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Abstract

We describe a linear-time algorithm that finds a planar drawing of ev-
ery graph of a simple line or pseudoline arrangement within a grid of area
O(n7/6). No known input causes our algorithm to use area Ω(n1+ε) for any
ε > 0; finding such an input would represent significant progress on the
famous k-set problem from discrete geometry. Drawing line arrangement
graphs is the main task in the Planarity puzzle.
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1 Introduction

Planarity (http://planarity.net/) is a puzzle developed by John Tantalo and
Mary Radcliffe in which the user moves the vertices of a planar graph, starting
from a tangled circular layout (Figure 1), into a position where its edges (drawn
as line segments) do not cross. The game is played in a sequence of levels of
increasing difficulty. To construct the graph for the ith level, the game applet
chooses ` = i + 3 random lines in general position in the plane. It creates a
vertex for each of the `(`− 1)/2 crossings of two lines, and an edge for each of
the `(`− 2) consecutive pairs of crossings on the same line.

One strategy for solving Planarity would be to search for a line arrangement
whose graph matches the input, and to place the vertices on the crossing points
of this arrangement (Figure 2, left). From the graph visualization point of view,
this method would have the advantage of accurately conveying the underlying
construction of the graph. However, placing vertices in this way is tedious to do
by hand, and finding the appropriate arrangement has high computational com-
plexity: testing whether an arrangement of curves is combinatorially equivalent
to a line arrangement is NP-hard [34], from which it follows that recognizing
line arrangement graphs, and finding arrangements that match a given input
graph, are both also NP-hard [6]. More precisely, these problems are complete
for the existential theory of the reals [31]. An additional problem with drawings
constructed in this way is that they necessarily have low angular resolution and
high area. Angular resolution is a standard quality metric for straight-line graph
drawings, equal to the sharpest angle formed by any two edges that meet at a
vertex [15,18,27]. The pigeonhole principle shows that, in every arrangement of
` lines, some two lines form an angle of π/` or less, and the same angle is formed
by two of the edges at the crossing vertex. In addition, there exist arrangements

Figure 1: Initial state of Planarity.

http://planarity.net/
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Figure 2: Two manually constructed solutions to the puzzle from Figure 1. Left:
a set of lines with this graph as its arrangement. Right: an (approximate) grid
layout.

of lines in which some two crossings must be extremely close together (doubly
exponentially close relative to the diameter of the set of crossings) [26], forcing
any drawing of this arrangement with unit spacing between its vertices to have
double exponential area. Thus, drawing an arrangement graph in a way that
makes its arrangement structure visible is difficult and results in a drawing that
is hard to read.

Instead, in practice these puzzles may be solved more easily by an incre-
mental strategy that maintains a planar embedding of a subgraph of the input,
starting from a single short cycle (such as a triangle or quadrilateral), and that at
each step extends the embedding by a single face, bounded by a short path con-
necting two vertices on the boundary of the previous embedding. (We provide a
more formal description of this strategy in Section 5.) When using this strategy
to solve a Planarity puzzle, the embedding may be kept tidy by placing each
vertex into an approximate grid (Figure 2, right). Curiously, the grid drawings
found by this incremental grid-placement heuristic appear to have near-linear
area; in contrast, there exist other planar graphs such as the nested triangles
graph that cannot be drawn planarly in a grid of less than Θ(n2) area [11,38].

1.1 New results

In this paper we explain this empirical finding of small grid area by developing
an efficient algorithm for constructing compact grid drawings of the arrangement
graphs arising in Planarity. Because recognizing line arrangement graphs is NP-
hard, we identify in Section 2 a larger family of planar graphs (the graphs of
simple pseudoline arrangements) that may be recognized and decomposed into
their constituent paths in linear time. In Section 3, we show that every n-vertex
simple pseudoline arrangement graph may be drawn in linear time in a grid of
size κmax(O(

√
n))×O(

√
n). In this formula, κmax(`) is the maximum complexity
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of a k-level of a pseudoline arrangement with ` pseudolines [25,33,36], a topolog-
ical variant of the famous k-set problem from discrete geometry (see Definition 6
for a formal definition of κmax). The best proven upper bounds of O(` 4/3) on
the complexity of k-levels [9, 33,36] imply that the grid in which our algorithm
draws these graphs has size O(n2/3) × O(

√
n) and area O(n7/6). However, all

known lower bounds on k-level complexity are of the form Ω(`1+o(1)) [25, 37],
suggesting that our algorithm is likely to perform even better in practice than
this O(n7/6) area bound would suggest. If we could find a constant ε > 0 and
a family of inputs that would cause our algorithm to use area Ω(`1+ε), such a
result would represent significant progress on the k-set problem.

We also investigate the construction of universal point sets for arrangement
graphs, sets of points that can be used as the vertices for a straight-line planar
drawing of every n-vertex arrangement graph. Our construction directly pro-
vides a universal point set consisting of O(n7/6) grid points; we show in Section 4
how to sparsify this structure, leading to the construction of a universal set of
O(n log n) points within a grid whose dimensions are again O(n2/3)×O(

√
n).

Finally, in Section 5, we formalize and justify an algorithm for manual so-
lution of these puzzles that greedily finds short cycles and adds them as faces
to a partial planar embedding. Although this algorithm may fail for general
planar graphs, we show that for arrangement graphs it always finds a planar
embedding that is combinatorially equivalent to the original arrangement.

1.2 Related work

Past work on visualizing arrangements has typically focused on the lines or
curves of the arrangement, somewhat different from our emphasis on drawing
the vertices and edges of arrangement graphs without respect to these curves.
A standard tool in the visualization of arrangements (that we also use) is the
wiring diagram (Figure 5) [20], which replaces the lines of an arrangement with
curves that lie on parallel horizontal lines except at their crossings. Eppstein
et al. [14] considered the visualization of weak pseudoline arrangements using
smooth piecewise-circular curves. They showed that arrangements in which all
crossings belong to an infinite face can always be drawn with one circular arc
per pseudoline, but that in general an arrangement may require a linear number
of arcs per pseudoline. Dobkin and Tal [10] study another visualization problem
on line arrangements for which the geometry of the lines is already known. They
describe a method for approximating any such arrangement by a set of fewer
lines that is visually similar to the original arrangement.

Several groups of researchers, motivated in part by the Planarity puzzle,
have studied the problem of maximizing the number of points that can be left
in their original positions in a solution to the puzzle [5, 8, 19, 30]. Another
problem related to Planarity is the choice of an initial placement of the vertices
of a graph that maximizes its number of crossings. As Verbitsky [39] shows,
the method used in Planarity of randomly permuting the vertices in a circular
layout creates a drawing whose number of crossings is within a constant factor
of the largest possible number, in expectation.
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Figure 3: A simple pseudoline arrangement that cannot be transformed into
a line arrangement. Redrawn from Figure 5.3.2 of [21], who attribute this
arrangement to Ringel.

2 Pseudoline arrangements and their graphs

Definition 1 A pseudoline is the image of a line under a homeomorphism of
the Euclidean plane. Two pseudolines cross at a point x if a neighborhood of
x is homeomorphic to a neighborhood of the crossing point of two lines, with
the homeomorphism taking the pseudolines to the lines. An arrangement of
pseudolines is a finite set of pseudolines, the intersection of every two of which
is a single crossing point. An arrangement is simple if each of its crossing points
is the crossing of only two pseudolines. A pseudoline arrangement graph is a
graph whose vertices represent the crossings in a simple pseudoline arrangement,
and whose edges connect pairs of crossings that are consecutive on the same
pseudoline.

Our definition of pseudolines follows Shor [34], and is somewhat less re-
strictive than a commonly used alternative definition, that a pseudoline is a
non-contractible simple closed curve in the projective plane. Pseudolines as
defined by Definition 1 include lines, non-self-crossing polygonal chains start-
ing and ending in infinite rays, and the graphs of continuous real functions.
Pseudoline arrangement graphs are necessarily planar, with a planar embed-
ding coming from the arrangement. Every arrangement of lines is a pseudoline
arrangement, but there exist unstretchable pseudoline arrangements (and more
strongly unstretchable simple pseudoline arrangements) that are not combinato-
rially equivalent to line arrangements. One such example is depicted in Figure 3.

The advantage, for us, of using pseudolines in place of lines is that their
arrangement graphs may be recognized more efficiently, as we elaborate below.
Most of the ideas in the following result are from Bose et al. [6], but we expand on
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Figure 4: The multigraph G∗ formed from an arrangement graph G (white
vertices and blue edges) by adding a new vertex v∞ (yellow) and, for each
arrangement vertex u with degree d < 4, adding 4−d edges (red) from u to v∞.

the methods from that paper to show that linear time recognition of arrangement
graphs is possible. Relatedly, in [13] we described a more complicated linear
time algorithm that recognizes the dual graphs of a wider class of arrangement
graphs, the graphs of weak pseudoline arrangements in which not every pair of
pseudolines is required to cross and in which crossings may involve more than
two pseudolines. However, in this work it is the primal graphs and not their
duals that we need to recognize.

Lemma 2 If we are given as input a graph G, then in linear time we can
determine whether it is a pseudoline arrangement graph, determine its (unique)
embedding as an arrangement graph, and find a pseudoline arrangement for
which it is the arrangement graph.

Proof: First, let G be a pseudoline arrangement graph G, and form a graph G∗

from it by adding a new vertex v∞ adjacent to all vertices in G of degree less
than four. G∗ is planar (it can be embedded by adding one vertex to the outside
face of the embedding of G) and as Bose et al. [6] show, G∗ is also 3-connected.
Because G∗ is a 3-connected and planar graph, it has only one planar embedding
(up to the choice of the outer face), which must be the embedding derived from
its representation as an arrangement graph.

For convenience we make G∗ be a multigraph by including two edges in G∗

between v∞ and each degree two vertex in G, as shown in Figure 4. Duplicating
edges in this way cannot decrease the connectivity or change the planarity of
G∗ but it ensures that all vertices except v∞ have degree exactly four. In the
embedding of G as a pseudoline arrangement, each pseudoline passes directly
across each crossing vertex, connecting two opposite edges. Correspondingly, in
G∗ each pseudoline can be represented in a purely combinatorial way, as a path
that starts at v∞, continues through two opposite edges at each vertex other
than v∞ (using the unique planar embedding to determine which two edges are
opposite), and ends again at v∞. Any two distinct pseudolines are represented
in this way by paths that have disjoint sets of edges.

Now, let G be an arbitrary given graph G of maximum degree four, not
known to be a pseudoline arrangement graph. Then as above we may, in linear
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time, add a new vertex v∞ to create an augmented graph G∗ in which all
vertices except v∞ have degree four, test planarity of G∗, and embed G∗ in
the plane. If G∗ is planar, any of its embeddings has a unique decomposition
into an arrangement of simply-crossing curves, generalizing the way that we
decomposed the graph coming from a pseudoline arrangement: join two edges
of G∗ into a path or cycle whenever they are opposite at a vertex other than
v∞, and draw a curve in the plane that follows the embedding of each of these
paths or cycles. It is straightforward to find this decomposition algorithmically:
construct an auxiliary graph that has a vertex for each edge of G∗, and an edge
between two vertices whenever they correspond to two opposite edges at some
vertex; then the sets of edges in the paths and cycles of the decomposition are
given by the connected components of the auxiliary graph. Thus, decomposing
G∗ into paths and cycles takes time linear in its number of vertices and edges.

If G is indeed a pseudoline arrangement graph then this decomposition will
consist only of non-self-crossing paths (not cycles), and any two paths must
cross each other exactly once. We now describe how to check these properties.
Once we have decomposed G∗ into paths, we label each edge with the identity of
its path. By comparing the set of labels used in this labeling to the set of labels
appearing at v∞, we may verify that the decomposition contains no cycles. By
comparing the four labels present at each vertex other than v∞, we may verify
that no path crosses itself. These two verification steps take linear time. We
additionally check that G has `(`−1)/2 vertices, where ` is the number of paths.
Finally, we must verify that no two paths cross more than once. To do so, we
make a list of the pairs of paths crossing at each vertex. The number of pairs
is no more than the number of vertices, so we may sort this list in linear time
using bucket sorting, and then check that no bucket contains a repeated pair.

If G passes all of these checks, its decomposition into paths gives a valid
pseudoline arrangement. One way to show that these paths can be represented
geometrically as a pseudoline arrangement is to view the embedding of G∗ as
being on a sphere. Puncture the sphere at the point v∞, resulting in a space
topologically equivalent to the plane, and homeomorphically map the punctured
sphere to the plane. The images of the paths under this map necessarily form a
pseudoline arrangement with G as its graph. (In the next section, we instead use
wiring diagrams to construct more explicit geometric representations of these
arrangements.) �

3 Small Grids

To describe our grid drawing algorithm for pseudoline arrangement graphs, we
need to introduce the concept of a wiring diagram.

Definition 3 A wiring diagram is an arrangement of ` polygonal pseudolines
formed from the ` horizontal lines with coordinates y = 1, y = 2, . . . , y = ` by
removing

(
`
2

)
pairs of short line segments from the same horizontal positions in

pairs of lines with adjacent coordinates, and replacing each removed pair of line
segments by two crossing line segments.
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Figure 5: A wiring diagram formed by a plane sweep of the arrangement from
Figure 2

Figure 5 depicts an example, a wiring diagram with the same combinatorial
structure as the line arrangement whose graph was given as a Planarity puzzle
in Figure 1. We will call the horizontal lines from which the wiring diagram
is formed tracks; each crossing causes the two pseudolines that cross to swap
which track they lie on. It may be convenient to require different crossings to
have different x coordinates, as depicted in Figure 5. This requirement was
part of the original definition of wiring diagrams by Goodman [20], but some
later sources allow crossings with equal x-coordinates, a relaxation that leads
to narrower diagrams.

Wiring diagrams already provide reasonably nice grid drawings of arrange-
ment graphs [29], but are unsuitable for our purposes, for two reasons. First,
they draw the edges connecting pairs of adjacent crossings as polygonal chains
with two bends, while the Planarity puzzle requires that edges be drawn as
straight line segments. And second, even when we allow the more compact
form of wiring diagrams in which crossings may share x-coordinates, some ar-
rangements have wiring diagrams that, when drawn in an integer grid, require
width Ω(`2), much larger than our bounds. Figure 6 depicts an example of
this phenomenon, for an arrangement derived from the cocktail shaker sorting
algorithm. In this example, there is an x-monotone path in the arrangement
that passes through all of the crossings, so they must all be drawn with distinct
x coordinates. Since there are

(
`
2

)
= Ω(`2) crossings, the width of any wiring

diagram with integer coordinates for this arrangement must be Ω(`2).

Although wiring diagrams do not directly solve our problem, we will use
these diagrams as a tool for constructing a different and more compact form
of straight-line drawing. Thus, it is important for us to be able to construct
them efficiently. For an arrangement of non-vertical lines in general position, an
equivalent wiring diagram may be constructed by a plane sweep algorithm [3],
which simulates the left-to-right motion of a vertical line across the arrangement.
At most points in the sweep, the intersection points of the arrangement lines
with the sweep line maintain a fixed top-to-bottom order with each other, and
their positions in this order give the y-coordinate of the horizontal line that
corresponds to each arrangement line. When the sweep line crosses a vertex of
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Figure 6: Cocktail shaker sort corresponds to an arrangement of ` pseudolines
for which drawing the wiring diagram with integer coordinates requires width
Ω(`2)

the arrangement, two intersection points swap positions in the top-to-bottom
order on the sweep line, and this swap may be represented by introducing a
crossing between the corresponding tracks of the wiring diagram. The left-to-
right order of crossings in the wiring diagram that results from this sweeping
process is thus exactly the sorted order of the crossing points of the original
line arrangement, as sorted by their x coordinates. The wiring diagram in
Figure 5 was constructed by this plane sweep method from the approximate
line arrangement depicted in Figure 2.

Every simple pseudoline arrangement also has an equivalent wiring diagram,
that may be constructed in time linear in its number of crossings. One proof
of this fact uses topological sweeping. Topological sweeping is a variant of plane
sweeping, an algorithm for listing all crossing points of an arrangement in sorted
order by their x-coordinates. In topological sweeping, this algorithm is sped up
by instead listing the points in a topological ordering of the directed acyclic
graph formed by orienting each edge of the arrangement graph from left to
right [12]. The same method has also been extended to apply to pseudoline
arrangements [35], requiring only the availability of a subroutine that deter-
mines the relative ordering of two crossings that both belong to the same input
pseudoline.

Lemma 4 A wiring diagram can be constructed from a pseudoline arrangement
graph in time linear in the size of the graph.

Proof: Use the recognition algorithm described in Lemma 2 to partition the
input graph into paths that correspond to the pseudolines of an arrangement.
Preprocess each path by storing, for each of its vertices, the position of that
vertex in the sequence of crossings of the path (storing two position numbers
for each vertex, one for each of the two paths it belongs to). Then apply the
topological sweeping algorithm for pseudoline arrangements [35] to determine
the order in which to place the crossings of a wiring diagram. To implement the
subroutine that compares two crossings on the same line, simply compare the
precomputed numbers for the two given crossings. �
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Definition 5 We define the ith level LD(i) in a wiring diagram D to be the set
of crossings that occur between tracks i and i+ 1.

A crossing belongs to LD(i) if and only if i− 1 lines pass between it and the
bottom face of the arrangement (the face below all of the tracks in the wiring
diagram); therefore, once this bottom face is determined, the levels are fixed by
this choice regardless of how the crossings are ordered to form a wiring diagram.

Definition 6 Define the size |D| of a diagram to be its number of pseudolines,
and the level complexity κ(D) to be maxi |LD(i)|. Let κmax(`) = max{κ(D) :
|D| = `} denote the maximum level complexity of an arrangement of ` pseudo-
lines,

It is a longstanding open problem in discrete geometry (a variant of the k-set
problem) to determine the maximum level complexity of an arrangement of `
pseudolines. (Often this problem is stated in terms of the middle level of an
arrangement, rather than as here in terms of the maximum-complexity level,
but this variation makes no difference to the asymptotic behavior of the level
complexity.) The known bounds on this quantity are κmax(`) = O(`4/3) [9, 33,

36], and κmax(`) = Ω(` c
√

log `) for some constant c > 1 [25, 37], where the last
bound is O(`1+ε) for all constants ε > 0.

Theorem 1 Let G be a pseudoline arrangement graph with n vertices, deter-
mined by ` = Θ(

√
n) pseudolines. Then in time O(n) we may construct a planar

straight-line drawing of G, in a grid of size (`−1)×κmax(`) = O(n1/2)×O(n2/3).

Proof: We find a decomposition of G into pseudoline paths, by the algorithm
of Lemma 2, and use topological sweeping to convert this decomposition into a
wiring diagram. We place each vertex v of G at the coordinates (i, j), where i
is the position of v within its level of the wiring diagram and j is the number
of tracks below its level of the wiring diagram.

With this layout, every edge of G either connects consecutive vertices within
the same level as each other, or it connects vertices on two consecutive levels.
In the latter case, each edge between two consecutive levels corresponds to a
horizontal segment of the wiring diagram that lies on the track between the
two levels; the left-to-right ordering of these horizontal segments is the same as
the left-to-right ordering of both the lower endpoints and the upper endpoints
of these edges. Because of this consistent ordering of endpoints, no two edges
between the same two consecutive levels can cross. There can also not be any
crossings between edges that do not both lie in the same level or connect the
same two consecutive levels. Therefore, the drawing we have constructed is
planar. By construction, it has the dimensions given in the theorem. �

Figure 7 depicts the output of our algorithm, using the wiring diagram of
Figure 5, for the graph of Figure 1. The arrangement has six levels, with at
most five vertices per level, giving a 6 × 5 grid. Although not as compact as
the manually-found 5 × 5 grid of Figure 2, it is much smaller than standard
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Figure 7: Output of the drawing algorithm of Theorem 1, based on the wiring
diagram of Figure 5

grid drawings that do not take advantage of the arrangement structure of this
graph. A more careful placement of vertices within each row would improve the
angular resolution and edge length of the drawing but we have omitted this step
in order to clarify the construction.

4 Universal Point Sets

A universal point set for the n-vertex graphs in a class C of graphs is a set
Un of points in the plane such that every n-vertex graph in C can be drawn
with its vertices in Un and with its edges drawn as non-crossing straight line
segments [7]. Grids of O(n)×O(n) points form universal sets of quadratic size
for the planar graphs [16, 32], and despite recent improvements the best upper
bound known remains quadratic [2]. A rectangular grid that is universal must
have Ω(n2) points [11,38]; the best known lower bounds for universal point sets
that are not required to be grids are only linear [7].

Subquadratic bounds are known on the size of universal point sets for sub-
classes of the planar graphs including the outerplanar graphs [22], simply-nested
planar graphs [1, 2], planar 3-trees [17], and graphs of bounded pathwidth [2].
However, the arrangement graphs considered here are not outerplanar (see [14]
for alternative methods for drawing weak pseudoline arrangements when their
arrangement graphs are outerplanar) and have high treewidth and pathwidth,
so these results do not apply to them. Arrangement graphs may be augmented
to simply nested graphs by connecting each level of the arrangement into a cycle,
but drawing these graphs using methods for simply nested graphs results in an
unnecessarily high area. The grid drawing technique of Theorem 1 immediately
provides a universal point set for arrangement graphs of size O(n7/6); in this
section we significantly improve this bound, while only increasing the area of
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our drawings by a constant factor.

Definition 7 Following Bannister et al. [2], define a sequence of positive inte-
gers ξi for i = 1, 2, 3, . . . by the equation ξi = i ⊕ (i − 1) where ⊕ denotes the
bitwise binary exclusive or operation.

The sequence of these values begins

1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, . . . .

Lemma 8 (Bannister et al. [2]) Let the finite sequence α1, α2, . . . , αk have
sum s. Then there is a subsequence β1, β2, . . . , βk of the first s terms of ξ such
that, for all i, αi ≤ βi. The sum of the first s terms of ξ is between s log2 s− 2s
and s log2 s+ s.

Recall that the grid drawing technique of Theorem 1 produces a drawing in
which the vertices are organized into ` − 1 rows of at most κmax(`) = O(`4/3)
vertices per row, where ` = O(

√
n) is the number of lines in the underlying

n-vertex arrangement. In this drawing, suppose that there are ni vertices on
the ith row of the drawing, and define a sequence αi = dni/`e.

Lemma 9

`−1∑
i=1

αi ≤ 3(`− 1)/2.

Proof: We may partition the ni vertices in the ith row ni into bni/`c groups
of exactly ` vertices, together with at most one smaller group; then αi is the
number of groups. Recall that n =

(
`
2

)
= `(`− 1)/2; therefore, the contribution

to
∑
αi from the groups of exactly ` vertices is at most n/` = (`−1)/2. There is

at most one smaller group per row so the contribution from the smaller groups
is at most `− 1. Thus the total value of the sum is at most 3(`− 1)/2. �

Theorem 2 There is a universal point set of O(n log n) points for the n-vertex
arrangement graphs, forming a subset of a grid of dimensions O(`)× κmax(`).

Proof: Let s = 3(` − 1)/2. We form our universal point set as a subset of an
s×κmax(`) grid; the area of the grid from which the points are drawn is exactly
3/2 times the area of the (`− 1)-row grid drawing technique of Theorem 1. In
the ith row of this grid, we include in our universal point set min(`ξi, κmax(`))
of the grid vertices in that row. It does not matter for our construction exactly
which points of the row are chosen to make this number of points.

By Lemma 8, there is a subsequence βi of the first s terms of sequence
ξ, such that the β is termwise greater than or equal to α. This subsequence
corresponds to a subsequence (r1, r2, . . . r`−1) of the rows of our universal point
set, such that row ri has at least min(`βi, κmax(`)) ≥ ni points in it. Mapping
the ith row of the drawing of Theorem 1 to row ri of this point set will not
create any crossings, because the mapping is monotonic within each row and
because all edges of the drawing connect pairs of vertices that are either in the
same row or in rows that are consecutive in the selected subsequence.
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The number of points in the point set is O(`s log s) where s = O(`). There-
fore, this number of points is O(`2 log `) = O(n log n). �

As with our other results, Theorem 2 applies both to the graphs of line
arrangements and pseudoline arrangements.

5 Greedy embedding algorithm

The algorithm of Lemma 2 uses as a subroutine a linear-time planarity test-
ing algorithm. Although such algorithms may be efficiently implemented on
computers, they are not really suitable for hand solution of Planarity puzzles.
Instead, it is more effective in practice to build up a planar embedding one face
at a time, by repeatedly finding a short cycle in the input graph and attach-
ing it to the previously constructed partial embedding. Here “short” means as
short as can be found; it is not possible to limit attention to cycles of length
three, four, or any fixed bound. For instance in Figure 3 the central triangle is
separated from the rest of the graph by faces with five sides, and by modifying
this example it is possible to separate part of an arrangement graph from the
rest of the graph by faces with arbitrarily many sides. Thus, this hand-solution
heuristic may be formalized by the following steps.

1. Choose an arbitrary starting vertex v.

2. Find a cycle C1 of minimum possible length containing v.

3. Embed C1 as a simple cycle in the plane.

4. While some of the edges of the input graph have not yet been embedded:

(a) Let Ci be the cycle bounding the current partial embedding. Define
an attachment vertex of Ci to be a vertex that is incident with edges
not already part of the current embedding.

(b) Choose two attachment vertices u and v, and a path Pi in Ci from u
to v, such that there are no attachment vertices interior to Pi.

(c) Find a shortest path Si from u to v, using only edges that are not
already part of the current partial embedding.

(d) If necessary, adjust the positions of the embedded vertices (without
changing the combinatorial structure of the embedding) so that Si
may be drawn with straight line edges.

(e) Add Si to the embedding, outside Ci, so that the new face between
Pi and Si does not contain Ci. After this change, the new bounding
cycle Ci+1 of the partial embedding is formed from Ci by replacing
Pi by Si.

When it is successful, this algorithm decomposes the input graph into the
cycle C1 and a sequence of edge-disjoint paths S1, S2, etc. Such a decomposition
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is known as an open ear decomposition [24], and the subgraphs of the decompo-
sition are known as ears. A given graph has an open ear decomposition if and
only if it is 2-vertex-connected [40], and in this case an open ear decomposition
may be constructed greedily, at each step arbitrarily choosing an ear to extend
the previous partial decomposition. Because the ear decomposition we use is
determined by adding as short an ear as possible at each step, we call it a greedy
ear decomposition.

Since all arrangement graphs are 2-vertex-connected, they will automatically
have an ear decomposition. Therefore, one possible failure mode of the algorithm
can be ruled out: it will always be possible for the algorithm to find another
ear, until it has decomposed the whole graph. However, although arbitrary 2-
vertex-connected planar graphs also have ear decompositions, this greedy ear
embedding algorithm does not always succeed for all such planar graphs. Even
the initial cycle that is found by the algorithm might not be a face of any
embedding of the given graph. In this case, the algorithm’s incorrect assumption
that this cycle is a face will cause it to be unable to find a valid embedding.
However, as we will show (modulo the possible difficulty of performing step
d) the algorithm does always correctly embed the arrangement graphs used by
Planarity. These graphs may have multiple embeddings; to distinguish among
them, we make the following definition.

Definition 10 The canonical embedding of an arrangement graph is the one
given by the arrangement from which it was constructed.

By Lemma 2, the canonical embedding is unique. As we prove below, the
cycles of an arrangement graph that the algorithm assumes to be faces really
are faces of the canonical embedding.

Lemma 11 Let v be an arbitrary vertex of arrangement graph G, and C be a
shortest cycle containing v. Then C is a face of the canonical embedding of G.

Proof: Let C be an arbitrary simple cycle through v. Then if C is not a face
of the arrangement forming G, there is a line ` that crosses it; let u and w be
two vertices on the boundary of C connected through the interior of C by `
(Figure 8). Then C together with the path along ` from u to w form a theta-
graph, a graph with two degree three vertices (u and w) connected by three
paths.1 Every vertex of ` between u and w is caused by a crossing of ` with
another line that also must cross the other two paths of the theta-graph; in
addition, each of these two paths must bend at least once at a vertex that does
not correspond to a line that crosses `. Therefore, the path through ` is strictly
shorter than the other two paths in the theta-graph. Replacing one of the two
paths of C from u to w by the path through ` produces a shorter cycle that still
contains v. Since an arbitrary cycle C that is not a face can be replaced by a
shorter cycle through v, it follows that every shortest cycle through v is a face.

�
1The long-standard graph-theoretic nomenclature of theta graphs [4, 28] should not be

confused with a newer and unrelated meaning concerning geometric graphs defined by near-
neighbors within wedges of fixed angles [23].
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v
u

w

Figure 8: Illustration for the proof of Lemma 11. Every non-facial cycle C
through vertex v (such as the one shown by the thick outer blue and green
quadrilateral) is crossed by at least one line ` = uw (the thick inner red line
segment), forming a theta-graph. All the vertices on the middle path of the
theta are matched by an equal number of vertices on each of the other two
paths, caused by crossings with the same lines, and the outer two paths have
additional vertices at their bends. Therefore, the outer cycle is longer than
either of the two cycles through the inner segment.

Lemma 12 Let D be a drawing of a subset of the faces of the canonical em-
bedding of an arrangement graph G whose union is a topological disk, let u and
v be two attachment vertices on the boundary of D with no attachment vertices
interior to the boundary path P from u to v, and let S be a shortest path from u
to v using only edges not already part of D. Then the cycle formed by the union
of P and S is a face of the canonical embedding of G.

Proof: Assume for a contradiction that P ∪ S is not a face; then as in the
proof of Lemma 11, this cycle must be crossed by a line `, a path L of which
forms a theta-graph together with P ∪ S. Additionally, because P is assumed
to be part of a drawing of a subset of the faces of G, it cannot be crossed by `,
for any crossing would cause it to have an attachment vertex between u and v.
Therefore, the two degree-three vertices of the theta-graph both belong to S.
By the same reasoning as in the proof of Lemma 11, L must be shorter than the
other two paths of the theta-graph, so replacing the path that is entirely within
S by L would produce a shorter path from u to v, contradicting the construction
of S as a shortest path. This contradiction shows that P ∪S must be a face. �

Theorem 3 When the greedy ear decomposition embedding algorithm described
above is applied to an arrangement graph G, it correctly constructs the canonical
embedding of G.
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Proof: We prove by induction on the number of steps of the algorithm that after
each step the partial embedding consists of faces of the canonical embedding
whose union is a disk. Lemma 11 shows as a base case that the induction
hypothesis is true after the first step. In each subsequent step, the ability to
find two attachment vertices follows from the fact that arrangement graphs
are 2-vertex-connected, which in turn follows from the fact that they can be
augmented by a single vertex to be 3-vertex-connected [6]. Lemma 12 shows
that, if the induction hypothesis is true after i steps then it remains true after
i+ 1 steps. �

6 Conclusions

We have found a grid drawing algorithm for pseudoline arrangement graphs that
uses area within a small factor of linear, much smaller than the known quadratic
grid area lower bounds for arbitrary planar graphs. We have also shown that
these graphs have near-linear universal point sets within a constant factor of
the same area, and that a simple greedy embedding heuristic suitable for hand
solution of Planarity puzzles is guaranteed to find a correct embedding.

The precise area used by our grid drawing algorithm depends on the worst-
case behavior of the function κ(D) counting the number of crossings in a k-level
of an arrangement; closing the gap between the upper and lower bounds for this
function remains an important and difficult open problem in combinatorial ge-
ometry. However, closing this gap is not the only possible method for improving
our drawing algorithm.

A tempting avenue for improvement is to observe that a single pseudoline
arrangement may be represented by many different wiring diagrams; therefore,
we can select the wiring diagram D that represent the same pseudoline arrange-
ment and that minimizes κ(D). However, this would not improve our worst case
width by more than a constant factor. For, suppose that the input forms a pseu-
doline arrangement constructed by stacking two arrangements of `/2 lines with
maximal k-level complexity, one above the other (Figure 9). A wiring diagram
for this arrangement is determined (up to the left-right ordering of independent
crossings) by the choice of which one of its 2` unbounded faces is to be the top
face. In the figure, the two lines that go to infinity in the top face belong to dif-
ferent copies of the two smaller arrangements, and both of these arrangements
are drawn disjointly in the figure, each with high width. If, instead, we chose a
top face in which the two lines going to infinity belong to a single copy of the
smaller arrangement, then that copy would be drawn differently, but the other
copy would be drawn unchanged, again with high width. Thus, no matter which
top face is chosen, our algorithm would produce a drawing with width at least
κmax(`/2). Instead, further improvements in our algorithm will likely come by
finding an alternative layout that avoids the complexity of k-levels, by proving
that k-levels are small in the average case if not the worst case, or by reducing
the known combinatorial bounds on k-levels.

An open problem raised by this research concerns the edge length of grid
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Figure 9: Two stacked arrangements of `/2 pseudolines, each with high level
complexity, cause our algorithm to create wide drawings no matter how it
chooses a wiring diagram.

drawings of arrangement graphs. If an arrangement graph G is drawn in a grid
in such a way as to minimize the maximum edge length, what edge length is
needed (as a function of n, for a worst-case arrangement)? And how can a
drawing that approximately minimizes this length be found efficiently?

It is also tempting to consider other drawing styles for arrangement graphs,
such as orthogonal drawings in which each edge is represented by an axis-aligned
polyline. Because arrangement graphs contain triangles, some edges in an or-
thogonal drawing may be forced to bend. Additionally, in a layout analogous to
ours in which the y-coordinate of each vertex is taken from a wiring diagram, the
need either to align neighboring vertices on adjacent rows of the drawing, or to
provide space between rows for parallel edge tracks, may cause these drawings
to be significantly larger than the straight-line drawings we study. Because of
these difficulties, we have not found an area bound for orthogonal drawing that
is as tight as our bound for straight-line drawing.
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