boundary of D and belonging to some edge
to a point (representing w) in the interior of D. Thus, C′(G′, T ′) is a maximal
c-planar flat clustered graph.

By construction, C′ has exactly one less vertex than C.

Finally, since (u′, v′) is an internal edge of G, the cycle delimiting the outer
face of G′ coincides with the cycle delimiting the outer face of G. �
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We now present a geometric lemma that will turn out to be more than
useful in the upcoming proofs. Consider a maximal c-planar flat clustered graph
C(G, T,A) and its outer face Co(Go, To, Ao). Denote by u, v, and z the clockwise
order of the vertices along cycle Go. Assume that µ(u) 6= µ(v), µ(u) 6= µ(z),
and µ(v) 6= µ(z). Consider an extensible drawing Γo of Co. Let p be any
point in S(u, v, z). Consider the wedge Wu with an angle smaller than 180◦ and
delimited by h(p, u) and h(p, a(u)). We have the following.

Lemma 4 Neither v, nor z, nor a(v), nor a(z) is contained in Wu.

Proof: Suppose that the clockwise rotation around p bringing h(p, u) to co-
incide with h(p, a(u)) is smaller than 180◦. The case in which the counter-
clockwise rotation around p bringing h(p, u) to coincide with h(p, a(u)) is smaller
than 180◦ can be discussed analogously.

Suppose, for a contradiction, that z is in Wu. Since the clockwise order of
the vertices around the outer face of G is u, v, and z, it follows that v lies to
the left of h(u, z); however, this implies that triangle (u, v, z) does not contain
p in its interior, a contradiction.

µ(u)

a(u)

u

S(u, v, z)

a(z)

µ(z) µ(z)

z
µ(u)

a(u)

u

S(u, v, z)

a(z)

R(z)

R(z)

(a) (b)

Figure 8: Illustration for the proof of Lemma 4.

If a(z) belongs toWu, then we distinguish two cases. If a(z) is in the bounded
region B of the plane delimited by segment pa(u), by segment pu, and by the
border of cluster µ(u), as in Figure 8(a), then µ(z) intersects either cluster µ(u),
or region σ(u, S(u, v, z)), or extension region R(u), given that z is not in Wu,
thus contradicting the assumption that Γo is an extensible drawing. Otherwise,
a(z) is not in B, as in Figure 8(b); however, this implies that R(z) intersects
cluster µ(u), thus contradicting the assumption that Γo is an extensible drawing.
It follows that a(z) does not belong to Wu.

If a(v) is in Wu, then, since segments pa(u), pa(v), and pa(z) come in this
clockwise order around p, vertex a(z) is also in Wu, a contradiction.

Finally, if v is in Wu, we distinguish two cases. If v is in B, then µ(v) inter-
sects either µ(u), or region σ(u, S(u, v, z)), or extension region R(u), given that
a(v) is not in Wu; if v is not in B, then σ(v, S(u, v, z)) intersects cluster µ(u).
In both cases, the assumption that Γo is an extensible drawing is contradicted,
hence v does not belong to Wu. This concludes the proof of the lemma. �
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4 Algorithm Outline

Our proof of Theorem 2 consists of an algorithm that, given a maximal c-planar
flat clustered graph C(G, T,A) and an extensible drawing Γo of the outer face
Co(Go, To, Ao) of C(G, T,A), constructs an extensible drawing Γ of C(G, T,A)
that completes Γo. The algorithm works by induction on the number of vertices
of G. In this section we present an outline of the algorithm.

The induction distinguishes five cases:

• (Inductive Case 1) G contains a separating triangle.

• (Inductive Case 2) G contains no separating triangle and contains an in-
ternal edge (u′, v′) such that µ(u′) = µ(v′).

• (Base Case 1) G has no internal vertices.

• (Base Case 2) G is K4 and it does not contain any internal edge (x, y)
with µ(x) = µ(y).

• (Base Case 3) G contains more than one internal vertex, does not contain
any separating triangle, and does not contain any internal edge (x, y) with
µ(x) = µ(y).

The inductive cases of the algorithm strongly resemble the ones in the famous
algorithm by Fary [12], proving that every plane graph admits a straight-line
planar drawing.

In Inductive Case 1, we consider a separating triangle (u′, v′, z′). We ap-
ply the operation “split along a separating triangle”, defined in Section 3, in
order to split C(G, T ) in two smaller maximal c-planar flat clustered graphs
C1(G1, T 1) and C2(G2, T 2) (see also Lemma 2). We inductively compute an
extensible drawing Γ1 of C1 completing Γo; moreover, we inductively compute
an extensible drawing Γ2 of C2 completing Γ2

o, where Γ2
o is the drawing of C2

o

in Γ1. Plugging Γ2 into Γ1 provides a drawing Γ of C.
In Inductive Case 2, we consider an internal edge (u′, v′) such that µ(u′) =

µ(v′). We apply the operation “contraction of an internal edge”, defined in
Section 3, in order to transform C(G, T ) into a smaller maximal c-planar flat
clustered graph C′(G′, T ′) (see also Lemma 3). We inductively compute an
extensible drawing Γ′ of C′ completing Γo; further, we suitably replace the
vertex w edge (u′, v′) has been contracted to with a drawing of edge (u′, v′),
thus obtaining an extensible drawing Γ of C completing Γo.

If neither Inductive Case 1 nor Inductive Case 2 applies, then we are in a
base case, that is, we can provide an algorithm that constructs an extensible
drawing Γ of C completing Γo without using induction. This is trivial in Base
Case 1, in which C(G, T ) coincides with Co(Go, To) (and hence Γ coincides with
Γo). However, the task is not trivial in Base Cases 2 and 3. In these cases,
involved geometric considerations lead to determine a drawing for the vertices
of G not in Go, the clusters of T not in To, and the vertices of A not in Ao, thus
obtaining an extensible drawing Γ of C completing Γo.
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We conclude this section by proving that the case distinction we presented
is complete.

Lemma 5 Let C(G, T ) be a maximal c-planar flat clustered graph. Then exactly
one among Inductive Cases 1-2 and Base Cases 1-3 applies to C(G, T ).

Proof: Suppose that G has a separating triangle. Then Inductive Case 1 applies
to C(G, T ). By definition, Inductive Case 2 and Base Case 3 do not apply to
C(G, T ). In order for G to contain a separating triangle, the number of vertices
of G is at least five. Hence, Base Cases 2-3 do not apply to C(G, T ).

Assume next that G has no separating triangle (hence Inductive Case 1 does
not apply to C(G, T )). If G has an internal edge (u′, v′) such that µ(u′) = µ(v′),
then Inductive Case 2 applies to C(G, T ). By definition, Base Cases 2-3 do not
apply to C(G, T ). Since G has an internal edge, it also has an internal vertex,
hence Base Case 1 does not apply to C(G, T ).

Assume next that G has no separating triangle and no internal edge (u′, v′)
such that µ(u′) = µ(v′) (hence Inductive Cases 1 and 2 do not apply to C(G, T )).
If G has no internal vertex, then Base Case 1 applies to C(G, T ) and, by defini-
tion, Base Cases 2 and 3 do not apply to C(G, T ). If G has exactly one internal
vertex, then Base Case 2 applies to C(G, T ) and, by definition, Base Cases 1
and 3 do not apply to C(G, T ). If G has more than one internal vertex, then
Base Case 3 applies to C(G, T ) and, by definition, Base Cases 1 and 2 do not
apply to C(G, T ). �

5 Base Cases

In this section we present the three base cases of the induction. Denote by
(u, v, z) the clockwise order of the vertices along cycle Go.

Base Case 1: G has no internal vertices. In this case, C = Co and the
extensible drawing Γo of Co is an extensible drawing Γ of C that completes Γo.

Base Case 2: G is K4 and it does not contain any internal edge (x, y) with
µ(x) = µ(y). Refer to Figure 9. Let x and f be the unique internal vertex and
internal face of G, respectively. Select any point p inside S(u, v, z) (if µ(u), µ(v),
and µ(z) are all different), or inside S(v, z) (if µ(u) = µ(v) 6= µ(z)). The cases
in which µ(u) = µ(z) 6= µ(v) or µ(v) = µ(z) 6= µ(u) can be treated analogously
to the case in which µ(u) = µ(v) 6= µ(z). Observe that µ(u) = µ(v) = µ(z) does
not hold, given that C is c-planar and that µ(x) 6= µ(u). Draw both x and a(x)
at p. Draw the edges of G and A not in Co as straight-line segments.

We next draw extension regions for the three internal faces f1 = (u, v, x),
f2 = (v, z, x), and f3 = (z, u, x) of G. We distinguish two cases, depending on
whether µ(u), µ(v), and µ(z) are all different, or µ(u) = µ(v) 6= µ(z).

First, suppose that µ(u), µ(v), and µ(z) are all different.

• Extension regions R(u, v) for f1, R(v, z) for f2, and R(z, u) for f3 coincide
with extension regions R(u, v), R(v, z), and R(z, u) for f , respectively.
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u

v

z

a(u)

a(v)

a(z)

µ(v)

µ(z)

µ(u)

(a)

u

v

z

a(u) a(z)

µ(z)

µ(u)

(b)

Figure 9: Base Case 2, if (a) µ(u), µ(v), and µ(z) are all different, or if (b)
µ(u) = µ(v) 6= µ(z).

• Side regions S(v, x) for f1 and S(v, x) for f2 are drawn as small regions
inside S(u, v, z) touching (v, x) in two points p and q very close to x, such
that q is farther from x than p or closer to x than p, depending on whether
a(v) is to the left or to the right of h(x, v), respectively. This placement
implies that extension regions R(v, x) for f1 and R(v, x) for f2 do not
intersect, except on their borders.

• Extension regions R(x, u) for f1, R(x, u) for f3, R(z, x) for f2, and R(z, x)
for f3 are drawn analogously.

• In order to define S(u, v, x), we first select a point p with the following
properties: (i) p is in the interior of S(u, v, z); (ii) p is inside f1; (iii) p
is to the right of h(a(v), x); (iv) p is to the left of h(a(u), x); and (v)
segments pa(u), pa(v), and pa(x) do not intersect the extension regions
R(v, x) and R(x, u) for f1. Observe a point p satisfying properties (i)–
(iv) exists by Lemma 4 and since Γo is an extensible drawing. Further,
p satisfies property (v) provided that side regions S(v, x) and S(x, u) for
f1 are small enough and sufficiently close to x. Figure 10 illustrates the
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choice of p for different arrangements of points u, v, x, a(u), and a(v).
Then S(u, v, x) is any small convex region surrounding p. An immediate
consequence of such a construction is that extension regions R(u), R(v),
and R(x) do not intersect extension regions R(v, x) and R(x, u) for f1.

• Extension regions R(v), R(z), and R(x) for f2 and R(z), R(u), and R(x)
for f3 are constructed analogously.

x ≡ a(x)

u

v

a(u)

a(v)

p

x ≡ a(x)

u

v

a(u)

a(v)

p

x ≡ a(x)

u

v

a(u)a(v)

p

(a) (b) (c)

Figure 10: Choice of the point p around which region S(u, v, x) is constructed.

Second, suppose that µ(u) = µ(v) 6= µ(z). Extension region R(v, z) for
f2 coincides with extension region R(v, z) for f . The construction of all other
extension regions is the same as in the case in which µ(u), µ(v), and µ(z) are all
different, with the only difference that the side and central regions that define
the extension regions for f1, f2, and f3 all lie inside the side region S(z, u) that
defines the extension region R(z, u) for f (rather than inside the central region
S(u, v, z), which in this case does not exist).

It remains to draw cluster µ(x). Such a cluster is drawn as an arbitrary
small region surrounding x. Denote by Γ the resulting drawing.

Lemma 6 Γ is an extensible drawing of C completing Γo.

Proof: We prove the statement in the case in which µ(u), µ(v), and µ(z) are
all different. The proof for the cases in which two of such clusters coincide is
analogous. We will prove the lemma by proving that: (i) Γ is a c-planar drawing;
(ii) Γ is a convex drawing; (iii) Γ is a multilayer drawing; (iv) the extension
regions satisfy the properties of Definition 2; and (v) Γ is an extensible drawing.
Figure 11 describes the structure of the proof of the lemma.

C-planar drawing: Vertex x lies inside cycle (u, v, z), hence Γ has no
edge crossings. Cluster µ(x) lies inside central region S(u, v, z) which, by def-
inition of extensible drawing, has no intersection with clusters µ(u), µ(v), and
µ(z). Hence, Γ has no region-region crossings. Since µ(x) is drawn as an arbi-
trary small region inside S(u, v, z), which lies inside cycle (u, v, z), cluster µ(x)
does not intersect any edge of G other than (u, x), (v, x), and (z, x). Since
σ(u, S(u, v, z)) has no intersection with any cluster other than µ(u), then edge
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STRUCTURE OF THE PROOF

(i) c-planar drawing

(ii) convex drawing

(iii) multilayer drawing

(iv) extension regions

(v) extensible drawing

see Figure 12 see Figure 13

Figure 11: Structure of the proof of Lemma 6.

(u, x), which lies inside σ(u, S(u, v, z)), has no intersections with clusters µ(v)
and µ(z). Analogously, edge (v, x) has no intersections with clusters µ(u) and
µ(z), and edge (z, x) has no intersections with clusters µ(u) and µ(v). Hence,
Γ has no edge-region crossings. It follows that Γ is a c-planar drawing.

Convex drawing: Clusters µ(u), µ(v), and µ(z) are convex, since Γo is an
extensible drawing, and cluster µ(x) is convex by construction. It follows that
Γ is a straight-line convex drawing.

Multilayer drawing: Vertices a(u), a(v), and a(z) are inside µ(u), µ(v),
and µ(z), respectively, since Γo is an extensible drawing, and vertex a(x) is inside
µ(x), by construction. Since Γo is an extensible drawing, R(u), R(v), and R(z)
do not intersect any of edges (a(u), a(v)), (a(v), a(z)), and (a(z), a(u)), except on
their borders. Since a(x) is inside S(u, v, z), then edges (a(u), a(x)), (a(v), a(x)),
and (a(z), a(x)) lie inside R(u), R(v), and R(z), respectively. This implies
that the drawing of A is planar, that edge (a(u), a(x)) has no intersection with
clusters µ(v) and µ(z), that edge (a(v), a(x)) has no intersection with clusters
µ(u) and µ(z), and that edge (a(z), a(x)) has no intersection with clusters µ(u)
and µ(v). Moreover, none of edges (a(u), a(v)), (a(v), a(z)), and (a(z), a(u)) has
intersection with cluster µ(x), since such a cluster is inside S(u, v, z) and since
Γo is an extensible drawing. It follows that Γ is a multilayer drawing.

Extension regions: We first prove that central region S(u, v, x) and side
regions S(u, v), S(v, x), and S(x, u) have the properties required in Definition 2.
Refer to Figure 12.

By construction, central region S(u, v, x) and side regions S(u, v), S(v, x),
and S(x, u) lie inside f1, central region S(v, z, x) and side regions S(v, z), S(z, x),
and S(x, v) lie inside f2, and central region S(z, u, x) and side regions S(z, u),
S(u, x), and S(x, z) lie inside f3.

Since Γo is an extensible drawing, region σ(u, S(u, v)) ∪ σ(v, S(u, v)) does
not intersect region σ(u, S(u, v, z)), except on its border, hence it does not in-
tersect regions σ(u, S(u, v, x)) and σ(u, S(u, x)), except on its border, as such
regions entirely lie inside σ(u, S(u, v, z)). Analogously, region σ(u, S(u, v)) ∪
σ(v, S(u, v)) does not intersect regions σ(v, S(u, v, x)) and σ(v, S(v, x)), except
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σ(u, S(u, v)) ∪ σ(v, S(u, v)) does not intersect σ(u, S(u, v, x)) and σ(u, S(u, x))

σ(u, S(u, v)) ∪ σ(v, S(u, v)) does not intersect σ(v, S(u, v, x)) and σ(v, S(v, x))

σ(u, S(u, v)) ∪ σ(v, S(u, v)) does not intersect σ(x, S(u, v, x)), σ(x, S(v, x)), and σ(x, S(u, x))

σ(x, S(u, x)) ∪ σ(u, S(u, x)), σ(x, S(v, x)) ∪ σ(v, S(v, x)), and

σ(x, S(u, v, x)) ∪ σ(u, S(u, v, x)) ∪ σ(v, S(u, v, x)) do not intersect each other

σ(u, S(u, v)) ∪ σ(v, S(u, v)) does not intersect µ(x)

σ(u, S(u, v, x)) and σ(u, S(u, x)) do not intersect µ(v)

σ(v, S(u, v, x)) and σ(v, S(v, x)) do not intersect µ(u)

σ(x, S(u, v, x)), σ(x, S(u, x)), and σ(x, S(v, x)) do not intersect µ(u) and µ(v)

for every point p ∈ S(u, v, x), pa(u), pa(v), and pa(x) are in this clockwise order around p

(iv) extension regions

Figure 12: Structure of the proof that central region S(u, v, x) and side regions
S(u, v), S(v, x), and S(x, u) have the properties required in Definition 2.

on its border. Moreover, region σ(u, S(u, v)) ∪ σ(v, S(u, v)) does not inter-
sect regions σ(x, S(u, v, x)), σ(x, S(v, x)), and σ(x, S(u, x)), as such regions en-
tirely lie inside S(u, v, z). Regions σ(x, S(u, x)) ∪ σ(u, S(u, x)), σ(x, S(v, x)) ∪
σ(v, S(v, x)), and σ(x, S(u, v, x))∪σ(u, S(u, v, x))∪σ(v, S(u, v, x)) do not inter-
sect each other, since by construction the first two regions are arbitrarily close
to segments ux and vx, respectively, and as the third region is arbitrarily close
to pu∪ pv∪ px, with p being a point inside triangle (u, v, x) such that S(u, v, x)
is an arbitrarily small region surrounding p. Analogous considerations prove the
disjointness of the regions inside f2 and f3.

Since Γo is an extensible drawing, region σ(u, S(u, v))∪σ(v, S(u, v)) does not
intersect cluster µ(x), as such a cluster is inside S(u, v, z). Moreover, regions
σ(u, S(u, v, x)) and σ(u, S(u, x)) do not intersect cluster µ(v), as such regions
lie inside σ(u, S(u, v, z)); analogously, σ(v, S(u, v, x)) and σ(v, S(v, x)) do not
intersect cluster µ(u). Furthermore, regions σ(x, S(u, v, x)), σ(x, S(u, x)), and
σ(x, S(v, x)) do not intersect clusters µ(u) and µ(v) as such regions lie inside
S(u, v, z). Analogous considerations prove the disjointness of the regions inside
f2 and f3 with respect to the clusters containing vertices incident to such faces.

We prove that, for every point q ∈ S(u, v, x), segments qa(u), qa(v), and
qa(x) are in this clockwise order around q. By construction, S(u, v, x) is entirely
to the right of h(a(v), a(x)) and to the left of h(a(u), a(x)). Hence, the graph
whose vertices are a(u), q, a(v), and a(x) and whose edges are (a(u), q), (q, a(v)),
(a(v), a(x)), (a(x), a(u)), and (a(x), q) is planar in Γ, and the clockwise order of
the vertices along its outer face is a(u), q, a(v), and a(x). The statement follows.
Analogous considerations hold for the points in S(v, z, x) and in S(z, u, x).

Extensible drawing: Next, we show that the extension regions for f1, f2,
and f3 satisfy the five properties that are required for Γ to be an extensible



JGAA, 18(5) 633–675 (2014) 651

drawing, as in Definition 3. Figure 13 illustrates the structure of the proof that
Γ is an extensible drawing.

Property 1: See Figure 14

(v) extensible drawing

Property 2: See Figure 20

Property 3: See Figure 23

Property 4 (for f1):

Property 5 (for f1):

R(u), R(v), and R(x) do not intersect any cluster other than µ(u), µ(v), µ(z), and µ(x)
R(u) intersects neither µ(v) nor µ(z)

R(x) intersects neither µ(u), µ(v), or µ(z)

R(u) does not intersect µ(x)
R(v) intersects neither µ(u), µ(z), nor µ(x)

R(u, v), R(v, x), and R(x, u) do not intersect any cluster other than µ(u), µ(v), µ(z), and µ(x)
R(u, v) does not intersect µ(z)
R(u, v) does not intersect µ(x)
R(u, x) intersects neither µ(v) nor µ(z)
R(v, x) intersects neither µ(u) nor µ(z)

Figure 13: Structure of the proof that Γ satisfies Properties 1–5 of Definition 3.

Property 1. Figure 14 illustrates the structure of the proof that Γ satisfies
Property 1 of Definition 3. We prove that no extension region for f1 intersects
an edge of A, the proofs for the extension regions for f2 and f3 being analogous.
First, all the extension regions for f1 are inside region R(u, v)∪R(v, z)∪R(z, u)∪
R(u) ∪ R(v) ∪ R(z) (where R(u, v), R(v, z), R(z, u), R(u), R(v), and R(z) are
extension regions for f), hence they intersect neither (a(u), a(v)), (a(u), a(z)),
nor (a(v), a(z)), except on their borders, since Γo is an extensible drawing.
Extension region R(u, v) for f1 does not intersect any edge of A incident to
a(x), given that any such an edge is inside region R(u) ∪ R(v) ∪ R(z) (where
R(u), R(v), and R(z) are extension regions for f), given that extension region
R(u, v) for f1 coincides with extension region R(u, v) for f , and given that Γo

is an extensible drawing.
It remains to prove that extension regions R(u, x), R(v, x), R(u), R(v), and

R(x) for f1 do not intersect any edge of A incident to a(x), except possibly
on their borders, provided that regions S(u, x), S(v, x), and S(u, v, x) are suffi-
ciently small.

• We show that extension region R(u, x) for f1 does not intersect edge
(a(u), a(x)), except on its border, provided that S(u, x) is sufficiently
small. We distinguish three cases. If a(u) lies on the same side as v with
respect to h(u, x) (see Figure 15(a)), then it suffices to choose S(u, x)
sufficiently small so that it fits inside the wedge delimited by h(x, u) and
h(x, a(u)). If a(u) lies on the opposite side of v with respect to h(u, x)
(see Figure 15(b)), then it suffices to choose S(u, x) sufficiently small so
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- no extension region for f1 intersects any of {(a(u), a(v)), (a(u), a(z)), (a(v), a(z))}

Property 1 (for f1):

- R(u, v) intersects neither (a(u), a(x)),(a(v), a(x)), nor (a(z), a(x))

- R(u, x) does not intersect (a(u), a(x))
if a(u) and v are on the same side w.r.t. to h(u, x)
if a(u) and v are not on the same side w.r.t. to h(u, x)
if a(u), u, and x are collinear

- R(v, x) does not intersect (a(v), a(x))
- R(u, x) does not intersect (a(v), a(x))
- R(v, x) intersects neither (a(u), a(x)) nor (a(z), a(x)), and R(u, x) does not intersect (a(z), a(x))
- R(u) does not intersect (a(u), a(x))
- R(v) does not intersect (a(v), a(x))

- R(u) does not intersect (a(v), a(x))

- R(v) does not intersect (a(u), a(x))

- R(u) does not intersect (a(z), a(x))

- R(x) intersects neither (a(u), a(x)),(a(v), a(x)), nor (a(z), a(x))
- R(v) does not intersect (a(z), a(x))

if a(z) is to the right of h(a(u), a(x))
if a(z) is to the left of h(a(u), a(x)) and a(v) lies outside triangle (a(x), a(u), r)

if a(z) is to the left of h(a(u), a(x)) and a(v) lies inside triangle (a(x), a(u), r)

if a(v) lies to the right of h(v, x) and to the left of h(u, x) and

a(u) is to the left of h(a(v), a(x))

a(u) lies to the right of h(v, x) or
a(u) lies to the left of h(v, x)

} Case 1

Case 2

a(u) is to the right of h(v, x) or to the left of h(u, x) or

a(u) is to the right of h(a(v), a(x)) or

if a(v) lies to the left of h(v, x) and to the left of h(u, x) and

}
if a(v) lies to the left of h(v, x) and to the right of h(u, x) and

a(u) lies to the left of h(v, x) and to the right of h(u, x)
}Case 3

Figure 14: Structure of the proof that Γ satisfies Property 1 of Definition 3.

that it lies on the same side as u with respect to h(a(u), x). Finally, if x,
u, and a(u) are collinear, then R(u, x) does not intersect edge (a(u), a(x)),
except on its border, for any choice of S(u, x) inside (u, v, z).

• It can be proved analogously that extension region R(v, x) for f1 does not
intersect edge (a(v), a(x)), except on its border, provided that S(v, x) is
sufficiently small.

• We prove that extension region R(u, x) for f1 does not intersect edge
(a(v), a(x)), except on its border. For a contradiction, suppose it does.
Then vertex a(v) has to lie in the wedge with an angle smaller than 180◦

delimited by h(x, u) and h(x, a(u)), as otherwise it would suffice to pick
S(u, x) as a sufficiently small region in order to avoid intersections between
R(u, x) and (a(v), a(x)) (see Figure 15(c)). However, by Lemma 4, vertex
a(v) does not lie in the wedge delimited by h(x, u) and h(x, a(u)).

• It can be analogously proved that extension region R(v, x) for f1 does not
intersect edge (a(u), a(x)) or edge (a(z), a(x)), except on its border, pro-
vided that S(v, x) is sufficiently small, and that extension region R(u, x)
for f1 does not intersect edge (a(z), a(x)), except on its border, provided
that S(u, x) is sufficiently small.
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x ≡ a(x)

u

v
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x ≡ a(x)
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x ≡ a(x)
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Figure 15: (a) Extension regionR(u, x) for f1 does not intersect edge (a(u), a(x))
when a(u) lies on the same side as v with respect to h(u, x). (b) Extension region
R(u, x) for f1 does not intersect edge (a(u), a(x)) when a(u) lies on the opposite
side of v with respect to h(u, x). (c) Extension region R(u, x) for f1 does not
intersect edge (a(v), a(x)) when a(v) is not in the wedge with an angle smaller
than 180◦ delimited by h(x, u) and h(x, a(u)).

• Extension region R(u) for f1 does not intersect edge (a(u), a(x)), except
on its border, provided that the point p around which region S(u, v, x) is
constructed is not on the line through a(u) and a(x) and provided that
region S(u, v, x) is small enough.

• It can be proved analogously that extension region R(v) for f1 does not
intersect edge (a(v), a(x)), except on its border, provided that region
S(u, v, x) is small enough.

• Next, we prove that extension region R(u) for f1 does not intersect edge
(a(v), a(x)). We distinguish three cases, based on the position of a(v) with
respect to triangle (u, v, x) (see Figure 16). In Case 1, vertex a(v) lies to
the left of h(u, x) and to the right of h(v, x). In Case 2, vertex a(v) lies to
the left of h(v, x) and to the left of h(u, x). In Case 3, vertex a(v) lies to
the right of h(u, x) and to the left of h(v, x). No other cases are possible.
Namely, a(v) does not lie to the right of h(u, x) and to the right of h(v, x),
as otherwise Lemma 4 would be violated (with u being inside the wedge
with an angle smaller than 180◦ delimited by h(x, v) and h(x, a(v)).

Case 1. By construction, region S(u, v, x) is to the right of h(a(v), a(x)).
Hence, if a(u) is also to the right of h(a(v), a(x)), then R(u) does not
intersect edge (a(v), a(x)) (see Figure 17(a)). Suppose that a(u) is to
the left of h(a(v), a(x)). Then a(u) does not lie to the left of h(u, x),
as otherwise the wedge with an angle smaller than 180◦ and delimited
by h(x, u) and h(x, a(u)) would contain a(v), thus violating Lemma 4.
Hence, a(u) is to the right of h(u, x). By construction, S(u, v, x) is entirely
to the left of h(a(u), a(x)), hence R(u) and (a(v), a(x)) are separated by
h(a(u), a(x)), and thus they do not intersect (see Figure 17(b)).
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x ≡ a(x)

u

v

Case 1

not possible

Case 2

Case 3

by Lemma 4

Figure 16: Possible locations of a(v) with respect to triangle (u, v, x).

x ≡ a(x)

u
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a(v)
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x ≡ a(x)

u

v
a(v)

h(a(v), a(x))
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a(v)

a(u)
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Figure 17: (a)–(b) Illustration for the proof that extension region R(u) for f1
does not intersect edge (a(v), a(x)) in Case 1. (c) Illustration for the proof that
extension region R(u) for f1 does not intersect edge (a(v), a(x)) in Case 2.

Case 2. If a(u) lies to the right of h(v, x), then extension region R(u) and
edge (a(v), a(x)) are separated by h(v, x), hence they do not intersect.
Suppose that a(u) is to the left of h(v, x). Then a(u) does not lie to the
left of h(u, x), as otherwise the wedge with an angle smaller than 180◦ and
delimited by h(x, u) and h(x, a(u)) would contain vertex v, thus violating
Lemma 4. Hence, a(u) is to the right of h(u, x). By construction, S(u, v, x)
entirely lies to the left of h(a(u), a(x)), hence R(u) and (a(v), a(x)) are
separated by h(a(u), a(x)) and they do not intersect (see Figure 17(c)).

Case 3. By construction, region S(u, v, x) is entirely inside f1. Hence,
if a(u) is to the right of h(v, x) or to the left of h(u, x), then R(u) and
(a(v), a(x)) are separated by h(v, x) or by h(u, x), respectively, hence they
do not intersect (see Figure 18(a)). Assume that a(u) is to the left of
h(v, x) and to the right of h(u, x). Then we have that a(u) is to the
left of h(a(v), a(x)), as otherwise Lemma 4 would be violated, with a(v)
being inside the wedge with an angle smaller than 180◦ and delimited by
h(x, u) and h(x, a(u)). By construction, S(u, v, x) entirely lies to the left of
h(a(u), a(x)), hence R(u) and (a(v), a(x)) are separated by h(a(u), a(x))
and they do not intersect (see Figure 18(b)).
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x ≡ a(x)
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a(u)
a(u)
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Figure 18: Illustration for the proof that extension region R(u) for f1 does not
intersect edge (a(v), a(x)) in Case 3. (a) a(u) is to the right of h(v, x) or to the
left of h(u, x). (b) a(u) is to the left of h(v, x) and to the right of h(u, x).

• It can be proved analogously that extension region R(v) for f1 does not
intersect edge (a(u), a(x)).

• Next, we prove that extension region R(u) for f1 does not intersect edge
(a(z), a(x)). By construction, extension region R(u) for f1 is to the left of
h(a(u), a(x)). Hence, if a(z) is to the right of h(a(u), a(x)), then exten-
sion regionR(u) for f1 and edge (a(x), a(z)) are separated by h(a(u), a(x)),
hence they do not intersect. Suppose that a(z) is to the left of h(a(u), a(x)).
Suppose, for a contradiction, that extension regionR(u) for f1 crosses edge
(a(z), a(x)) and denote by r any such an intersection point. Since edges
(a(u), a(x)), (a(v), a(x)), and (a(z), a(x)) appear in this clockwise order
around a(x), it follows that edge (a(v), a(x)) lies in the wedge with an angle
smaller than 180◦ delimited by h(a(x), a(u)) and h(a(x), a(z)). However,
if a(v) lies outside triangle (a(x), a(u), r), then edge (a(v), a(x)) intersects
extension region R(u) for f1 (see Figure 19(a)), which we already proved
not to be the case, while if a(v) lies inside triangle (a(x), a(u), r), then
edge (a(z), a(v)) crosses extension region R(u) for f (see Figure 19(b)),
which contradicts the assumption that Γo is an extensible drawing.

a(z)

h(a(u), a(x))

a(u)

x ≡ a(x)

r

a(v)

a(z)

h(a(u), a(x))

a(u)

x ≡ a(x)

r a(v)

(a) (b)

Figure 19: Illustration for the proof that extension region R(u) for f1 does not
intersect edge (a(z), a(x)).

• It can be proved analogously that extension region R(v) for f1 does not
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intersect edge (a(z), a(x)).

• To ensure that extension region R(x) for f1 does not intersect edges
(a(u), a(x)), (a(v), a(x)), and (a(z), a(x)), it suffices to choose the point p
around which S(u, v, x) lies so that p does not lie on segments a(u)a(x),
a(v)a(x), and a(z)a(x), and to choose S(u, v, x) small enough.

Property 2. Figure 20 illustrates the structure of the proof that Γ satisfies
Property 2 of Definition 3. We prove that no two extension regions for f1
intersect, except on their borders, unless they both comprise central region
S(u, v, x). Analogous proofs for f2 and f3 can be exhibited.

Property 2 (for f1):

- R(u, v) intersects no other extension region for f1
- R(u), R(v), and R(x) do not intersect R(u, x) and R(v, x)

σ(a(x), S(v, x)) does not intersect σ(a(x), S(u, x))
- R(u, x) does not intersect R(v, x)

σ(a(x), S(v, x)) does not intersect σ(a(u), S(u, x))
σ(a(x), S(u, x)) does not intersect σ(a(v), S(v, x))
σ(a(u), S(u, x)) does not intersect σ(a(v), S(v, x))

if a(u) is to the left of h(u, x)
if a(v) is to the right of h(v, x)
if a(u) is to the right of h(u, x) and a(v) is to the left of h(v, x)

- R(u), R(v), and R(x) do intersect each other

Figure 20: Structure of the proof that Γ satisfies Property 2 of Definition 3.

• Extension region R(u, v) for f1 does not intersect any of the other ex-
tension regions for f1, given that the latter ones are inside region R(u) ∪
R(v) ∪ R(z) (where R(u), R(v), and R(z) are extension regions for f),
given that extension region R(u, v) for f1 coincides with extension region
R(u, v) for f , and given that Γo is an extensible drawing.

• Extension regions R(u), R(v), and R(x) for f1 do not intersect extension
regions R(u, x) and R(v, x) by construction. Namely, the point p around
which region S(u, v, x) is drawn is chosen in such a way that segments
pa(u), pa(v), and pa(x) intersect neither R(u, x) nor R(v, x) (property
(v) in the definition of p); hence, if S(u, v, x) is small enough, extension
regions R(u), R(v), and R(x) intersect neither R(u, x) nor R(v, x).

• We prove that extension regions R(u, x) and R(v, x) do not intersect each
other. By definition, R(u, x) ≡ σ(a(u), S(u, x)) ∪ σ(a(x), S(u, x)) and
R(v, x) ≡ σ(a(v), S(v, x)) ∪ σ(a(x), S(v, x)). Hence, it suffices to prove
that each of σ(a(u), S(u, x)) and σ(a(x), S(u, x)) does not intersect any of
σ(a(v), S(v, x)) and σ(a(x), S(v, x)). Denote by pu and pv the intersection
points of S(u, x) and S(v, x) with edges (u, x) and (v, x), respectively.

– Regions σ(a(x), S(v, x)) and σ(a(x), S(u, x)) do not intersect each
other, provided that S(u, x) and S(v, x) are small enough. In fact,
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a(x), pu, and pv are not collinear, given that pu is a point of (u, x),
pv is a point of (v, x), and given that Γ is a c-planar drawing.

x ≡ a(x)

u

v

a(u)

pu

pv

Figure 21: Regions σ(a(x), S(v, x)) and σ(a(u), S(u, x)) do not intersect.

– We prove that regions σ(a(x), S(v, x)) and σ(a(u), S(u, x)) do not
intersect each other. Segment a(u)pu does not intersect segment
a(x)pv, as otherwise the wedge with an angle smaller than 180◦ and
delimited by h(x, u) and h(x, a(u)) would contain vertex v, thus vio-
lating Lemma 4. Therefore, it suffices to choose S(u, x) and S(v, x)
small enough to ensure that σ(a(x), S(v, x)) and σ(a(u), S(u, x)) do
not intersect (see Figure 21).

– The proof that regions σ(a(x), S(u, x)) and σ(a(v), S(v, x)) do not
intersect each other is analogous to the previous one.

– We prove that regions σ(a(u), S(u, x)) and σ(a(v), S(v, x)) do not
intersect each other. If segment a(u)pu does not intersect segment
a(v)pv, then it suffices to choose S(u, x) and S(v, x) small enough
to ensure that σ(a(u), S(u, x)) and σ(a(v), S(v, x)) do not intersect.
Assume, for a contradiction, that a(u)pu intersects a(v)pv.

Suppose that a(u) lies to the left of h(u, x). Refer to Figure 22.
Then vertex a(u) lies in the wedge with an angle smaller than 180◦

and delimited by h(x, u) and h(x, v), as otherwise the wedge with
an angle smaller than 180◦ and delimited by h(x, u) and h(x, a(u))
would contain v, thus violating Lemma 4. If a(v) lies to the left
of h(a(u), x), then a(u)pu and a(v)pv are separated by h(a(u), x),
hence they do not intersect. Assume that a(v) lies to the right of
h(a(u), x). If a(v) is to the right of h(v, x), then the wedge with
an angle smaller than 180◦ and delimited by h(x, v) and h(x, a(v))
contains a(u), thus violating Lemma 4. Finally, if a(v) is to the left
of h(v, x), then a(u)pu and a(v)pv are separated by h(v, x), hence
they do not intersect.

The case in which a(v) lies to the right of h(v, x) leads to a contra-
diction as in the previous case.

Finally, if a(u) lies to the right of h(u, x) and a(v) lies to the left of
h(v, x), then both a(u) and a(v) lie to the left of h(v, x) and to the
right of h(u, x), given that segments a(u)pu and a(v)pv intersect each
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x ≡ a(x)

u

v

a(u)

pupv
a(v)

a(v)

Figure 22: Regions σ(a(u), S(u, x)) and σ(a(v), S(v, x)) do not intersect each
other if a(u) lies to the left of h(u, x).

other. However, this implies that the wedge with an angle smaller
than 180◦ and delimited by h(x, u) and h(x, a(u)) contains vertex
a(v), thus violating Lemma 4.

• Finally, extension regions R(u), R(v), and R(x) for f1 pairwise intersect
each other, however they all comprise central region S(u, v, x).

Property 3. Figure 23 illustrates the structure of the proof that Γ satisfies
Property 3 of Definition 3. We prove that no extension region for f1 intersects
an extension region for a face of G different from f1. Analogous proofs for f2 and
f3 can be exhibited. Since all the extension regions for f1 are inside extension
regions for f , we have that no extension region for f1 intersects an extension
region for a face of G different from f2 and f3.

- no extension region for f1 intersects any extension region for a face different from f2 and f3

Property 3 (for f1):

- no extension region for f1 intersects any extension region for f2

- no extension region for f1 intersects any extension region for f3

extension region R(u, v) for f1 does not intersect any extension region for f2
no extension region for f1 intersects extension region R(v, z) for f2
extension region R(v, x) for f1 does not intersect extension region R(v, x) for f2
extension region R(u, x) for f1 does not intersect extension region R(v, x) for f2
extension region R(v, x) for f1 does not intersect extension region R(z, x) for f2
extension region R(u, x) for f1 does not intersect extension region R(z, x) for f2
extension regions R(u), R(v), and R(x) for f1 do not intersect any extension region for f2
extension regions R(v), R(z), and R(x) for f2 do not intersect any extension region for f1

Figure 23: Structure of the proof that Γ satisfies Property 3 of Definition 3.

We prove that no extension region for f1 intersects an extension region for
f2. The proof that no extension region for f1 intersects an extension region for
f3 is analogous.

• Extension region R(u, v) for f1 coincides with extension region R(u, v) for
f , hence it does not intersect any extension region for f2, given that the
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latter extension regions are all contained in the extension regions R(v, z),
R(v), and R(z) for f , and given that Γo is an extensible drawing.

• It can be proved analogously that no extension region for f1 intersects
extension region R(v, z) for f2.

• Extension region R(v, x) for f1 does not intersect extension region R(v, x)
for f2 by construction (as observed during the algorithm’s description).

• We prove that extension region R(u, x) for f1 does not intersect extension
region R(v, x) for f2. It is possible to choose side region S(v, x) for f2
small enough and the intersection points of edge (v, x) with side regions
S(v, x) for f1 and S(v, x) for f2 close enough so that extension region
R(u, x) for f1 intersects extension region R(v, x) for f2 if and only if it
intersects extension region R(v, x) for f1; further, we already proved that
extension regions R(u, x) and R(v, x) for f1 do not intersect each other.

• It can be proved analogously that extension region R(v, x) for f1 does
not intersect extension region R(z, x) for f2 and that extension region
R(u, x) for f1 does not intersect extension region R(z, x) for f2. The
latter proof involves extension regions for f3: Extension region R(u, x)
for f1 intersects extension region R(z, x) for f2 only if extension region
R(u, x) for f3 intersects extension region R(z, x) for f3, which we already
proved not to be the case.

• It remains to prove that extension regions R(u), R(v), and R(x) for f1
do not cross any extension region for f2 and that extension regions R(v),
R(z), and R(x) for f2 do not cross any extension region for f1.

Consider the region R1 defined as R2 −R(u, v)−R(u, x)−R(v, x), where
extension regions R(u, v), R(u, x), and R(v, x) for f1 are here meant to be
open regions. Observe that R1 is composed of two regions, one bounded
region “inside” R(u, v)∪R(u, x)∪R(v, x), that we denote by Rb

1, and one
unbounded region “outside” R(u, v) ∪ R(u, x) ∪ R(v, x). See Figure 24.
Since no two extension regions for f1 intersect and since central region
S(u, v, x) is internal to (u, v, x), extension regions R(u), R(v), and R(x)
for f1 are contained inside Rb

1.

x ≡ a(x)

u

v

a(v)

a(u)

R
b
1

Figure 24: Region Rb
1.
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Analogously, the regionR2 defined as R2−R(v, z)−R(v, x)−R(z, x), where
extension regions R(v, z), R(v, x), and R(z, x) for f2 are open regions, is
composed of a bounded region Rb

2 and of one unbounded region. Extension
regions R(v), R(z), and R(x) for f2 are contained inside Rb

2.

It follows that one of the extension regions for f1 crosses one of the ex-
tension regions for f2 only if one of the extension regions R(u, v), R(u, x),
and R(v, x) for f1 crosses one of the extension regions R(v, z), R(v, x),
and R(z, x) for f2, which we already proved not to be the case.

Property 4. We prove that extension regions R(u, v), R(v, x), and R(x, u)
for f1 do not intersect clusters other than µ(u) and µ(v), other than µ(v) and
µ(x), and other than µ(x) and µ(u), respectively. Analogous proofs hold for
the extension regions for f2 and for f3. Extension regions R(u, v), R(v, x),
and R(x, u) lie inside extension regions for f , hence they do not intersect any
cluster other than µ(u), µ(v), µ(z), and µ(x), since Γo is an extensible drawing.
Extension region R(u, v) for f1 does not intersect µ(z), given that extension
region R(u, v) for f1 coincides with extension region R(u, v) for f and given
that Γo is an extensible drawing; moreover, R(u, v) does not intersect µ(x), given
that µ(x) is inside S(u, v, z) and that Γo is an extensible drawing. Extension
region R(u, x) for f1 intersects neither µ(v) nor µ(z), given that R(u, x) is
inside extension region R(u) for f and given that Γo is an extensible drawing.
Analogously, extension region R(v, x) for f1 intersects neither µ(u) nor µ(z).

Property 5. We prove that extension regions R(u), R(v), and R(x) for f1
do not intersect clusters other than µ(u), other than µ(v), and other than µ(x),
respectively. Analogous proofs hold for the extension regions for f2 and for f3.
Extension regions R(u), R(v), and R(x) lie inside extension regions for f , hence
they do not intersect any cluster other than µ(u), µ(v), µ(z), and µ(x), since Γo

is an extensible drawing. Extension region R(u) for f1 intersects neither µ(v)
nor µ(z), given that it is inside extension region R(u) for f and given that Γo is
an extensible drawing; furthermore, it does not intersect µ(x), given that such
a cluster is drawn as an arbitrarily small region surrounding x and given that x
is outside extension region R(u) for f1, by construction. Analogously, extension
region R(v) for f1 intersects neither µ(u), µ(z), nor µ(x). Finally, extension
region R(x) does not intersect µ(u), µ(v), or µ(z), given that R(x) is inside
S(u, v, z) and given that Γo is an extensible drawing.

It follows that Γ is an extensible drawing. By construction, the outer face
of C is drawn as Γo, hence Γ completes Γo, which concludes the proof. �

Base Case 3: G contains more than one internal vertex, does not con-
tain any separating triangle, and does not contain any internal edge (x, y) with
µ(x) = µ(y).

Note that if u, v, and z and their incident edges are removed from G, the
resulting graph G′ is biconnected. Indeed, such a graph is connected because G
is maximal and Go is a cycle of three vertices. If G′ is an edge (a, b), then, by the
maximality of G, either (u, v, a) or (u, v, b) is a separating triangle, where u and
v are two vertices of Go. If G

′ is not biconnected and has more than two vertices,
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then it contains a cut-vertex c. By the maximality of G, there exists a separating
triangle (u, v, c), where u and v are two vertices of Go. It follows that G

′ is bicon-
nected. Denote by C′ = (suz , u1, u2, . . . , uU , suv, v1, v2, . . . , vV , svz , z1, z2, . . . , zZ)
the cycle delimiting the outer face of G′, where vertices suz , u1, u2, . . . , uU , suv
are neighbors of u, vertices suv, v1, v2, . . . , vV , svz are neighbors of v, and ver-
tices svz, z1, z2, . . . , zZ, suz are neighbors of z. Observe that no vertex of G′ is
adjacent to all of u, v, and z, as otherwise G would contain a separating triangle.
It follows that vertices suv, svz, and suz are all distinct.

In the following we describe how to construct an extensible drawing of C
completing Γo. This is accomplished in several steps. We first describe how
to draw C′; after that, we show how to draw the vertices of G′ not in C′, thus
completing the drawing of G′ and hence the drawing of G. Then we describe how
to draw the vertices of A different from a(u), a(v), and a(z), thus completing
the drawing of A. Then we show how to draw extension regions for the faces of
G, and finally we show how to draw the clusters in T different from µ(u), µ(v),
and µ(z), thus completing the construction of an extensible drawing of C.

First, we draw C′. Suppose that µ(u), µ(v), and µ(z) are distinct. Refer

a(u) u

S(u, v, z)

lula(u)

p

l+ǫ

l−ǫ

puv puz

Figure 25: Drawing cycle C′, if µ(u), µ(v), and µ(z) are all different.

to Figure 25. Consider any point p in S(u, v, z). Suppose, w.l.o.g. up to a
reflection of the drawing, that the clockwise rotation around p bringing h(p, u)
to coincide with h(p, a(u)) is smaller than 180◦. Let l+ǫ (resp. l−ǫ ) be the half-
line starting at p obtained by clockwise rotating h(p, a(u)) by ǫ degrees (resp.
by counter-clockwise rotating h(p, u) by ǫ degrees), for some arbitrarily small
ǫ > 0. Choose points puv on l+ǫ and puz on l−ǫ arbitrarily close to p in such a
way that segment puvpuz crosses both segment pu and segment pa(u). Draw C′

as a strictly-convex polygon such that suv is in puv, suz is in puz, svz is in p, the
slopes of the edges of C′ incident to ui, for each 1 6 i 6 U (resp. to vi, for each
1 6 i 6 V , resp. to zi, for each 1 6 i 6 Z), are arbitrarily close to the one of
segment puvpuz (resp. puvp, resp. puzp). Denote by ΓC′ the resulting drawing.

Next, suppose that µ(u) = µ(v) 6= µ(z) (the cases in which µ(u) = µ(z) 6=
µ(v) and µ(v) = µ(z) 6= µ(u) can be treated analogously). Refer to Figure 26.
Consider any point p in S(z, u). Consider any arbitrarily small segment pupv
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u

v

z

a(u) a(z)

µ(z)

µ(u)

pu

pv

Figure 26: Drawing cycle C′, if µ(u) = µ(v) 6= µ(z).

parallel to edge (u, v) and containing p. Draw C′ as a strictly-convex polygon
arbitrarily close to pupv such that the slope of every edge in C′ is arbitrarily
close to the one of pupv, such that suz is mapped to pu, and such that svz is
mapped to pv. Denote by ΓC′ the resulting drawing.

Second, we draw the vertices of G′ not in C′. Since ΓC′ is strictly-convex, a
drawing ΓG′ of G′ having ΓC′ as outer face always exists (see, e.g., [25]). Let
ΓG be the straight-line drawing of G obtained by combining ΓG′ and Γo.

Third, we draw the vertices of A different from a(u), a(v), and a(z). Observe
that, for any vertex x of G′, there exists no edge (x, y) in G such that µ(x) =
µ(y), by assumption and since every vertex of G′ is an internal vertex of G. An
even stronger condition in fact holds: for any vertex x of G′, there exists no
vertex y in G such that µ(x) = µ(y). This comes from the fact that there exists
no edge (x, y) in G such that µ(x) = µ(y) and from the fact that C(G, T ) is
c-connected, by Lemma 1. For each vertex x of G′, draw a(x) at the same point
where x is drawn in ΓG.

Fourth, we draw extension regions for the faces of G.

We start by drawing extension regions for the faces of G that are not incident
to any of u, v, and z. For each face f = (x, y, t) of G such that {x, y, t} ∩
{u, v, z} = ∅, side region S(x, y) (resp. S(y, t), resp. S(t, x)) for f is drawn as
an arbitrarily small region inside f touching (x, y) (resp. (y, t), resp. (t, x));
central region S(x, y, t) is drawn as follows: Consider a point p such that p
lies inside f and segments px, py, and pt do not intersect any of the extension
regions R(x, y), R(y, t), and R(t, x) for f ; such a point always exists provided
that side regions S(x, y), S(y, t), and S(t, x) are small enough; then S(x, y, t) is
any arbitrary small convex region surrounding p.

We now draw extension regions for the remaining faces of G (each of which
is incident to one or two internal vertices of G).

• For each edge (x, y) incident to the outer face of G (and hence incident
to an internal face (x, y, w) of G, where w /∈ {u, v, z}), draw side region
S(x, y) for (x, y, w) exactly as side region S(x, y) for f in Γo.

• For each edge (x, y) incident to the outer face of G′ (and hence incident
to an internal face (x, y, w) of G, where w ∈ {u, v, z}), draw side region
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S(x, y) for (x, y, w) as an arbitrarily small region inside S(u, v, z) (inside
S(z, u) if µ(u) = µ(v)), inside (x, y, w), and touching (x, y).

• For each edge (x,w) such that x is an internal vertex of G and w ∈
{u, v, z}, draw extension regions R(x,w) for the two faces incident to
(x,w), say (x,w, y) and (x,w, y′), as follows (see Figure 27(a)). Assume,
w.l.o.g., that x, w, and y occur in this counter-clockwise order around
face (x,w, y) (and hence x, w, and y′ occur in this clockwise order around
face (x,w, y′)). Suppose that a(w) is to the left of h(x,w), the case in
which it is to the right being analogous. Then side region S(x,w) for
face (x,w, y) is drawn as a small region inside S(u, v, z) (inside S(z, u) if
µ(u) = µ(v)), inside (x,w, y), and touching (x,w) in a point p very close to
x. Side region S(x,w) for face (x,w, y′) is drawn as a small region inside
S(u, v, z) (inside S(z, u) if µ(u) = µ(v)), inside (x,w, y′), and touching
(x,w) in a point q very close to x such that q is farther from x than p.
Observe that this implies that extension regions R(x,w) for (x,w, y) and
R(x,w) for (x,w, y′) do not intersect.

a(w)w

S(u, v, z)

x
y

y′

a(w)
w

S(u, v, z)

x
y

(a) (b)

Figure 27: (a) Drawing extension regions R(x,w) for the faces (x,w, y) and
(x,w, y′). (b) Drawing extension region R(x, y, w) for face (x, y, w).

• For each face (x, y, w) such that x and y are internal vertices of G and such
that w ∈ {u, v, z}, draw central region S(x, y, w) for (x, y, w) as follows (see
Figure 27(b)). Consider a point p that lies inside S(u, v, z) (inside S(z, u)
if µ(u) = µ(v)), inside (x, y, w), and such that segments pa(x), pa(y),
and pa(w) do not intersect any of the extension regions R(x, y), R(x,w),
and R(y, w) for (x, y, w). Such a point always exists provided that side
regions S(x, y), S(x,w), and S(y, w) for (x, y, w) are small enough. Then
S(x, y, w) is any arbitrarily small convex region surrounding p.

• For each face (x, y, w) such that x is an internal vertex of G and such
that y, w ∈ {u, v, z}, draw central region S(x, y, w) for (x, y, w) as follows:
Consider a point p that lies inside S(u, v, z) (inside S(z, u) if µ(u) = µ(v)),
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inside (x, y, w), and such that segments pa(x), pa(y), and pa(w) do not
intersect any of the extension regions R(x, y), R(x,w), and R(y, w) for
(x, y, w). Such a point always exists provided that side regions S(x, y)
and S(x,w) are small enough. Then S(x, y, w) is any arbitrarily small
convex region surrounding p.

Fifth, for each vertex x of G, we draw cluster µ(x) as an arbitrarily small
convex region surrounding x. Again, recall that for any vertex x of G′, cluster
µ(x) does not contain any vertex y 6= x, because there exists no edge (x, y) in
G such that µ(x) = µ(y) and because C(G, T ) is c-connected, by Lemma 1.

Denote by Γ the resulting drawing.
Figure 28 shows the construction of an extensible drawing of C in Base Case

3 if µ(u), µ(v), and µ(z) are all different.

u

v

z

a(u)

a(v)

a(z)

µ(v)

µ(z)

µ(u)

Figure 28: Base Case 3, if µ(u), µ(v), and µ(z) are all different.

Lemma 7 Γ is an extensible drawing of C completing Γo.

Proof: We prove the statement in the case in which µ(u), µ(v), and µ(z) are
all different. The cases in which µ(u) = µ(v) 6= µ(z), or µ(u) = µ(z) 6= µ(v), or
µ(v) = µ(z) 6= µ(u) are analogous and simpler. In the following we will prove
that: (i) Γ is a c-planar drawing; (ii) Γ is a convex drawing; (iii) Γ is a multilayer
drawing; (iv) the extension regions satisfy the properties of Definition 2; and
(v) Γ is an extensible drawing. Due to the similarity of this proof to the one of
Lemma 6, some arguments are not presented here.

C-planar drawing: To prove the planarity of ΓG, it suffices to show that
the edges incident to u, v, and z do not intersect each other and do not intersect
the edges of C′. Namely, the internal edges of G′ do not intersect each other and
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do not intersect the edges of C′, given that cycle C′ is drawn as a strictly-convex
polygon and that a planar drawing of an internally-triangulated planar graph
always exists for any strictly-convex drawing of its outer face (see, e.g., [25]).

All the edges incident to u (to v, to z) and internal to G are inside triangle
∆u = (u, puv, puz) (resp. ∆v = (v, p, puv), resp. ∆z = (z, puz, p)). Moreover, the
only edges of C′ that are inside triangle ∆u (∆v, ∆z) are those incident to some
vertex ui (resp. vi, resp. zi). Hence, as long as triangles ∆u, ∆v, and ∆z have
disjoint interiors, each edge incident to u (resp. to v, resp to z) can possibly
intersect only an edge incident to a vertex ui (resp. vi, resp. zi), and each edge
incident to a vertex ui (resp. vi, resp. zi) can possibly intersect only an edge
incident to a vertex ui (resp. vi, resp. zi) and an edge incident to u (resp. to v,
resp. to z). Denote by ∆uvz the triangle (p, puv, puz). That triangles ∆u, ∆v,
and ∆z have disjoint interiors is trivially implied by the following claim.

Claim 1 The clockwise orders of the vertices along the border of triangles ∆u,
∆v, ∆z, and ∆uvz in Γ are (u, puv, puz), (v, p, puv), (z, puz, p), and (puv, p, puz),
respectively.

Proof: Refer to Figure 29.

u

v

z

a(u)

a(v)

a(z)

µ(v)

µ(z)

µ(u)

la(u)

lu

p

l+ǫ

l−ǫ

puv

puz

Figure 29: Illustration for the proof of Claim 1.

Clockwise order (u, puv, puz) is ensured by the fact that h(u, p) cuts segment
puvpuz by leaving puv to the left and puz to the right, by construction.

Clockwise order (v, p, puv) is proved by the following three observations: 1)
v does not lie in the wedge with an angle smaller than 180◦ delimited by h(p, u)
and h(p, a(u)), by Lemma 4; 2) if v is to the right of h(u, p) and to the right of
h(a(u), p), then either vertices u, v, and z are not in this clockwise order around
the outer face of Go, or p is not internal to triangle (u, v, z); 3) hence v is to the
left of h(a(u), p), thus if ǫ > 0 is small enough, then v is also to the left of l+ǫ
when traversing such a line from puv to p.

Clockwise order (z, puz, p) is proved symmetrically to the proof for (v, p, puv).
Clockwise order (puv, p, puz) is ensured by construction. �

It remains to prove that there are no crossings only involving edges incident
to u and/or to a vertex ui (analogous arguments deal with the crossings only
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involving edges incident to v and/or to a vertex vi, and crossings only involving
edges incident to z and/or to a vertex zi). However, this comes from the fact
that the slopes of the edges of C′ incident to ui, for each 1 6 i 6 U , are
arbitrarily close to the one of segment puvpuz , hence the order of the neighbors
of u in Γ is suz , u1, u2, . . . , uU , suv. This shows that Γ has no edge crossings.

By construction, each cluster µ(x) containing a vertex x of G′ is drawn as
an arbitrary small region containing x. It follows that µ(x) intersects only the
edges incident to x. All the edges of G′ are in S(u, v, z), hence they do not
intersect any of µ(u), µ(v), and µ(z), since Γo is an extensible drawing. Each
edge incident to u and different from (u, v) and (u, z) is in σ(u, S(u, v, z)), hence
it intersects neither µ(v) nor µ(z). Analogously, each edge incident to v and
different from (u, v) and (v, z) intersects neither µ(u) nor µ(z), and each edge
incident to z and different from (u, z) and (v, z) intersects neither µ(u) nor µ(v).
It follows that Γ has no edge-region crossings.

Any cluster µ(x) containing a vertex x of G′ does not intersect any cluster
µ(y) containing a vertex y of G′, since µ(x) and µ(y) are arbitrary small regions
surrounding x and y, respectively, and does not intersect any of µ(u), µ(v), and
µ(z), because µ(x) is inside S(u, v, z) and such a region has no intersection with
µ(u), µ(v), and µ(z), given that Γo is an extensible drawing. No two clusters
out of µ(u), µ(v), and µ(z) intersect, given that Γo is an extensible drawing. It
follows that Γ has no region-region crossings, hence it is a c-planar drawing.

Convex drawing: Clusters µ(u), µ(v), and µ(z) are convex, since Γo is
an extensible drawing, and the clusters containing vertices of G′ are convex by
construction. It follows that Γ is a straight-line convex drawing.

Multilayer drawing: Vertices a(u), a(v), and a(z) are inside µ(u), µ(v),
and µ(z), respectively, since Γo is an extensible drawing. Further, for any vertex
x of G′, a(x) coincides with x and µ(x) surrounds x; hence a(x) is inside µ(x).

By construction, each cluster µ(x) containing a vertex x of G′ is drawn as an
arbitrary small region containing x, hence µ(x) intersects only the edges of A
incident to a(x). Each edge (a(x), a(y)) of A such that x, y ∈ G′ is in S(u, v, z)
hence it does not intersect any of µ(u), µ(v), and µ(z), since Γo is an extensible
drawing. Each edge of A incident to a(u) and different from (a(u), a(v)) and
(a(u), a(z)) is in R(u), hence it does not intersect any of µ(v) and µ(z), since Γo

is an extensible drawing. Analogously, each edge incident to a(v) and different
from (a(u), a(v)) and (a(v), a(z)) does not intersect any of µ(u) and µ(z), and
each edge incident to a(z) and different from (a(u), a(z)) and (a(v), a(z)) does
not intersect any of µ(u) and µ(v). It remains to prove that the drawing of A
is planar. However, such a proof can be conducted analogously to the proof
that the drawing of G is planar. In particular, the fact that the edges incident
to a(u) and to a(ui) do not intersect is a consequence of the property that the
clockwise order of a(u), a(v), and a(z) around any point p of S(u, v, z) is the
same as the clockwise order of u, v, and z around p and from the choice of the
slopes of the edges of C′. It follows that Γ is a multilayer drawing.

Extension regions and extensible drawing: All the properties that
have to be satisfied by the extension regions for the faces of G are trivially
satisfied for all the faces of G′, that is, for all the faces of G not incident to
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any outer vertex. Analogously to the proof of Lemma 6, the following facts
can be proved: (i) regions σ(x, S(x, y)) and σ(x, S(x, y, w)) are inside face
(x, y, w), with {x, y, w}∩{u, v, z} 6= ∅, (ii) regions σ(x, S(x, y, w)), σ(x, S(x, y)),
and σ(x, S(x,w)) do not intersect any cluster other than µ(x), and (iii) re-
gions σ(x, S(x, y, w)), σ(x, S(x, y)), and σ(x, S(x,w)) do not intersect regions
σ(y, S(x, y, w)), σ(y, S(x, y)), and σ(y, S(y, w)). Finally, the proof that Γ sat-
isfies the properties related to the extension regions as in Definition 3, can be
conducted in an analogous way as in the proof of Lemma 6.

It follows that Γ is an extensible drawing. By construction, the outer face
of C is drawn as Γo, hence Γ completes Γo, which concludes the proof. �

6 Inductive Cases

In this section we present the inductive cases for the proof of Theorem 2.
Inductive Case 1: G contains a separating triangle (u′, v′, z′). Denote by

C′
o(G

′
o, T

′
o) the clustered graph such that G′

o is cycle (u′, v′, z′), and T ′
o is the

subtree of T whose clusters contain at least one vertex of G′
o. We apply the

operation “split along a separating triangle”, defined in Section 3, in order to
split C(G, T ) in two clustered graphs C1(G1, T 1) and C2(G2, T 2). By Lemma 2,
C1(G1, T 1) and C2(G2, T 2) are maximal c-planar flat clustered graphs with
fewer vertices than C(G, T ). Again by Lemma 2, Co and C1

o are the same
clustered graph, and C′

o and C2
o are the same clustered graph. By induction,

for an arbitrary extensible drawing Γo of C1
o , there exists an extensible drawing

Γ1 of C1 completing Γo. Cycle (u′, v′, z′) is a face f of G1. By definition
of extensible drawing, the drawing Γ2

o of C2
o in Γ1 is an extensible drawing.

Hence, again by induction an extensible drawing Γ2 of C2 can be constructed
completing Γ2

o. Plugging Γ2 into Γ1 provides a drawing Γ of C.

Lemma 8 Γ is an extensible drawing of C completing Γo.

Proof: Let A, A1, A2, A1
o, and A2

o be the cluster-adjacency graphs of C(G, T ),
of C1(G1, T 1), of C2(G2, T 2), of C1

o (G
1
o, T

1
o ), and of C2

o (G
2
o, T

2
o ), respectively.

In the following we will prove that: (i) Γ is a c-planar drawing; (ii) Γ is a convex
drawing; (iii) Γ is a multilayer drawing; (iv) the extension regions satisfy the
properties of Definition 2; and (v) Γ is an extensible drawing.

C-planar drawing: Γ has no edge crossing. Namely, any edge belonging
to G1 (resp. to G2) does not intersect any edge belonging to G1 (resp. to G2)
by induction. Further, any edge belonging to G1 and not belonging to G2 does
not intersect any edge belonging to G2 and not belonging to G1 since such edges
are separated by cycle (u′, v′, z′).

Further, Γ has no edge-region crossing. Namely, any edge belonging to G1

(resp. to G2) does not intersect the boundary of any cluster of T 1 (resp. of T 2)
more than once by induction. Further, any edge belonging to G1 (resp. to G2)
and not belonging to G2 (resp. to G1) does not intersect the boundary of any
cluster belonging to T 2 (resp. to T 1) and not belonging to T 1 (resp. to T 2),
since such an edge and such a cluster are separated by cycle (u′, v′, z′).
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Finally, Γ has no region-region crossing. Namely, the boundary of any cluster
belonging to T 1 (resp. to T 2) does not intersect the boundary of any cluster
belonging to T 1 (resp. to T 2) by induction. Further, the boundary of any
cluster belonging to T 1 (resp. to T 2) and not belonging to T 2 (resp. to T 1)
does not intersect the boundary of any cluster belonging to T 2 (resp. to T 1)
and not belonging to T 1 (resp. to T 2), since such clusters are separated by cycle
(u′, v′, z′). It follows that Γ is c-planar.

Convex drawing: The clusters in T 1 are convex, since Γ1 is a convex
drawing; the clusters in T 2 are convex, since Γ2 is a convex drawing.

Multilayer drawing: Each vertex a(x) in A1 is inside cluster µ(x) in Γ as
it is in Γ1; each vertex a(x) in A2 is inside cluster µ(x) in Γ as it is in Γ2.

We prove that the drawing of A in Γ is planar. No two edges in A1 (in A2)
intersect as they don’t intersect in Γ1 (resp. in Γ2). No edge in A1 intersects
an edge in A2; namely, since Γ2 is an extensible drawing of G2 that completes
the extensible drawing Γ2

o of C2
o in Γ1, the edges in A2, except for (a(u

′), a(v′)),
(a(u′), a(z′)), and (a(v′), a(z′)), are inside the extension regions for the face of
G1 delimited by (u′, v′, z′). Since Γ1 is an extensible drawing, no edge in A1

intersects any extension region for a face of G1. The statement follows.
No edge in A1 (in A2) intersects a cluster in T 1 (resp. in T 2), given that

Γ1 (resp. Γ2) is an extensible drawing. The clusters in T 2, except for µ(u′),
µ(v′), and µ(z′), are inside the extension regions for the face of G1 delimited
by cycle (u′, v′, z′), hence they do not intersect the edges in A1. The edges in
A2 different from (a(u′), a(v′)), (a(u′), a(z′)), and (a(v′), a(z′)) are inside the
extension regions for the face of G1 delimited by cycle (u′, v′, z′), hence they do
not intersect the clusters in T 1. It follows that Γ is a multilayer drawing.

Extension regions: The fact that, for any face (x, y, w) of G, central re-
gion S(x, y, w) and side regions S(x, y), S(y, w), and S(w, x) are inside (x, y, w)
comes from the fact that they are inside (x, y, w) either in Γ1 or in Γ2. Anal-
ogously, for any face (x, y, w) of G, regions σ(x, S(x, y, w)), σ(x, S(x, y)), and
σ(x, S(w, u)) do not intersect each other and do not intersect any cluster in Γ,
as they don’t intersect each other and do not intersect any cluster in Γ1 and
in Γ2. Observe that any two regions σ(x, S(x, y, w)) and σ(x′, S(x′, y′, w′)) for
two different faces (x, y, w) and (x′, y′, w′) of G are disjoint as they lie inside
the corresponding faces. Moreover, for every face (x, y, w) of G such that µ(x),
µ(y), and µ(w) are all distinct and such that x, y and z come in this clockwise
order around the face, and for every point p ∈ S(x, y, w), segments pa(x), pa(y),
and pa(w) are in this clockwise order around p, given that (x, y, w) is also a face
of G1 or of G2 and given that Γ1 and Γ2 are extensible drawings.

Extensible drawing: We now deal with the properties in Definition 3.

1. No extension region for a face of G1 (of G2) intersects an edge of A1

(resp. of A2), since Γ1 (resp. Γ2) is an extensible drawing. No extension
region for a face of G2 intersects an edge of A1, since all such extension
regions are inside the extension regions for the face of G1 delimited by
cycle (u′, v′, z′) and since such extension regions do not intersect edges of
A1, given that Γ1 is an extensible drawing of C1. No extension region
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for a face of G1 intersects an edge of A2, since all such edges are inside
the extension regions for the face of G1 delimited by cycle (u′, v′, z′) and
since such extension regions do not intersect other extension regions for
the faces of G1, given that Γ1 is an extensible drawing of C1.

2. Since each face f of G is also a face of G1 or a face of G2 and since Γ1

and Γ2 are extensible drawings of C1 and C2, respectively, then no two
extension regions for f intersect, except on their borders, unless they are
the same region or they both comprise the same central region.

3. No extension region for a face f1 of G intersects an extension region for
a face f2 of G, with f1 6= f2. This comes from the analogous property
for Γ1 and Γ2, if f1 and f2 are both faces of G1 or are both faces of G2,
respectively. Moreover, no extension region for a face of G1 intersects
an extension region for a face of G2, since the latter extension regions are
inside the extension regions for the face of G1 delimited by cycle (u′, v′, z′)
and since such extension regions do not intersect other extension regions
for the faces of G1, given that Γ1 is an extensible drawing of C1.

4. - 5. No extension region for a face of G1 (of G2) intersects clusters in T 1 (resp.
in T 2), since Γ1 (resp. Γ2) is an extensible drawing. No extension region
for a face of G2 intersects clusters in T 1, since all such regions are inside
the extension regions for the face of G1 delimited by cycle (u′, v′, z′) and
since such extension regions do not intersect clusters in T 1, given that
Γ1 is an extensible drawing of C1. No extension region for a face of G1

intersects clusters in T 2, since all such clusters are inside the extension
regions for the face of G1 delimited by cycle (u′, v′, z′) and since such
extension regions do not intersect other extension regions for the faces of
G1, given that Γ1 is an extensible drawing of C1.

It follows that Γ is an extensible drawing. By construction, the outer face of C
is drawn as Γo, hence Γ completes Γo, which concludes the proof. �

Inductive Case 2: G contains no separating triangle and it contains an
internal edge (u′, v′) such that µ(u′) = µ(v′).

Refer to Figure 30. Since G is maximal and since (u′, v′) is an internal edge,
u′ and v′ have exactly two common neighbors z1 and z2, delimiting internal
faces f1 and f2 with (u′, v′). We apply the operation “contraction of an internal
edge”, defined in Section 3, in order to transform C(G, T ) into a smaller maximal
c-planar flat clustered graph C′(G′, T ′). By Lemma 3, C′(G′, T ′) is a maximal
c-planar flat clustered graph with fewer vertices than C(G, T ); further, Co and
C′

o are the same clustered graph. By induction, for an arbitrary extensible
drawing Γo of Co, there exists an extensible drawing Γ′ of C′ completing Γo.
Then consider a small disk D centered at w and consider any line l from w to
an interior point of the segment between z1 and z2. Rename w to u′ and insert
v′ on l, inside D, so that the order of the neighbors of u′ in G is the required
one. Connect u′ and v′ to their neighbors.
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w
z1 z2

x1
x2

u
′

z1 z2

v
′

x1

x2

(a) (b)

Figure 30: (a) An extensible drawing Γ′ of C′. (b) The extensible drawing Γ of
C obtained from Γ′.

It remains to show how to construct extension regions for the faces of G. The
extension regions for each face not incident to v′ are drawn as in Γ′. Denote by
x1 the common neighbor of v′ and z1 different from u′ and by x2 the common
neighbor of v′ and z2 different from u′. Extension regions R(u′, z1) and R(z1, v

′)
for face (v′, u′, z1) of G and extension region R(z1, v

′) for face (v′, z1, x1) of G
are drawn as subsets of extension region R(w, z1) for face (w, z1, x1) of G′.
Extension regions R(v′, z2) and R(z2, u

′) for face (v′, u′, z2) of G and extension
region R(v′, z2) for face (v

′, z2, x2) of G are drawn as subsets of extension region
R(w, z2) for face (w, z2, x2) of G′. For each neighbor x of v′ different from z1,
z2, and u′, extension regions R(v′, x) for the two faces incident to edge (v′, x) in
G are drawn as subsets of the extension region R(w, x) for one of the two faces
incident to edge (w, x) in G′. All of the previously described extension regions
for the faces of G can in fact be drawn inside the corresponding extension regions
for the faces of G′ provided that v′ is close enough to u′, so that edge (v′, z1)
cuts the side region S(w, z1) for face (w, z1, x1) of G

′, so that edge (v′, z2) cuts
the side region S(w, z2) for face (w, z2, x2) of G′, and so that edge (v′, x) cuts
one of the two side regions S(w, x) touching edge (w, x). All other extension
regions for the faces incident to v′ are drawn as the corresponding extension
regions for the corresponding faces incident to w in Γ′.

Lemma 9 Γ is an extensible drawing of C completing Γo.

Proof: In the following we prove that: (i) Γ is a c-planar drawing; (ii) Γ is a
convex drawing; (iii) Γ is a multilayer drawing; (iv) the extension regions satisfy
the properties of Definition 2; and (v) Γ is an extensible drawing.

C-planar drawing: Γ has no edge crossings. Namely, all the edges that
are not incident to v′ have exactly the same drawing as in Γ′, hence they do not
intersect each other since Γ′ is an extensible drawing. No two edges incident to
v′ intersect, as they are adjacent. The construction ensures that the order of
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the neighbors of v′ in Γ is the one specified in G, hence no edge incident to v′

intersects an edge between two consecutive neighbors of v′.
Further, Γ has no region-region crossings. Namely, every cluster is repre-

sented in Γ by the same region it is represented in Γ′.

Finally, Γ has no edge-region crossings. Namely, consider any edge e of G
and any cluster µ in T . If e is not incident to v′, then both e and µ have in Γ
the same drawing as they have in Γ′, hence they do not intersect. If e = (u′, v′),
then e is arbitrarily short, hence it is entirely included inside µ(u′) and it does
not intersect the border of any cluster. If e = (v′, z) with z 6= u′, then the
drawing of e is arbitrarily close to the one of edge (w, z) in Γ′, hence e crosses
the border of each cluster at most once, given that Γ′ is an extensible drawing.
It follows that Γ is a c-planar drawing.

Convex drawing: Each cluster is represented in Γ by the same convex
region it is represented in Γ′.

Multilayer drawing: Each vertex a(x) in A is inside cluster µ(x) in Γ as
it is in Γ′. No two edges in A intersect in Γ as they don’t intersect in Γ′, thus
the drawing of A is planar. No edge of A intersects a cluster of T , as such edge
and cluster have the same drawing in Γ as they have in Γ′. It follows that Γ is
a multilayer drawing.

Extension regions: For any face (x, y, t) of G with x, y, t 6= v′, central
region S(x, y, t) and side regions S(x, y), S(y, w), and S(t, x) are inside (x, y, t)
in Γ, as they are inside such a face in Γ′. Analogously, regions σ(x, S(x, y, t))
and σ(x, S(x, y)) do not intersect each other and do not intersect any cluster
in Γ, as they do not intersect each other and do not intersect any cluster in Γ′.
The property that, for every face (x, y, w) of G such that µ(x), µ(y), and µ(w)
are all distinct and such that x, y and z come in this clockwise order around the
face, and for every point p ∈ S(x, y, w), segments pa(x), pa(y), and pa(w) are
in this clockwise order around p, comes from the fact that the same property
is satisfied in Γ′, from the fact that, for each vertex t in G, a(t) has the same
position in Γ and in Γ′, and from the fact that each vertex t in G has the same
position or two arbitrarily close positions (if t = v′) in Γ and in Γ′.

Extensible drawing: We prove that Γ satisfies the properties in Defini-
tion 3.

1. No edge of A intersects an extension region in Γ, given that (i) Γ′ is an
extensible drawing, given that (ii) each edge of A has the same drawing
in Γ and in Γ′, and given that (iii) each extension region in Γ either has
the same drawing as in Γ′ or is a subset of an extension region in Γ′.

2. - 3. No two extension regions for faces of G intersect in Γ, given that (i) Γ′

is an extensible drawing, (ii) each extension region for a face of G not
incident to v′ has the same drawing in Γ as in Γ′ (hence no two extension
regions for faces of G not incident to v′ intersect), (iii) each extension
region for a face of G incident to v′ is a subset of an extension region for
a face of G′ in Γ′ (hence no extension region for a face of G incident to
v′ intersects an extension region for a face of G not incident to v′), and
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(iv) by construction no two extension regions for faces of G in Γ which
are drawn inside the same extension region for a face of G′ in Γ′ intersect
(hence no two extension regions for faces of G incident to v′ intersect).

4. - 5. No cluster of T intersects an extension region in Γ, given that (i) Γ′ is an
extensible drawing, (ii) each cluster in T has the same drawing in Γ and
in Γ′, and (iii) each extension region in Γ either has the same drawing as
in Γ′ or is a subset of an extension region in Γ′.

It follows that Γ is an extensible drawing. By construction, the outer face
of C is drawn as Γo, hence Γ completes Γo, which concludes the proof. �

By Lemma 5, exactly one among Inductive Cases 1-2 and Base Cases 1-3
applies to C(G, T ). This concludes the proof of Theorem 2.

7 Conclusions

We have proved that every flat c-planar clustered graph admits a multilayer
drawing. The algorithm we described in this paper uses real coordinates, hence
it constructs drawings requiring exponential area to be represented on a screen
with a finite resolution rule. However, this drawback is unavoidable, since it has
been proved by Feng et al. [14] that there exist (flat) clustered graphs requiring
exponential area in any straight-line drawing in which clusters are represented
by convex regions.

It is an obvious open problem to extend our results to general c-planar
clustered graphs. We suspect that our drawing techniques, together with some
techniques to decompose non-flat clustered graphs into smaller non-flat clustered
graphs presented in [1], might lead to a solution of the problem. However, we
defer such an intuition to future research.
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