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Abstract

Sequential agglomerative hierarchical non-overlapping (SAHN) clus-
tering techniques belong to the classical clustering methods applied heav-
ily in many application domains, e.g., in cheminformatics. Asymptotically
optimal SAHN clustering algorithms are known for arbitrary dissimilarity
measures, but their quadratic time and space complexity even in the best
case still limits the applicability to small data sets. We present a new
pivot based heuristic SAHN clustering algorithm exploiting the proper-
ties of metric distance measures in order to obtain a best-case runtime of
O(n logn) for the input size n. Our approach requires only linear space
and supports median and centroid linkage. It is especially suitable for
expensive distance measures, as it needs only a linear number of exact
distance computations.

This aspect is demonstrated in our extensive experimental evaluation,
where we apply our algorithm to large graph databases in combination
with computationally demanding graph distance metrics. We compare our
approach to exact state-of-the-art SAHN algorithms in terms of quality
and runtime on real-world and synthetic instances including vector and
graph data. The evaluations show a subquadratic runtime in practice and
a very low memory footprint. Our approach yields high-quality clusterings
and is able to rediscover planted cluster structures in synthetic data sets.
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1 Introduction

Clustering is a generic term for methods to identify homogeneous subsets, so-
called clusters, in a set of objects. It is a key technique in exploratory data ana-
lysis and widely used in many fields like drug discovery, storage and retrieval,
network analysis and pattern recognition [11, 28]. A wealth of different cluster-
ing algorithms have emerged with varying definition of homogeneity. Typically,
this definition is based on a symmetric dissimilarity measure for pairs of objects.

A special class of clustering algorithms are hierarchical methods, which pro-
vide additional information on the relationship between clusters and can reveal
nested cluster structures. A prominent example are sequential agglomerative
hierarchical non-overlapping clustering techniques (SAHN) [1, 9, 28]. These ap-
proaches start with singleton clusters and iteratively merge two clusters with
minimum dissimilarity until only one cluster remains. The inter-cluster dissim-
ilarity is determined by a linkage strategy and based on the dissimilarity of
the objects contained in the clusters. The single, complete, average, median,
centroid, and Ward linkage methods are well-studied and widely used [27]. A
unique advantage of hierarchical methods is that the result can naturally be vi-
sualized as a dendrogram, a rooted binary tree where each inner node is linked to
a merge operation with a certain dissimilarity. Cutting the dendrogram horizon-
tally at a specific height leads to a set of subtrees where each root is associated
with a subcluster. Thus, the result of SAHN clustering allows for iterative re-
finement of clusters making these methods especially suitable for an interactive
exploration process, even for very large data sets [7].

We motivate further requirements for our clustering algorithm by a concrete
example arising in cheminformatics, although similar constraints apply in other
application areas: (1) Data sets in cheminformatics are often large containing
tens of thousands of molecules. (2) A hierarchical method is needed since the
whole similarity structure of the data is important. Furthermore, SAHN clus-
tering methods are well-known and studied in cheminformatics [11] and users
may be accustomed to dendrogram representations. (3) Support for arbitrary
metric distance measures is required, since chemical compounds are complex
structures, which are typically represented as graphs or bit vectors, so-called
fingerprints. (4) Distance measures between these objects may be expensive,
e.g., based on the maximum common subgraph of two molecular graphs. Thus,
we desire a low dependence on the computational complexity of the distance
measure.

A major drawback of hierarchical clustering algorithms is their high time and
space complexity. The best exact algorithms known for arbitrary dissimilarity
measures have a worst-case runtime of O(n2) [13] and are optimal since the
general problem requires time Ω(n2) [26]. Exact approaches are typically based
on a symmetric distance matrix, which leads to quadratic memory requirements
and a quadratic number of distance computations. However, quadratic time and
space complexity is prohibitive for large data sets. In case of low-dimensional
vector data the runtime required for distance computations is often neglected.
For expensive distance measures a substantial amount of the total runtime is
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actually due to the quadratic number of pairwise distance computations. In
particular, when complex structured objects like graphs are clustered this can
be a crucial bottleneck.

Related Work. Several exact algorithms with a quadratic worst-case runtime
are known, some of which are limited to specific linkage methods, e.g., the NN-
Chain algorithm [27], the single linkage minimum spanning tree algorithm [31]
and methods based on dynamic closest pairs [13]. Some SAHN algorithms (e.g.,
NNChain) can avoid the quadratic distance matrix when using representatives,
e.g., centroids, for cluster representation. However, this approach is limited to
vector space and leads to an increased amount of exact distance computations.

Several methods to speed up clustering have been proposed. Data summa-
rization is a common acceleration technique. An easy approach is to draw a
random sample and cluster it instead of the whole data set. However, using
random sampling leads to distortions in the clustering results. The distortion is
influenced by the used linkage method and because of this, many sophisticated
summarization techniques are only suitable for special linkages. For example
Patra et al. [30] use an accelerated leaders algorithm to draw a better sampling
for average linkage. Another example is the Data Bubble summarization tech-
nique [3, 40], which was originally developed for OPTICS clustering [2], but is
also suitable for single linkage SAHN clustering.

Further acceleration is possible when using heuristic methods. Koga et al.
[21] proposed Locality Sensitive Hashing (LSH) for a single linkage like algo-
rithm. Its time complexity is reduced to O(nB), where B is practically a con-
stant factor. Although the runtime is very promising, it relies on vector data
and is limited to single linkage, which is rarely used in cheminformatics.

Using the properties of metric distance functions is a common approach to
accelerate different clustering techniques. Pivot based approaches have been
proposed to reduce the number of exact distance computations for hierarchical
clustering [29] and to speedup k-means [12]. To accelerate OPTICS a pivot
based approach for heuristic k-close neighbor rankings was proposed by Zhou
and Sander [39, 41]. They also introduced a pivot tree data structure that
enhances the effectiveness of the pivots for close neighbor rankings. SAHN clus-
tering algorithms often rely on nearest neighbor (NN) queries (e.g., NNChain,
Generic Clustering [26], Conga Line data structure [13]), which can be acceler-
ated for metric distance functions [38]. However, the reduction of the NN search
complexity does not necessarily reduce the asymptotic runtime of the clustering
algorithms (see Sect. 3 for more details).

Clustering methods based on distances can be used to cluster structured
objects like graphs since various graph distance measures exist (see Sect. 4).
However, clustering graphs remains challenging, because these measures are of-
ten computationally demanding and typically have a high intrinsic dimensional-
ity [34] limiting the effectiveness of index structures. Several methods especially
dedicated to graphs have been proposed: Based on concepts to summarize a
set of graphs by a single representative, k-means clustering was generalized to
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graphs [15, 19]. A different variant referred to as kernel k-means can be applied
to graphs utilizing the large number of available graph kernels [35]. Graph min-
ing techniques were used to perform clustering in a suitable low-dimensional
feature space, cf. [34]. In [32] a streaming algorithm for overlapping cluster-
ing was proposed that iteratively tries to assign a graph to each cluster using
algorithmic techniques from frequent subgraph mining.

Our contribution. We propose a new SAHN clustering algorithm for cen-
troid and median linkage that benefits from sublinear NN queries and combine
it with a pivot based indexing structure to obtain subquadratic runtime in prac-
tice. The theoretical time complexity of our algorithm for clustering n objects
is O(n2 log n) in the worst case and O(n log n) in the best case requiring only
linear space. Our approach is broadly applicable since it is not limited to the
Euclidean vector space, but supports arbitrary metric distance measures. Many
known distance measures for complex objects like graphs actually are a met-
ric [10] and their computation often is expensive. The new method requires
only a linear number of distance computations and can therefore cluster large
data sets even when distance computations are expensive. To demonstrate the
effectiveness and versatility of our approach we apply the heuristic SAHN al-
gorithm in the domain of graphs using various distance metrics for graphs.
Our extensive experimental evaluation on a real-world data set from cheminfor-
matics and synthetic data sets shows that the new method yields high-quality
results comparable to exact algorithms, in particular when the data sets indeed
contain a nested cluster structure. To our knowledge there are no other com-
peting heuristic SAHN algorithms for general metric space supporting centroid
or median linkage.

2 Preliminaries

A clustering of a set of objects X = {x1, . . . , xn} is a partition C = {C1, . . . , Ck}
of X . A hierarchical clustering of n objects yields n distinct clusterings obtained
by cutting the associated dendrogram at different heights. We refer to a clus-
tering that results from such a cut and contains i clusters as the clustering
at level i ∈ {1, . . . , n}. SAHN clustering is performed based on a distance
function d : X × X → R≥0 between the objects and an inter-cluster distance
D : P(X )× P(X )→ R≥0 which is also called linkage.

The triangle inequality in combination with the symmetric property fulfilled
by metric distance functions yields lower and upper bounds for the distance
between two objects based on the exact distances between the objects and a
distinguished object p ∈ X referred to as pivot :

∀xi, xj ∈ X : |d(xi, p)− d(xj , p)| ≤ d(xi, xj) ≤ d(xi, p) + d(xj , p) (1)

A nearest neighbor (NN) of a cluster Ci is the cluster Cj 6= Ci to which
Ci has the smallest distance. In the following we use the tilde and the hat to
denote heuristic methods, e.g., ÑN and N̂N refer to a heuristic NN.
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3 A Heuristic SAHN Clustering Algorithm

We present a heuristic SAHN (HSAHN) algorithm that is based on a variation of
the generic clustering algorithm from [26] and utilizes an index structure for NN
search. To efficiently determine heuristic NNs we adopt the approach of [41, 39]
based on best frontier search combined with a pivot tree and generalize it to
support the specific requirements arising from SAHN clustering.

3.1 Generic Clustering

The original generic clustering algorithm has a complexity of Ω(n (log n+k+m))
and O(n2 (log n + k)) for geometric linkages in vector space and Ω(n2) for ar-
bitrary linkages and distance measures. The value k is the complexity of the
NN search and m the complexity of the merge process. Although other SAHN
clustering algorithms have a quadratic upper bound, the practical runtime of
the generic clustering competes with the other algorithms [26] and is close to the
lower bound. Our modified version of the generic clustering algorithm (Alg. 1)
has complexity Ω(n (log n+k+m)) for arbitrary linkage and distance measures
and therefore the lower bound directly depends on the complexity of the NN
search. This is also the case for the NNChain algorithm, but it requires the
reducibility property, which is not guaranteed for centroid linkage, median link-
age and heuristic NN searches. Note that HSAHN requires a metric distance
function and is therefore limited to median and centroid linkage, but this is due
to the NN search and not a limitation of the clustering algorithm.

Besides the runtime improvement, we modified the generic clustering al-
gorithm in order to minimize distance distortions caused by our heuristic NN
search, which is called in line 25. Let N̂N(C) denote the heuristic NN of C.
As a side effect of calculating the NN also a non-symmetric, heuristic distance
D̂(C, N̂N(C)) is calculated without extra computational costs (see Sect. 3.3 for
more details). Since we use the lower bound of (1) for the heuristic, we know
that the real distance is greater than or equal to the heuristic distance in any
direction:

D(C, N̂N(C)) ≥ max{D̂(C, N̂N(C)), D̂rev := D̂(N̂N(C), C)}

For symmetric distance measures the minimal pairwise distance implies a recip-
rocal NN pair. Although this assumption does not hold for the used heuristic
NN search, it does hold with a high probability. A problem is, that the priority
queue used by the generic clustering algorithm always returns the weaker lower
bound first, since it has a higher priority. To overcome this issue without calcu-
lating a computationally more demanding symmetric distance, we can use the
reverse distance, which is already computed in case of a reciprocal NN pair, and
improve the quality of our heuristic by reinserting the tuple (C, N̂N(C)) into

the priority queue with the distance max{D̂, D̂rev} (lines 16-19 of Alg. 1).
Our benchmarks show that this approach is faster than calculating an im-

proved heuristic distance with our pivot based algorithm and does not harm
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1: function GenericClustering(X )
2: L ← SingletonClusters(X ) . L: clusters of the actual level
3: Q← ∅ . priority queue of clusters
4: NN ← ∅ . mapping from cluster to its NN
5: DistNN ← ∅ . mapping from cluster to the distance to its NN
6: for all C ∈ L do . initialization of Q
7: InsertNn(C)

8: while |L| > 1 do . main loop
9: Ci ← Q.ExtractMin()

10: Cj ← NN [Ci]
11: while Ci 6∈ L or Cj 6∈ L do . invalid entry
12: if Ci ∈ L then
13: InsertNn(Ci)

14: Ci ← Q.ExtractMin()
15: Cj ← NN [Ci]

16: if NN [Cj ] = Ci and DistNN [Ci] < DistNN [Cj ] then
17: Q.Insert(Ci, DistNN [Cj ])
18: DistNN [Ci]← DistNN [Cj ]
19: continue
20: Ck ←MergeCluster(Ci, Cj) . (Ci, Cj) minimal NN pair
21: L ← L \ {Ci, Cj} ∪ Ck
22: InsertNn(Ck)

23: return L . return root node of the dendrogram

24: function InsertNn(C)
25: (CNN, dist)← NnSearch(C) . NN search strategy can be plugged in
26: Q.Insert(C, dist) . Q is sorted by dist
27: NN [C]← CNN

28: DistNN [C]← dist

Algorithm 1: Modified Generic Clustering Algorithm

the observed clustering quality. The runtime improvement is particularly ap-
parent in case of computationally cheap distances, otherwise the total runtime
is typically dominated by exact distance computations.

3.2 Pivot Tree

Given a set of pivots P ⊂ X , the lower bound from (1) can be used to determine
a heuristic distance according to:

D̃(Ci, Cj) = max
p∈P
|D({p}, Ci)−D({p}, Cj)| (2)

To increase the effectiveness of the pivots for close or NN queries Zhou and
Sander proposed a pivot tree data structure [41]. The main idea behind this
structure is that the heuristic distance to close objects must be more precise
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X
P = {p1, . . . , pf}

Xp1

Pp1 = {p11, . . . , p1f}

Xp11

Pp11 = {p111, . . . , p11f}
Xp1f

Pp1f = {p1f1, . . . , p1ff}

Xpf

Ppf = {pf1, . . . , pff}
. . .

. . . . . .
...

Figure 1: Pivot Tree

than the distance to objects that are further away in order to calculate nearest
neighbors with a high approximation quality. In our case we determine our
heuristic NNs with the formula:

ÑN(Ci) = argmin
Cj

{D̃(Ci, Cj)} (3)

The original pivot tree is a static data structure. SAHN clustering merges
clusters, i.e., we delete the two clusters that are merged and create a new cluster.
Therefore, we extend the data structure to allow deletions and insertions of
objects (i.e., clusters in our case). Additionally we use a different strategy to
calculate the heuristic distances within the pivot tree and a simplified notation.

As shown in Fig. 1 each node of the pivot tree is linked to a set of singleton
clusters X and a set of pivots P ⊆ X. The set of pivots is randomly chosen from
X. One child node is created for each pivot. The set X belongs to the root node
and contains all clusters, while the set Xpi of a child node contains all clusters
from X which are closest to pi. Therefore all clusters in Xpi are relatively close

to each other. The calculation of the heuristic distance D̃(Ci, Cj) is performed
according to (2) based on the common pivots in Pi∪j :

Pi∪j = {p ∈ Pk | Ci, Cj ∈ Xk}

It is computationally cheap to compute Pi∪j since we know that each cluster is
present only on the path from a leaf to the root node. To find the leaf node in
constant time we store this relationship in a hashing data structure during the
construction process. The relevant nodes for Pi∪j are all the ancestors of the
lowest common ancestor (LCA) of the leaf nodes for Ci and Cj and the LCA
itself.

The construction process starts with the root node followed by a series of
split operations until a maximum number of leaf nodes is reached. Each split
operation creates the child nodes for a leaf node with maximum number of
clusters. At the start the data structure contains only singleton clusters.
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The deletion of a cluster C from the pivot tree is simply the removal of C
from all Xi. Inserting a merged cluster Ci∪j into the data structure is a bit more
complicated, since we cannot compute the exact distance to all pivots efficiently
and therefore cannot insert a new cluster top down. However, the distances can
be computed efficiently to some pivots by incremental distance updates using
the Lance-Williams update formula [23]:

D(Ci∪j , Ck) = αi D(Ci, Ck) + αj D(Cj , Ck) + β D(Ci, Cj)

+ γ |D(Ci, Ck)−D(Cj , Ck)| (4)

By setting the parameters αi, αj , β and γ to specific values, one can obtain
different linkage strategies. In our use case Ck always coincides with a pivot. For
the LCA of Ci and Cj and all ancestors in the pivot tree, we know the distance

of both clusters to the nodes’ pivots and we can use D̃ as distance between
them. For this reason, we insert the merged cluster Ci∪j into these nodes. This
approach has the drawback that the depth of the pivot tree decreases over a
series of merge operations. However, this happens relatively late in the merge
process, because close clusters are merged first and are located in the same
branch of the pivot tree with a high probability. Also the locality property
of clusters in X is not be violated, since the two clusters that are merged are
relatively close to the pivot and therefore the merged cluster is also close with
respect to centroid and median linkage.

3.3 Best Frontier Search

The best frontier searchhas been used to accelerate the OPTICS clustering
algorithm in [39, 41]. We briefly describe the main idea below.

Let us assume that we only use a single pivot p and all clusters are ordered
by their distances to p. Furthermore, let id(C) be the index of cluster C in this
ordering. With respect to (2) the heuristic distances to a fixed cluster Ci are
monotonically increasing when we move away from Ci in the ordering:

∀Ci, Cj , Ck ∈ C : id(Ci) < id(Cj) < id(Ck) ∨ id(Ci) > id(Cj) > id(Ck)

⇒ D̃(Ci, Cj) < D̃(Ci, Ck)

Hence, it is sufficient to consider the neighbors of Ci (in the ordering) to find
Ci’s NN with respect to a single pivot.

Typically, more than one pivot is needed to achieve sufficient quality. The
best frontier search solves this problem by keeping a sorted list Lp of clusters
for each pivot p. To find the position of a cluster in Lp in constant time, the
clusters are linked to their list elements. Furthermore the best frontier search
uses a priority queue which contains entries of these lists that form the frontier.
It is sorted by the lower bound with respect to the single pivot to which the
entry belongs.

When searching an NN of C, the queue initially contains all clusters next to
C in a list Lp for some p ∈ P . Then the clusters with the lowest bounds are
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successively extracted from the queue and a count is maintained how often a
certain cluster is retrieved. After the retrieval of each cluster Cx the frontier is
pushed by adding the cluster to the queue that is next to Cx in the list Li from
which Cx was added to the queue. The cluster Cj that is first counted |P | times
is the heuristic NN with respect to (3). The rationale is that the lower bounds
induced by the clusters retrieved from the queue are monotonically increasing.
That means all lower bounds that would be obtained subsequently are greater
than the heuristic distance D̃(Ci, Cj) and therefore Cj must be the heuristic
NN of Ci.

To combine the pivot tree with the best frontier search, Zhou and Sander
performed a k-close neighbor ranking for each node of the pivot tree and joined
the different close neighbors for each object afterwards. This approach is not
feasible for SAHN clustering since we cannot efficiently determine which of the
heuristic NNs found for each node is the best. Furthermore it is possible that
the heuristic NNs are not correct with respect to (3), while the best frontier
search in general can find the correct heuristic NN. For this reason we need to
use a different technique which is described below.

Our integration of the best frontier search into the pivot tree runs an NN
query for cluster Ci over all pivots p ∈ Px where Ci ∈ Xx. While searching for
the NN of Ci the cardinality of Pi∪j for an arbitrary cluster must be calculated
for each cluster Cj that is retrieved from the frontier separately. The value can
be calculated by finding the LCA of Ci and Cj in the pivot tree and counting
the number of all pivots on the path between the LCA and the root node. To
avoid unnecessary calculations, it is computed on demand and cached for the
time of the NN query.

Because the asymptotic worst-case complexity of an NN query with the best
frontier search is not better than linear (see Sect. 3.4), a search depth bound s
is used. After s clusters are retrieved from the priority queue the best frontier
search is stopped and the cluster that is counted most often is returned as NN.
We use the terms N̂N and D̂ for the search bounded NN search and distance.
Note that the search bound is also the reason for the asymmetric behavior of
D̂.

3.4 Theoretical Complexity

Time complexity. To initialize the pivot tree data structure n clusters are
assigned to f pivots on each level of the tree. The construction of the pivot
tree therefore needs Θ(d f n) time where d represents the tree depth. Since the
number of pivots that is required to achieve a certain quality does not depend
on the input size (Sect. 5), f and d can be considered constant and the overall
construction time is linear.

As mentioned before, the modified generic clustering algorithm has a runtime
of Ω(n (log n+ k+m)) and O(n2 (log n+ k)), where k is the complexity of the
NN search and m the complexity of the merge process. The merge step consists
of two deletions from and one insertion into the pivot tree. Therefore, the
complexity of merge is O(d log n) as it takes O(log n) time to insert a cluster
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into a sorted list Li. The search of an NN is bounded by O(p s), where p is
the number of pivot elements used and s the search depth bound. The runtime
includes O(s) extractions from the frontier queue with length O(p). Pushing the
frontier and finding the initial elements in Li for each pivot takes constant time.
With the same rationale as before, p can be considered constant. It is shown in
the experimental evaluation in Sect. 5 that s can be chosen as a constant value,
too.

The overall time complexity for HSAHN clustering is therefore bounded by
O(n2 log n) in the worst case and O(n log n) in the best case.

Space requirements. Since the tree depth d is a constant and the number of
nodes is a constant, the pivot tree needs only linear space. Each node stores a
constant number of sorted lists Li which store at most n clusters. The hash table
(to find the leaf nodes), the priority queue in the generic clustering algorithm and
the frontier queue require O(n) space. Therefore the overall space requirements
are linear with respect to the input size.

4 Graph Distance Metrics

Graphs are a versatile data structure used to represent structured objects in
many application domains such as biology, chemistry or pattern recognition.
To show the flexibility of our clustering algorithms based on arbitrary metric
distances, we apply our algorithm to graphs. Comparing graphs and developing
meaningful similarity measures between graphs is of utmost importance for al-
most all data mining algorithms when applied to graphs. Consequently various
approaches for this task have been developed and are widely used in practice.
Methods may be based on classical graph theoretical concepts like the maximum
common subgraph, driven by concrete specific applications, e.g., molecular fin-
gerprints, or developed for specific data mining algorithms like graph kernels.

We briefly present several distance metrics that have been used previously
for various purposes and derive distance metrics from graph kernels. These
measures have varying characteristics and differ in terms of computational com-
plexity, dimensionality and their general notion of similarity. We discuss their
applicability to our clustering algorithm before reporting on our experimental
evaluation.

Molecular Fingerprints Molecular fingerprints are binary or numerical fea-
ture vectors, which represent graphs associated with chemical compounds. Pre-
defined features of a molecular graph (e.g., certain substructures) are mapped
to distinct positions in this vector where the number of its occurrences is stored.
In case of binary fingerprints just the presence of certain features is indicated
by bits. Fingerprints are used for various applications in cheminformatics in-
cluding clustering and are often compared with computationally cheap distance
measures.
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The Tanimoto coefficient is most commonly used for chemical compound
comparisons based on binary fingerprints [16]. It is equivalent to the Jaccard
coefficient when fingerprints are represented by sets. For two binary fingerprints
F1 and F2 it is defined as

Tanimoto(F1, F2) =
N11

N11 +N10 +N01
, (5)

where N11 refers to the number of shared on bits, while N10 and N01 refer to ex-
clusive on bits in F1 and F2, respectively. The Tanimoto coefficient is a normal-
ized similarity measure in the interval [0, 1]. The distance 1−Tanimoto(F1, F2)
is a metric [24].

Fingerprints are commonly used to cluster molecules, because of the cheap
distance computations. Furthermore, the fingerprints can be precomputed and
reused for different clustering settings. Because of their fixed feature set, they
are less versatile than graph kernel distances. However, the features can be
selected carefully for a specific task and imply an interpretable way to abstract
from the complex graph structure.

Maximum Common Subgraph Distances Given two graphs G and H,
the maximum common induced subgraph problem (MCIS) is to determine the
size (in terms of vertices) of the largest graph that is isomorphic to an induced
subgraph of G and H. In case of labeled graphs the isomorphism between the
subgraphs typically not only has to preserve adjacencies, but also vertex and
edge labels. Note that the common subgraph is not necessarily connected. Fur-
thermore, multiple common subgraphs of the same maximum size may exist. In
many applications it is beneficial to consider arbitrary subgraphs (without iso-
lated vertices) and to quantify the size of graphs in terms of edges (MCES). Both
variants of the problem are known to be NP-complete and the computation is
demanding even for small graphs in practice [8].

Several metrics for graphs have been proposed that take the size of a maxi-
mum common subgraph into account:

d(G,H) = 1− |Mcs(G,H)|
max{|G|, |H|}

BS [5] (6)

d(G,H) = 1− |Mcs(G,H)|
|G|+ |H| − |Mcs(G,H)|

WSKR [36] (7)

d(G,H) = |G|+ |H| − 2|Mcs(G,H)| FV [14] (8)

These distances can be combined with both definitions of maximum common
subgraph and we refer to (6), for example, either by MCIS-BS or MCES-BS
to distinguish between both variants. In our experimental evaluation below we
focus on the distance FV (8), which has been proposed on several occasions and
was shown to yield a metric for different definitions of common subgraphs [14,
10]. The size of a maximum common subgraph is closely related to the graph
edit distance [4] and (8) actually corresponds to the minimum number of edit
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operations to turn one graph into the other. For example, one may first delete
the parts of G that do not belong to the maximum common subgraph and than
add parts of the other graph to finally obtain H, where deletion and addition
of either vertices or edges is considered as edit operation.

Since we want to combine this distance with centroid linkage one may ask
for the intuition of a centroid under this distance measure. Given two graphs
G and H, let C be a maximum common subgraph of G and H. It is easy to
verify that d(G,H) = 2d(G,C) = 2d(H,C) suggesting that one way to think of
a centroid is the common subgraph.

Graph Kernel Distances Various kernels for graphs have been proposed in
recent years, see [35] and references therein, which allow to apply the wealth
of so-called kernel methods, including Support Vector Machines as the most
prominent example, to graphs. A graph kernel is a function k : G×G → R on the
set of graphs G that can be expressed as a dot product k(G,H) = 〈φ(G), φ(H)〉,
where φ : G → H is a mapping into a feature space H. Although a kernel
may be efficiently computable, a corresponding feature space may be of high or
even indefinite dimension. Therefore, it may be prohibitive to explicitly map
elements into feature space. In this respect kernels substantially differ from
vector representations like molecular fingerprints. However, a distance metric
in feature space can be computed in terms of kernel values avoiding such a
mapping. We determine the Euclidean distance in the feature space according
to

d(G,H) =

√√√√ n∑
i=1

(gi − hi)2 =
√
k(G,G) + k(H,H)− 2k(G,H), (9)

where (g1, . . . , gn)T = φ(G) and (h1, . . . , hn)T = φ(H). Therefore, we can eas-
ily derive metrics from arbitrary graph kernels. We employed graph kernels
based on random walks of fixed length (FLRW), which basically count the com-
mon walks contained in both graphs, where each walk is associated with the
sequence of vertex and edge labels encountered on the walk. Kernels based on
random walks are widely used and efficiently computable [18, 35]. We have
implemented an algorithm based on product graphs, which is similar to the ap-
proach described in [18], and consider walks of length 4. In addition we used
Weisfeiler-Lehman graph kernels [33] that are scalable on large graphs with dis-
crete labels and were shown to perform well in classification tasks. Different
kernels based on the classical method for isomorphism testing have been devel-
oped and we have implemented the Weisfeiler-Lehman subtree (WL-ST) and
shortest path (WL-SP) kernel. Both kernels perform two iterations of label
refinement and WL-SP requires shortest-path distances to match exactly.

In contrast to maximum common subgraph distances, (9) as well as the
distance based on fingerprints yield metrics in a feature space, but in general
a pseudo metric for graphs, since d(G,H) = 0 may also hold for two non-
isomorphic graphs G and H. Nevertheless, such distances can be useful for
specific tasks and can be used for clustering graphs with our approach.
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5 Experimental Results

In this section we cover performance and quality measurements of our Java im-
plementation. All tests were performed on an Intel Core i7 CPU 940 (2.93GHz)
with a Linux operating system and a Java HotSpot virtual machine (version
1.6), which was limited to 5 GB of heap space. The implementation as well as
the evaluation framework is publicly available at the Scaffold Hunter Website1

and licensed under the GPLv3.

Data Sets. We used a real-world as well as various synthetic data sets2 for
the evaluation.

The real-world data set (SARFari kinase) stems from the ChEMBL3

database and contains a set of ≈ 50 000 molecules. The Euclidean distance,
Tanimoto coefficient, various kernels and various maximum common subgraph
distances were utilized for this data set. The Euclidean distance was applied on
5 numerical properties of the molecules. The Tanimoto distance was applied to
Daylight bit fingerprints (1024 bits), which were generated with the chemistry
development kit4.

For the above data set, quality was measured by comparing the exact and
the heuristic results. This method always suffers from the possibility that there
might be two different clusterings that represent some ground truth equally
well. If these alternative clusterings differ a lot, the comparison suggests a
bad clustering quality for the heuristic approach. To overcome this evaluation
weakness, we generated a data set of connected graphs hierarchically, such that
we were able to compare the generated hierarchy (ground truth) with the cluster
hierarchy. The generation of this data set is based on random edge extensions
and is described below. We started with an empty graph (the root node in
the hierarchy) and extended this graph m times with o edges, such that we
get m graphs with o edges on the second level of the hierarchy. We proceeded
with the leaf nodes and randomly extended each of them. This procedure was
repeated until a certain depth was reached. The labels of the vertices and edges
were chosen randomly from a set of labels with size q and the probability for
a backward extensions (connecting two existing vertices) was set to 0.7. An
obvious choice of the parameter m seems to be 2, since the clustering result is
a binary tree. However, choosing m = 2 is problematic, because the data set
diversity is low (i.e., cluster separation is low on medium to low levels of the
hierarchy). Adding more edges in one step (i.e., incrementing o) to overcome
this issue for m = 2 is also not practicable, since the graphs become too large
to compute the distances between them in a reasonable amount of time for
meaningful data set sizes. Furthermore, the presence of more than two clusters
at the same level is common in real world data. For this reasons, we chose
m = 6, o = 3 and a depth of 4 to create the data set. The hierarchy was than

1http://scaffoldhunter.sourceforge.net
2https://ls11-www.cs.tu-dortmund.de/staff/schaefer/publication_data
3https://www.ebi.ac.uk/chembldb
4http://cdk.sourceforge.net

http://scaffoldhunter.sourceforge.net
https://ls11-www.cs.tu-dortmund.de/staff/schaefer/publication_data
https://www.ebi.ac.uk/chembldb
http://cdk.sourceforge.net
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made binary, by replacing each node by a random binary tree with m leaves.
To further reduce the graph size, we chose o = 1 for the last level of extensions.
For the performance evaluations we used m = 10 to generate data sets larger
than 1024.

In addition, we used two synthetic 5 dimensional Euclidean data sets to
analyze the impact of the clusterability on the quality of the resulting clustering.
The first contained uniformly distributed data and the second contained 32
normally distributed and well-separated clusters.

Test Setup. The quality measurements were done by comparing each level
of the HSAHN results either with the exact results or the generated hierarchy
which represents the ground truth. The Fowlkes Mallows Index (FMI) [17]
and the Normalized Variation of Information (NVI) [25] measurements were
employed to measure each single level. The FMI is based on a counting pair
approach, i.e., it counts the pairs of objects, that are in the same cluster or
in different clusters in both clusterings. The NVI is an information theoretic
measure, that uses only the cluster sizes for comparison. We observed that the
FMI produces more differentiated results for different settings than NVI. On
the other hand NVI is less biased by the number of clusters and was therefore
utilized as a alternative measure.

Please note that, to our knowledge, there exist no other competing heuris-
tic SAHN algorithms for general metric space supporting centroid or median
linkage. Therefore, we compared our algorithm with state of the art exact al-
gorithms in the case of performance measurements and cannot compare the
quality with competing approaches.

In addition to the runtime and quality measurements, we calculated the
intrinsic dimensionality [6] for each data set in combination with each distance
measure. The intrinsic dimensionality is defined as

ρ =
µ2

2 σ2
,

where µ is the average distance and σ is the standard deviation. It plays an
important role in any pivot approach, as the number of pivots required to ap-
proximate a distance with a certain quality increases with the dimensionality
of the data set. Since the data points in an n-dimensional vector space might
be embeddable into a much lower dimensional space preserving all pairwise dis-
tances, it is important to distinguish between the vector space dimension and
the intrinsic dimension.

All heuristic test results were averaged over three runs, because the random
selection of pivots leads to a non-deterministic behavior of the algorithm. With-
out an exception the differences were very small and the results were stable over
different runs. In the plots the parameters of the best frontier search are noted
as (f ; l; s), where f is the number of pivots per node, l is the number of leaf
nodes and s is the search depth bound. Note that l = 1 means that the pivot
tree is deactivated.



JGAA, 18(4) 577–602 (2014) 591

Ti
m

e 
in

 S
ec

on
ds

Size
2000 4000 6000 8000

0

500

1000

1500

2000

2500

3000
5; 1; ∞
20; 1; ∞
50; 1; ∞
5; 10; ∞
5; 20; ∞
5; 50; ∞
5; 100; ∞
exact

(a) Unbounded Search Depth

Ti
m

e 
in

 M
in

ut
es

Size
0 10000 20000 30000 40000 50000

0

10

20

30

40

50

60
exact
5; 50; 4000

(b) Complete Kinase Data Set

Figure 2: Runtime for Tanimoto Distance: Kinase Data Set

Runtime. The runtime behavior differs for different distance measures. For
computationally demanding distance measures and data sets of feasible size, the
runtime is dominated by the initialization of the pivot tree data structure. For
computationally cheap distance measures the runtime is dominated by the clus-
tering process itself. We will focus on computationally cheap distance measures
to investigate the performance of the best frontier search and advance to more
complex distances afterwards.

As shown in Fig. 2(a) the performance of the algorithm scales linearly with
the number of pivots if we use the computationally cheap Tanimoto distance.
For the unbounded search depth the empirical runtime behavior is clearly
quadratic and the absolute runtime for a high pivot count even exceeds the
runtime of the exact algorithm. It is noteworthy that the number of leaves in
the pivot tree does not have a major influence on the overall performance. If
we limit the search depth and use a reasonable set of parameters (the rationale
follows in the quality evaluation paragraph) the time to cluster the whole kinase
data set (Fig. 2(b)) is much lower than in the exact case. The heuristic curve
flattens at the higher levels and the observed behavior is slightly subquadratic.

The evaluation on the kinase data set also shows the memory advantage
of our algorithm for larger data sets, since we were unable to cluster 30 000
structures with the exact algorithm due to memory constraints. On the other
hand, the heuristic clustering algorithm used less than 1 GB of memory to
cluster the whole kinase data set.

Figures 3(a) and 3(b) show the runtime of the exact and the heuristic al-
gorithm for generated hierarchical data sets (1 and 10 labels). The heuristic
algorithm was run with two different settings for the number of pivots and an
unbounded search depth. As previously expected, the use of computationally
demanding distances hurts the runtime of the exact algorithm a lot more than
the runtime of the heuristic algorithm. In an interactive environment, where
fast response times are essential, even clustering small data sets (with a size
≈ 4000) with the exact algorithm can be prohibitive. On the other hand the
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Figure 3: Runtime for Kernel and MCS Distances: Hierarchy Data Set

Ti
m

e 
in

 S
ec

on
ds

 (W
ith

ou
t I

ni
tia

liz
at

io
n)

Dimensionality
5 10 15 20 25 30 35

10

20

30

40

50

60

70

Kernel - FLRW
MCIS - FV
MCES - FV

Figure 4: Influence of the Dimensionality on the Clustering Runtime

heuristic clustering is up to 60 times faster and this speed up increases with the
data set size. The number of labels used for the generation of the data set has
a huge impact on the clustering performance. The higher the number of labels
the less demanding is a single distance computation. It is remarkable that for
the heuristic clustering, this does not generally lead to a lower overall runtime.
Figures 3(a) and 3(b) show a curve that is superlinear for the 10-label settings
and a near to linear curve for the 1-label settings, where the linear number of
distance computations dominates the overall runtime. We can therefore expect
that the 10-label performance will get worse for larger data sets compared to
the 1-label performance.

This observation is explainable if we consider the effect of the intrinsic dimen-
sionality of the data sets, cf. Table 1, on the runtime behavior. With increasing
dimensionality also the probability for a pivot to give a bad approximation of
the real distance increases. Furthermore, with an increasing number of pivots,
that are not able to approximate the distance well, the number of false elements
that will be processed by the best frontier search before the heuristic NN is
found increases.

As a consequence, the search depth as well as the number of pivots have
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Label MCIS-FV MCES-FV MCIS-BS MCES-BS MCIS-WSKR

1 4.52 3.98 4.31 4.74 7.78
2 13.08 7.82 12.65 9.12 29.15
3 15.73 16.16 17.00 12.95 36.77
10 18.45 20.52 23.64 20.64 47.38

Label MCES-WSKR Kernel-FLRW Kernel-WL-ST Kernel-WL-SP

1 8.28 0.80 9.88 6.44
2 20.36 1.96 39.75 9.93
3 37.12 6.54 40.00 14.95
10 46.07 15.94 75.43 38.59

Table 1: Dimensionality of the Hierarchy Data Set
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Figure 5: Comparing the Exact and the Heuristic Results: Kinase Data Set;
Euclidean Distance (5 Dimensions)

to be increased for high dimensional data sets. Even if we keep the number
of pivots fixed, the runtime of an unbounded best frontier search will increase.
This effect is shown in Fig. 4. We generated four fixed sized data sets with
1, 2, 3 and 10 labels. We then plotted the dimensionality and the runtime of
the clustering for a selected set of distances. We left out the runtime of the
initialization in this plot, to be independent of the computational complexity of
the distance measure and show only the effect of the structure of the data on the
clustering performance. While there is a trend that the runtime increases with
the dimensionality, the plot also shows that there are other factors influencing
the runtime. Furthermore, the runtime is influenced by the dimensionality to a
different degree depending on the distance measure.

Quality - Pivot Count and Pivot Tree. From the theoretical point of
view more pivots should result in a better quality of the best frontier search.
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Figure 6: Comparing the Exact and the Heuristic Results: Influence of the Data
Distribution

However, our test results do not show significant differences in the quality when
the number of pivots exceeds a certain threshold. From our observations the
main aspect that influences this threshold is the structure of the data and not
the input size. The number of pivots can therefore be seen as a constant with
respect to the asymptotic runtime behavior. Figure 5(a) clearly shows that
there is no significant difference in quality if no pivot tree and 5, 20 or 50 pivots
are used. Anyway, when using the pivot tree data structure, the quality can
be enhanced further. This is a remarkable result, as the runtime of the setting
(50; 1;∞) is at least 10 times higher than the runtime of the setting (5; 100;∞).

Quality - Search Depth and Ambiguity. The search depth limits the
runtime of the best frontier search. Therefore it is very important to know, if
the search depth can be sublinear in the input size, while retaining a constant
quality. Our tests revealed that this search bound can be chosen constant. For
this we calculated an average NVI quality score over all levels but the lowest
10% (e.g., level 9 001 to 10 000 for the input size 10 000) and compared these
values for different fixed search depths over a series of different input sizes. Also
for very low search depths the quality was constant over all input sizes. The
reason to not use the lowest 10% is that these levels are strongly influenced by
the starting situation where both clusterings contain only singletons.

The experimental evaluation showed that the search depth can be chosen
about 500 in the low dimensional Euclidean space, see Fig. 5(b). Lower val-
ues significantly harm the quality of the results. A much higher search depth
(e.g. ≈ 5000 for MCES-FV and MCIS-FV) has to be chosen for the maximum
common subgraph and the Weisfeiler-Lehman graph kernel distances using the
hierarchical data sets. We observed that the search depth is sensitive to the
number of pivots |P | and the dimensionality of the data. The first observation
is not surprising, since the best frontier search loop is stopped after the first
object is counted |P | times. The second observation can be explained by the
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already mentioned higher probability for a pivot to lay on a disadvantageous
position relative to two objects. Furthermore the distribution of the distances
plays an important role as the pairwise objects tend to be equidistant in high
dimensional space. Lower deviation in the pairwise distances means that even a
small deviation in the lower distance bound (1) results in a higher probability,
that an object is falsely retrieved from the frontier.

This observation also explains why the quality of the Tanimoto distance
(Fig. 6(b)) is lower than the quality of the Euclidean distance and why a limit
on the search depth has such a huge impact. The number of different distances
for the Tanimoto distance is limited by the length of the Farey sequence which

is 3n2

π2 , where n is the bit count. For a data set size of 10 000 and 1024 bits this
means that the number of object pairs is about 300 times more than the number
of distinct distance values. This leads to a high ambiguity in the clustering
process and makes the results unstable, even if one is comparing two exact
algorithms.

The peak in Fig. 6(b) at level 5 000 is also explainable when we look at
Fig. 6(a). If the data set contains well-separated clusters, the quality is good at
exactly the level which corresponds to the number of clusters. This implies that
we are able to identify real clusters in a data set with the HSAHN algorithm al-
beit the clustering quality might not be very well over all levels. This conclusion
is very important because it establishes the practicability of our approach.

Quality - Maximum Common Subgraph and Kernel Distances As
mentioned earlier, the alternative clusterings of the same quality are not ade-
quately scored when compared to the exact results. The quality measurements
considered here will therefore compare the results with the generated ground
truth. The problem with ambiguous merge operations still remains for some
levels, but for the levels which contain a real cluster structure we can expect a
high quality. We will give a short example to make this aspect clear. Let us
consider a binary tree with four leaves. The root node has a dissimilarity of
two and both children have a dissimilarity of one. It is not defined which of the
children should be merged first. The two left leaves and the two right leaves
have the same dissimilarity and therefore the ordering is arbitrary. That means,
we can expect a high quality score for the second level, while there might be a
lower quality score for the third level.

The number of labels we use for the data set generation does also have an
influence on the possibility to reconstruct the hierarchy unambiguously. The less
labels we use for the data set generation the higher is the probability, that we
randomly create the same (sub-)graph in two different branches of our hierarchy.
It is impossible to distinguish between these graphs in the latter recreation of
the hierarchy by the clustering algorithm and we might add a subtree into the
wrong branch. Therefore, we can expect a higher clustering quality for a higher
label count for the exact algorithm. As the intrinsic dimensionality increases
with the label count, the last aspect might not be observable using the heuristic
clustering.
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Figure 7: Comparison to Ground Truth: 10 Labels

Another important aspect of this part of the evaluation is to demonstrate,
which maximum common subgraph distances and which kernel distances are
suitable for centroid linkage and SAHN clustering in general and which distances
are a good choice for our heuristic approach.

Figure 7(a) shows the quality of the exact SAHN algorithm for different
distances and 10 labels. We can see that the maximum common subgraph
distances consistently have a higher quality than the kernel distances. The
Weisfeiler-Lehman graph kernels seem to be incompatible with centroid linkage
or are not suitable for the specific clustering task. Only the fixed length random
walk kernel shows some evidence, that the first level of the hierarchy was merged
correctly, but shows a bad quality for the levels 0 to 400. On the other hand,
the maximum common subgraph distances performed very well. Some were
able to perfectly recreate the hierarchy aside from the ambiguity between the
hierarchy levels explained above. It is conspicuous, that the MCES distances
performed better than MCIS distances. The different ways to calculate the
distance from the maximum common subgraph does not seem to have a huge
influence. This behavior can be explained given the way we generated the data
set. We added random edges, and therefore the dissimilarities should correspond
to the hierarchy level of the LCA if we use the MCES measures. Therefore, it
cannot be said that the MCIS distances perform any less in general.

Figure 7(b) shows the quality using HSAHN for the MCES-FV distance and
10 labels. The plot demonstrates, that a high number of pivots is needed for a
good quality, but HSAHN is able to recreate the hierarchy with some deviation.
MCES-BS performed similar to MCES-FV, while MCES-WSKR performed poor
for the Heuristic clustering. These observations are in line with the intrinsic
dimensionality from Table 1.

If we use less labels, the heuristic and the exact algorithms produce similar
results (see Fig. 8). On the one hand, Fig. 8(b) met our expectations: the
quality of the exact algorithm is slightly below the 10-label setting and the
quality for the heuristic algorithm rises because of the lower dimensionality.
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Figure 8: Comparison to Ground Truth: 1 and 3 Labels

On the other hand it was surprising for us that the fixed length random walk
kernel performed so well for unlabeled (i.e., 1 label) graphs (see Fig. 8(a)). It
outperformed the MCES-FV distance measure in the exact and the heuristic
case. The heuristic algorithm performed well, regardless of number of pivots
used. In the lower levels the quality of the heuristic algorithm was even higher
than the quality of the exact algorithm. We have some evidence, that these
results can be transfered to other data sets as well, because we observed similar
results regarding the different distance measures for the exact vs. heuristic
comparisons on the real world data set.

6 Conclusions

Our tests have shown that the HSAHN algorithm can greatly increase the size
of data sets which can be clustered in a reasonable amount of time. In addi-
tion, the memory usage is lowered dramatically, which often sets a hard limit on
the data set size using exact algorithms. The linear dependence on exact dis-
tance calculations makes it possible to use computationally expensive distance
measures even on large data sets. For the applicability of our algorithm, it is
important to understand the influence of the algorithm parameters. In Sect. 5
we have discussed the selection of adequate parameters for the clustering in
detail.

In addition to proposing the HSAHN algorithm, we have analyzed which
graph distances are suitable for SAHN and HSAHN clustering in combination
with centroid linkage and demonstrated the huge impact of the intrinsic dimen-
sionality on the HSAHN results. We have shown that our algorithm is able
to recreate the planted cluster structures and therefore is applicable to graph
databases. Based on our experimental study, it seems advisable to use the
FLRW kernel for unlabeled data and the MCIS-FV or MCES-FV distance for
labeled graphs.

A starting point for further improvement is the calculation of the distances
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between the merged clusters and the pivots. Our approach to employ the Lance-
Williams update formula based on heuristic distances has been shown to be con-
venient, but results may be biased by slight heuristic distance errors, which then
accumulate over a series of merge operations. For the application of HSAHN on
graph databases, it might be possible to calculate maximum common subgraphs,
minimum common supergraphs or median graphs as representatives. We can
use this representatives for exact distance calculations to the pivots. In this case
it is also possible to insert the new cluster top down into the pivot tree data
structure. Doing so, will only double the amount of exact distance calculations.
However, there are some problems to solve, e.g., there might exist more than
one common subgraph. Keeping all of them would require some extra distance
computations and the need to aggregate the different distances to a common
metric value.

Another aspect that should be investigated in future work, is the local split-
ting of the pivot tree. The hard boundaries of the local areas can lead to the
situation, that only a few pivots are used for close clusters from different areas.
It might be sufficient to use more than one pivot tree at the same time, because
the random sampling strategy implies random borders. However, we are unsure
about the effect this problem has in practice and there might be more efficient
strategies to overcome this problem.

When clustering huge datasets with SAHN methods the visual representation
becomes difficult, especially in terms of information overload. Therefore we
suggest to use more flexible and dynamic representations of the dendrogram as
in [7]. The HSAHN algorithm was integrated in the software Scaffold Hunter [37,
20], a tool for the analysis and exploration of chemical space, and has been
proven a valuable alternative to exact approaches in practice.
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[14] M.-L. Fernàndez and G. Valiente. A graph distance metric combining maxi-
mum common subgraph and minimum common supergraph. Pattern Recog-
nition Letters, 22(67):753 – 758, 2001. doi:10.1016/S0167-8655(01)

00017-4.

[15] M. Ferrer, E. Valveny, F. Serratosa, I. Bardaj́ı, and H. Bunke. Graph-
based k-means clustering: A comparison of the set median versus the gen-
eralized median graph. In CAIP, pages 342–350, 2009. doi:10.1007/

978-3-642-03767-2_42.

[16] M. A. Fligner, J. S. Verducci, and P. E. Blower. A modification of the
jaccardtanimoto similarity index for diverse selection of chemical com-
pounds using binary strings. Technometrics, 44(2):110–119, 2002. doi:

10.1198/004017002317375064.

[17] E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association, 78(383):553–
569, 1983. doi:10.2307/2288117.

[18] Z. Harchaoui and F. Bach. Image classification with segmentation graph
kernels. In Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, pages 1 –8, june 2007. doi:10.1109/CVPR.2007.

383049.

[19] B. Jain and K. Obermayer. Elkans k-means algorithm for graphs. In
G. Sidorov, A. Hernández Aguirre, and C. A. Reyes Garćıa, editors, Ad-
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