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1-Visibility Representations of 1-Planar Graphs
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Abstract

A 1-visibility representation of a graph displays each vertex as a hor-
izontal vertex-segment, called a bar, and each edge as a vertical edge-
segment between the segments of the vertices, such that each edge-segment
crosses at most one vertex-segment and each vertex-segment is crossed by
at most one edge-segment. A graph is 1-visible if it has such a represen-
tation. 1-visibility is related to 1-planarity where graphs are drawn such
that each edge is crossed at most once, and specializes bar 1-visibility
where vertex-segments can be crossed many times.

We develop a linear time algorithm to compute a 1-visibility repre-
sentation of an embedded 1-planar graph in O(n2) area. Hence, every 1-
planar graph is 1-visible. Concerning density, both 1-visible and 1-planar
graphs of size n have at most 4n − 8 edges. However, for every n ≥ 7
there are 1-visible graphs with 4n− 8 edges, which are not 1-planar.
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1 Introduction

Drawing planar graphs is an important topic in graph theory, combinatorics,
and in particular in graph drawing. The existence of straight-line drawings was
independently proved by Wagner [34], Steinitz and Rademacher [29], Stein [28]
and Fáry [17]. The results of de Fraysseix, Pach and Pollack [8] and Schnyder
[27] show that planar graphs admit straight-line grid drawings in quadratic area,
which can be computed in linear time.

A visibility representation is another way to draw a planar graph. Here the
vertices are drawn as horizontal vertex-segments, called bars, and two segments
must see each other along a vertical line-of-sight if there is an edge between the
respective vertices. This is the weak version of visibility. In the strong version
there is a one-to-one correspondence between edges and visibility. Otten and
van Wyck [22] showed first of all that every planar graph has a weak visibility
representation. A linear time algorithm for constructing it was given indepen-
dently by Rosenstiehl and Tarjan [26] and by Tamassia and Tollis [32]. The
algorithm uses a grid of size at most (2n − 5) × (n − 1), which was improved
to (b4n/3c − 2) × (n − 1) by Fan et al. [16]. The weak and strong versions of
visibility were characterized in [32,35].

There are several attempts towards beyond planar graphs. Generally, beyond
planar graphs extend the planar graphs by regulating edge crossings in some way.
The attempts use forbidden minors [25], surfaces of higher genus, or various
restrictions on crossings, such as k-planar [23], k-quasi-planar [1] or right angle
crossing (RAC) graphs [11]. Here, we consider 1-planar graphs which are defined
by drawings such that (the Jordan curve of) an edge is crossed at most once.
1-planar graphs were introduced by Ringel [24] and occur when a planar graph
and its dual are drawn simultaneously.

The straight-line or rectilinear drawability of 1-planar graphs was first inves-
tigated by Eggleton [13]. He settled this problem for outer 1-planar graphs and
proved that every outer 1-planar graph has a straight-line drawing. In outer
1-planar graphs all vertices are in the outer face and each edge is crossed at
most once. Thomassen [33] generalized this result and proved that an embed-
ded 1-planar graph has a straight-line drawing if and only if it excludes B- and
W-configurations, see Figs. 1(a) and 1(b). Then only X-configurations remain
for pairs of crossing edges, see Fig. 1(c). The configurations were rediscovered
by Hong et al. [19], who also showed that there is a linear time algorithm to
convert a 1-planar embedding without B- and W-configurations into a straight-
line drawing. Alam et al. [2] showed that every 3-connected 1-planar graph has
an embedding with at most one W-configuration in the outer face, and has a
straight-line grid drawing in quadratic area with the exception of a single edge
in the outer face. Here we add visibility representations. These drawings can
be computed in linear time from a given 1-planar embedding as a witness for
1-planarity. Note that 1-planarity testing is NP-hard [21].

There is a close relationship between 1-planar graphs and right angle crossing
(RAC) graphs, in which edges must be straight-line and cross at a right angle
[11]. 1-planar graphs and RAC graphs have almost the same density, i.e., the
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(a) B-configuration (b) W-configuration (c) X-configuration

Figure 1: Augmented B-, W- and X-configurations, where the augmentation is
drawn with blue dotted lines.

maximal number of edges for graphs of size n, namely 4n−8 and 4n−10. Eades
and Liotta [12] showed that every maximally dense RAC graph is 1-planar, and
that there are RAC graphs which are not 1-planar.

Dean et al. [9] introduced bar k-visibility where the vertices are represented
as horizontal bars and bars are allowed to see vertically through at most k
other bars. Thus bar 0-visibility is the common planar visibility, and in bar
1-visibility a bar can be crossed by many visibility lines between other bars.
They proved that bar 1-visibility graphs have at most 6n− 20 edges, which is a
tight bound, and showed that the complete graph K8 is bar 1-visible, whereas
K9 is not. Our definition of 1-visibility is the restriction of bar 1-visibility, such
that each edge-segment crosses at most one bar and each bar is crossed by at
most one edge-segment. A graph is called 1-visible if it admits a 1-visibility
representation.

Recently, Sultana et al. [30] showed that some special classes of graphs admit
a bar 1-visibility representation, and they conjectured that every 1-planar graph
has such a representation. We prove a tightened version of their conjecture and
develop a linear time algorithm which converts a 1-planar drawing into a 1-
visibility representation. The fact that every 1-planar graph has a bar 1-visibility
representation was recently independently obtained by Evans et al. [14], who
also studied the weak and strong versions of bar 1-visibility.

Our algorithm uses standard techniques for visibility representations of pla-
nar graphs [10,26,32], a local transformation to re-insert pairs of crossing edges
and a matching to guarantee that each vertex-segment is crossed at most once.
It constructs a 1-visibility representation of a graph G in an area of size at most
4(2n− 5)× (n− 1) in linear time from a 1-planar embedding of G.

1-visibility representations have straight-line edges, even for the edges from
the B- and W -configurations, which cannot be drawn straight-line in 1-planar
drawings. Moreover, they are drawings with right angle crossings between vertex
and edge-segments. As an example, see the so-called extended wheel graph
XQ8 [5] with 8 vertices and 20 edges in Fig. 2, where the visibility representation
is obtained by our algorithm.

1-visible graphs seem to be quite close to 1-planar graphs. They have the
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Figure 2: The extended wheel graph XQ8 (left) and its 1-visibility representa-
tion (right). Each red edge crosses a blue one (left) and its edge-segment crosses
a vertex-segment (right).

same maximal density with at most 4n − 8 edges for graphs of size n. This
is readily seen, since a 1-visible graph consists of a planar subgraph together
with at most one crossing edge for all but the two outermost vertices in the
1-visibility representation. By Theorem 1, we obtain a new and simple proof
of the maximal density of 1-planar graphs, which was proved first of all by
Bodendiek et al. [5], and independently in [15,23].

However, there are 1-visible graphs with 4n−8 edges for every n ≥ 7, which
are not 1-planar, including the complete graph on 7 vertices without one edge
K7-e. Hence, the 1-visible graphs properly include the 1-planar graphs, even
for maximally dense graphs. Note that K7 is not 1-visible, since it is too dense,
such that K6 is the largest complete 1-visible graph. Hence, the complete graphs
K7 and K8 and the density show that 1-visibility is a proper restriction of bar
1-visibility.

Our algorithm and the main result are described in Section 3 and the density
result is given in Section 4.

2 Preliminaries

Consider simple undirected graphs G = (V,E) with n vertices and m edges. We
assume that the graphs are 2-connected, otherwise, the components are treated
separately, and are placed next to each other, as proposed in [32].

A drawing of a graph is a mapping of G into the plane such that the vertices
are mapped to distinct points and each edge is a Jordan curve between its
endpoints. A drawing is planar if (the Jordan curves of the) edges do not cross
and is 1-planar if each edge is crossed at most once. In 1-planar drawings
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crossings of edges with a common endpoint are excluded.
An embedding E(G) of a planar graph G specifies faces. A face is a topolog-

ically connected region and is given by a cyclic sequence of edges and vertices
that forms its boundary. One of the faces is unbounded and is called outer face.
Accordingly, a 1-planar embedding E(G) specifies the faces in a 1-planar drawing
of a graph G including the outer face. A 1-planar embedding is a witness for
1-planarity. In particular, it describes the pairs of crossing edges and the face
of the planar embedding after the removal of all crossing edges in which a pair
of edges cross. A face of E(G) is given by a cyclic list of edges and half-edges
and their vertices and crossing points. A half-edge is a segment of an edge from
a vertex to a crossing point. Each crossing point in a 1-planar embedding is
incident to four half-edges. If the crossing points are taken as new vertices and
the half-edges as edges, then we have the planarization of E(G). This structure
is used by algorithms operating on 1-planar embeddings, where crossing points
always remain as vertices of degree four and may need special treatment. E(G)
is an embedded planar graph, in which each crossing point is assigned to a face
of the embedded planar subgraph after the removal of all crossing points.

A visibility representation Γ of a graph G = (V,E) displays each vertex v
as a horizontal vertex-segment or bar Γ(v). There is a vertical edge-segment
Γ(e) from some point on Γ(u) to some point on Γ(v) if there is an edge e =
(u, v). Vertex-segments (edge-segments) do not overlap and the endpoints of all
segments are grid points. Γ is a bar k-visibility representation for some k ≥ 0
if each edge-segment crosses at most k vertex-segments. Then an edge can see
through up to k vertices. The case k = 0 is the common (weak) planar visibility.
Γ is a 1-visibility representation and G is called a 1-visible graph if each edge-
segment crosses at most one vertex-segment, and each vertex-segment is crossed
by at most one edge-segment. The latter implies a restriction to bar 1-visibility
representations, in which vertex-segments can be crossed many times.

We consider the weak version of visibility. In the strong version there is a
one-to-one correspondence between edges and visibility [9, 10, 14, 32, 35]. The
weak bar k-visible graphs are exactly the subgraphs of the strong bar k-visible
graphs. The strong versions do not seem appropriate for the definition of be-
yond planar graphs, since many planar graphs are excluded for 1-visible graphs,
e.g., cycles of length at least four, bipartite graphs K2,k for k ≥ 3 and n ×m
grids. In fact, there is no strong 1-visibility representation with a quadrilateral
as an inner face.

Next, we recall some facts about 1-planar graphs and their embeddings. The
use of embeddings seems crucial, since 1-planarity testing is NP-hard [21] and 1-
planar graphs may have different 1-planar embeddings [31]. For example, some
planar and some crossing edges can be switched in the XQ8 graph from Fig. 2.

A 1-planar embedding is planar maximal if no further edge can be added
without introducing a crossing or multiple edges. A 1-planar embedding can
be augmented to a planar maximal embedding. The augmentation can be com-
puted in linear time from the embedding using the planarization and keeping
the crossing points as vertices of degree four. Note that the maximality depends
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Figure 3: A maximal 1-planar embedding (left) and another maximal 1-planar
embedding (right) with the degree two vertex in the outer face.

on the embedding and a different embedding of a graph may give rise to another
maximal planar augmentation, as Fig. 3 illustrates.

Planar maximal embeddings have some nice properties, which were estab-
lished by several authors, e.g., [2, 5, 19].

Lemma 1 Let E(G) be a planar maximal 1-planar embedding.

1. Every crossing induces a K4 of the end vertices of the crossing edges.

2. A face has at most four vertices and at most four crossing points. Every
(inner or outer) face is at most a k-gon with k ≤ 8, in which vertices and
crossing points or alternatively half-edge are counted.

Note that the type of a configuration (B, W or X) depends on the embedding
and the choice of the outer face. This observation was used by Alam et al. [2]
in their normal form theorem for embeddings of 3-connected 1-planar graphs.
Here, a given embedded 1-planar graph is first augmented by planar edges to
a planar maximal 1-planar graph and then the embedding is transformed into
normal form by local changes in the cyclic order of the neighbors of some ver-
tices. An embedding E(G) is in normal form if it has at most one augmented
W-configuration in the outer face, no augmented B-configuration, and an aug-
mented X-configuration does not contain a vertex inside the boundaries of the
quadrangle of its endpoints.

Lemma 2 (Normal Form Theorem) [2]
Let G = (V,E) be a 3-connected 1-planar graph and E(G) a 1-planar embed-
ding. There is a linear time algorithm to transform E(G) into a planar maximal
1-planar embedding of a supergraph H = (V, F ) with E ⊆ F such that the
embedding E(H) is in normal form.

The normal form theorem holds for every 3-connected component of a 1-
planar graph G. Suppose that G is 2-connected with an embedding E(G) with
planar maximal 3-connected components in normal form. For every separation
pair {u, v} there is a sequence of 3-connected 1-planar graphs C0, . . . , Ck−1 in
clockwise order at u, and each pair of adjacent components Ci and Ci+1 with
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C0 C1 C2 Ck-1e3e1e0 eke2

Figure 4: A sequence of planar maximal 1-planar graphs at a separation pair
{u, v} and separating edges between the components.

0 ≤ i ≤ k − 1 is separated by a pair of crossing edges from a W- or an X-
configuration or both. Otherwise, such components merge to a single planar
maximal 3-connected component.

To separate the components at a separation pair {u, v} even further we allow
multi-edges and introduce copies ei for i = 1, . . . , k of the edge e0 = (u, v) as
separation edges. The i-th separation edge ei is routed next to a pair of crossing
edges which separates Ci−1 from Ci. The outermost separation edge ek encloses
all components and the multi-edges e0 and ek form the outer face. This situation
is depicted in Fig. 4, where the copies of the edge e0 = {u, v} are drawn dotted
and blue. The outermost edge can be omitted if the separation pair is in the
outer face and there is no pair of crossing edges from a W-configuration in the
outer face.

The steps for the augmentation to 3-connected components in normal form
and for the insertion of separation edges take linear time on E(G). Thus we can
state.

Lemma 3 Every 1-planar embedding E(G) can be transformed in linear time
into a planar maximal 1-planar embedding E(G′) of a supergraph with multi-
edges G′, where each 3-connected component of E(G′) is in normal form and
there is a separation edge between adjacent 3-connected components at a sepa-
ration pair {u, v}.

For 1-planar graphs, a visibility representation has advantages over a com-
mon straight-line drawing. In the next Section we show that all 1-planar graphs
can be represented with straight vertical lines in quadratic area but at the
expense of bars for the vertices. Straight-line drawings must exclude B- and
W-configurations [19,33]. Each W-configuration induces one edge with a bend,
and the sparse maximal 1-planar graphs from Fig. 3 in [6] have a linear num-
ber of W-configurations and thus a linear number of edges with a bend. The
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algorithm of Alam et al. [2] deals only with 3-connected 1-planar graphs, and
Hong et al. [19] showed that a 1-planar embedding can be transformed into a
straight-line 1-planar drawing, which preserves the embedding, provided there
are no B- and W-configurations. Their algorithm uses the convex drawing algo-
rithm for planar graphs from [7], which needs a high resolution for its numerical
computations. There is no stated bound on the area, but it is likely to be expo-
nential, where the expansion of the area is enforced by a sequence of 1-planar
graphs at a separation pair, as illustrated by Fig. 4.

3 Visibility Representation

In this section we show that every 1-planar graph G has a 1-visibility repre-
sentation. The result is obtained by the 1-VISIBILITY algorithm, whose input
is an embedding E(G) as a witness for 1-planarity. After a planar maximal
augmentation it considers each 3-connected component C, transforms C into
normal form, and separates 3-connected components at a separation pair by
separation edges. Then the graph and, in particular, each 3-connected com-
ponent is planarized by extracting the pairs of crossing edges. This is done
via the planarization and then removing all crossing points. The so obtained
planar graph Gp is drawn by a common planar visibility algorithm. Gp is a
spanning subgraph of G. Thereafter, CROSSING-INSERTION re-inserts each
pair of crossing edges in the face from which it was extracted. Finally, the
edge-segments of added edges are hidden.

Consider a planar visibility algorithm from [10, 26, 32]. It takes an em-
bedded planar graph and two vertices s, t in the outer face and directs the
edges according to an st-numbering from s to t. Thereafter each vertex v but
s, t has a neighbor with a smaller and a larger st-number than itself and two
clockwise-consecutive sub-sequences of incoming and outgoing edges, i.e., G is
bi-modal [26]. Route the edge (s, t) to the left of the drawing of G. Then con-
sider the directed dual G∗, where s∗ is the face to the right of the (s, t) edge
and t∗ is the outer face, and direct its edges according to the s∗t∗-numbering
of G∗. Recall that G was extended by separation edges between 3-connected
components, which has an impact on G∗, since a separation edge splits a face
and increases the number of faces by one.

Define the distance δ(v) of a vertex v by its st-number [26,32] or for a more
compact drawing [10] by the length of a longest path from s and accordingly
define the dual distance δ∗(f) of a face f of G. Then δ(s) = 0, δ(t) = h − 1,
δ∗(s∗) = 0 and δ∗(t∗) = w− 1 for some h ≤ n and w ≤ 2n− 5 and the visibility
representation is of size w×h. The insertion of separation edges does not affect
the upper bound of 2n−5, since for each separation edge ei there is at least one
missing edge from Ci to the next component Ci+1 in the sequence of 3-connected
components, in which pairs of crossing edges are removed. Hence, there are at
most 2n− 4 faces after the extraction of all crossing edges and the addition of
separating edges.

For the compacted version one must take care that the distance of vertices
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b and d of a quadrangle f = (a, b, c, d) differs if a and c are the minimum and
maximum distance vertices (bottom and top) and there is an augmented X-
configuration. The requirements are met by the st-number and can otherwise
be achieved by a local lifting as in [3], which cost at most one unit in height per
lifting. Moreover, if {u, v} is a separation pair with a sequence of 3-connected
components C0, . . . , Ck−1 in clockwise order at u and separation edges e0, . . . , ek
and the st-number of u is smaller than the st-number of v, then the st-numbering
implies that δ(u) < δ(w) < δ(v) for every vertex w from any component Ci and
δ∗(ei−1) < δ∗(f) < δ∗(ei) if f is an inner face of Ci−1 and δ∗(ei) is the dual
distance of the face immediately to the left of ei.

For each edge e = (u, v) let left(e) (right(e)) be the dual distance δ∗(f) of
the face f of G to the left (right) of v and let left(v) (right(v)) be the least
(largest) dual distance of a face incident with v.

Algorithm 1: PLANAR-VISIBILITY

Input: A 2-connected planar graph G (with multi-edges) with a planar
embedding E(G).

Output: A visibility representation Γ of G.
1 Construct an st-numbering of G with (s, t) on the left.
2 Compute the dual graph G∗.
3 Compute the distance δ(v) for all vertices v of G and the dual distance
δ∗(f) for all faces f .

4 foreach vertex v of G do
5 draw the horizontal vertex-segment Γ(v) between (δ∗(left(v)), δ(v))

and (δ∗(right(v))− 1, δ(v)).

6 foreach edge e = (u, v) of G do
7 draw a vertical edge-segment Γ(e) between (δ∗(left(e)), δ(u)) and

(δ∗(left(e)), δ(v)).

8 return Γ

The correctness of PLANAR-VISIBILITY and the linear running time was
proved in [10,26,32].

We use PLANAR-VISIBILITY to draw 3-connected components Ci of 1-
planar graphs, whose pairs of crossing edges (a, c) and (b, d) are first extracted
and are then re-inserted in the face they left behind. The normal form em-
bedding and the added separation edge ei to the right of Ci guarantee that
each pair of crossing edges has its own face f , which is a quadrangle by Lemma
1. f comes from an augmented X-configuration if it is an inner face or is the
outer face of a W-configuration and is immediately to the left of the outermost
separation edge.

For a face f = (a, b, c, d) let a be the bottom in the visibility drawing of
PLANAR-VISIBILITY, i.e., the y-coordinate δ(a) is minimal. We call f a left-
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wing (right-wing) if δ(a) < δ(b) < δ(c) < δ(d) and b, c are to the left (right) of
f , and a diamond if δ(a) < δ(b), δ(d) < δ(c). f is a left-wing or right-wing if f
is the outer face or if (a, d) is a separation edge.

In a 1-visibility representation there are always two options, which segment
of the two non top and non bottom vertices of a quadrangle f is crossed by a
re-inserted edge-segment. A maximal bipartite matching determines one vertex
per face and guarantees that each vertex-segment is crossed at most once.

The crossing insertions are illustrated in Fig. 5.

Algorithm 2: CROSSING-INSERTION

Input: A visibility representation Γ of a face f with the vertices
(a, b, c, d) and bottom a, and a pair of edges (a, c) and (b, d)
crossing in f , such that the vertex-segment of b is crossed by the
edge-segment of (a, c). (The case where the other inner vertex is
crossed is similar).

Output: A 1-visibility representation Γ of f with the additional edges
(a, c) and (b, d) such that Γ((a, c)) crosses Γ(b).

1 if f is a left-wing then
2 extend Γ(b) by 0.5 and Γ(c) by 0.25 units to the right and draw

Γ((a, c)) at the x-coordinate δ∗(f)− 0.75 and Γ((b, d)) at δ∗(f)− 0.5

3 if f is a right-wing then
4 extend Γ(b) by 0.5 and Γ(c) by 0.25 units to the left and draw

Γ((a, c)) at the x-coordinate δ∗(f)− 0.25 and Γ((b, d)) at δ∗(f)− 0.5

5 if f is a diamond then
6 extend Γ(b) by 0.5 units to the right and Γ(d) by 0.5 units to the left,

draw Γ((b, d)) at the x-coordinate δ∗(f)− 0.5 and draw Γ((a, c)) at
δ∗(f)− 0.75 if b is crossed and at δ∗(f)− 0.25 if d is crossed.

7 return Γ

Lemma 4 If a face f = (a, b, c, d) is drawn by PLANAR-VISIBILITY, then
CROSSING-INSERTION adds the pair of crossing edges (a, c) and (b, d) inside
f with exactly one vertex-edge segment crossing.

Proof: If f is a left-wing, then the vertex-segments of b and d end at δ∗(f)− 1
and the edge-segments are at or to the left of δ∗(f) − 2. The edge-segment of
(a, d) is at or to the right of δ∗(f). Hence, the extensions of Γ(b) and Γ(c) do
not intersect the edge-segment of (a, d). The edges (a, c) and (b, d) are routed
inside f and induce a crossing of the segments of b and (a, c). The case where
f is a right-wing is symmetric. Then the edge-segment of (a, d) is at or to the
left of δ∗(f) − 1, and the edge-segments (a, b), (b, c), (c, d) are right aligned at
δ∗(f). The vertex-segments of b and c begin at δ∗(f). If f is a diamond with
b on the left and d on the right, then Γ(b) ends at δ∗(f) − 1 and Γ(d) begins
at δ∗(f), and the y-coordinates of the vertex-segments of b and d are different,
since δ guarantees this property. Again, there is a single vertex-edge segment
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Figure 5: Re-inserting a pair of crossing edges (a, c) and (b, d) in face f by an
extension of the inner vertex-segments, where (a, c) crosses b.

crossing in f . The vertex-segments of the extreme vertices cover the range from
δ∗(f)− 1 to δ∗(f), and generally go far beyond. �

Finally, consider a separation pair {u, v} and its 3-connected components
C0, . . . , Ck−1, which are separated by separation edges e1, . . . , ek as copies of
e0 = (u, v). Associate ei with Ci. Then the 3-connected components are sand-
wiched between the vertex-segments of u and v and two adjacent components
Ci−1 and Ci are clearly separated by ei in a left-to-right order, which is due to
the st- and s∗t∗-numberings.

We can now establish our main result.

Theorem 1 There is a linear time algorithm to construct a 1-visibility repre-
sentation of an embedded 1-planar graph on a grid of size at most (8n− 20)×
(n− 1).

Proof: First consider the case that the graph G is 3-connected. Its embedding is
transformed into normal form with all crossings as augmented X-configurations
with the exception of at most one crossing in the outer face. Now each crossing
of a pair of edges has its own face in the embedded planar graph which remains
after the removal of all pairs of crossing edges. A crossing in the outer face is
assigned to the face to the left of the inserted separation edge. Each such face is
a quadrangle. This property also holds for 2-connected graphs by the separation
edges between 3-connected components. Hence, the planar graph after the ex-
traction of all pairs of crossing edges can be drawn by PLANAR-VISIBILITY,
and the extracted edges can be re-inserted by CROSSING-INSERTION. This
induces the crossing of a single vertex-edge pair for each pair of crossing edges
in f , as shown in Lemma 4, such that each edge is crossed at most once.
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Algorithm 3: 1-VISIBILITY

Input: A 1-planar embedding E(G) of a 2-connected 1-planar graph G.
Output: A 1-visibility representation Γ on a grid of quadratic size.

1 Augment E(G) to a planar maximal 1-planar embedding and update G
2 Decompose G into its 3-connected components.
3 foreach separating pair {u, v} do
4 In E(G), add a copy of (u, v) as a separating edge to the right of each

3-connected component at u and update G.

5 If edges (a, b) and (c, d) cross in the outer face of E(G) with a, b in the
outer face, then add a copy of (a, b) to G and E(G) such that (a, b) and
its copy are in the outer face.

6 Transform E(G) into normal form by transforming the embedding of each
3-connected component.

7 Remove pairs of crossing edges from E(G) via the removal of the crossing
points in the planarization of E(G). Let E(Gp) be the remaining planar
embedding of the spanning planar subgraph Gp of G. Assign each pair of
crossing edges to the face of E(Gp) from which it was extracted.

8 Construct a planar visibility representation Γ of Gp by
PLANAR-VISIBILITY.

9 (Separately for each 3-connected component) Compute the set of crossed
vertex-segments by a maximum bipartite matching on the pairs of
crossing edges and the non top and non bottom vertices of the faces from
which they were extracted.

10 Re-insert each pair of crossing edges into the face from which it was
extracted using CROSSING-INSERTION .

11 Scale all x-coordinates of Γ by the factor 4.
12 Remove the edges from Γ that were added in Steps 1,3 and 4.
13 Return Γ.
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Multiple vertex crossings are excluded by a maximum matching between the
set of faces F with a crossing and the set of inner vertices I associated with
the faces of F . An inner vertex of a face is not the top or bottom vertex. By
the st-numbering each vertex v is an inner vertex of at most two faces, one
to the left and one to the right. v can be the top or bottom vertex of other
faces. Hence, v is assigned to at most two faces of F , and each f ∈ F has
two inner vertices, as can be seen from the left-wing, right-wing or diamond
shape. The maximum bipartite matching problem over F and I has a solution
by Hall’s marriage theorem [18], since for every subset F ′ ⊆ F the number of
inner vertices |I ′| of the faces from F ′ is greater or equal to |F ′|.

In this particular case, a maximum matching can be computed in linear
time by first matching all inner vertices of degree one, and then matching the
remaining faces using at most one alternation. Since the remaining faces and
inner vertices all have degree two, the bipartite graph decomposes into disjoint
alternating cycles.

PLANAR-VISIBILITY computes grid points for the segments and uses an
area of at most (2n− 5)× (n− 1) including the separation edges. The number
of faces of the augmented graph G′′ is bounded from above by 2n− 4, since for
each separation edge there is a missing edge between the adjacent 3-connected
components. CROSSING-INSERTION does not increase the area, but needs
a scaling of the x-coordinates by four, which results in an area of at most
(8n− 20)× (n− 1).

All steps take linear time. In 1-VISIBILITY steps 1-4 and 7 are done on
planar graphs (including crossing points). The linear running time of step 6 is
from [2] and of step 8 from [10, 26, 32]. Step 10 takes O(1) time per crossing,
and there are at most n−2 crossings, step 5 is a single action, and steps 11 and
12 take O(1) time per item and thus O(1) time in total. Finally, the linear time
bound of step 9 is shown above. �

Corollary 1 Every 1-planar graph is a 1-visible graph, and thus a bar 1-visibility
graph.

4 Density

It is easily seen that 1-visible graphs of size n have at most 4n− 8 edges, since
there are at most 3n− 6 planar edges and at most n− 2 edges whose segments
cross a vertex-segment. This is exactly the upper bound of the density of 1-
planar graphs.

Lemma 5 A 1-visible graph of size n has at most 4n− 8 edges.

From Corollary 1 we obtain a new and simple proof for the maximal density
of 1-planar graphs, which was proved before in [4, 15,23].

Corollary 2 A 1-planar graph of size n has at most 4n− 8 edges.
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Figure 6: The K7-e graph with the vertices {1, . . . , 7} is 1-visible and not 1-
planar. The edge (2, 7) is missing. The graph can be expanded by new vertices
which each add four edges.

However, there are 1-visible graphs which are not 1-planar, even if they have
the maximum of 4n− 8 edges.

Theorem 2 For every n ≥ 7 there are graphs with 4n − 8 edges which are
1-visible and not 1-planar.

Proof: There are no 1-planar graphs with n = 7 (or n = 9) vertices and 4n− 8
edges [5, 31], however, the complete graph on 7 vertices without one edge K7-e
is 1-visible, as shown in Fig. 6.

For n ≥ 8 construct the graph Gn from K7-e and add n − 7 vertices and
connect each such vi with vertex 3 on the left and with vertex 1 on the right
side and with vi−1 and vi−2 on top, where the edge (vi, vi−2) crosses vi−1, as
illustrated in Fig. 6.

Since the 1-planar graphs have the subgraph property Gn is not 1-planar. �

1-planar (1-visible) graphs with 4n− 8 edges are called optimal [5,31]. Note
that there are optimal 1-planar graphs only for n = 8 and n ≥ 10 [5,31], whereas
there are optimal 1-visible graphs for every n ≥ 7. More 1-visible and not 1-
planar graphs can be constructed using the schema of Fig. 7, where the outer
frame represents a subgraph with a unique 1-planar embedding as in [21] and
the edge-segment (a, c) crosses vertex-segment b and would cross at least two
edges in every 1-planar drawing.
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c

a

b

Figure 7: Schema for non 1-planar 1-visibility graphs.

5 Conclusion and Perspectives

We showed that single edge-vertex segment crossings in visibility representations
are more powerful than single edge-edge crossings in common drawings. Visibil-
ity representations can be used to define further classes of beyond planar graphs,
e.g., by single edge-vertex and edge-edge crossings in the flat visibility approach
of Biedl [3] or in 2-dimensional visibility approaches [20]. We conjecture that
the recognition problem for 1-visible graphs is NP-hard.
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