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V. Roselli 3

1Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
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Abstract

We introduce a new model in the context of non-planar orthogonal
graph drawing that we call slanted orthogonal graph drawing. While in tra-
ditional orthogonal drawings each edge is made of alternating axis-aligned
line segments, in slanted orthogonal drawings intermediate diagonal seg-
ments on the edges are permitted, which allows for: (a) smoothening
the bends of the produced drawing (as they are replaced by pairs of “half-
bends”), and, (b) emphasizing the crossings of the drawing (as they always
appear at the intersection of two diagonal segments). We present an ap-
proach to compute bend-optimal slanted orthogonal representations, an
efficient heuristic to compute close-to-optimal slanted orthogonal draw-
ings with respect to the total number of bends in quadratic area, and
a corresponding LP formulation, when insisting on bend-optimality. On
the negative side, we show that bend-optimal slanted orthogonal drawings
may require exponential area.
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1 Introduction

In this paper, we introduce and study a new model in the context of non-planar
orthogonal graph drawing: Given a graph G of max-degree 4, determine a draw-
ing Γ(G) of G in which: (a) each vertex occupies a point on the integer grid
and has four available ports, as in the ordinary orthogonal graph drawing model;
(b) each edge is drawn as a sequence of alternating horizontal, vertical and diag-
onal segments; (c) a diagonal segment is never incident to a vertex (due to port
constraints mentioned above); (d) crossings always involve diagonal segments;
and (e) the minimum of the angles formed by two consecutive segments of an
edge always is 135◦, which suggests that a bend in Γ(G) is always incident to
a diagonal segment and to either a horizontal or a vertical one. We refer to
Γ(G) as the slanted orthogonal drawing of G, or, shortly, slog drawing. For an
example, refer to Figure 1(a). The corresponding slog drawing of this example
is illustrated in Figure 1(b). This example indicates what we might expect from
the new model: crossings on the diagonals are more visible than the correspond-
ing ones in the traditional orthogonal graph drawing model and the use of area
seems to be more demanding.

Slog drawings generalize orthogonal drawings in the following sense: If the
input graph G is planar, then any planar orthogonal drawing Γ(G) of G can be
transformed into a planar slog drawing Γ′(G) of G, by replacing each bend of
90◦ of Γ(G) by two “half-bends” of 135◦ in Γ′(G), as illustrated in Figures 1(c)
and 1(d)1. The resulting drawings will be of improved readability and more
aesthetic appeal, since bends, which negatively affect the quality of orthogonal
drawings (as they interrupt the eye movement and require sharp changes of
direction), are replaced by pairs of half-bends that have a smoother shape. In
addition, in the non-planar case, slog drawings reveal the presence of crossings
and help distinguishing them from vertices of the drawing, because crossings are
defined by diagonal segments, while vertices are always incident to rectilinear
segments.

1.1 Related Work

Orthogonal graph drawing has a long tradition, dating back to VLSI layouts
and floor-planning applications [9, 14, 15]. Formally, an orthogonal drawing of
a graph of max-degree 4 is a drawing in which each edge is drawn as a sequence
of alternating horizontal and vertical line segments. Usually, one wants to com-
pute an orthogonal drawing that is optimal under a pre-specified optimization
function which measures the niceness of the resulting drawing. Typical opti-
mization functions include minimizing the used area [12, 14], the total number
of bends [6, 7, 13] or the maximum number of bends per edge [2, 10]; for an
overview see e.g. [4].

For minimizing the total number of bends in orthogonal graph drawing
Tamassia laid important foundations by the topology-shape-metrics (TSM ) ap-

1Potential crossings posed by the presence of half-bends can be avoided, if one scales Γ′(G)
by a factor of 2 and the diagonal segment defined by a pair of half-bends lies in a 1× 1 box.
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(a) (b) (c) (d)

Figure 1: (a)-(b) Traditional orthogonal and slanted orthogonal drawings of
the same graph, assuming fixed ports. (c)-(d) Replacing a 90◦ bend by two
half-bends of 135◦.

proach in [13], that works in three phases. In the first planarization phase a
“planar” embedding is computed for a given (non)planar graph by replacing edge
crossings by dummy vertices (referred to as crossing vertices or c-vertices). The
output is called a planar representation. In the next orthogonalization phase,
angles and bends of the drawing are computed, producing an orthogonal repre-
sentation. In the third compaction phase the coordinates for vertices and edges
are computed. The core is a min-cost flow algorithm to minimize the number
of bends in the second phase [3]. Note that the general problem of determining
a planar embedding with the minimum number of bends is NP-hard [7].

Our model resembles an octilinear model which is heavily used for example
in the drawing of metro maps [11] but it is closer to the traditional orthogonal
style. In particular, angles of 45◦ do not occur at all. Therefore, the complexity
results for the octilinear model do not apply to our model.

Closely related to the problem we study is also the smooth orthogonal draw-
ing problem [1], which asks for a planar drawing of an input planar graph of
maximum degree 4, in which every edge is made of axis-aligned line segments
and circular-arcs with common horizontal or vertical tangents; the main goal is
to determine such drawings with low edge complexity, measured by the number
of line segments and circular-arc segments forming each edge. Note that both
approaches try to smoothen orthogonal drawings either by the usage of circular
arc segments (smooth orthogonal drawings) or by replacing orthogonal bends
by half-bends (slog drawings).

1.2 Preliminaries and Notation

Let G = (V,E) be an undirected graph. Given a drawing Γ(G) of G, we denote
by pu = (xu, yu) the position of vertex u ∈ V on the plane. The degree of vertex
u ∈ V is denoted by d(u). Let also d(G) = maxu∈V d(u) be the degree of graph
G. Given a pair of points q, q′ ∈ R2, we denote by |qq′| the Euclidean distance
between q and q′. We refer to the line segment defined by q and q′ as qq′.

For planar slog drawings, observe that the problem of minimizing the num-
ber of bends over all embeddings of an input planar graph of maximum degree
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4 is NP-hard. This directly follows from [7], since the bends of a planar orthog-
onal drawing are in one to one correspondence with pairs of half-bends of the
corresponding slanted orthogonal drawing. This negative result led us to adopt
the TSM approach for our model. So, in the following, we assume that a planar
representation of the input graph is given. Then, one can easily observe the fol-
lowing requirements: (a) all non-dummy vertices (referred to as real vertices or
r-vertices) use orthogonal ports and, (b) all c-vertices use diagonal ports. This
ensures that the computed drawing will be a valid slog drawing that corresponds
to the initial planar representation. Edges connecting real (crossing) vertices
are referred to as rr-edges (cc-edges), and edges between r- and c-vertices as
rc-edges.

Throughout this paper, we also use the notion of a left or right turn, which
we formally define in the following.

Definition 1 Let e = (u, v) be an edge with at least one bend, say b, and let s
and s′ be two consecutive segments of e with b being the common bend of s and
s′. Furthermore, let φ be the angle formed by s and s′ on their left side when
moving along e from u to v. Edge e has a left turn on b if φ ≤ 180◦, otherwise
there is a right turn on b.

1.3 Our Contribution.

In Section 2 we present an approach to compute bend-optimal slog represen-
tations. Afterwards, we present a heuristic to compute close-to-optimal slog
drawings, that require polynomial drawing area, based on a given slog repre-
sentation. To compute the optimal drawing, we give a formulation as a linear
program in Section 4. In Section 5 we show that the optimal drawing may
require exponential area. In Sections 6 and 7, we present an experimental eval-
uation and some sample drawings of our algorithms, respectively. We conclude
in Section 8 with open problems for future work.

2 Bend-Optimal Slanted Orthogonal Represen-
tations

In this section, we present an algorithm for computing a bend-optimal slog
representation of an input plane graph of maximum degree 4. This algorithm
is a modification of a well-known algorithm by Tamassia [13] for computing
bend-optimal orthogonal representations of plane graphs of maximum degree 4,
by modeling the problem as a min-cost flow problem on a flow network derived
from the embedding of the graph. However, before we proceed with the detailed
description of our modification (in Section 2.2), we briefly describe the algorithm
of Tamassia (in Section 2.1). Section 2.3 presents properties of bend-minimal
slog representations.
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2.1 Preliminaries

A central notion to the algorithm of Tamassia [13] is the orthogonal representa-
tion, which in a sense captures the “shape” of the resulting drawing, neglecting
the exact geometry underneath. Typically, an orthogonal representation of a
plane graph G = (V,E) is an assignment of four labels to each edge (u, v) ∈ E;
two for each direction. Label α(u, v) · 90◦ corresponds to the angle at vertex u
formed by edge (u, v) and its next incident edge counterclockwise around u. La-
bel β(u, v) corresponds to the number of left turns of angle 90◦ along (u, v), when
traversing it from u towards v. Clearly, 1 ≤ α(u, v) ≤ 4 and β(u, v) ≥ 0. Since
the sum of angles around a vertex equals to 360◦, it follows that for each vertex
u ∈ V ,

∑
v∈N(u) α(u, v) = 4, where N(u) denotes the neighbors of u. Similarly,

since the sum of the angles formed at the vertices and at the bends of a bounded
face f equals to 180◦ · (p(f)− 2), where p(f) denotes the total number of such
angles, it follows that

∑
(u,v)∈E(f) α(u, v) + β(v, u)− β(u, v) = 2a(f)− 4, where

a(f) denotes the total number of vertex angles in f , and, E(f) the directed arcs
of f in its counterclockwise traversal. If f is unbounded, the respective sum
is increases by eight. It is known that two orthogonal drawings with the same
number of bends at each edge have the same orthogonal representation.

There is a nice correspondence between the min-cost network flow formula-
tion of Tamassia and the underlying orthogonal representation with minimum
number of bends of the input plane graph. In the flow network, one can think
that each unit of flow corresponds to a 90◦ angle. Then, the vertices (vertex-
nodes, sources) supply four units of flow each, which have to be consumed by the
faces (face-nodes, sinks). Each face f demands 2a(f)−4 units of flow (increased
by eight if f is unbounded). The relation now seems clear. To maintain the
properties described above each edge from a vertex-node to a face-node in the
flow network is equipped with a capacity of 4 and a minimum flow of 1, while an
edge between adjacent faces has infinite capacity, no lower bound but each unit
of flow through it introduces a respective unit cost. The total cost is actually
the total number of bends along the respective edge. Hence, the min-cost flow
solution corresponds to a representation of the plane graph with minimum total
number of bends.

2.2 Modifying the Flow Network

We are now ready to present how to modify the algorithm of Tamassia, in
order to obtain a slog representation of an input plane graph G with minimum
number of half-bends. Recall that G contains two types of vertices, namely
real and crossing vertices. Real (crossing, respectively) vertices use orthogonal
(diagonal, respectively) ports. Observe that a pair of half-bends on an rr-edge
of a slog drawing corresponds to a bend of an orthogonal drawing. The same
holds for half-bends on cc-edges. However, an rc-edge must switch from an
orthogonal port (incident to the r-vertex) to a diagonal port (incident to the
c-vertex). This implies that each rc-edge has at least one half-bend.

Consider an rc-edge (vr, vc) incident to faces f and g (see Figure 2) and
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g

f
vr

vc

0

(a) Zero units of flow

1

vr

vcf

g

(b) One unit of flow

Figure 2: Two configurations corresponding to zero or one unit of flow over an
rc-edge; f and g are the two adjacent faces.

assume that the port of real vertex vr is fixed. Depending on the (diagonal)
port on the crossing vertex vc we obtain two different representations with the
same total number of bends. To model this “free-of-cost” choice, we introduce
an edge into the flow network connecting f and g with unit capacity and zero
cost, i.e., through this edge just one unit of flow can be transmitted and this is
for free. Hence, the first half-bend of each rc-edge is free of cost, as desired. For
consistency we assume that, if in the solution of the min-cost flow problem there
is no flow over (f, g), then there exists a left turn from the real to the crossing
vertex on the bend before the crossing; otherwise a right turn, as illustrated in
Figures 2(a) and 2(b).

2.3 Proof of Correctness and Properties of Bend-Optimal
Slanted Orthogonal Representations

In this section we present properties of optimal slog representations. We prove
that, for a planarized graph G, the computation of a slog representation with
minimum number of half-bends that respects the embedding of G is always
feasible. Then, we present an upper bound for the number of half-bends in
optimal slog representations. In the following we assume that, together with a
planarization, the embedding is also given.

Theorem 1 For a planarized graph G of maximum degree 4, we can efficiently
compute a slog representation with minimum number of half-bends respecting
the embedding of G.

Proof: The idea is to use a reduction to Tamassia’s network flow algorithm. In
particular, since the original flow network algorithm computes a (bend-optimal)
orthogonal representation for the input plane graph, our algorithm will also com-
pute a slog representation. In the following, we prove that this representation
is also bend-optimal.

Assume that we are given an orthogonal representation F . We can uniquely
convert F into a slog representation S(F ) by turning all crossing vertices coun-
terclockwise by 45◦. More precisely, the last segment of every rc-edge before
the crossing vertex will become a left half-bend. Furthermore, every orthogonal
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vr
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(a) Orthogonal input

vr
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(b) Three half-bends

vr

vc

(c) Reduction by 2 half-bends

Figure 3: A case in which two half-bends can be eliminated.

bend is converted into two half-bends, bending in the same direction as the
orthogonal bend (see Figures 1(c) and 1(d)). Note that the left half-bends at
the crossings might neutralize with one of the half-bends originating from an
orthogonal bend, if the orthogonal bend is turning to the right (see Figure 3).
In this case, only the first one of the right half-bends remains. Note that this
is the only possible saving operation. Therefore, since the number of rc-edges
is fixed from the given embedding, a slog representation with minimum number
of half-bends should minimize the difference between the number of orthogonal
bends of F and the number of first right-bends on rc-edges. However, this is
exactly what is done by our min-cost flow network formulation, as the objec-
tive is the minimization of the total number of bends in F without the first
right-bends on rc-edges. 2

This constructive approach can also be reversed such that for each slog repre-
sentation S, we can construct a unique orthogonal representation F (S). Clearly,
F (S(F )) = F and S(F (S)) = S. Note that this is true only for bend-minimal
representations. If this is not the case, then one has to deal with staircases
of subsequent bends; a case that cannot occur in min-cost flow computations.
From the construction, we can also derive the following.

Corollary 1 Let S(F ) be a slog representation and F a corresponding orthogo-
nal representation. Let bS, rbS and rcS be the number of half-bends, the number
of first right-bends on rc-edges and the number of rc-edges in S(F ). Let also bF
be the number of orthogonal bends in F . Then, bS = 2 · (bF − rbS) + rcS.

The following theorem gives an upper bound for the number of half-bends
in optimal slog representations.

Theorem 2 The number of half-bends of a bend-minimal slog representation is
at least twice the number of bends of its corresponding bend-minimal orthogonal
representation.

Proof: Let Ropt
s be the bend-optimal slog representation and Ropt

o be the bend-
optimal orthogonal representation. Given a representation R (either slog or
orthogonal), we denote by hb(R) the number of half-bends and by b(R) the
number of bends of R. Assume for a proof by contradiction that it holds that
hb(Ropt

s ) < 2b(Ropt
o ). We will show how to construct an orthogonal representa-

tion R′o that has less bends than Ropt
o .
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vr

vc

(a)

vr vc

(b)

vr
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(c)

Figure 4: Illustration for the proof of Theorem 2: (a) An rc-edge with a left-turn
from vc to vr. (b) Rotating c-vertex vc by 45◦ to the left saves one half-bend.
(c) Rotating c-vertex vc by 45◦ to the right increases the number of half-bends.

To transform a slog into an orthogonal representation the diagonal ports on
the c-vertices have to become orthogonal. To this end, we define the notion
of rotating a vertex to the left or right, which means that the ports assigned
to the edges incident to it are turned cyclical into the respective direction and
the number of bends on the edges changes according to Figure 4. For rc-edges,
we always do so from the crossing to the real vertex. Note that if there is
exactly one half-bend to the left from a crossing-vertex vc to a real-vertex vr
(see Figure 4(a)) and vc is rotated by 45◦ to the left, the resulting drawing has
zero bends on this edge (see Figure 4(b)); a rotation by 45◦ to the right would
result in two half-bends (see Figure 4(c)).

By construction, all rr- and cc-edges have an even number of half-bends.
In order to obtain R′o, we replace each pair of half-bends on rr- and cc-edges
of Ropt

s by an orthogonal bend (as in Figures 1(d) and 1(c)). So, for rr- and
cc-edges it holds that hb(Ropt

s \ {rc-edges}) = 2b(R′o \ {rc-edges}).
On the other hand, all rc-edges have an odd number of half-bends. Similarly

to the case of rr- and cc-edges, we replace each pair of half-bends except the
one half-bend closest to the crossing vertex by an orthogonal bend in R′o. Let
C = {C1, . . . , Cl} be the set of maximal connected components consisting only
of c-vertices and the cc-edges between them. By maximality, it follows that
Ci ∩ Cj = ∅, for i 6= j. Also, observe that if l = 0, then we already would have
a contradiction. Therefore, l > 0 must hold. Now, let lhb(Ci) be the number of
left half-bends and rhb(Ci) be the number of right half-bends on the rc-edges
connected to Ci that have not been replaced already. If lhb(Ci) = rhb(Ci) for
all i = 1, 2, . . . , l, then without loss of generality we rotate all vertices in Ci to
the left. This implies that all left half-bends disappear and the right half-bends
get replaced by orthogonal bends, which contradicts the assumption that Ropt

o

is bend-optimal.

So, there has to be at least one Ci with lhb(Ci) 6= rhb(Ci). Assume lhb(Ci) >
rhb(Ci) for some i = 1, 2, . . . , l. If we now rotate Ci to the left, then we obtain
an orthogonal solution that has even less bends than twice the number of half-
bends of the slog solution. Similarly, we can obtain a better orthogonal solution
when lhb(Ci) > rhb(Ci) by rotating Ci to the right.
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vcvc

vr vr

(a) The spoon gadget

vc v′c

(b) Cut through (vc, v′c)

vc

v′c

(c) 4 half-bends are needed

Figure 5: (a) Illustration of the spoon gadget. (b) The orthogonal input can be
transformed into a slog drawing when everything above the dashed cut is moved
up. (c) The result contains 4 half-bends.

By this construction, it holds that 2b(R′o) ≤ hb(Ropt
s ) < 2b(Ropt

o ), which is a
contradiction to the assumption that Ropt

o is optimal. 2

3 A Heuristic to Compute Close-to-Optimal
Slanted Orthogonal Drawings

In this section, we present a heuristic which, given an optimal slog representa-
tion, computes an actual drawing, which is close-to-optimal with respect to the
total number of bends and requires quadratic area. This is a quite reasonable
approach, since insisting on optimal slog drawings may result in exponential
area requirements, as we will shortly see in Section 5. The basic steps of our
approach are outlined in Algorithm 1. In the following, we describe them in
detail.

Algorithm 1: Spoon Based Algorithm

Input : A slog representation S of a given plane graph G.
Output: A slog drawing Γs(G).

S1: Compute an orthogonal drawing Γ(G) based on S
S2: Replace each orthogonal bend by 2 half-bends {see Figs.1(c) and 1(d)}
S3: Fix ports on rc-edges using the spoon gadget {see Fig.5(a)}
S4: Apply cuts to fix ports on cc-edges {see Figs.5(b) and 5(c)}
S5: Optimize the number of rc half-bends {see Figs.6(a) and 6(b)}
S6: Optimize the number of cc half-bends {see Figs.7(a), 7(b) and 7(c)}
S7: Heuristically compact the drawing (as post-processing)

In Step 1 of Algorithm 1, we compute an orthogonal drawing Γ(G) based
on the input slog representation. If there is flow on an edge e connecting faces
fi and fj that we added to Tamassia’s model, we treat it as if it was flow on
the other edge connecting fi and fj that was part of the flow network of the
original algorithm. With this we get a flow that is still valid and corresponds
to an orthogonal representation for which the algorithm of Tamassia [13] can
compute a drawing. In the next step, we replace all orthogonal bends with pairs
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vr

(b)

vc

vr

(c)
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vc
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Figure 6: Saving bends on rc-edges: (a) A vertical cut through a bend-less
rc-edge results in (b) a reduction by two half-bends. (c) Similarly, a vertical
cut through a bent rc-edge also results in (d) a reduction by two half-bends.
(d) However, the optimal may require four half-bends reduction.

of half-bends. In Step 3 of Algorithm 1, we connect r-vertices with c-vertices
by replacing the segment incident to the c-vertex of each rc-edge by a gadget,
which we call spoon due to its shape (see Figure 5(a)). This gadget allows us to
switch between orthogonal and diagonal ports on an edge. Note that the input
slog representation specifies the ports on all vertices, thereby defining which
configuration is used.

In order to fix the ports of cc-edges (which still use orthogonal ports), we
employ appropriate cuts2 (Step 4 of Algorithm 1). A cut, for us, is either (i) an
x-monotone continuous curve that crosses only vertical segments and divides
the current drawing into a top and a bottom part (horizontal cut), or, (ii) a
y-monotone continuous curve that crosses only horizontal segments and divides
the current drawing into a left and a right part (vertical cut). Observe that in
order to apply a horizontal (vertical, respectively) cut, we have to ensure that
each edge crossed by the cut has at least one vertical (horizontal, respectively)
segment. This holds before the introduction of the spoons, as Γ(G) is an or-
thogonal drawing. We claim that this also holds when all spoons are present.
This is because a spoon replacing a horizontal (vertical, respectively) segment
has two horizontal (vertical, respectively) segments.

To fix a horizontal cc-edge (vc, v
′
c) with vc being to the left of v′c in the

drawing, we first momentarily remove this edge from the drawing. Then we
use a horizontal cut which from left to right passes exclusively through vertical
segments. There exist two options for such a cut. The first one starts in the
outer face and continues up to the face below (vc, v

′
c), then to the face above

and from there again to the outer face. The second one again starts in the outer
face and continues up to the face above (vc, v

′
c), then to the face below and from

there to the outer face (see Figure 5(b)). Our choice depends on the input slog
representation that specifies the ports on each crossing vertex. The result of
such a cut is depicted in Figure 5(c) and has a new horizontal and a new ver-
tical segment that replaces edge (vc, v

′
c). The first (second, respectively) one is

2A cut is a standard tool to perform stretchings in orthogonal drawings, see e.g. [5].
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vc vc

v′cv′c

(a) Reduction by 2 half-bends

vc vc

v′cv′c

(b) Reduction by 2 half-bends

vc vc

v′cv′c

(c) Reduction by 4 half-bends

Figure 7: Saving bends on cc-edges by a local operation.

necessary for potential future vertical (horizontal, respectively) cuts. Similarly,
we cope with cc-edges with bends by applying the same technique only to the
first and last segments of the edge.

The resulting slog drawing has two additional half-bends for each rc-edge
(the spoon gadget adds three half-bends; one is required) and four additional
half-bends for each cc-edge (none is required), with respect to the ones suggested
by the input representation. With similar cuts as the ones described above, we
can save two half-bends for each rc-edge, by eliminating the diagonal segment
of the spoon gadget (Step 5 of Algorithm 1). Our approach is illustrated in
Figures 6(a) and 6(b). Observe that in this case the cut simply requires the
removal of the diagonal segment that is to be eliminated and not the whole
edge. The result is optimal for bend-less rc-edges (see Figure 6(b)). However,
for rc-edges with bends (see Figure 6(c)), our approach guarantees two half-
bends reduction (see Figure 6(d)), while in the optimal case four half-bends
could be removed (see Figure 6(e)). Observe that the rectilinear segments of
the edge are not affected, in order to be able to apply future cuts.

As already stated, each cc-edge admits four additional half-bends (none is
required). It is always possible to remove two of them (Step 6 of Algorithm 1)
by applying a local modification as depicted in Figure 7. If for example the
horizontal part of such an edge is longer than the vertical one, a shortcut like
the one in the left part of Figure 7(a) can be applied. Note that this operation
does not require any cuts. If the horizontal and the vertical segments of the cc-
edge have the same length, then all four half-bends can be saved; see Figure 7(c).

Once the operations we described above are applied, the drawing will contain
zero additional half-bends on rr-edges and bend-less rc-edges and at most two
additional half-bends on each cc-edge and each rc-edge with bends, with respect
to the input representation. Note that in order to apply our technique we need to
scale up the initial drawing by a factor of 5 at the beginning of our algorithm,
to provide enough space for additional half-bends. In subsequent steps, the
cuts increase the drawing area. However, since each cut implies a constant
factor increment to the drawing area and each edge yields at most one cut, the
total drawing area asymptotically remains quadratic. The following theorem
summarizes our approach.

Theorem 3 Given a slog representation of a planarized graph G of maximum
degree 4, we can efficiently compute a slog drawing requiring O(n2) area with
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(i) optimal number of half-bends on rr- and bend-less rc-edges and (ii) at most
two additional half-bends on cc edges and rc-edges with bends.

Note that the scaling of the drawing by a factor of five in Step 2 of Algo-
rithm 1 does not asymptotically affect the drawing area; in practice, however,
it has negative effects. This motivated us to heuristically further compact the
drawing at the cost of some extra bends (as a post-processing; Step 7 of Algo-
rithm 1). First, we enrich all diagonal segments that are of a certain length by
a new horizontal and a new vertical segment, so that the remaining diagonal
segment is of unit length. To ensure planarity, we apply a rectangular decompo-
sition similar to the one of Tamassia [13] and then we contract along horizontal
and vertical cuts. Finally, we remove unnecessary half-bends similarly to Step 6
of Algorithm 1 (see also Figure 7).

4 A Linear Program To Compute Optimal
Drawings

In this section, we develop a Linear Program (LP) which, given an optimal slog
representation S of a plane graph G, computes an actual drawing Γ(G), which
is optimal with respect to the total number of bends; if one exists. Before we
proceed with the description of our linear program, we mention that despite
the fact that every experiment we made on random and crafted graphs led to a
feasible solution, we could not prove the feasibility of the linear program.

4.1 The Core of the Linear Program

Initially, we appropriately augment graph G and obtain a new graph that is a
subdivision of G and has at most one half-bend on each edge. More precisely,
let (u, v) be an edge of G with more than two half-bends (as defined by the
slog representation S). Let 〈b1, b2, . . . , bk〉, k ≥ 2, be the half-bends of edge
(u, v) and assume without loss of generality that b1, b2, . . . , bk appear in this
order along the edge (u, v), when traversing (u, v) from vertex u towards vertex
v. We first consider the case where vertex u is a real vertex. In this case, we
add a new crossing vertex w in G and then we replace the edge (u, v) of G
with the edges (u,w) and (w, v). The first half-bend b1 of the edge (u, v) is
assigned to the edge (u,w), while the remaining half-bends 〈b2, . . . , bk〉 of the
edge (u, v) are assigned to the edge (w, v). The case where vertex u is a crossing
vertex is treated analogously, with the only exception that in this particular
case vertex w would have been a real vertex. If we apply the procedure that
we just described on each edge of G with more than two half-bends (as long
as there exist such edges), then we will obtain an augmented graph, say Gaug,
that is clearly a subdivision of G and has at most one half-bend on each edge,
as desired. Furthermore, neither the type of each new vertex nor its ports are
arbitrarily chosen, as they depend on the types of its incident segments given
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Figure 8: The list of constraints used by the linear program for (a) rr-edges, (b)
cc-edges and (c) rc-edges, assuming that the y-axis points downwards.

by the input representation S (either orthogonal or diagonal). This implies a
new slog representation, say Saug, for Gaug.

Now observe that each face f of G has a corresponding face f ′ in Gaug

such that: (i) the vertices of Gaug incident to face f ′ are the same as the ones
incident to face f of G, plus the ones from the subdivision; and (ii) the sequence
of slopes assigned to the segments bounding f ′ is the same as the ones of the
segments bounding f in G. Hence, a drawing Γ(Gaug) of Gaug realizing the slog
representation Saug is also a drawing Γ(G) of G realizing the slog representation
S, where subdivided edges are routed as their corresponding paths in Gaug.

We are now ready to describe our linear program, which computes a draw-
ing Γ(Gaug) of Gaug realizing the slog representation Saug. For each vertex u
of Gaug, we introduce a pair of variables xu and yu that corresponds to the
coordinates of vertex u on the plane. Then, for each edge (u, v) of Gaug, we
define a pair of constraints, depending on the type of vertices u and v (i.e., real
or crossing vertices). The detailed list of constraints is given in Figure 8.

In order to obtain “compact” drawings, we indirectly minimize the area by
minimizing the total edge length. In particular, this is our objective function.
Note that the slopes of the segments allow us to express the Euclidean length of
each edge as a linear function. As an example, the length of the edge depicted
in the first cell of Figure 8c is defined as (

√
2− 1) · (yu − yv) + xv − xu.

4.2 Addressing Planarity Issues

The linear program, as described so far, models the shape of the edges (and
subsequently the shape of the faces) and the relative positions between pairs of
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v′c

vc

vr

(a) A non-planar face (b) Split-edge (vertex) (c) Split-edge (vertex)
with half-bend

(d) Split-edge (bend)

Figure 9: In all figures, real (crossing, respectively) vertices are drawn as squares
(disks, respectively); split-edges are drawn dashed.

adjacent vertices. Since there are no constraints among non-adjacent vertices,
it is highly possible that the resulting drawing is non-planar. We provide an
example in Figure 9(a), where the relative positions between vertices (i) vr
and vc, and, (ii) vr and v′c are not defined by the liner program, yielding to
a (potential) crossing situation. To cope with this problem, unfortunately, we
cannot follow an approach similar to the one that Tamassia suggests in his
original algorithm (i.e., he “splits” all non-rectangular faces into rectangular
ones), since in our case a face is not necessarily rectilinear.

In order to describe our approach to ensure that each face is drawn planar,
we first introduce some necessary terminology. We distinguish two types of
corners of a face in a slog representation; vertex-corners (or simply vertices)
and bend-corners (or simply bends). With respect to a face, a corner is either
convex, if the inner angle is ≤ 135◦, or non-convex otherwise3. Hence, there
are four possible types of corners in total: convex vertex-corner, convex bend-
corner, non-convex vertex-corner, non-convex bend-corner. The configuration of
a corner describes the shape of the corner by the pair of orientations of its two
incident segments in the order they are visited by a counterclockwise traversal
of the corresponding face. Possible orientations are horizontal (h), vertical (v),
diagonal-up (du), and diagonal-down (dd). For example, the configuration of
the bend-corner incident to segments s′ and s′′ of Figure 10(a) is given by dd-h.
The type of a configuration describes the corresponding corner in a more general
way by just distinguishing between orthogonal (o) or diagonal (d) orientations.
In the example of Figure 10(a), the configuration of the bend-corner incident
to segments s′ and s′′ is of type d-o. We next define the notions of a split-edge
and an almost-convex face, that are both central in our approach.

Definition 2 For a given face f , a split-edge is an edge that:

• is bend-less and connects a non-convex vertex-corner v with a new vertex
that we introduce by subdividing a side parallel to one of the edges incident
to v (see Figure 9(b)).

3We ignore vertices and bends on corners that form 180◦ angles, since by construction they
are always aligned with their neighbors.



JGAA, 18(3) 459–489 (2014) 473

• or, has a half-bend and connects a non-convex vertex-corner v with a new
vertex that we introduce by subdividing a diagonal side of f (see Fig-
ure 9(c)).

• or, is a bend-less edge that connects two new vertices that we introduce
by subdividing two parallel edges, when one of them is incident to a non-
convex bend-corner (see Figure 9(d)).

Definition 3 A face is almost-convex if it does not contain any non-convex
vertex-corners and no split-edge exists that separates the face into two non-
convex faces.

First, we make all faces almost-convex (by further augmenting our graph).
Later, we will show that the linear program will always compute a planar draw-
ing if all faces are almost-convex.

A non-convex vertex-corner is eliminated by introducing a new split-edge
(corresponding to new constraints in the linear program) as shown in Fig-
ure 9(b). When there is no parallel side to one of the segments incident to
the vertex-corner, we introduce a split-edge with a half-bend, as illustrated in
Figure 9(c). It is important to note that the elimination of a non-convex vertex-
corner does not introduce new ones. Hence, all of them can be eliminated se-
quentially by appropriately adopting one of the two approaches described above.

In order to eliminate a non-convex bend-corner of a face that is not almost-
convex, we search for a split-edge (again corresponding to new constraints in the
linear program) that yields two non-convex faces. Such a split-edge is illustrated
in Figure 9(d). We will appropriately introduce such split-edges until all faces
are almost-convex (without introducing non-convex vertex-corners). To prove
that it is always feasible to make all faces almost-convex, we give the following
lemma.

Lemma 1 Let s′ and s′′ be two segments of a face f incident to a non-convex
bend-corner. Face f contains a segment s /∈ {s′, s′′} that is parallel to either s′

or s′′.

Proof: For a proof by contradiction, we assume that there is no segment of
face f parallel to s′ and s′′. Without loss of generality, we further assume that
s′ is a horizontal segment and s′′ is a diagonal segment of positive slope; see
Figure 10(a). The cases, where s′ is a vertical segment and/or s′′ is a diagonal
segment of negative slope, are analogous (see Figures 10(b), 10(c), and 10(d)).
Let ps′ and ps′′ be the end-points of segments s′ and s′′, respectively, which are
not identified with the non-convex bend-corner incident to both s′ and s′′. Since
f is a face, there exists a polygonal chain of segments of f connecting ps′ and ps′′ .
In our drawing model, such a chain consists of horizontal, vertical and diagonal
segments. Now observe that a horizontal or a positively-sloped diagonal segment
of the chain connecting ps′ and ps′′ is parallel to s′ or s′′, respectively, which
contradicts our initial assumption that there is no segment of face f parallel to
s′ and s′′. Hence, the polygonal chain connecting ps′ and ps′′ consists of vertical
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Figure 10: (a)-(d) Different configurations used in the proof of Lemma 1.
(e) Configuration used in the proof of Lemma 2.

and negatively-sloped diagonal segments, which is a contradiction since ps′ and
ps′′ cannot be connected by such a chain, without forming an angle of 45◦ at a
corner of f (a situation that is not allowed by our drawing model). 2

From Lemma 1, it follows that, for a non-convex bend-corner of a face f ,
there is a split-edge emanating from one of its incident segments towards to a
parallel segment of face f . If f is not almost-convex (and contains no convex
vertex-corners) and this edge is carefully selected such that it yields exactly two
non-convex “subfaces”, say f ′ and f ′′, of face f , then it is not difficult to see
that both f ′ and f ′′ have fewer non-convex bend-corners than f . In addition,
no convex vertex-corners are introduced. This implies that if one recursively
applies this procedure to f ′ and/or f ′′ (if either of these is not almost-convex),
f will eventually be split into a particular number of “subfaces” that are all
almost-convex. In addition, it is not difficult to see that all additional edges,
that are required to make all faces almost-convex can be expressed by using the
original set of constraints of our linear program. So, it now remains to prove
that almost-convex faces are drawn planar. To do so, we give the following
lemmas.

Lemma 2 An almost-convex face f has at most two consecutive non-convex
bend-corners.

Proof: Assume to the contrary that f has three consecutive non-convex bend-
corners, say c1, c2 and c3; see Figure 10(e). Assume that c1, c2 and c3 appear
in this order in the counterclockwise traversal of face f . By Lemma 1, there
exists a segment of f that is parallel to one of the segments incident to c2. This
implies that, there exists a split-edge that partitions f into two non-convex
faces; one containing c1 and one containing c3, which is a contradiction since f
is almost-convex. 2

Lemma 3 An almost-convex face has at most two non-convex bend-corners.

Proof: In the proof, we use the notion of a configuration. More precisely, we
assume to the contrary that an almost-convex face f contains at least three
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Figure 11: Different configurations used in the proof of Lemma 3.

non-convex bend-corners c1, c2 and c3 and distinguish four cases. In our case
analysis, we denote by s1ci and s2ci the segments incident to corner ci and assume
the s1ci precedes s2ci in the clockwise traversal of face f , i = 1, 2, 3.

Case 1: Two of these non-convex bend-corners have the same configuration;
see Figure 11(a) or 11(b) for an illustration. By Lemma 1, there exists
a parallel segment to either s1c1 or s2c1 , and thereby to either s1c2 or s2c2 .
In both cases, one of the split-edges separates c1 from c2, so that the
resulting faces are both non-convex. Hence, f is not almost-convex; a
contradiction. So, in the following cases we assume that c1, c2 and c3 are
of different configurations.

Case 2: Corners c1 and c2 are consecutive corners of f and the first segment
of c3 is parallel to the second segment of c2; see Figure 11(c) for an illus-
tration. We denote by s the segment that is incident to both c1 and c2
(i.e., s = s2c1 = s1c2). From the previous case it follows that c1 and c3 are
of different configurations. In order to close the face there has to be a
segment that is parallel to either s or s2c2 that is not s1c3 , thereby allowing
a split-edge that separates either c1 from c2 and c3, or, c1 and c2 from c3.
The resulting faces are both non-convex. Hence, f is not almost-convex;
a contradiction.

Case 3: Corners c1 and c2 are consecutive and the second segment of c3 is
parallel to the second segment of c2; see Figure 11(d) for an illustration.
Again, we denote by s the segment that is incident to both c1 and c2 (i.e.,
s = s2c1 = s1c2) and assume that c1 and c3 are of opposite configurations.
In this case there is a split-edge between segments s2c2 and s2c3 thereby
separating c1 and c2 from c3 and resulting in two non-convex faces. Hence,
f is not almost-convex; a contradiction.

Case 4: Corners c1, c2 and c3 are pairwise non-consecutive; see Figure 11(e)
for an illustration. Since there are only two types of diagonals, at least two
non-convex corners, say c1 and c3, are of the same type. Since they are
forced to have opposite configurations (d-o or o-d) a split-edge between
those two parallel diagonals would separate the two respective corners,
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resulting in two non-convex faces. Hence, f is not almost-convex; a con-
tradiction.

The proof is completed by the observation that one of these four cases will always
apply to every almost-convex face with more than two non-convex bend-corners.

2

Lemma 4 An almost-convex face is always drawn planar.

Proof: Let f be an almost-convex face. By Lemma 3, face f has at most two
non-convex bend corners.

We claim that in the case where f has exactly one non-convex bend-corner,
f is drawn planar. In fact, since completely convex faces are drawn planar by
construction, we know that, if there is exactly one non-convex bend-corner c
and f is not drawn planar, then one of the two segments s1c and s2c incident to c
must be involved in a crossing. All the other vertex- and bend-corners of f are
convex or collinear by construction. Let s be the segment that crosses s1c or s2c .
Since s is only adjacent to convex corners or 180◦ corners, it is not possible to
close f without violating the port assignments as given by the representation.
So, our claim holds.

Consider now the more interesting case where face f has exactly two non-
convex bend-corners, say c1 and c2. We denote by s1ci and s2ci the segments
incident to corner ci and assume the s1ci precedes s2ci in the clockwise traversal
of face f , i = 1, 2. We distinguish the following cases:

Case 1: Corners c1 and c2 are consecutive; see Figure 12(a) for an illustration.
In this case, there is a segment, say s, that is incident to both c1 and
c2 (i.e., s = s2c1 = s1c2). If there is a segment of f parallel to s, then
there exists a split-edge separating f into two non-convex subfaces; one
containing c1 and one containing c2 (see Figure 12(a)). Hence, f is not
almost-convex. It follows that there is no segment of f that is parallel to s.
By Lemma 1, there exist parallel segments to the other two segments that
are incident to c1 and c2 (see Figure 12(b)). However, since f is almost-
convex, a “split-edge” connecting the respective parallel segments would
result in at least one convex face. We can move these “split-edges” arbi-
trary close to c1 and c2, so that they separate f into three convex regions.
Since convex regions are drawn convex and hence planar by definition, no
crossing can occur.

Case 2: Corners c1 and c2 have the same configuration and orientation; see
Figure 12(c) for an illustration. This particular case is identical to Case 1
of Lemma 3 and therefore cannot occur.

Case 3: Corners c1 and c2 have opposite configuration (meaning that they are
made of the same orthogonal and diagonal part but in different orders)
and orientation; see Figure 12(d) for an illustration. Since the number of
crossings that occur has to be even (otherwise ports would be violated),
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Figure 12: Different configurations used in the proof of Lemma 4.

and the only way to have two crossings requires that one of the convex
regions is drawn non-convex, this situation cannot introduce any crossings.

Case 4: Corners c1 and c2 have the same configuration but opposite orienta-
tions; see Figure 12(e) for an illustration. In this case, it is not difficult
to see that there exists a split-edge between the two orthogonal or the
two diagonal segments incident to c1 and c2, separating them into two
non-convex subfaces, so f cannot be almost-convex.

The proof is completed by the observation that one of these four cases will always
apply to an almost-convex face with exactly two non-convex bend-corners. 2

5 Area Bounds

Slog drawings have aesthetic appeal and seem to improve the readability of non-
planar graphs, when compared to traditional orthogonal drawings. However, in
this section we show that such drawings may require increased drawing area.
Note that most of the known orthogonal drawing algorithms require O(n)×O(n)
area. The situation is different if one insists on slog drawings of optimal number
of bends. As the following theorem asserts, the area penalty can be exponential.

Theorem 4 There exists a graph G whose slanted orthogonal drawing Γ(G) of
minimum number of bends requires exponential area, assuming that a planarized
version σ(G) of graph G is given.

Proof: The planarized version σ(G) of G is given in Figure 13(a) and consists
of n+ 1 layers L0, L1, . . . , Ln. Layer L0 is the square grid graph on 9 vertices.
Each layer Li, i = 1, 2, . . . , n, is a cycle on 20 vertices with 4 internal chords.
Consecutive layers Li−1 and Li, i = 1, 2, . . . , n, are connected by 8 edges which
together with the chords of layer Li define 12 crossings. Hence, G consists of
20n+ 9 vertices and 32n+ 12 edges that define 12n crossings.

A slog drawing Γ(G) of G with minimum number of bends derived from
σ(G) ideally introduces (a) no bends on crossing-free edges of σ(G), and, (b) two
half-bends in total for each rc-edge. Now observe that at each layer there exist



478 Bekos et al. Slanted Orthogonal Drawings

L0

L1 Ln−1 Ln

(a)

Li−1
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Figure 13: (a) A planarized version σ(G) of a graph G. (b) Edges involved in
crossings in σ(G) contribute two half-bends.

four vertices, that have two ports pointing to the next layer (gray-colored in
Figure 13(a)). This together with requirements (a) and (b) suggests that the
vertices of each layer Li should reside along the edges of a rectangle, say Ri,
such that the vertices of Li whose ports point to the next layer coincide with
the corners of Ri, i = 0, 1, 2, . . . , n (with the only exception of the “innermost”
vertex of L0; in Figure 13(b), Ri is identified with cycle Li). Hence, the routing
of the edges that connect consecutive layers should be done as illustrated in
Figure 13(b). Since L0 is always drawable in a 3×3 box meeting all requirements
mentioned above, and, σ(G) is highly symmetric, we can assume that each Ri

is a square of side length wi, i = 0, 1, 2, . . . , n. Then, it is not difficult to see
that w0 = 3 and wi+1 = 2wi + 8, i = 1, 2, . . . , n. This implies that the area of
Γ(G) is exponential in the number of layers of G and therefore exponential in
the number of vertices of G (recall that G has n+1 layers and 20n+9 vertices).

2

6 Experimental Evaluation

In this section, we present an experimental evaluation of our model. We com-
pare classic orthogonal drawings obtained with the implementation of the orig-
inal Tamassia algorithm [13] of the yFiles library (http://www.yworks.com)
with bend-optimal slog drawings and drawings computed by the heuristic pre-
sented in Section 3. As a test set, we used the Rome graphs (obtained from
http://www.graphdrawing.org) which are approximately 11.500 graphs. We fil-
tered them for connected graphs with maximal degree 4, which left 1.122 graphs.
Of this 1.122 graphs, 1.039 were planar and 83 non-planar. The average den-
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Figure 14: Number of instances and density of the test set.

sity over all graphs was 0, 14; recall that the density of a graph is defined as
the ratio of the number of its edges to the maximum possible number of edges.
The number of vertices ranged from 10 to 56. Figure 14 gives a more detailed
description of the test set: the number of instances and their average density
are plotted against the number of vertices of the test set.

We ran our experiments on a Linux machine with four cores at 2, 5 GHz and
3 GB of RAM. All implementations were done in Java using the yFiles library.
For solving the linear programs, we used the Gurobi solver [8].

To obtain an input for our algorithms, we computed an embedding with
the Combinatorial Embedder from the yFiles library, which guarantees a pla-
nar embedding for planar instances. In all following plots, the curve denoted
by orthogonal stands for results for the orthogonal drawings, while the curves
denoted by slog and heuristic correspond to the results for bend-optimal and
heuristic slog-drawings. To obtain the actual numbers, the results for all graphs
with the same number of vertices were averaged.

All results we present in this section were computed in less than 200 ms
each, as depicted in the cpu-time chart in Figure 15. Apparently, the heuristic
requires the most computation time. We observed that this is due to its last step,
where the drawing is heuristically compacted. It seems that the computation
of the cuts, which are required in order to reduce the area, is relatively time-
consuming.

Of course, the graphs of our test set are rather small and not very dense.
However, even for hand-crafted dense graphs with more than 400 vertices, the
optimal slog drawings could be computed in less than 2 seconds, which suggests
that our LP-formulation can be useful for practical applications. Note that
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these hand-crafted graphs are not included in the experimental evaluation of
this section; we simply used them in order to verify that the LP can still be
solved within reasonable time even for large and dense input graphs.
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Figure 16: Number of vertices against area.

In Figure 16, the required area is plotted against the number of vertices.
As expected, the area of the slog drawings is larger than the corresponding
one of the orthogonal drawings. On the other hand, the bend-optimal slog
drawings and the ones computed by the heuristic presented in Section 3 are of
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Figure 17: Number of vertices against number of bends.

comparable area, indicating that the minimization of the total edge length as
an objective function of the linear program seems to be very effective. Recall
that the orthogonal drawing which is used as an input in the heuristic is scaled
up by a factor of five (which yields a factor of 25 in the total area). So, one
would expect that the drawings computed by the heuristic would (in practice)
require significantly more area than the corresponding orthogonal ones, which
apparently is not evident in Figure 16. This is due to the last step of the
heuristic, where the drawing area is reduced.

As stated in Section 2, the number of half-bends in the bend-optimal slog
drawings is at least twice the number of bends in the bend-optimal orthogonal
drawings. So, in Figure 17 we plotted twice the number of orthogonal bends
against the number of half-bends produced by our algorithms. As expected,
the orthogonal drawings require the least amount of bends. We measured that
on average the bend-optimal slog drawings required 2.84 times more half-bends
than the orthogonal drawings, while the drawings computed by the heuristic
required 1.18 times more half-bends than the bend-optimal slog drawings. In
actual numbers, the bend-optimal slog drawings require (on average) 5 more
half-bends, while the drawings computed by the heuristic require 8 more half-
bends than the corresponding orthogonal drawings.

Figure 18 shows the total edge length in relation to the number of vertices. In
our experiments, we found that the plots of the total edge length are comparable
to the plots of the area (Figure 16). This is exactly as expected, since the larger
the area is the larger the total edge length is expected to be. When comparing
the ratio of the longest to the shortest edge, again the orthogonal algorithm
produced the smallest results, as can be seen in Figure 19. This is because
the orthogonal drawings were the most compact ones. For the bend-optimal



482 Bekos et al. Slanted Orthogonal Drawings

0

50

100

150

200

250

300

350

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 51

to
ta

l e
d

ge
 le

n
gt

h

number of vertices

slog

heuristic

orthogonal

Figure 18: Number of vertices against total edge length.
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Figure 19: Number of vertices against ratio of longest to shortest edge.

slog drawings, this ratio went up to 37 in our experiments, while the heuristic
had a better ratio between the longest and the shortest edge. Note that the
high ratios observed in the bend-optimal slog drawings are caused by the long
diagonal segments required in the slanted model.
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7 Sample Drawings

Figure 20: An orthogonal drawing of minimum number of bends for the graph
of Figure 13 establishing the exponential area bound for slog drawings.

Figure 21: The bend-optimal slog drawing corresponding to the one of Figure 20.
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Figure 22: The close-to-optimal slog drawing (corresponding to the one of Fig-
ure 20) produced by our heuristic algorithm of Section 3 without Step 7 of
Algorithm 1.

Figure 23: The close-to-optimal slog drawing (corresponding to the one of Fig-
ure 20) produced by our heuristic algorithm of Section 3 with Step 7 of Algo-
rithm 1.
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Figure 24: A highly symmetric non-planar orthogonal drawing.

Figure 25: The bend-optimal slog drawing corresponding to the one of Figure 24.
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Figure 26: A non-planar orthogonal drawing

Figure 27: The bend-optimal slog drawing corresponding to the one of Figure 26.
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8 Conclusion and Open Problems

We introduced a new model for drawing graphs of max-degree four, in which
orthogonal bends are replaced by pairs of “slanted” bends and crossings occur
on diagonal segments only. The main advantage of this model is that, even
in drawings of large graphs (where vertices might not be clearly visible), it is
immediately clear which pair of edges induce a crossing and where such a cross-
ing is located in the drawing. We presented an algorithm to construct slog
drawings with almost-optimal number of bends and quadratic area, for gen-
eral max-degree four graphs. By a modification of Tamassia’s min-cost flow
approach, we showed that a bend-optimal representation of the graph can effi-
ciently be computed in polynomial time and we presented an LP-approach to
compute a corresponding drawing.

A natural question is whether every max-degree four graph admits such a
drawing. Our experiments led us to believe that it is possible, although we could
not prove it. Variants of our basic model may lead to even more flexibility for
the drawings. An extension to support higher degree graphs will be necessary
to make the approach practical.
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[5] U. Fößmeier, C. Heß, and M. Kaufmann. On improving orthogonal draw-
ings: The 4m-algorithm. In Graph Drawing, volume 1547 of LNCS, pages
125–137, 1998. doi:10.1007/3-540-37623-2_10.
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