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Abstract

This paper addresses the minimax regret sink location problem in dy-
namic tree networks. In our model, a dynamic tree network consists of
an undirected tree with positive edge lengths and uniform edge capacity,
and the vertex supply which is a positive value is unknown but only the
interval of supply is known. A particular realization of supply to each
vertex is called a scenario. Under any scenario, the cost of a sink location
x is defined as the minimum time to complete the evacuation to x for all
supplies (evacuees), and the regret of x is defined as the cost of x minus
the cost of the optimal sink location. Then, the problem is to find a sink
location which minimizes the maximum regret for all possible scenarios.
We present an O(n2 log2 n) time algorithm for the minimax regret sink
location problem in dynamic tree networks with uniform capacity, where
n is the number of vertices in the network. As a preliminary step for this
result, we also address the minimum cost sink location problem in a dy-
namic tree networks under a fixed scenario and present an O(n log n) time
algorithm, which improves upon the existing time bound of O(n log2 n)
by [14] if edges of a tree have uniform capacity.
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1 Introduction

Recently, big earthquakes frequently occur around the world, e.g., the Great

Hanshin-Awaji Earthquake in 1995, the Sichuan Earthquake in 2008, and so on.
Also, some big earthquakes triggers devastating tsunamis, e.g., the Sumatra-

Andaman Earthquake in 2004 and The Tohoku-Pacific Ocean Earthquake in
2011. In such disasters, many people failed to evacuate and lost their lives due
to severe attack by tsunamis. Moreover, not only earthquakes but also diverse
disasters occur and cause serious damages in many countries. Therefore, from
the viewpoint of disaster prevention, it has now become extremely important
to establish effective evacuation planning systems against large scale disasters.
In particular, arrangements of tsunami evacuation buildings in large Japanese
cities near the coast have become an urgent issue. To determine appropriate
tsunami evacuation buildings, we need to consider where evacuation buildings
are located and how to partition a large area into small regions so that one
evacuation building is designated in each region. This produces several theo-
retical issues to be considered. Among them, this paper focuses on the location
problem of the evacuation building assuming that we fix the region such that
all evacuees in the region are planned to evacuate to this building. A natural
evaluation criterion of the building location is the time required to complete the
evacuation. In order to treat this criterion, we consider the dynamic setting in
graph networks, which was first introduced by Ford et al. [9]. Under the dy-
namic setting, each edge of a given graph has a capacity which limits the value
of the flow into the edge at each time step. We call such networks under the
dynamic setting dynamic networks.

This paper addresses the minimax regret sink location problem in dynamic

networks. In our model, a dynamic network consists of an undirected graph
with positive edge lengths and uniform edge capacity, and the vertex supply
which is a positive value is unknown but only the interval of supply is known.
Generally, the number of evacuees in an area (the initial supply at a vertex)
may vary depending on the time (e.g., in an office area in a big city there are
many people during the daytime on weekdays while there are much less people
on weekends or during the night time). So, in order to take into account the
uncertainty of the vertex supplies, we adopt the maximum regret for a partic-
ular sink location as another evaluation criterion assuming that we only know
the interval of supply for each vertex. A particular realization (assignment of
supply to each vertex) is called a scenario. Under any scenario, the cost of a
sink location x is defined as the minimum time to complete the evacuation to x
for all supplies, and the regret of x is defined as the cost of x minus the cost of
the optimal sink location. Then, the problem can be understood as a 2-person
Stackelberg game as follows. The first player picks a sink location x and the
second player chooses a scenario s that maximizes the regret of x under s. The
objective of the first player is to choose x that minimizes the maximum regret.

Several researchers have studied the minimax regret sink location prob-
lems [7, 13, 15, 16]. Especially, for tree networks, some efficient algorithms
have been presented by [1, 2, 3, 4, 5, 8]. For dynamic networks, Cheng et



JGAA, 18(4) 539–555 (2014) 541

al. [6] have studied the minimax regret sink location problem in dynamic path
networks with uniform capacity and presented an O(n log2 n) time algorithm.
Recently, Higashikawa et al. [10] improved the time bound by [6] to O(n log n).
Also, Wang [17] independently achieved the same time bound of O(n log n) with
better space complexity.

In this paper, we consider the minimax regret sink location problem in dy-
namic tree networks. There are both theoretical and practical motivations to
study this problem. For the theoretical motivation, we are interested in how we
can extend the solvable class of networks for the problem from dynamic path
networks by [6, 10, 17]. In fact, the minimax regret sink location problem in
dynamic tree networks has not been studied in the literature. For the practical
motivation, as mentioned in [14], considering tree networks seems to be impor-
tant since one of the desirable evacuation plans in a region sends evacuees to
the evacuation building so that any evacuees never cross each other.

For the minimax regret 1-sink location problem in dynamic tree networks
with uniform capacity, we propose an O(n2 log2 n) time algorithm. In order
to develop this algorithm, we first consider the case where the supply at each
vertex is fixed to a given value. The problem is to find a sink location in a given
tree which minimizes the time to complete the evacuation to the sink for all
supplies under a fixed scenario, which is called the minimum cost sink location

problem in dynamic tree networks. An algorithm for this problem can be used as
a subroutine of the algorithm to solve the minimax regret sink location problem
in dynamic tree networks. Mamada et al. [14] have studied the minimum cost
sink location problem in dynamic tree networks with general capacity and pre-
sented an O(n log2 n) time algorithm. In this paper, we present an O(n log n)
time algorithm for the minimum cost sink location problem in dynamic tree
networks with uniform capacity. Note that the paper by [14] assumed that a
sink is located at a vertex while our paper assumes that a sink can be located
at any point in the network.

There are two key ideas of the proposed algorithm to find the minimax re-
gret sink location. The first one is that for a fixed vertex, we can identify O(n)
scenarios among which the worst case scenario exists when the sink is located at
the vertex. The second one is that we repeatedly halve the size of the area where
the optimal sink location exists. In Section 2, we will treat the minimum cost
sink location problem in dynamic tree networks. In Section 3, we will treat the
minimax regret sink location problem in dynamic tree networks. Note that all
claims, lemmas and the main theorem in Section 2 indeed hold even if the edge
capacity is uniform with an arbitrary value, Lemma 4 and the main theorem in
Section 3 holds only if the edge capacity is uniformly 1.
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2 Minimum cost sink location problem in dy-

namic tree networks with uniform capacity

Let T = (V,E) be an undirected tree with a vertex set V and an edge set E.
Let N = (T, l, w, c, τ) be a dynamic network with the underlying graph being
a tree T , where l is a function that associates each edge e ∈ E with a positive
integral length l(e), w is also a function that associates each vertex v ∈ V with
a positive integral supply w(v) representing the number of evacuees at v, c is
a positive integral constant representing the capacity of each edge: the least
upper bound for the number of the evacuees entering an edge per unit time,
and τ is also a constant representing the time required for traversing the unit
distance of each evacuee. We call such networks with tree structures dynamic

tree networks.

2.1 Formula for the minimum completion time of the evac-

uation

In the following, for two integers i and j, let [i, j] = {k ∈ Z | i ≤ k ≤ j}. We first
show a formula representing the minimum completion time for the evacuation
in a dynamic tree network with uniform capacity. In the following, we also use
the notation T to denote the set of all points on edges in E including all vertices
in V . For two points p, q ∈ T , let d(p, q) denote the distance between p and
q in T . More precisely, when p (resp. q) divides an edge ep = (up, vp) (resp.
eq = (uq, vq)) with the ratio of λp to 1− λp with 0 ≤ λp ≤ 1 (resp. λq to 1− λq

with 0 ≤ λq ≤ 1) and the shortest path from up to uq in T includes p and q in
this order, we define d(p, q) as follows:

d(p, q) =
∑

{l(e) | e is on the shortest path from up to uq in T }

−λpl(ep)− λql(eq). (1)

For a vertex v ∈ V , let δ(v) denote the set of vertices adjacent to v, and for a
point p ∈ T which is not at a vertex but on an edge (u, v) ∈ E, let δ(p) denote
the set of two vertices u and v. For a sink location x given at a point in T ,
let Θ(x) denote the minimum time required for all evacuees on T to complete
the evacuation to x. In this paper, we assume that for any vertex v ∈ V , any
number of evacuees can stay at v, and if the sink is located at v, all evacuees
on v can instantly finish their evacuation. Let us consider a point p ∈ T . If p is
not at a vertex but on an edge (u, v) ∈ E, let us split (u, v) into two new edges
(u, p) and (p, v) and regard p as a new vertex of T . Then, let T (p) be a rooted
tree made from T such that each edge has a natural orientation towards the
root p, and for any vertex v ∈ V , let T (p, v) be the subtree of T (p) rooted at
v. For a sink location x given at a point in T , let Θ(x, v) denote the minimum
time required for all evacuees on T (x, v) to complete the evacuation to x. Then,
we clearly have

Θ(x) = max{Θ(x, u) | u ∈ δ(x)}. (2)
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Figure 1: Vertices of the tree can be relocated on a line with the same edge
capacities

Here, we only need to consider Θ(x, û) for û = argmax{Θ(x, u) | u ∈ δ(x)}.
Suppose that there are n′ vertices in T (x, û) named v1(= û), v2, . . ., vn′ such
that d(x, vi) ≤ d(x, vi+1) for i ∈ [1, n′ − 1]. Then, Kamiyama et al. [11] have
observed that the value of Θ(x, û) does not change if x and all vi for i ∈ [1, n′]
are relocated on a line with the same edge capacities so that d(x, vi) for i ∈ [1, n′]
remain the same (see Fig. 1), and Θ(x, û) can be represented as follows:

Θ(x, û) = max
j∈[1,n′]

{

d(x, vj)τ +

⌈

∑

i∈[j,n′]w(vi)

c

⌉

− 1

}

. (3)

For the completeness, we now see why this formula holds. We first define a
group as a set of evacuees who simultaneously reach x from û and the size of
a group as the number of evacuees in the group. Suppose that a group whose
size is less than c reaches x at time t′. Then, we call a group which first reaches
x after t′ a leading group (see Fig. 2). We also call a group which first reaches
x after time 0 a leading group. Let tlast denote the time when the last group
reaches x (i.e., the whole evacuation finishes at tlast). Suppose that a leading
group reaches x at time t′′ and there is no leading group which reaches x after
t′′ until tlast. Then, we call the leading group reaching x at t′′ the last leading

group and a set of groups reaching x from t′′ to tlast the last cluster. In order
to derive Θ(x, û), we only need to observe the last cluster. We notice that all
evacuees of a leading group are located at vertices whose distance from x are the
same at time 0, and they all reach x without being blocked. Suppose that all
evacuees of the last leading group are located at vertices vl, vl+1, . . . , vl+k such
that d(x, vl) = d(x, vl+1) = . . . = d(x, vl+k) at time 0. Then, the last leading
group reaches x at time d(x, vl)τ , and then, all groups except ones which belong
to the last cluster have already reached x. If d(x, vl)τ < tlast, the size of a group

t

c ...

leading groups

Figure 2: The size of groups reaching x from û for each time
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reaching x at each time t ∈ [d(x, vl)τ, tlast − 1] is exactly c by the definition of
the last leading group. Therefore, Θ(x, û) can be represented as follows:

Θ(x, û) = d(x, vl)τ +

⌈

∑

i∈[l,n′] w(vi)

c

⌉

− 1. (4)

Note that this still holds for the case of d(x, vl)τ = tlast. We next see that the
right hand of the formula (3) is the lower bound for Θ(x, û). For all evacuees
located at vj , . . . , vn′ with some integer j ∈ [1, n′], the time of d(x, vj)τ +
⌈
∑

i∈[j,n′] w(vi)/c⌉− 1 is at least required to complete the evacuation to x, thus

we have Θ(x, û) ≥ d(x, vj)τ + ⌈
∑

i∈[j,n′]w(vi)/c⌉ − 1 for any integer j ∈ [1, n′].

From the above discussion, we can derive the formula (3).

2.2 Properties

In this section, we prove the two lemmas which are key to our algorithm. Let
xopt denote a point in T which minimizes Θ(x). For two vertices v, v′ ∈ V , let
V (v, v′) denote the set of all vertices in T (v, v′) and T (V ′) denote a subgraph
induced by a vertex set V ′ ⊆ V .

Lemma 1 Along a path from a leaf to another leaf in T , function Θ(x) is

unimodal in x.

Lemma 2 For a vertex v ∈ V , if û = argmax{Θ(v, u) | u ∈ δ(v)} holds, there

exists xopt ∈ T (V (v, û) ∪ {v}).

In the proofs of these two lemmas, we use the following notations. Let P be a
simple path in T from a leaf to another leaf, which is represented as the sequence
of vertices v0, v1, . . . , vk where v0 and vk are leaves. In the following, for a point
p ∈ P , we abuse the notation p to denote d(v0, p). For a point p ∈ P , we call
the direction to v0 (resp. vk) from p the left direction (resp. right direction).
If a sink location x is given at a vertex vi with i ∈ [1, k] (resp. [0, k − 1]), let
ΘL(x;P ) (resp. ΘR(x;P )) denote the minimum time required to complete the
evacuation to x for all evacuees on T (x, vi−1) (resp. T (x, vi+1)). If x is given
on an edge (vi, vi+1) with i ∈ [0, k − 1], let ΘL(x;P ) (resp. ΘR(x;P )) denote
the minimum time required to complete the evacuation to x for all evacuees on
T (x, vi) (resp. T (x, vi+1)). Also, for a vertex vi with i ∈ [1, k − 1], let

Θ+0
L (vi;P ) = lim

ǫ→+0

{

ΘL(vi + ǫ;P )
}

, (5)

Θ−0
R (vi;P ) = lim

ǫ→+0

{

ΘR(vi − ǫ;P )
}

. (6)

We first show the following claim.

Claim 1 Along a path P , function ΘL(x;P ) is increasing in x and function

ΘR(x;P ) is decreasing in x.
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Figure 3: Functions along P : (a) ΘL(x;P ), ΘR(x;P ) and (b) Θ(x)

Proof: By (3), (5) and (6), we can see the following three properties of ΘL(x;P )
and ΘR(x;P ) (see Fig. 3(a)): (i) for an open interval (vi−1, vi) with i ∈ [1, k],
ΘL(x;P ) (resp. ΘR(x;P )) is linear in x with slope τ (resp. −τ), (ii) ΘL(x;P )
(resp. ΘR(x;P )) is left-continuous (resp. right-continuous) at x = vi for i ∈
[1, k] (resp. i ∈ [0, k − 1]), (iii) ΘL(vi;P ) ≤ Θ+0

L (vi;P ) (resp. Θ−0
R (vi;P ) ≥

ΘR(vi;P )) holds at vi for i ∈ [1, k − 1]. From these properties, ΘL(x;P ) (resp.
ΘR(x;P )) is piecewise linear increasing (resp. decreasing) in x. �

By Claim 1, there uniquely exists x ∈ P which minimizes max{ΘL(x;P ),
ΘR(x;P )}, called xopt(P ) in the following. Then, we have the following claim.

Claim 2 (i) For a vertex vi ∈ P such that vi ≥ xopt(P ), ΘL(vi;P ) ≤ Θ(vi) ≤
Θ+0

L (vi;P ).
(ii) For a vertex vi ∈ P such that vi ≤ xopt(P ), Θ−0

R (vi;P ) ≥ Θ(vi) ≥
ΘR(vi;P ).

Proof: Here, we prove only (i) ((ii) can be similarly proved). Let us look at a
vertex vi ∈ P such that vi ≥ xopt(P ) (see Fig. 3(b)). By definition of Θ(vi), we
have Θ(vi) ≥ ΘL(vi;P ). Thus, in order to prove (i), we only need to show that

Θ(vi) ≤ Θ+0
L (vi;P ). (7)

By the condition of vi ≥ xopt(P ), Θ+0
L (vi;P ) ≥ ΘR(vi;P ) holds. Therefore, if

Θ(vi) = ΘR(vi;P ), (7) holds. If Θ(vi) = ΘL(vi;P ), (7) also holds by (3) and (5).
Otherwise, for a sink location x = vi, an evacuee who lastly reaches vi arrives
at vi through some adjacent vertex u ∈ δ(vi) which is not on P . Suppose that
we move the sink location from x = vi towards a point along P with distance
ǫ in the right direction (i.e., x = vi + ǫ) where ǫ is a sufficiently small positive
number. Then, the last evacuee first reaches vi at time Θ(vi), may be blocked
there, and eventually reaches x = vi + ǫ, thus, he/she can reach x = vi + ǫ after
time Θ(vi) + ǫτ , that is, Θ(vi) + ǫτ ≤ ΘL(vi + ǫ;P ) holds. By definition of (5),
we obtain (7). �

Proof of Lemma 1: By Claims 1 and 2, Θ(x) is always unimodal in x along
P although it may be discontinuous at vi for i ∈ [1, k − 1]. �
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Proof of Lemma 2: Let us consider a path P from a leaf to another leaf
through adjacent vertices v and û where û = argmax{Θ(v, u) | u ∈ δ(v)}. Let
us define the left direction in P as the direction from v to û and the right
direction as the other one. Suppose that there are k + 1 vertices v0, v1, . . . , vk
in P , and v = vi and û = vi−1 with i ∈ [1, k − 1]. We consider a point
p ∈ P such that p = vi + ǫ with sufficiently small ǫ > 0. If we can show
Θ(vi) < Θ(p), there never exists xopt in the right direction from vi along P
by Lemma 1. Then, this lemma can be proved by repeatedly applying the
same discussion to all the other paths through v and û. By the assumption of
Θ(vi) = ΘL(vi;P ), ΘL(vi;P ) ≥ ΘR(vi;P ) holds, and by (3), ΘL(vi;P ) + ǫτ ≤
ΘL(p;P ) and ΘR(vi;P ) = ΘR(p;P ) + ǫτ , that is, ΘL(vi;P ) < ΘL(p;P ) and
ΘR(vi;P ) > ΘR(p;P ) hold. Thus, we have ΘR(p;P ) < ΘL(p;P ), which implies
that

Θ(p) = ΘL(p;P ). (8)

From (8) and the above mentioned two facts Θ(vi) = ΘL(vi;P ) and ΘL(vi;P ) <
ΘL(p;P ), we derive Θ(vi) < Θ(p). �

2.3 Algorithm

In this section, we present an O(n log n) time algorithm for the minimum cost
sink location problem in dynamic tree networks with uniform capacity, which
we call BST (Binary Search in Tree).

First, we introduce the concept of centroid of a tree [12].

Definition 1 For an undirected tree T = (V,E), a centroid of T is a vertex

which minimizes max{|V (v, u)| | u ∈ δ(v)} for all v ∈ V .

Kang et al. [12] showed that a centroid m of T can be computed in O(|V |) time
and

max{|V (m,u)| | u ∈ δ(m)} ≤
|V |

2
(9)

holds.
Let us explain at the first iteration by algorithm BST. Letting U1 = V , the

algorithm first finds a centroid m1 of T (U1) and computes d(m1, v) for every
v ∈ U1. Then, in order to compute Θ(m1, u) for each u ∈ δ(m1), the algorithm
basically creates the list L(u) of all vertices v ∈ U1∩V (m1, u) which are arranged
in the nondecreasing order of d(m1, v). From (3), we can derive that Θ(m1, u)
can be computed by using L(u). In this manner, the algorithm computes u1 =
argmax{Θ(m1, u) | u ∈ δ(m1)}. After that, it sets V1 = U1 \ (V (m1, u1)∪{m1})
and merges lists L(u) for u ∈ δ(m1) \ {u1} into a new list L1. At the end of the
first iteration, the algorithm sets U2 = U1 ∩ (V (m1, u1) ∪ {m1}). Note that by
Lemma 2, there exists xopt in T (U2) and by (9), |U2| ≤ |U1|/2 + 1 holds.

The algorithm iteratively performs the same procedure (see Fig. 4). More
precisely, at the i-th iteration, it finds a centroid mi of T (Ui), computes ui =
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Figure 4: Illustration of the i-th iteration: (a) i = 6 and (b) i = 7

argmax{Θ(mi, u) | u ∈ δ(mi)}, sets Vi = Ui \ (V (mi, ui) ∪ {mi}), creates a list
Li of vertices v ∈ Vi arranged in the nondecreasing order of d(mi, v) and also
sets Ui+1 = Ui ∩ (V (mi, ui) ∪ {mi}). Since, at each iteration, the algorithm
reduces the subgraph where xopt exists so that the size becomes half or less
roughly, it halts after l = O(log |V |) iterations. At this point, it finds two
vertices ml and ul ∈ Ul connected by an edge on which xopt lies. Then, xopt can
be computed as follows. Let x(t) denote a point dividing the edge (ml, ul) with
the ratio of t to 1− t for some t (0 ≤ t ≤ 1), and Θ(x(t),ml) (resp. Θ(x(t), ul))
denote the minimum time required for all evacuees passing through ml (resp.
ul) to complete the evacuation to x(t). Then, Θ(x(t),ml) and Θ(x(t), ul) can
be represented as follows:

Θ(x(t),ml) = Θ(ul,ml)− (1− t)d(ml, ul)τ, (10)

Θ(x(t), ul) = Θ(ml, ul)− td(ml, ul)τ. (11)

If there exists t such that Θ(x(t),ml) = Θ(x(t), ul) and 0 ≤ t ≤ 1, xopt = x(t)
holds by the unimodality of Θ(x). If the solution of Θ(x(t),ml) = Θ(x(t), ul)
satisfies t < 0, then Θ(ml, ul) < Θ(ul,ml) − d(ml, ul)τ holds, which implies
xopt = ml. Similarly, if t > 1, xopt = ul holds. Therefore, the algorithm can
correctly output the optimal sink location xopt.

Now, let us analyze the time complexity of algorithm BST. We first show
that the running time is O(n log2 n) which will be improved to O(n log n) later,
where n = |V |. Let us examine the running time for each iteration required
by the algorithm. At the i-th iteration for i ≥ 2, a centroid mi of T (Ui) can
be found in O(|Ui|) time (in [12]), and d(mi, v) can be computed for all v ∈ V
by depth-first search in O(n) time. In the following, we consider two lists of
vertices in V (mi, u) for u ∈ δ(mi) which are arranged in the nondecreasing
order of the distance from mi, that is, L(u) and L′(u). Only one difference
between L(u) and L′(u) is that L(u) just consists of vertices in Ui ∩ V (mi, u)
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although L′(u) consists of all vertices in V (mi, u). If the algorithm creates
a list L′(u), Θ(mi, u) can be computed as mentioned above. Each list L′(u)
can be created by a simple merge sort in O(|V (mi, u)| log |V (mi, u)|) time, so
ui = argmax{Θ(mi, u) | u ∈ δ(mi)} can be computed in O(n log n + n) time.
Therefore, in each iteration, it takes O(|Ui| + n + n logn + n) = O(n log n)
time. Since the algorithm halts after O(log n) iterations as mentioned above,
our problem can be solved in O(n log2 n) time.

Next, we show that the running time required to create lists L′(u) for u ∈
δ(mi) can be improved from O(n logn) to O(n+ |Ui| log |Ui|). We first show the
following claim.

Claim 3 |Ui| = O( n
2i−1 ) and |Vi| = O( n

2i−1 ) hold for i ≥ 1.

Proof: By definition of Ui, we can clearly see that |Ui| = O(n/2i−1) holds.
Remind that Vi = Ui \(V (mi, ui)∪{mi}) and |Ui∩V (mi, ui)| = O(|Ui|/2), thus
we have |Vi| = O(n/2i−1). �

The idea to improve the running time is to use the sorted lists Lj with j =
1, 2, . . . , i − 1. Let us look at Fig. 4(a), and focus on a vertex u ∈ δ(m6) in
the figure. The computation of L′(u) can be done in O(n log n) time if we know
d(m6, v) for all v ∈ V (m6, u). But, since V (m6, u) = V1 ∪ V4 ∪ (U6 ∩ V (m6, u))
holds and we have already computed L1 and L4, L

′(u) can be obtained faster if
we only create a list L(u) by computing d(m6, v) for all v ∈ U6∩V (m6, u). Note
that by (9), |U6 ∩ V (m6, u)| is at most |U6|/2, which is about |V1|/64 or |V4|/8
by Claim 3, so its size is much smaller than |V (m6, u)|. The idea is formalized
as follows. For each u ∈ δ(mi), the algorithm first creates a list L(u) of vertices
in Ui ∩ V (mi, u), which takes O(n′ log n′) time where n′ = |Ui ∩ V (mi, u)|.
Thus, lists L(u) for all u ∈ δ(mi) can be created in O(|Ui| log |Ui|) time. For
each u ∈ δ(mi), the algorithm merges L(u) and all lists Lj with Vj ⊆ V (mi, u)
into L′(u) (at this point, all of the original lists are maintained since these will
be used later). For this merging operation, if we apply a simple merge sort,
it takes O(|V (mi, u)| log |V (mi, u)|) time, which does not improve the running
time. Here, we notice that |Lj | = |Vj | for j ∈ [1, i− 1]. Instead, the algorithm
basically takes the following two steps to create each list L′(u) for u ∈ δ(mi):
[Step 1] For Lj such that Vj ⊆ V (mi, u), choose Lp = argmin{|Lj| | Vj ⊆
V (mi, u)} and merge each Lj in the increasing order of size (i.e., the decreasing
order of j) with Lp one by one.
[Step 2] Merge the list obtained at Step 1 and L(u) into L′(u).

For all u ∈ δ(mi), Step 1 takes in O(
∑i−1

j=1 jn/2
j−1) = O(n) time, and thus,

Step 2 takes O(n+ |Ui|) = O(n) time. Recall that L(u) for all u ∈ δ(mi) can be
created in O(|Ui| log |Ui|) time. Then, by Claim 3, it takes O(n+ |Ui| log |Ui|) =
O(n+ (n/2i−1) log(n/2i−1)) time to create lists L′(u) for all u ∈ δ(mi).

Lemma 3 The i-th iteration of algorithm BST takes O(n+ n
2i−1 log

n
2i−1 ) time.

Recall that the algorithm halts after O(log n) iterations. Thus, by Lemma 3,
it takes O(n logn +

∑

{(n/2i−1) log(n/2i−1) | i ∈ [1, logn]}) = O(n log n) time
for the entire iterations. Therefore, we obtain the following theorem.
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Theorem 1 The minimum cost sink location problem in a dynamic tree net-

work with uniform capacity can be solved in O(n log n) time.

3 Minimax regret sink location problem in dy-

namic tree networks with uniform capacity

Let N = (T, l,W, c, τ) be a dynamic tree network with the underlying graph
being a tree T = (V,E), where l, c and τ are functions which are the same as
those defined in Section 2, and W is also a function that associates each vertex
v ∈ V with an interval of integral supply denoted by W (v) = [w−(v), w+(v)]
with 0 < w−(v) ≤ w+(v). Let S denote the Cartesian product of all W (v) for
v ∈ V (i.e., a set of scenarios):

S =
∏

v∈V

[w−(v), w+(v)]. (12)

When a scenario s ∈ S is given, we use the notation ws(v) to denote the supply
of a vertex v ∈ V under the scenario s.

For a sink location x given at a point in T and a given scenario s ∈ S, let
Θs(x) denote the minimum time required for all evacuees on T to complete the
evacuation to x under s. For u ∈ δ(x), let Θs(x, u) denote the minimum time
required for all evacuees on T (x, u) to complete the evacuation to x. Then, we
have

Θs(x) = max{Θs(x, u) | u ∈ δ(x)}. (13)

For û = argmax{Θs(x, u) | u ∈ δ(x)}, we also have by (3)

Θs(x, û) = max
j∈[1,n′]

{

d(x, vj)τ +

⌈

∑

i∈[j,n′]w
s(vi)

c

⌉

− 1

}

, (14)

where n′ is the number of vertices in T (x, û) and v1(= û), v2, . . . , vn′ are vertices
in T (x, û) such that d(x, vi) ≤ d(x, vi+1) for 1 ≤ i ≤ n′ − 1. In the following
discussion, we assume c = 1 and omit the constant term (i.e., −1) from the
above equations for the ease of exposition. Then, we have

Θs(x, û) = max
j∈[1,n′]

{

d(x, vj)τ +
∑

i∈[j,n′]

ws(vi)

}

, (15)

Here, let xs
opt denote a point in T which minimizes Θs(x) under a scenario

s ∈ S. In the following, we use the notation Θs
opt for a scenario s ∈ S to denote

Θs(xs
opt). We now define the regret for x under s as

Rs(x) = Θs(x) −Θs
opt. (16)

Moreover, we also define the maximum regret for x as

Rmax(x) = max{Rs(x) | s ∈ S}. (17)
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If ŝ = argmax{Rs(x) | s ∈ S}, we call ŝ the worst case scenario for a sink
location x. The goal is to find a point x∗ ∈ T , called the minimax regret sink

location, which minimizes Rmax(x) over x ∈ T , i.e., the objective is to

minimize {Rmax(x) | x ∈ T }. (18)

3.1 Properties

First, we define a set of so-called dominant scenarios for a vertex v ∈ V among
which the worst case scenario exists when the sink is located at v. Suppose
that u is a vertex adjacent to v, n′ is the number of vertices in T (v, u) and
v1(= u), v2, . . . , vn′ are vertices in T (v, u) such that d(v, vi) ≤ d(v, vi+1) for
1 ≤ i ≤ n′− 1. We now consider a scenario s ∈ S such that ws(vi) = w+(vi) for
vi ∈ T (v, u) such that l ≤ i ≤ n′ with some l ∈ [1, n′] and ws(v′) = w−(v′) for all
the other vertices v′ ∈ V . In the following, such a scenario is said to be dominant

for v, and represented by s(v, vl). Then, let Sd(v, u) = {s(v, vl) | l ∈ [1, n′]}, and
also let Sd(v) =

⋃

u∈δ(v) Sd(v, u). Note that Sd(v) consists of n − 1 scenarios.
The following is a key lemma, which can be obtained from a lemma proved in
[6, 10].

Lemma 4 If a sink is located at a vertex v ∈ V , there exists a worst case

scenario for v which belongs to Sd(v).

Proof: Suppose that ŝ = argmax{Rs(v) | s ∈ S}, û = argmax{Θŝ(v, u) | u ∈
δ(v)}, n′ is the number of vertices in T (v, û), v1(= û), v2, . . . , vn′ are vertices in
T (v, û) such that d(v, vi) ≤ d(v, vi+1) for 1 ≤ i ≤ n′ − 1 and

l = argmax
j∈[1,n′]

{

d(v, vj)τ +
∑

i∈[j,n′]

wŝ(vi)

}

, (19)

that is,

Θŝ(v, û) = d(v, vl)τ +
∑

i∈[l,n′]

wŝ(vi). (20)

Here, let us consider a dominant scenario s(v, vl). Then, we prove that
Rs(v,vl)(v) ≥ Rŝ(v) holds. If ŝ is not equal to s(v, vl), we have two cases, i.e.,

(I) there exists a vertex v′ ∈ V (v, û) such that d(v, vl) ≤ d(v, v′) ≤ d(v, vn′ )
and wŝ(v′) < w+(v′),

(II) there exists a vertex v′ ∈ V (v, û) such that d(v, v1) ≤ d(v, v′) < d(v, vl)
and wŝ(v′) > w−(v′) or v′ ∈ V \ V (v, û) such that wŝ(v′) > w−(v′).

For (I), we consider another scenario ŝ+ such that wŝ+(v′) = w+(v′) and
wŝ+(v) = wŝ(v) for v ∈ V \ {v′}. For (II), we similarly consider ŝ− such that
wŝ−(v′) = w−(v′) and wŝ− (v) = wŝ(v) for v ∈ V \ {v′}. If we can show that
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Rŝ+(v) ≥ Rŝ(v) holds for (I) and Rŝ−(v) ≥ Rŝ(v) holds for (II), we will even-
tually obtain Rs(v,vl)(v) ≥ Rŝ(v) by repeatedly applying the same discussion as
long as there exists such a vertex v′.
(I): Let ∆ = w+(v′)−wŝ(v′). We first notice Θŝ+(v) = Θŝ+(v, û) and Θŝ+(v, û)
= d(v, vl)τ +

∑

i∈[l,n′] w
ŝ+(vi) = Θŝ(v, û) + ∆ by (15) and (20). Thus, we have

Θŝ+(v) = Θŝ(v) + ∆. (21)

By the optimality of x
ŝ+
opt under ŝ+, Θ

ŝ+
opt ≤ Θŝ+(xŝ

opt) holds. Here, we claim

that Θŝ+(p) ≤ Θŝ(p) + ∆ holds for any point p ∈ T , so Θŝ+(xŝ
opt) ≤ Θŝ

opt +∆
holds. Thus, we have

Θ
ŝ+
opt ≤ Θŝ

opt +∆. (22)

By (16), (21) and (22), we obtain Rŝ+(v) ≥ Rŝ(v).
(II): In this case, Θŝ−(v) = Θŝ−(v, û) and Θŝ−(v, û) = Θŝ(v, û) by (15) and
(20). Thus, we have

Θŝ−(v) = Θŝ(v). (23)

By the optimality of x
ŝ−
opt under ŝ−, Θ

ŝ−
opt ≤ Θŝ−(xŝ

opt) holds. Here, we claim

that Θŝ−(xŝ
opt) ≤ Θŝ

opt holds, we thus have

Θ
ŝ−
opt ≤ Θŝ

opt. (24)

By (16), (23) and (24), we obtain Rŝ−(v) ≥ Rŝ(v). �

Here, we have the following claim by Lemma 1.

Claim 4 For a scenario s ∈ S, function Θs(x) is unimodal in x when x moves

along a path from a leaf to another leaf in T .

For a given scenario s ∈ S, by the definition of (16) and Claim 4, function
Rs(x) is unimodal in x along a path from a leaf to another leaf in T . Thus,
function Rmax(x) is also unimodal in x since it is the upper envelope of unimodal
functions by (17).

Lemma 5 Along a path from a leaf to another leaf in T , function Rmax(x) is

unimodal in x.

We also have the following claim by Lemma 2.

Claim 5 For a scenario s ∈ S and a vertex v ∈ V , if û = argmax {Θs(v, u) |
u ∈ δ(v)} holds, there exists xs

opt ∈ T (V (v, û) ∪ {v}).

Here, suppose that ŝ = argmax{Rs(v) | s ∈ S} and û = argmax{Θŝ(v, u) | u ∈
δ(v)} hold for a vertex v ∈ V . We now show that there also exists the minimax
regret sink location x∗ in T (V (v, û) ∪ {v}). Suppose otherwise: there exists x∗

in T (v, u) or on an edge (v, u) (not including endpoints) for some u ∈ δ(v) with
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u 6= û. By Claim 5, there exists xŝ
opt in T (V (v, û)∪{v}). Now, let us consider a

path which goes through xŝ
opt, v and x∗ in this order. Then, by Claim 4, Θŝ(x)

is increasing in x when x moves along this path from xŝ
opt to x∗, which implies

that Θŝ(x∗) > Θŝ(v) holds. Thus, Rŝ(x∗) > Rŝ(v) also holds by (16). We
have Rmax(x

∗) ≥ Rŝ(x∗) by the maximality of Rmax(x
∗) and Rŝ(v) = Rmax(v)

by the definition of ŝ, thus Rmax(x
∗) > Rmax(v) holds, which contradicts the

optimality of x∗. By the above discussion, we obtain the following lemma.

Lemma 6 For a vertex v ∈ V , if ŝ = argmax{Rs(v) | s ∈ S} and û =
argmax{Θŝ(v, u) | u ∈ δ(v)} hold, there exists the minimax regret sink loca-

tion x∗ ∈ T (V (v, û) ∪ {v}).

3.2 Algorithm

In this section, we present an O(n2 log2 n) time algorithm that computes x∗ ∈ T
which minimizes function Rmax(x).

We first show how to compute Rmax(v) for a given vertex v ∈ V . Given a
dominant scenario s ∈ Sd(v), Θ

s(v) can be computed in O(n logn) time, and by
Theorem 1, Θs

opt can be computed in O(n log n) time. Thus by (16), Rs(v) can
be computed in O(n logn) time. By Lemma 4, we only need to consider n − 1
dominant scenarios for v, thus, Rmax(v) can be computed by (17) in O(n2 logn)
time.

Lemma 7 For a vertex v ∈ V , Rmax(v) can be computed in O(n2 logn) time.

In order to find the minimax regret sink location x∗ ∈ T , we apply an algorithm
similar to the one presented at Section 2.3. The algorithm maintains a vertex
set Ui ⊆ V which induces a connected subgraph of T including x∗. At the
beginning of the procedure, the algorithm sets U1 = V , and at i-th iteration,
it finds a centroid mi of T (Ui), computes Rmax(mi) in the above mentioned
manner, and sets Ui+1 = Ui ∩ (V (mi, ui)∪ {v}) where ui = argmax{Θŝ(mi, u) |
u ∈ δ(mi)} and ŝ = argmax{Rs(mi) | s ∈ Sd(mi)}. Note that, by Lemma 6,
T (Ui+1) contains x∗ if T (Ui) includes x∗. The algorithm iteratively performs
the same procedure until |Ul| becomes two where l = O(log n). Suppose that
there eventually remain two vertices ml and ul ∈ Ul. Then, the algorithm has
already known that

Rmax(ml) = Θŝ1(ml)−Θŝ1
opt, (25)

Rmax(ul) = Θŝ2(ul)−Θŝ2
opt, (26)

ml = argmax{Θŝ2(ul, u) | u ∈ δ(ul)}, (27)

ul = argmax{Θŝ1(ml, u) | u ∈ δ(ml)}, (28)

where ŝ1 and ŝ2 are worst case scenarios for ml and ul, respectively. Let x(t)
denote a point dividing the edge (ml, ul) with the ratio of t to 1 − t for some
t (0 ≤ t ≤ 1). If there exists t such that Rmax(ml) − td(ml, ul)τ = Rmax(ul)−
(1− t)d(ml, ul)τ and 0 ≤ t ≤ 1, x∗ = x(t) holds by the unimodality of Rmax(x).
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If the solution satisfies t < 0, then Rmax(ml) < Rmax(ul) − d(ml, ul)τ holds,
which implies x∗ = ml. Similarly, if t > 1, x∗ = ul holds. As above, the
algorithm correctly outputs the minimax regret sink location x∗ after O(log n)
iterations. Thus, by Lemmas 6 and 7, we obtain the following theorem.

Theorem 2 The minimax regret sink location problem in a dynamic tree net-

work with uniform capacity can be solved in O(n2 log2 n) time.

4 Conclusion

In this paper, we developed an O(n2 log2 n) time algorithm for the minimax
regret sink location problem in dynamic tree networks with uniform capacity.
We also developed an O(n log n) time algorithm for the minimum cost sink
location problem in dynamic tree networks with uniform capacity.

Here, recall that each input value is given as an integer and each function
always returns an integer in this paper, which is called the discrete model. On the
other hand, if each input value is given as a real number and ceiling is removed
from each function, the model is called the continuous model [14]. Indeed we
have solved the problem in the discrete model with c = 1, the case of c ≥ 2 is still
left open. Recently, it turns out that in the discrete model with c ≥ 2, there may
exist a sink location for which any worst case scenario is not dominant, which
implies that the algorithm has to consider more than O(n) scenarios for a fixed
sink (Guru Prakash and Prashanth Srikanthan and the authors of this paper,
private communication, 2014). However, in the continuous model, all claims,
lemmas and the main theorem in Section 3 still hold even if c ≥ 2, therefore
we can directly apply the proposed algorithm to the continuous model without
increasing the time complexity. Also, we can prove that the solution for the
continuous model can be regarded as an approximation for the discrete model
such that the difference between the approximate cost and the optimal cost is
at most 1 (details are omitted).

In addition, we leave as an open problem to extend the solvable networks for
the minimax regret sink location problem to dynamic tree networks with general
capacities. Indeed, under a fixed scenario, the algorithm by [14] can solve the
minimum cost sink location problem in dynamic tree networks with general
capacity, but we cannot simply apply this as a subroutine to solve the minimax
regret sink location problem. For example, if Lemma 4 still holds in a dynamic
tree network with general capacities, we can expect that an O(n2 log3 n) time
algorithm will be achieved.
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