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Abstract

This paper studies three-dimensional orthogonal box-drawings where
edge-routes have at most one bend. Two open problems for such drawings
are: (1) Does every drawing of Kn have volume Ω(n3)? (2) Is there a
drawing of Kn for which additionally the vertices are represented by cubes
with surface O(n)? This paper answers both questions in the negative,
and provides related results concerning volume bounds as well.
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1 Background

A 3-D orthogonal box-drawing of a graph is a drawing of the graph where vertices
are represented by disjoint axis-parallel boxes and edges are represented by
disjoint routes along an underlying three-dimensional rectangular grid. (Since
no other type of drawings will be studied here, the term drawing is used to mean
a 3-D orthogonal box-drawing from now on.)

The route of each edge thus consists of a sequence of contiguous grid seg-
ments, i.e., axis-parallel line segments for which the fixed coordinates are in-
tegers. The transition from one grid segment to another is called a bend. A
drawing is called a k-bend drawing if all edge routes have at most k bends.

Every vertex is represented by an axis-parallel box with integral boundaries;
such a box is called a grid box. An X-plane is a plane that is perpendicular
to the X-axis. It is called an X-grid plane if its fixed coordinate is integral.
Y -planes and Z-planes are defined similarly. For any vertex v, let X(v) be the
number of X-grid planes that intersect the box of v; Y (v) and Z(v) are defined
similarly. The surface of v is 2(X(v)Y (v)+Y (v)Z(v)+Z(v)X(v)). The volume
of v is X(v)Y (v)Z(v).

When no confusion arises, we will use graph-theoretic terms, such as “vertex”
and “edge”, to also mean the representation in a fixed drawing.

Given a drawing, denote by X × Y × Z the size of the smallest enclosing
rectangular box of the drawing. The volume of the drawing is X · Y · Z.

This paper studies bounds on the volume of drawings with very few bends
per edge. Since not all graphs have a 0-bend drawing (also known as visibility
representation) [BSWW99, FM99], the smallest applicable number of bends per
edge is one.

1.1 Existing results for 1-bend drawings

In [BSWW99], it was shown that the complete graph Kn has a 1-bend drawing
with O(n3) volume (more precisely, in an n/2 × n/2 × n/2-grid.) In the same
paper, it was also shown that any drawing of Kn has volume Ω(n2.5). However,
the lower bound does not take restrictions on the number of bends into account,
and in particular, it was left as an open problem whether any 1-bend drawing
of Kn needs Ω(n3) volume.

One criticism of the drawings in [BSWW99] is that vertex boxes resemble
“sticks”, i.e., one dimension is very large while the other two dimensions are
one unit each, hence there is no bound on the aspect ratio. A drawing is said
to have aspect-ratios at most r, for some constants r ≥ 1, if any vertex box has
aspect ratio at most r. If r = 1, then the drawing is called a cube-drawing.

The construction in [BSWW99] can be modified to obtain a cube-drawing
of Kn by “blowing up” every vertex (see also Figure 2). However, this increases
the volume of the drawing to O(n4). Also, the surface of each vertex box then
becomes O(n2), which seems excessive since every vertex has only O(n) incident
edges. A drawing is said to be degree-restricted if the surface of a vertex v is
at most α deg(v), for some constant α ≥ 1. The construction in [BSWW99] is
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degree-restricted for Kn, but when converted to a cube-drawing, it is no longer
degree-restricted. Hence, the question was posed whether Kn has a degree-
restricted 1-bend cube-drawing.

In [BTW01], the lower bounds of [BSWW99] were extended to graphs other
than the complete graph. More precisely, it was shown that there exist graphs
with n vertices and m edges that have volume Ω(mn1/2) in any drawing. This
lower bound also does not take restrictions on the number of bends into account.

Finally, in [Woo00], it was shown that every n-vertex m-edge graph with
genus g has a 1-bend drawing of volume O(nm

√
g), which is O(nm3/2) in the

worst case.

1.2 Contributions of this paper

This paper settles the two open problems mentioned above, and provides other
results for 1-bend drawings of simple graphs, i.e., graphs without loops and
multiple edges. Specific results are as follows:

• Any 1-bend cube-drawing of a simple graph G with Ω(∆n) edges repre-
sents Ω(n) many vertices with an Ω(∆) × Ω(∆) × Ω(∆)-box, where ∆ is
the maximum degree of G.1

This has the following consequences:

– Any such graph does not have a 1-bend degree-restricted cube-drawing.
In particular, Kn does not have a 1-bend degree-restricted cube-
drawing. (This settles the second open problem mentioned above.)

– Any 1-bend cube-drawing of such a graph has volume Ω(∆3n). In
particular, since Kn is (n − 1)-regular, any 1-bend cube-drawing of
Kn has volume Ω(n4). (This bound is matched by a construction.)

• Other lower bounds are obtained using a so-called Ramanujan-graph Gn,d,
which is a simple d-regular n-vertex graph with special cut-properties
which will be reviewed in Section 3.1:

– Any 1-bend drawing of Gn,d, for n and d sufficiently big, has a grid
plane that intersects at least 1

8n vertices.

– Any 1-bend drawing of Gn,d has volume Ω(n2d).
Since Kn = Gn,n−1, any 1-bend drawing of Kn has volume Ω(n3),
which answers the first open problem mentioned above.

2 Cube-drawings

This section proves that Kn (or more generally, any graph with Ω(∆n) edges)
does not have a degree-restricted 1-bend cube-drawing. As a preliminary result,

1Note that a graph with Ω(∆n) edges has asymptotically the maximum number of edges,
since all graphs have at most 1

2
∆n edges. However, there are graphs with o(∆n) edges.
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we first show that in any 1-bend drawing of such a graph many (i.e., Ω(n))
vertices are intersected by many (i.e., Ω(∆)) grid planes each.

Lemma 2.1 If G is a simple graph with at least κ∆n edges, for some 0 < κ ≤ 1
2 ,

then at least 1
6κn vertices intersect at least 1

6κ∆ grid planes each.

Proof: Fix an arbitrary 1-bend drawing of G. For any edge e, the route of e
has at most one bend, and hence is entirely contained within one grid plane P .
We say that edge e belongs to P and P owns e. (If the route of e has no bend,
then it is contained in two grid planes. Arbitrarily choose one of them to own
e, so that each edge belongs to exactly one grid plane.)

Let P1, . . . , Pl be the grid planes that own at least one edge. For i = 1, . . . , l,
let n(Pi) be the number of vertices for which an incident edge belongs to Pi.
See also Figure 1.

The crucial observation is that edges do not cross, hence the graph formed
by the edges owned by Pi is planar. In particular, by simplicity of G at most
3n(Pi) edges can be owned by Pi. Since each of the m edges of G belongs to a
grid plane,

l∑
i=1

3n(Pi) ≥ m ≥ κ∆n. (1)

Now count
∑l

i=1 n(Pi) in another way. For every vertex v, denote by p(v) the
number of grid planes that own an incident edge of v; see also Figure 1. Observe
that p(v) ≤ X(v)+Y (v)+Z(v) because any grid plane that contributes to p(v)
must also intersect the box of v. Also,

∑l
i=1 n(Pi) =

∑
v∈V p(v), because both

sums count the incidences between a vertex v and a grid plane that owns an
edge incident to v.

Let Vb be the set of vertices v with p(v) ≥ 1
6κ∆. The lemma holds if

|Vb| ≥ 1
6κn, because X(v)+ Y (v)+ Z(v) ≥ p(v) ≥ 1

6κ∆ for every vertex v ∈ Vb.
So assume for contradiction that fewer than 1

6κn vertices belong to Vb. Observe
that p(v) ≤ ∆ for all vertices (because for each grid plane there is at least one
incident edge of v), and that at most n vertices could be in V − Vb. Therefore

l∑
i=1

n(Pi) =
∑
v∈V

p(v) =
∑
v 6∈Vb

p(v) +
∑
v∈Vb

p(v)

< |V − Vb| · 1
6
κ∆ + |Vb| · ∆ < n · 1

6
κ∆ +

1
6
κn · ∆ =

1
3
κ∆n.

This contradicts inequality (1), therefore |Vb| ≥ 1
6κ∆ and the lemma holds. 2

Note that the constants in the above lemma could be improved for bipartite
graphs, because then at most 2n(P ) edges could be owned by grid plane P .
While this would improve some of the lower bounds to follow by a small frac-
tion, we will not pursue this detail for simplicity’s sake. Also note that the proof
relies only on that any edge is routed entirely within one grid plane. While this
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Pi

v

Figure 1: Illustration of n(Pi) and p(v). In the left picture n(Pi) = 3, because
while four vertices intersect Pi, only three of them are incident to an edge that
belongs to Pi. In the right picture, p(v) = 2.

certainly holds for any 1-bend drawing, it also holds for many other construc-
tions (e.g., the ones of [BSWW99]). Hence, the lemma and its corollaries could
be generalized to any so-called co-planar drawing in which each edge is routed
within a grid plane.

Lemma 2.1 implies that any 1-bend cube-drawing contains many big vertex
boxes. In fact, this result holds for any drawing with bounded aspect ratios.

Lemma 2.2 Let G be a graph with Ω(∆n) edges. Then any 1-bend drawing of
G with aspect ratios at most r contains Ω(n) vertices whose box has minimum
dimension Ω(∆/r), surface Ω(∆2/r) and volume Ω(∆3/r2).

Proof: Assume that G has at least κ∆n edges for some constant 0 < κ ≤ 1
2 .

Fix an arbitrary drawing of G and let v be one of the at least 1
6κn vertices

whose box is intersected by at least 1
6κ∆ grid planes; these exist by Lemma 2.1.

Let the box representing v be an X × Y × Z-box; without loss of generality
assume that X ≤ Y ≤ Z. The box of v intersects X + Y + Z grid planes, so
X + Y + Z ≥ 1

6κ∆ by assumption on v. Also, Z ≤ rX because the aspect ratio
of v is at most r.

Minimizing the minimum dimension X of v under the constraints X ≤ Y ≤
Z, X + Y + Z ≤ 1

6κ∆ and Z ≤ rX yields X ≥ 1
6κ∆/(1 + 2r) ∈ Ω(∆/r). The

surface of v is 2(XY + Y Z + XZ) and the volume is XY Z. Minimizing each
expression, subject to the above constraints, one obtains (for both of them) the
solution X = 1

6κ∆/(r+2) = Y and Z = rX = 1
6κr∆/(r+2). Hence the surface

of v is

2(XY + Y Z + XZ) ≥ 2
36

κ2∆2(1 + 2r)/(r + 2)2 ∈ Ω(∆2/r),

and the volume is

XY Z ≥ 1
216

κ3∆3r/(r + 2)3 ∈ Ω(∆3/r2).

2

This lemma implies the answer for the open problem: Kn does not have a
degree-restricted 1-bend cube-drawing.
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Theorem 1 Any simple graph G with Ω(∆n) edges does not have a degree-
restricted 1-bend drawing with aspect ratios o(∆).

Proof: In any 1-bend drawing of G with aspect ratios at most r, there are
Ω(n) vertices with surface Ω(∆2/r) by Lemma 2.2. Unless r ∈ Ω(∆), the surface
of these vertices is not proportional to their degrees, which is at most ∆. 2

This lemma can also be used for lower bounds on the volume of drawings
with bounded aspect ratios.

Theorem 2 If a simple graph G has Ω(∆n) edges, then any 1-bend drawing
with aspect ratios at most r has volume Ω(n∆3/r2).

Proof: In any 1-bend drawing of G with aspect ratios at most r, there are
Ω(n) vertices with volume Ω(∆3/r2) by Lemma 2.2. Since vertex boxes are
disjoint, these Ω(n) vertices together occupy an area of volume Ω(n∆3/r2). 2

Depending on the values of ∆ and r, this theorem improves in some cases
on the lower bound of Ω(m3/2/

√
r) for such drawings known from [BTW01].

The above lower bound is optimal for cube-drawings of Kn, because the
lower bound states Ω(n4) for Kn, and a construction with volume O(n4) can
be obtained easily by “blowing up” the vertex boxes of the construction of
[BSWW99]. See Figure 2.

Figure 2: A cube-drawing of Kn with volume O(n4). Only half of the edges are
shown; the other half is routed behind the cubes.

3 Lower Bounds

This section provides lower bounds on the volume of 1-bend drawings, and
proves that the O(n3) volume drawing for Kn in [BSWW99] is asymptotically
optimal.

The lower bound proof follows a scheme developed in [BSWW99] and also
used in [BTW01]. For a given drawing there are three cases: (1) One grid
line intersects “many” vertices; (2) one grid plane, but no grid line, intersects
“many” vertices; (3) neither of the above is the case. In [BSWW99], it was
shown that the volume of Kn is Ω(n3) in the first and third case, but in the
second case, only a bound of Ω(n2.5) was achieved. In [BTW01], it was shown
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that the volume for so-called Ramanujan-graphs is Ω(∆n2) in the first case,
Ω(∆n1.5) in the second case and Ω((∆n)1.5) in the third case.

This paper shows a lower bound of Ω(∆n2) for all 1-bend drawings of Rama-
nujan-graphs. If the drawing is in the first case, then this is proved exactly as in
[BTW01] (the proof is repeated here for completeness). The proof in the second
case uses the observation that every edge has at most one bend, and hence the
two endpoints must “see” each other in some sense. Finally one can show that
the third case cannot happen for sufficiently large n when edges have at most
one bend.

This section is structured as follows: We first review the Ramanujan-graphs.
Then we prove that the third case cannot happen. Finally, we proceed to prove
lower bounds for all drawings.

3.1 Ramanujan-graphs

Ramanujan-graphs were introduced in [LPS88] and have already been used in
[BTW01] for lower bounds for orthogonal graph drawing. They have the useful
property that for any two disjoint subsets of size Ω(n), there are Ω(m) edges
between the two subsets. This was first reported in [BTW01], we repeat and
slightly modify their proof to obtain the statement for an arbitrary constant µ.

Lemma 3.1 [BTW01] Let 0 < µ < 1 be a constant. If p 6= q are primes,
p ≡ 1 mod 4, q ≡ 1 mod 4, p + 1 ≥ 16/µ2, then there exists a simple graph Gn,d

(called a Ramanujan-graph) with the following properties:

• Gn,d is d-regular for d = p + 1,

• the number n of vertices of Gn,d is at least q(q−1)/2 and at most q(q−1).

• for any disjoint vertex sets S, T of Gn,d with |S| ≥ µn, |T | ≥ µn, there
are at least 1

2µ2 · dn edges between S and T .

Proof: Let Gn,d be the graph Xp,q defined in [LPS88]; the first two properties
of the graph were shown in this paper. It was also shown that λ ≤ 2

√
d − 1,

where λ denotes the second-largest eigenvalue of Gn,d. Assume S and T are as
specified above. As shown in [AS92], the number of edges between S and T is
at least d|S||T |

n − λ
√|S||T |. Now,

λ
√

|S||T | ≤ 2
√

d − 1
√
|S||T | ·

√
|S||T |/µ2n2

︸ ︷︷ ︸
≥1

·
√

dµ2/16︸ ︷︷ ︸
≥1

≤ 1
2
d|S||T |/n.

Hence, the number of edges between S and T is at least (1 − 1
2 ) · d|S||T |/n ≥

1
2µ2 · dn. 2

It suffices to state lower bounds only for Ramanujan-graphs, because as was
shown in [BTW01], graphs containing Ramanujan-graphs can be constructed
for almost all values of m and n.
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Lemma 3.2 [BTW01] There exist constants n0 and d0 such that for any n ≥ n0

and any m ≥ d0n there exists a graph with n vertices and m edges that has a
Ramanujan-graph with θ(n) vertices and θ(m) edges as a subgraph.

In particular, using these graphs, the lower bounds can be transferred from
Ramanujan-graphs to all values of n and m without affecting the order of mag-
nitude, similarly as done in [BTW01].

3.2 Vertices in one grid plane

Now we prove that the “third case” mentioned above cannot happen for 1-bend
drawings of Ramanujan-graphs, i.e., there always exists a grid plane intersecting
Ω(n) vertices. For this and the lower bound proofs to come, we will often refer
to positions of vertices relative to grid planes. A vertex is said to be left (right)
of an (X = X0)-plane if all the points in its box have X-coordinates less than
X0 (greater than X0). A vertex is said to be before (behind) a (Y = Y0)-plane
if all the points in its box have Y -coordinates less than Y0 (greater than Z0). A
vertex is said to be below (above) a (Z = Z0)-plane if all the points in its box
have Z-coordinates less than Z0 (greater than Z0).

Also, for the proofs to come, for ease of notation we neglect rounding issues,
and assume that n is divisible as needed. This has no effect on the order of
magnitude of the lower bounds, since for example in the next theorem, one
could show a bound of 1

8n − o(n) vertices for all values of n.

Theorem 3 Let Gn,d be a Ramanujan-graph with d ≥ 216 and n divisible by
8. Then any 1-bend drawing of Gn,d has a grid plane that intersects at least 1

8n
vertices.

Proof: Assume to the contrary that no grid plane intersects as many as 1
8n

vertices.
Informally, this leads to a contradiction because the drawing can be split

into non-empty octants. Two of these octants have no grid-plane in common,
and hence cannot have an edge with 0 or 1 bends between them. See Figure 3
for an illustration. The precise proof is as follows:

As an (X = X0)-plane is swept from smaller to larger values, we encounter
an integer X ′ where, for the last time, there are at most 7

16n vertices to the
left of the (X = X ′)-plane. Thus, there are at least 7

16n vertices to the left of
the (X = X ′ + 1)-plane. All these vertices, call them V−, are also to the left
of the (X = X ′ + 1

2 )-plane. Also, since the (X = X ′)-plane intersects at most
1
8n vertices, and at most 7

16n vertices are to the left of it, there are at least
n − 1

8n − 7
16n = 7

16n vertices to the right of the (X = X ′)-plane. All these
vertices, call them V+, are also to the right of the (X = X ′ + 1

2 )-plane. Denote
X∗ = X ′ + 1

2 .
Note that no X-plane intersects both a vertex in V+ and a vertex in V−.
Apply the same argument to a sweep with a (Y = Y0)-plane, considering

only the vertices in V−; recall that |V−| ≥ 7
16n. Thus there is a value Y ∗

− such
that at least 5

32n vertices of V− are before the (Y = Y ∗
−)-plane, and at least
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x

y
z

V+,+,+

V−,−,−

X∗

Y ∗
+

Y ∗
−

Z∗
−

Z∗
+

Figure 3: Two diagonally opposite octants yield two non-empty sets of vertices
that cannot have an edge with 0 or 1 bends connecting them.

7
16n − 1

8n − 5
32n = 5

32n vertices of V− are behind the (Y = Y ∗
−)-plane. Denote

these two sets of vertices as V−,− and V−,+.
Apply the same argument to a sweep with a (Y = Y0)-plane, considering

only the vertices in V+. Thus there is a value Y ∗
+ such that at least 5

32n vertices
of V+ are before the (Y = Y ∗

+)-plane, and at least 5
32n vertices of V+ are behind

the (Y = Y ∗
+)-plane. Denote these two sets of vertices as V+,− and V+,+.

Without loss of generality, assume that Y ∗− ≤ Y ∗
+. In particular therefore,

no Y -plane intersects both a vertex in V−,− and a vertex in V+,+.
Apply the same argument to a sweep with a (Z = Z0)-plane, considering

only the vertices in V−,−; recall that |V−,−| ≥ 5
32n. Thus there is a value Z∗−

such that at least 1
64n vertices of V−,− are below the (Z = Z∗

−)-plane, and at
least 5

32n − 1
8n − 1

64n = 1
64n vertices of V−,− are above the (Z = Z∗

−)-plane.
Denote these two sets of vertices as V−,−,− and V−,−,+.

Apply the same argument to a sweep with a (Z = Z0)-plane, considering
only the vertices in V+,+. Thus there is a value Z∗

+ such that at least 1
64n

vertices of V+,+ are below the (Z = Z∗
+)-plane, and at least 1

64n vertices of
V+,+ are above the (Z = Z∗

+)-plane. Denote these two sets of vertices as V+,+,−
and V+,+,+.

Without loss of generality, assume that Z∗
− ≤ Z∗

+. In particular therefore,
no Z-plane intersects both a vertex in V−,−,− and a vertex in V+,+,+.

Hence no grid plane intersects both a vertex in V−,−,− and V+,+,+. These
sets each contain at least 1

64n vertices. Since Gn,d is a Ramanujan-graph with
d ≥ 216 = 16 · 642, there are edges between these two vertex sets. These edges
cannot be drawn with at most one bend, a contradiction. 2

Remark: Any constant smaller than 1
7 could take the role of 1

8 in the theorem;
the smaller the constant, the smaller also the lower bound on d. For example,
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a bound d ≥ 82 would suffice after replacing 1
8 by 1

407 .
Also note that the above proof did not use that the drawing had no crossings,

and hence would hold even if crossings were allowed.

3.3 1-bend drawings

Now we prove that any 1-bend drawing must have a large volume. The constants
in the proof to follow are rather small and chosen for the convenience of a simple
proof; they could be improved with a more detailed analysis.

Theorem 4 Let Gn,d be a Ramanujan-graph with d ≥ 222 and n divisible by
512. Then any 1-bend drawing of Gn,d has volume at least 2−27dn2.

Proof: There are two cases:

Case 1: There exists a grid line that intersects at least 1
256n = 2−8n many

vertices. Assume that this grid line is an X-line, i.e., a line parallel to the
X-axis; the other two directions are similar.

The argument in this case is exactly the same (except for a change of con-
stants and directions) as in [BTW01]. Namely, let v1, . . . , vt be the vertices
intersected by the X-line, listed in order of occurrence along the line. Let X0 be
a not necessarily integer X-coordinate such that the (X = X0)-plane intersects
none of these t vertices and separates the first 2−9n of them from the remaining
ones, of which there are at least 2−9n many.

(X = X0)-plane

Figure 4: Illustration of case (1).

Because Gn,d is a Ramanujan-graph and d ≥ 16 · 218, at least 2−19 · dn
edges connect these two vertex sets. Their edge routes cross the (X = X0)-
plane, which thus must contain at least 2−19 · dn points having integer Y - and
Z-coordinates. Hence Y Z ≥ 2−19 · dn. Since the X-line intersects at least 2−8n
vertices, also X ≥ 2−8n, so XY Z ≥ 2−27 · dn2.

Case 2: No grid line intersects many vertices.
By Theorem 3, there exists a grid plane, say the (Z = Z ′)-plane, that

intersects at least 1
8n vertices; denote these vertices as V ′. In all of the following

argument, only vertices of V ′ are used.
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As an (X = X0)-plane is being swept from smaller to larger values, the
intersection of the (X = X0)-plane with the (Z = Z ′)-plane is a Y -line, which by
assumption intersects at most 1

256n vertices at any one time. With an argument
similar as in the proof of Theorem 3, we can thus obtain a value X∗ such that
at least 15

256n vertices of V ′ are to the left of the (X = X∗)-plane, and at least
1
8n− 1

256n− 15
256n ≥ 15

256n vertices of V ′ are to the right of the (X = X∗)-plane.
Denote these two sets of vertices as V− and V+. Note that no X-plane intersects
both a vertex in V+ and a vertex in V−.

Apply the same argument to a sweep with a (Y = Y0)-plane, considering only
the vertices in V−. Thus there is a value Y ∗− such that at least 7

256n vertices
of V− are before the (Y = Y ∗

−)-plane, and at least 15
256n − 1

256n − 7
256n = 7

256n
vertices of V− are behind the (Y = Y ∗−)-plane. Denote these two sets of vertices
as V−,− and V−,+.

Apply the same argument to a sweep with a (Y = Y0)-plane, considering only
the vertices in V+. Thus there is a value Y ∗

+ such that at least 7
256n vertices of

V+ are before the (Y = Y ∗
+)-plane, and at least 7

256n vertices of V+ are behind
the (Y = Y ∗

+)-plane. Denote these two sets of vertices as V+,− and V+,+.

Y ∗
+Y ∗

−

V+,+

V+,−

V−,+

V−,−

X∗

Figure 5: Illustration of case (2).

Without loss of generality, assume that Y ∗
− ≤ Y ∗

+. In particular therefore,
no Y -plane intersects both a vertex in V−,− and a vertex in V+,+.

Since the graph is a Ramanujan-graph, there must be edges between V−,−
and V+,+. None of these edges can be routed within an X-plane or a Y -plane
as observed above, hence they are all routed within a Z-plane.

Now we use the fact that every edge is drawn with one bend. Namely, let
(v, w) be an edge with v ∈ V−,− and w ∈ V+,+, and assume that it is routed
in the (Z = z)-plane. The route of (v, w) consists of one X-segment and one
Y -segment. If (say) its X-segment is incident to v, then no other vertex can be
placed on the grid segment between v and the (X = X∗)-plane. This motivates
the following definition illustrated in Figure 6.

Definition 1 A vertex v ∈ V−,− (v ∈ V+,+) is said to be exposed at level z if

• there exists an X-grid line in the (Z = z)-plane that intersects v and
does not intersect any other vertex in V−,− (V+,+) between v and the
(X = X∗)-plane, or
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• there exists a Y -grid line in the (Z = z)-plane that intersects v and does
not intersect any other vertex in V−,− (V+,+) between v and the (Y = Y ∗−)-
plane ((Y = Y ∗

+)-plane).

A vertex is called hidden at level z if it is not exposed.

V−,−

V+,+

X∗

Y ∗
+Y ∗

−

hidden

hidden

Figure 6: Examples of hidden vertices (we only show the cross-section with one
Z-plane). All vertices not marked otherwise are exposed. Note that the top
right vertex is hidden even though there is an X-line from it not intersecting
other vertices, because this X-line is not a grid-line.

Hence, any edge (v, w) between V−,− and V+,+ must be routed in a (Z = z)-
plane such that both v and w are exposed at level z.

The crucial observation is now that if X and Y (the dimensions of the
drawing) are small, then not very many vertices are exposed at any one level.
This leads to a contradiction, because then not all edges can be routed. More
precisely:

Claim: X + Y > 2−8n.
To prove this claim, assume to the contrary that X+Y ≤ 2−8n. In particular

therefore, at most 2−8n vertices of V−,− can be exposed at any one given level,
simply because there are at most 2−8n possible grid lines, each of which can
only intersect at most one vertex.

A vertex v is called active at level z if the (Z = z)-plane intersects the
box of v, and inactive otherwise. Recall that all vertices in V−,− intersect the
(Z = Z ′)-plane, so all vertex in V−,− are active on level Z ′. If a vertex v ∈ V−,−
is hidden on level z − 1 ≥ Z ′, but exposed on level z, then some other vertex
w ∈ V−,− was “blocking” v at level z − 1, but not on level z, so w must have
disappeared, i.e., w became inactive at level z. Hence, every time one vertex
becomes exposed, another vertex must become inactive.

The precise argument is now as follows. Sweep a (Z = Z0)-plane from
smaller to larger values of Z, starting at Z = Z ′. Initially, all vertices in V−,−
are active (there are at least 7

256n many of them), and at most 2−8n = 1
256n of

them are exposed.
During the sweep, more and more vertices become inactive, and hence more

and more vertices become exposed. At some point, an integer Z∗
−,+ is encoun-

tered where for the first time at least 3
256n vertices of V−,− are inactive. Denote

these vertices by V−,−,−; hence none of them is exposed on any level z ≥ Z∗
−,+.
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At most 1
256n vertices were exposed on level Z ′, and at most 3

256n vertices
became exposed on level Z ′ + 1, . . . , Z∗−,+ − 1, because at most 3

256n vertices
became inactive on these levels. Hence there are at least |V−,−|− 1

256n− 3
256n ≥

3
256n vertices that are not exposed on any level between Z ′ and Z∗

−,+−1. Denote
these vertices as V−,−,+.

With a similar argument, find an integer Z∗
+,+ such that at least 3

256n vertices
of V+,+ are inactive on any level z ≥ Z∗

+,+ (call them V+,+,−), and at least 3
256n

vertices of V+,+ are not exposed on any level between Z ′ and Z∗
+,+ − 1 (call

them V+,+,+). See Figure 7.

Z∗−,+

V−,−

V+,+

Z∗
+,+

(Z = Z ′)-plane

Figure 7: The darker vertices are hidden on all levels between Z ′ and Z∗
−,+

(Z∗
+,+), whereas the lighter vertices are inactive on all levels z ≥ Z∗−,+ (z ≥

Z∗
+,+). (Only the projection of the vertices onto the bounding box is shown.

Also, the picture is simplified in that only one of two possible directions of
exposure is considered.)

Without loss of generality, assume that Z−,+ ≤ Z+,+. Therefore, there
exists no level z ≥ Z ′ on which both a vertex in V−,−,− is active and a vertex
in V+,+,+ is exposed. Hence no edge between V+,+,+ and V−,−,− can be routed
on a (Z = z)-plane with z ≥ Z ′.

Now repeat the argument for the layers below Z ′, applied only to vertices
in V−,−,− and V+,+,+, respectively. Since |V−,−,−| ≥ 3

256n, there is an integer
Z∗−,− < Z ′ such that at least 1

256n vertices of V−,−,− are inactive on any level
z ≤ Z∗

−,− (call them V−,−,−,+), and at least 3
256n− 1

256n− 1
256n = 1

256n vertices
of V−,−,− (call them V−,−,−,−) are hidden on any level between Z ′ and Z∗−,−+1.

Also, there is a value Z∗
+,− < Z ′ such that at least 1

256n vertices of V+,+,+

are inactive on any level z ≤ Z∗
+,− (call them V+,+,+,+), and at least 3

256n −
1

256n − 1
256n = 1

256n vertices of V+,+,+ (call them V+,+,+,−) are hidden on any
level between Z ′ and Z∗

+,− + 1.
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Without loss of generality, assume that Z∗
−,− ≤ Z∗

+,−. Therefore, there
exists no level z ≤ Z ′ on which both a vertex in V−,−,−,− is active and a vertex
in V+,+,+,+ is exposed. Hence none of the edges between V+,+,+,+ and V−,−,−,−
can be routed on a (Z = z)-plane with z ≤ Z ′. But as shown before, none of
these edges can be routed in a (Z = z)-plane with z ≥ Z ′, and not in an X-
plane or a Y -plane either. So if X +Y ≤ 2−8n, then the edges between V+,+,+,+

and V−,−,−,− (which must exist because the graph is a Ramanujan-graph and
d ≥ 16(256)2 = 220) cannot be routed with 0 or 1 bends, a contradiction.

Thus X + Y > 2−8n, and if, say, X = max{X, Y }, then X > 2−9n. There
are at least 1

2 ( 7
256 )2 · dn edges between V−,− and V+,+, since each of these sets

contains at least 7
256n vertices. All their edges routes intersect the (X = X∗)-

plane in a point with integer coordinates, therefore Y Z ≥ 1
2 ( 7

256 )2dn = 49 ·
2−17dn. Combining this with X > 2−9n, we obtain XY Z > 49 ·2−26dn2, which
gives the result. 2

4 Conclusion and open problems

This paper solved two open problems regarding three-dimensional orthogonal
1-bend drawings, namely, that any 1-bend drawing of Kn has volume Ω(n3) and
degree-restricted 1-bend cube-drawings are impossible for Kn, or more generally,
for simple graphs with Ω(∆n) edges. Lower bounds for 1-bend cube-drawings
were also established and hold for any graph for which any cut contains many
edges, in particular for Ramanujan-graphs.

A number of open problems remain to be studied:

• Does every graph have a 1-bend drawing of volume O(∆n2)? It is easy to
construct such a drawing if crossings are allowed, by splitting the edges
into ∆+1 matchings, and assigning a separate Z-plane to each matching,
similarly as in [BSWW99]. Can a graph be split in O(∆) matchings such
that for a suitable vertex order all matchings are without crossing?

If the answer is yes, does every graph have a 1-bend drawing of volume
O(mn)?

• Does every graph have a 1-bend cube-drawing of volume O(∆3n)? If the
answer is yes, does every graph have a 1-bend drawing of volume O(∆2m)?

• What is the correct lower bound for 2-bend drawings? There are drawings
of size O(n3) for Kn [BSWW99] as well as O(∆n2) for all graphs [Bie98].
Is the lower bound Ω(∆n2), as for the 1-bend case?

• What is the correct lower bound for 3-bend drawings? There are drawings
of size O(n2.5) for Kn [BSWW99], and this is optimal [BSWW99]. For
Ramanujan-graphs, the lower bound is Ω(∆n1.5) [BTW01], but it is not
known whether every graph has a 3-bend drawing of volume O(∆n1.5).
(Such drawings exist with 4 bends per edge [BTW01]; 3-bend drawings
can be constructed with similar techniques if crossings are allowed.)
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