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Abstract

We study clustering over multiple graphs - each encoding a distinct
set of similarity relationships (edges) over the same set of objects (nodes)
- where the aim is to identify clusters that are supported across the col-
lection of graphs. This problem of simultaneous clustering is readily mo-
tivated by the recent deluge of datasets in several domains (including the
biological sciences, social sciences, and marketing), where the same ob-
jects are repeatedly measured in different conditions, populations or time
points. Whilst there has been a vast amount of heuristic work on prac-
tical simultaneous clustering problems, little is known on the theoretical
side – we present theoretical results that help explain why such heuris-
tics typically come without quantitative guarantees. We give algorithmic
and complexity results for simultaneous clustering using two standard
measures on clustering quality: density and connectivity. Specifically, we
focus on the basic problem of finding a single cluster (rather than an
entire clustering) that is simultaneously of high quality in every graph.
When the quality of a cluster is its minimum density over all graphs, we

show the problem is not approximable within a factor of 2log1−ε n, unless
NP ⊆ DTIME(npolylogn). Furthermore, this problem appears very diffi-
cult even when there are just two graphs; the resulting problem is approx-
imately as hard as the problem of finding a dense subgraph on at most k
vertices. When cluster quality is a fixed connectivity requirement between
terminals within the cluster, there are two natural optimization problems:
a maximization version (find a good quality cluster with as many termi-
nals as possible) and a minimization version (find a good quality cluster
that is as small as possible). We show that the maximization problem is
tractable in polynomial time for any fixed connectivity requirement k. On
the other hand the minimization problem is hard to approximate within

a factor of 2log1−ε n, unless NP ⊆ DTIME(npolylogn). The number of
graphs in our reduction depends on n. If instead the number of graphs is
fixed, we show there is an ε > 0 for which the minimization problem is
not approximable within g1/2−ε for any fixed number g of graphs unless
NP = ZPP . These hardness results for the minimization problem hold
even in the simple cases where the connectivity requirement is one and
there are either just two terminal nodes or every node is a terminal node.
We remark that our results extend to case where more robust variants of
the quality measure are used.

1 Introduction

The problem of clustering – partitioning a set of objects into similar groups based
upon a graph of similarity relationships defined over the objects – is ubiquitous.
Applications abound in data mining, with clustering being a primary choice
for exploratory data analysis in various domains such as biology [16], medicine
[44], marketing [25], and social network analysis [45]. Our interest in clustering
derives from the recent, rapid accumulation of datasets in such domains, where
measurements are taken on the same set of objects repeatedly under different
experimental conditions, time points, or populations. This yields a collection
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of graphs defined over the same set of objects (nodes) but with different sets
of relations (edges) amongst them. This, in turn, calls for a new paradigm of
clustering that jointly analyses multiple graphs to identify common signals and
conserved clusters.

This paradigm is very relevant in the biological sciences for instance, where
the replication of a discovery (for example, functional similarity of a set of
genes) is often sought across multiple, independent datasets to minimize spuri-
ous findings caused by noise/artifacts in individual datasets and to exploit the
complementarity of the datasets [30, 21, 39]. With advances in high-throughput
instruments, there is a deluge of molecular data on the same biological system
generated using different experimental backgrounds, perturbation techniques
and technological platforms.

Each dataset comes with its own set of biases and artifacts due to these
differences, and calls for methods that integrate diverse datasets more carefully
than simply concatenating or combining them into one dataset or similarity
graph prior to clustering. Machine-learning methods could be used to carefully
integrate multiple datasets into one similarity function, but they typically rely
heavily on domain knowledge in the form of training data and model assump-
tions [22]. We are interested in a problem abstraction that naturally extends
single-graph clustering to multiple graphs and is suitable for the exploratory or
“unsupervised” setting where there is no training data.

Our goal, therefore, is to obtain a clustering that is good over a collection
of graphs, G = {G1, G2, . . . , Gt} that share the same set of nodes. We dub
this problem simultaneous clustering. Of course, in order to assess whether
a clustering is good we must specify a measure of quality. For example, in
this paper we use perhaps the two most natural and widely-studied attributes
associated with a cluster, namely density and connectivity. Thus, a clustering
will be good if it induces dense or highly connected clusters in each of the graphs
Gi, even though the actual edge sets induced may vary widely between the
graphs. In Section 2 we will see how these two measures arise in biological studies
aimed at discovering sets of functionally coherent genes and complexes/scaffolds
of interacting proteins. First, though, we formalise the problem and state our
results.

1.1 Our Results.

We are given a collection of graphs G = {G1, G2, . . . , Gt}, where Gi = (V,Ei)
for each 1 ≤ i ≤ t, and a quality measure. A clustering is a partition of V into
subsets S1, S2, . . . , S`; each Si is called a cluster. We restrict our attention to
the fundamental problem of finding a single cluster S ⊆ V that is good, that
is, has at least a specified quality q∗ in the subgraph Gi[S] it induces in each
graph Gi. We call this the simultaneous cluster problem and show that it is
polynomially tractable in a few cases but is typically very hard.
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Simultaneous Cluster Problem.

Input: Graphs Gi = (V,Ei), where 1 ≤ i ≤ t, and a quality threshold q∗.
Objective: A cluster S ⊆ V such that the quality of Gi[S] is at least q∗

for all i.

As stated the two quality measures we will consider are density and (termi-
nal) connectivity.
• We define the density of a cluster S in a collection of graphs to be

den(S;G) = min
Gi∈G

deni(S) = min
i

|Ei[S]|
|S|

where Ei[S] is the set of edges in the graph Gi[S] induced by the vertex set S.
• Given a set of terminals T ⊆ V , we define the (terminal) connectivity of a
cluster S in a collection of graphs to be

κ(S;G) = min
Gi∈G

κi(S)

where κi(S) is the minimum pairwise connectivity between terminals T ∩ S in
Gi[S].

For the density measure, our first result shows that there is major difference
in hardness when we move from a single graph to just two graphs. Specifically
the densest subgraph problem is polynomial time solvable with one graph (see
Chapter 4 of [29], [34] and [19]), but for two graphs we prove the following for
densest simultaneous cluster:

Theorem 1. If we can solve Densest Simultaneous Subgraph on two
graphs in polynomial time then we can solve Densest k-Subgraph in poly-
nomial time.

Theorem 2. If we can approximate Densest Simultaneous Subgraph on
two graphs within a factor of α then we can approximate Densest k-Subgraph
within a factor of 4α2.

Here Densest k-Subgraph refers to the problem of finding the densest
subgraph on at most k vertices given an input graph G and a number k. This
problem can be approximated to within a factor of O(n

1
4 +ε), due to a recent

breakthrough result of [9]. Our result is of interest because it is widely believed
[10, 3, 17, 18] that the hardness of Densest k-Subgraph is also close to this
upper bound – indeed, Bhaskara et al. [10] present O(nΩ(1)) lower bounds for lift
and project methods based upon the Sherali-Adama and the Lassere hierarchies.
If so, whilst a size restriction is clearly vital with regards to complexity in the
case of a single graph, it is redundant in the case of two graphs - there the
problem is very hard even when no size restrictions are given.

To complement this result, we show that the problem does have large inap-
proximability bounds when the number of graphs gets large.

Theorem 3. Densest Simultaneous Subgraph is not approximable within
2log1−ε n for any ε > 0, unless NP ⊆ DTIME(npolylogn).
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In fact, this hardness result also applies to the problem of finding a minimum
cardinality subset that has non-zero density in each graph, i.e. den(S;G) > 0.
That is, the simple problem of finding the smallest cluster that induces at least
one edge in many graphs is very hard to approximate. So if in an application the
functionality (quality) of a cluster S is defined to simply depend upon whether or
not at least two nodes in that cluster can interact then, from an approximation
viewpoint, we are already in trouble! This helps explain why heuristics for many
clustering problems with more complex quality measures, e.g. in bioinformatics,
typically come without quantitative guarantees.

For the terminal connectivity measure, we fix the desired connectivity k
for determining whether a cluster is good and study two natural optimization
criteria. We first present good news for finding a good cluster with as many
terminals as possible.

Theorem 4. For a fixed connectivity requirement k, there is a polynomial time
algorithm for Maximum Simultaneous k-Connected Steiner Cluster.

As connectivity is a monotonic property with regards to the addition of
non-terminal nodes, this maximization criteria could produce large clusters that
contain extraneous nodes in some scenarios. So we also study the problem of
finding a good cluster with as few nodes as possible. We show this is hard to
approximate even in the extreme cases of just two terminals {s, t} or all nodes
being terminals, even when the connectivity requirement k = 1.

Theorem 5. Simultaneous s-t Path is not approximable within 2log1−ε n for
any ε > 0, unless NP ⊆ DTIME(npolylogn).

Theorem 6. Minimum Simultaneous Connected Steiner Cluster is not
approximable within 2log1−ε n for any ε > 0, unless NP ⊆ DTIME(npolylogn).

In fact, we obtain inapproximability results that scale with the number of
input graphs.

Theorem 7. Simultaneous s-t Path is not g1/2−ε-approximable for some
ε > 0 where g is the number of graphs unless NP = ZPP .

Theorem 8. Minimum Simultaneous Connected Steiner Cluster is
not g1/2−ε-approximable for some ε > 0 where g is the number of graphs unless
NP = ZPP .

These hardness results for clustering many graphs also extend to robust
variants of the problems where the optimal solution is only required to satisfy
the quality (density or connectivity) constraint in a c fraction of the g input
graphs. This follows readily as an algorithm for the robust variant (c < 1) can be
used to solve an instance of the exact variant (c = 1) by adding (g/c−g) empty
graphs. For example, this would mean that maximizing the median density
(c = 1

2 ) of a subgraph in the input graphs is at least as hard as maximizing the
minimum density of a subgraph in the original graphs. When clustering many
graphs, if we let the optimal solution satisfy the quality constraint in all graphs
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as in the original problem definitions, but relax the approximation algorithm to
return a solution that satisfies the constraint in only a c fraction of the input
graphs, this c-relaxed approximate solution is still hard to find.

Theorem 9. Densest Simultaneous Subgraph is not c-relaxed approx-
imable within 2log1−ε n for any ε > 0 and constant c > 2

3 , unless NP ⊆
DTIME(npolylogn).

Theorem 10. Simultaneous s-t Path is not c-relaxed approximable within
2log1−ε n for any ε > 0 and constant c > 1

2 , unless NP ⊆ DTIME(npolylogn).

Theorem 11. Minimum Simultaneous Connected Steiner Cluster is
not c-relaxed approximable within 2log1−ε n for any ε > 0 and constant c > 4

5 ,
unless NP ⊆ DTIME(npolylogn).

We prove our results for the density and connectivity measures in Sections
4 and 5, respectively. Before doing so, in Section 2, we describe in detail how
the problem of simultaneous clustering arises naturally in bioinformatics, and
discuss the techniques and heuristics currently used for such problems. We then
compare, in Section 3, our problem to previous work in stochastic optimization
where there are multiple inputs (or scenarios).

2 Simultaneous Clustering in Bioinformatics

The major motivation underlying this work is the abundance in bioinformatics
of simultaneous clustering problems based upon connectivity and, especially,
density quality measures. So, in this section we give a detailed and slightly
technical overview of why such problems arise and give a guide to some of the
research that has been carried out in this area. This provides context for our
research but a reader solely interested in the theoretical aspects of the underlying
combinatorial problem may chose to proceed to the next section.

Interactions between genes, proteins and other molecules form the basis of
most cellular processes, and large-scale measurements of such interactions are
now routine in the life sciences [23]. For instance, it is possible to monitor the
activity or expression patterns of thousands of genes in an organism across many
replicates, and currently more than 22,000 such expression datasets from dif-
ferent studies are available in a public resource called GEO [8]. An expression
dataset can be used to build a coexpression network, whose nodes are moni-
tored genes and whose edges are gene pairs with similar activity patterns. If
the activity patterns are measured in a sufficient number of systematically per-
turbed replicates, the edges in a coexpression network correspond to function-
ally related gene pairs. This idea is central to a large number of bioinformatic
studies that discover new (or characterize known) biological processes by sys-
tematically identifying densely connected clusters in the coexpression network
[48, 16]. A similar approach is widely used to identify connected scaffolds or
dense complexes of physically interacting proteins from a genome-wide network
of protein-protein interactions [36].



JGAA, 18(1) 1–34 (2014) 7

The joint analysis of multiple biological graphs is becoming increasingly im-
portant for two major reasons. The first reason is statistical - each dataset is
a noisy measurement of the true functional relation of genes, hence discoveries
(functionally coherent genes/protein clusters) supported by independent coex-
pression or protein interaction networks are more robust against artifacts in
individual datasets [39, 30]. The other reason is biological - interesting insights
into the evolution and regulation of biological systems are sometimes possible
only by integrating diverse datasets obtained from different species, cell types
or conditions [37, 27].

Several techniques and heuristics are employed to address the related prob-
lems above. A common strategy is to frame the problem of finding protein
complexes in a single protein network [36] or finding evolutionarily conserved
complexes in multi-species networks [37, 27] as locating heavy subgraphs in a
single weighted “alignment graph”. The node and edge weights of this align-
ment graph aggregates the features of each input network using a biologically-
motivated scoring scheme or Bayesian model. A node in the alignment graph for
instance could represent a gene in the input networks for genes exhibiting one-
to-one evolutionary relationship in multiple species and a gene family for genes
in one species that are related to multiple genes in other species. A heuristic
that starts with seed nodes and greedily adds or removes nodes to these seeds
is then used to optimize the score of the induced subgraph of the alignment
graph. When certain criteria based on the connectivity and monotonic local
similarity between proteins in different species were used to define evolutionary
conservation, a provably efficient algorithm based on a recursive approach was
possible for finding conserved protein complexes [31].

The problem of finding connected subnetworks in one network (protein net-
work) that is dense or high-scoring in another network (coexpression network)
has been addressed using greedy heuristics too [43]. Spectral techniques found
use in a related problem of finding a clustering that maximizes the connected-
ness of each cluster and minimizes the weight of edges lost between the clusters
in all input biological networks [32]. Different notions of terminal connectivity
were explored to find protein interactions that optimally explain the differential
activity of a set of genes and thereby expand our current knowledge of pro-
teins/genes involved in certain biological processes [46]. Algorithms for finding
k-cliques (for small k) have been used as subroutines to uncover the structure
and evolution of overlapping clusters in biological and social networks [33, 49].
Recently, a study used simulated annealing to detect disease-specific genes that
clustered in hundreds of coexpression networks [30]. So it is not exactly a steiner
problem but there are some similarities.

Clearly, the exact models, heuristics and algorithms used in the multi-graph
methods above are driven mainly by biological considerations. As stated, our
aim in this paper is to provide a computational treatment of the underlying
simultaneous clustering problem. In particular, whilst we show that good algo-
rithms are possible with some quality measures, our main contribution is to give
an explanation for why quantitative guarantees have been elusive in previous
works.
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3 Related Work

Our work bears some relation to the field of stochastic optimization which en-
compasses optimization problems that are robust to uncertainty in the input
data. The uncertainty is modeled by a probability distribution over possible
realizations (scenarios) of the input data, and the objective function involves
minimizing the expected cost (or maximizing the expected profit) of the al-
gorithm [12]. The framework also includes other robustness measures such as
minimizing the maximum cost across all (or a large fraction of) scenarios [42, 41]
or permitting the cost in each scenario to be worse by a factor of p than the
optimal cost in that scenario [2, 38, 1].

Given this generic definition, the simultaneous clustering problem could be
considered as a stochastic optimization problem where the graphs with different
edge weights are the different scenarios and we seek a set of common clusters
that are robust (of good quality) in all input scenarios (graphs). Existing works
on approximation algorithms or complexity results of stochastic optimization
problems focus either on problems not closely related to clustering such as cov-
ering problems or finance-related problems, or on facility location problems that
differ in several ways from the clustering model considered in this work.

For the simultaneous clustering problem, our objective is to minimize the
maximum cost across all scenarios (the so-called min-max objective). Complex-
ity results have been obtained for non-clustering problems with this objective.
Strong NP-hardness is known for the shortest path problem [47], the assignment
problem (bipartite matching) and the knapsack problem [26]. Set cover with
min-max objective is known to be hard to approximate (as hard as Densest
k-Subgraph) [4]. These results are for the cases where the number of scenar-
ios is also given as input. Weak NP-hardness results are also known when the
number of scenarios is fixed [2]. Our inapproximability results for simultaneous
clustering with the density measure apply when there are only two scenarios,
also reducing from Densest k-Subgraph (our reduction differs from the one
given for set cover). To our knowledge, the closest work to ours is for the min-
max version of the k-centre problem [11]. There the problem is studied with
different scenarios in order, for example, to account for the congestion effects of
rush hours. They gave a simple but elegant 3-approximation algorithm for the
case of two scenarios but show the problem is inapproximable for three scenarios.
As well as the quality measure, their work differs from ours in one important
aspect. Whilst the single time-interval version of the k-centre problem can be
viewed as a clustering (around centres) problem on one graph, the min-max
variant is not a clustering problem because nodes can be serviced by different
centres in different scenarios. Indeed, it is easy to show that the simultaneous
clustering version of the k-centre problem has a factor 2-approximation for any
number of graphs, as it reduces to the single graph case. There is also a rich
body of work on other stochastic uncapacitated facility location (SUFL) prob-
lems where the objective is to find an optimal set of facilities to robustly serve
a set of clients. The uncertainty could be in the demands of the clients (eg.,
which clients need service), the client locations and hence their distances to the
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facilities or other input parameters, and are modeled using single/multiple stage
stochastic models [40, 4, 38]. These problems typically differ from ours in many
respects: in the choice of measure and objective function, in that they cease to
be clustering problems in the multiple scenario case, and in that they only use
a single distance metric between the clients across all scenarios (eg. [4])1.

4 The Density Measure

To begin our study into the simultaneous cluster problem, we consider the den-
sity measure.

Densest Simultaneous Subgraph Problem

Input. Graphs Gi = (V,Ei) for 1 ≤ i ≤ t.
Objective. A set S ⊆ V maximizing min1≤i≤t deni(S).
(Here deni is the density of the graph induced by S in Gi.)

For the “non-simultaneous” case of a single graph, that is t = 1, Densest
Simultaneous Subgraph is equivalent to the densest subgraph problem and
so is solvable in polynomial time [29, 34, 19]. For the simultaneous case, in
this section, we consider the complexity of the cases t = 2 and t large. We
reduce the two graphs problem to the single graph problem where the solution
is restricted to have at most k vertices, a problem widely believed to be difficult
to approximate. We reduce the case where t is large to LabelCover-Max
and consequently, show this problem is inapproximable within 2log1−ε n for any
ε > 0, unless NP ⊆ DTIME(npolylogn).

4.1 Clustering Two Graphs

So let’s consider the simultaneous cluster problem with exactly two graphs under
the density measure. As noted, finding the densest subgraph in a single graph
is easy. This is certainly not the case with two graphs. Specifically, here we
show that finding a vertex set that simultaneously induces dense subgraphs in
two graphs is approximately as hard as finding a densest subgraph on at most
k vertices in a single graph:

Densest k-Subgraph
Input. A graph G = (V,E) and a number k.
Objective. An induced subgraph H∗ of maximum density containing at
most k vertices.

To obtain this hardness result, we begin by showing how a polynomial time
algorithm for Densest Simultaneous Subgraph in two graphs would lead to
a polynomial time algorithm for Densest k-Subgraph. Then, we adapt those

1Recall how the simultaneous clustering problem seeks common clusters of nodes across
all graphs (so invariant cluster composition across scenarios), with each graph with different
edge weights implying a different distance metric.
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techniques to show how inapproximability bounds (whatever they may be!) are
also roughly maintained between these two problems.

Theorem 1. If we can solve Densest Simultaneous Subgraph on two
graphs in polynomial time then we can solve Densest k-Subgraph in poly-
nomial time.

Proof. Note that, for a fixed n, there are at most n3 possible different density
values. Therefore, we can assume that the optimal density d is fixed; that is,
we know d whenever needed.

Now, given an instance (G, k) of Densest k-Subgraph we reduce it to an
instance of Densest Simultaneous Subgraph on two graphs, G1 and G2.
We actually build G1 and G2 out of two graphs, G′1 and G′2, on disjoint vertex
sets by taking their disjoint union. So edges in G1 have both endpoints in G′1
and edges in G2 have both endpoints in G′2. We use the notation ni = |V (G′i)|
and di = den(G′i) for i = 1, 2. Obtaining the first graph G′1 is simple; we just
set G′1 = G. Obtaining G′2 is a little more complex. We desire G′2 to have the
following two properties:

(I) It is a minimum cardinality graph with exactly dk edges.

(II) All of its proper subgraphs are strictly less dense.

Observe that if G′2 satisfies Property (I) then it must have density d2 = dk
n2

.
Furthermore, since G′2 contains as few vertices as possible,(

n2 − 1

2

)
< dk = n2d2 ≤

(
n2

2

)
and thus, dividing by n2/2, we obtain

(n2 − 2)(n2 − 1)

n2
< 2d2 ≤ n2 − 1

Now G′2 contains r ≥ 0 edges less than the complete graph on n2 vertices,
Kn2

. It must be the case that r ≤ n2 − 2, otherwise the clique Kn2−1 has at
least as many edges as G′2. So, we can construct G′2 by removing r edges from
Kn2

. We need to choose these edges judiciously, in order for Property (II) to
hold. Towards this goal let P = {e1, e2, . . . , en2−1} form a Hamiltonian path in
Kn2 . Let M1 consist of the odd indexed edges in P , and let M2 be the even
edges. Then to build G′2 we remove the r edges by first deleting edges of M1

and then deleting edges of M2 in reverse order.
Suppose that we are required to remove edges from M2, that is, r > 1

2n.
Then the maximum degree, ∆(G′2), is n2 − 2 and the minimum degree, δ(G′2),
is n2 − 3. If not, the maximum and minimum degrees are bounded by n2 − 1
and n2 − 2, respectively. We may now show that G′2 does satisfy Property (II).

Claim 1. Every proper subgraph of G′2 is less dense than G′2.
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Proof. To show every proper subgraph H of G′2 has lower density, we consider
three cases. Two cases are simple. If H has n2 vertices then, as it is a proper
subgraph of G′2, it has fewer edges so is less dense. If H has at most n2 − 2
vertices then the maximum degree ∆(H) is at most n2 − 3. Consequently, the
average degree in H is at most n2 − 3. However, G′2 has average degree strictly
greater than n2−3, as, by construction, it always has a vertex of degree at least
n2 − 2. So H is less dense. So consider the case where H has n2 − 1 vertices.
Then

den(G′2) =
n2 ·∆(G′2)− 2r

2n2
=

1

2
∆(G′2)− r

n2

Furthermore

den(H) ≤ |E(G′2)| − 2δ(G′2)

2(n2 − 1)

=
n2 ·∆(G′2)− 2r − 2δ(G′2)

2(n2 − 1)

≤ n2 ·∆(G′2)− 2r − 2(∆(G′2)− 1)

2(n2 − 1)

and thus

den(H) ≤ 1

2
∆(G′2)− (∆(G′2) + 2r − 2)

2(n2 − 1)
≤ 1

2
∆(G′2)− r

n2
= den(G′2)

The last inequality holds provided n2(∆(G′2)−2)+2r ≥ 0, that is if ∆(G′2) ≥ 2.
This is true if n2 ≥ 4.

We may now complete the description of our Densest Simultaneous Sub-
graph instance (G1, G2). Given G′1 and G′2, as above, set V (Gi) = V (G′1) ∪
V (G′2) and E(Gi) = E(G′i), for i = 1, 2. Now suppose there is a subgraph H∗ of
cardinality k and density d in G = G′1. Then the value of solution H∗ ∪ V (G′2)
in our instance of Densest Simultaneous Subgraph is

D∗ = min (den1(H∗ ∪ V ′2),den2(H∗ ∪ V ′2)) = min

(
kd

n2 + k
,
n2d2

n2 + k

)
Note that since dk = n2d2, the two terms inside the min are the same. Since
we assumed we know the optimal density d in G, the optimal solution to our
instance of Densest Simultaneous Subgraph has value at least D∗. (Algo-
rithmically, if the optimum is less than D∗, we can stop our search for this value
of d and claim that the optimal density for G is lower than d.)

It remains to show that an optimal solution H1 ∪ H2 of value at least D∗,
where H1 ⊆ G′1 and H2 ⊆ G′2, produces a subgraph of density at least d with
at most k vertices in G. We let k = βn2, |H1| = τ1k, and |H2| = τ2n2. As n2

is the cardinality of the smallest graph with dk edges, it must be the case that
k ≥ n2 (since the desired subgraph H∗ in G has k vertices and dk edges). So
k = βn2 for some β ≥ 1.
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We now have several cases to consider.
(a) |H1| ≥ k

(i) If H2 = G′2 then den2(H1 ∪ G′2) ≤ n2d2
n2+k = D∗ and equality holds only

when |V (H1)| = k. In that case, we can return H1 as it then has size k
and density d in G1 = G.

(ii) If |H2| = t ≤ n2 − 1 then, by Claim 1,

den2(H1 ∪H2) <
td2

k + t
.

Now td2
k+t is increasing in t, so is maximized when t = n2 − 1. We then

have

den2(H1 ∪H2) ≤ (n2 − 1)d2

k + n2 − 1
<

n2d2

k + n2
= D∗

Here the strict inequality follows by simple algebra. So den2(H1 ∪H2) <
D∗ which is a contradiction.

(b) |H1| < k
Suppose den1(H1 ∪H2) > dk

n2+k = D∗. Then

dk

n2(β + 1)
<

|E(H1)|
n2(τ1β + τ2)

<
τ1dk

n2(τ1β + τ2)

The second inequality follows as |E(H1)| < d|H1| = dτ1k. Thus, (τ1β + τ2) <
τ1(β + 1). It follows that τ2 < τ1. In particular, we have τ2 < 1 because τ1 < 1.
Therefore |V (H2)| = τ2n2 ≤ n2 − 1. We now show that den2(H1 ∪H2) < D∗.

D∗ =
n2d2

n2(β + 1)

=
τ2n2d2

τ2n2(β + 1)

=
|H2| · d2

τ2n2(β + 1)

>
|H2| · den(H2)

τ2n2(β + 1)
[By Claim 1]

>
|E(H2)|

τ2n2(β + 1)

>
|E(H2)|

τ1βn2 + τ2n2

=
|E(H2)|
|H1|+ |H2|

= den2(H1 ∪H2)

This contradicts the optimality of H1 ∪H2 and the result follows.



JGAA, 18(1) 1–34 (2014) 13

Lemma 1. If we can approximate Densest Simultaneous Subgraph on two
graphs within a factor of α then we can approximate Densest k-Subgraph
within a factor 2α with a solution of size at most (2α− 1)k.

Proof. Again, we assume the optimal density d is known when needed. Given
an instance (G, k) of Densest k-Subgraph we reduce it to an instance (G1, G2)
of Densest Simultaneous Subgraph as before. Again, if there is a subgraph
H in G = G′1 of cardinality k and density d then the value of solution H∪V (G′2)
in our instance of Densest 2-Simultaneous Subgraph is

D∗ = min (den1(H ∪ V ′2),den2(H ∪ V ′2)) = min

(
kd

n2 + k
,
n2d2

n2 + k

)

Note that since dk = n2d2, the two terms inside the min are the same. Moreover,
as n2 is the cardinality of the smallest graph with dk edges, it must be the case
that k ≥ n2. So k = βn2 for some β ≥ 1. Now take a solution H1 ∪H2 output
by the approximation algorithm, where H1 ⊆ V (G) = V (G′1) and H2 ⊆ V (G′2).
Then

min (den1(H1 ∪H2),den2(H1 ∪H2)) ≥ 1

α
D∗

We will show that H1 is an approximate solution to the instance of Densest
k-Subgraph. Again, assume that |H1| = τ1k, and |H2| = τ2n2.

We now have several cases to consider.

(a) τ1 > 2α− 1

(i) If H2 = G′2 then

den2(H1 ∪G′2) =
|E(G′2)|
|H1|+ n2

<
|E(G′2)|

(2α− 1)k + n2

≤ |E(G′2)|
α(k + n2)

[By algebra, as β ≥ 1]

=
1

α
· n2d2

k + n2

Thus we obtain a contradiction.
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(ii) If |H2| = t ≤ n2 − 1 then

den2(H1 ∪H2) =
|E(H2)|
|H1|+ |H2|

≤
(
t
2

)
|H1|+ t

≤
(
n2−1

2

)
|H1|+ (n2 − 1)

[As
(t
2)
x+t is increasing in t]

≤
(
n2−1

2

)
((2α− 1)k + 1) + (n2 − 1)

=
1
2 (n2 − 1)(n2 − 2)

(2α− 1)k + n2

<
d2(n2 − 1)

(2α− 1)k + n2

≤ d2n2

α(k + n2)
[By algebra, as β ≥ 1]

=
1

α
· n2d2

k + n2

This is a contradiction. So H1 is at most a factor 2α− 1 larger than H.

(b) τ1 ≤ 2α− 1

den1(H1 ∪H2) =
|E(H1)|
|H1|+ |H2|

<
|E(H1)|
|H1|

and

den1(H1 ∪H2) ≥ 1

α
D∗ =

1

α
· dk

k + n2
≥ 1

2α
d

Again, the last inequality arises as β ≥ 1. Hence

2α
|E(H1)|
|H1|

> d

So H1 contains at most (2α− 1)k vertices and has a density within a factor
2α of the densest subgraph on k vertices in G1 so we can return H1 as an
approximate solution.

Lemma 2. Let G be a graph on k1 vertices and density d1 then for any k2 = γk1,
there exists a subgraph of G on k2 vertices with density γd1.

Proof. Randomly choose a subset V2 of size k2 with each subset equally likely.
Then each edge appears with probability(

k1−2
k2−2

)(
k1
k2

) ≥
(
k2

k1

)2
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in the subgraph H induced by V2. Since the total number of edges in G is d1k1,

it follows that the expected number of edges in H is
d1k

2
2

k1
. Thus, there exists a

subgraph with this many edges and density d1
k2
k1

= γd1.

4.2 Clustering Many Graphs

Our hardness result for two graphs is compelling but, given the current state of
knowledge, it still remains possible that there are constant factor approximation
algorithms for Densest Simultaneous Subgraph in two graphs. For the case
of many graphs, however, we are able to obtain much stronger inapproximability
results. Specifically, we give a reduction from LabelCover; this is one of the
six canonical inapproximable problems described by Arora and Lund [5]. We
will need its maximization version.

LabelCover-Max Problem:

Input: A d-regular bipartite graph G = (A ∪B,E), an integer N and a
partial function Πe : [N ]→ [N ] for each e ∈ E.
Objective: Label `(v) each vertex v ∈ G to maximize the number of
covered edges. [An edge e = (u, v) is covered if and only if Πe(`(u)) =
`(v).]

The following gap-preserving reduction for LabelCover-Max is known,
and follows from the PCP Theorem [6, 7] and Raz’s Parallel Repetition Theorem
[35].

Theorem 12. For any ε > 0, an instance of Sat can be transformed in quasi-
polynomial time into a d-regular instance of LabelCover-Max such that

• if the original instance of Sat is satisfiable then the instance of LabelCo-
ver-Max has a solution of value 1,

• if the original instance of Sat is not satisfiable then all solutions to the
instance of LabelCover-Max has value at most 2− log1−ε n.

[The value of a solution is the ratio of edges covered compared to |E|, the
number of edges.]

Consequently, the inapproximability bounds for LabelCover-Max are very
large.

Corollary 1. LabelCover-Max is not approximable to within a factor 2log1−ε n,
for any ε > 0, unless NP ⊆ DTIME(npolylogn).

We show that an approximation algorithm for Densest Simultaneous
Subgraph leads to an approximation algorithm for LabelCover-Max with
the following guarantees.

Theorem 13. If Densest Simultaneous Subgraph is α-approximable then
LabelCover-Max is 72α2-approximable.
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Proof. Take an instance (G,N,Π) of LabelCover-Max. We build an instance
of Densest Simultaneous Subgraph on a collection of graphs H as follows.
There is one graph He ∈ H for each edge of G. Each graph contains the same
vertex set: there is a vertex (u, i) in He for each pair u ∈ V (G), i ∈ [N ]. The
edge sets of the graphs, however, are disjoint. For an edge e = (u, v) ∈ G, there
is an edge in He between (u, i) and (v, j) if and only if Π(u,v)(i) = j. Thus, if
|A| = q = |B| then H contains qd graphs and each such graph He is a bipartite
graph with 2qN vertices.

We now add an extra graph and extra vertices so that later in the proof,
we are guaranteed solutions of size s have density at most 1/s. We add two
isolated vertices û, v̂ to the vertex set (of each graph in H) and add a new graph
Ĥ containing only one edge (û, v̂).

Note that we may partition the vertices of H−{û, v̂} into sets {W1,W2, . . . ,
W2q} where Wv = {(v, i) : i ∈ [N ]}. Clearly any optimal solution S∗ to the
instance of Densest Simultaneous Subgraph must use at least one vertex
from each of these sets. Otherwise there is at least one (in fact, at least d) graph
He within which no edges are induced and, thus, the minimum density is zero.
Furthermore, û and v̂ are both in S∗ or the density of S∗ in Ĥ is zero. So the
optimal solution S∗ has cardinality at least 2q + 2.

Observe that if an edge ((u, i), (v, j)) is induced by S∗ in Hu,v then the
corresponding edge in LabelCover-Max is covered, provided we set `(u) = i
and `(v) = j. For our hardness result, we may assume that all the edges in the
LabelCover-Max instance can be covered. Thus, we may assume that the
solution S∗ induces a density D∗ of at least 1

2q+2 in each graph.

By our hypothesis, we can approximate D∗ to within an α factor. Thus we
obtain a solution S with density at least 1

2αq+2α . By the construction of Ĥ,
S has size at most 2αq + 2α < 3αq. We now use S to build a solution to the
instance of LabelCover-Max.

Let X = {v ∈ G : |Wv ∩S| > 6α}. Now |X| < 1
2q, otherwise, |S| > 1

2q ·6α =
3αq. Furthermore, as G is d-regular the vertices in X cover at most half of the
dq edges of G; thus the vertices in X̄ = (A ∪ B) \X cover at least half of the
edges.

Take the set S′ = {(v, i) ∈ S : v ∈ X̄}. From S′, we build a random labelling
by selecting a random node (v, i) in S′ ∩Wv, for each vertex v ∈ X̄. We then
set `(v) = i. Because |Wv ∩ S| ≤ 6α for all v ∈ X̄, any edge induced by X̄
is covered by this labelling with probability at least 1

36α2 . Thus, this labelling
covers at least 1

36α2 · 1
2dq = 1

72α2 · dq edges, as desired.

By derandomizing this reduction, we obtain the following hardness result.

Theorem 3. Densest Simultaneous Subgraph is not approximable within
2log1−ε n for any ε > 0, unless NP ⊆ DTIME(npolylogn).

Proof. So we need to alter the proof of Theorem 13 so that random choices
are not used to recover the solution. To do so, instead of sampling from the ap-
proximate solution S, we will essentially compute the expected value of picking
each vertex (u, i) for each i, choosing the vertex maximizing this expectation
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and repeat this process for each u (but conditioning on choices already made in
our computation).

Formally, we let v1, v2, . . . , v2q be the vertices of G (ordered arbitrarily). Re-
call that our proof of Theorem 13 selects a label Li for vi uniformly at random
amongst all labels ` with (vi, `) ∈ S′ ∩Wvi (it does this for all i from 1 to 2q).
This defines 2q independent variables L1, . . . , L2q. We now see how to deter-
ministically assign values to L1, . . . , L2q so that the number of edges covered by
this assignment is at least the expected number of edges covered by assigning
values randomly. Let Covered(`1, . . . , `2q) denote the number of covered edges
given labels `i to vi.

For each i from 1 to 2q, proceed as follows. For each (vi, `) ∈ S′ ∩ Wvi

compute

e(i, `) = E[Covered(L1, . . . , L2q)|Lj = `j for j = 1, 2, . . . , i− 1 and Li = `]

and pick `i so that e(i, `i) = max` e(i, `). It is easy to see that this algorithm
produces a solution at least E[Covered(L1, . . . , L2q)] since for each i, by our
choice of `i,

E[Covered(L1, . . . , L2q)|Lj = `j for j = 1, . . . , i] ≥
E[Covered(L1, . . . , L2q)|Lj = `j for j = 1, . . . , i− 1].

Thus, by induction,

Covered(`1, . . . , `2q) = E[Covered(L1, . . . , L2q)|Lj = `j for j = 1, . . . , 2q]

≥ E[Covered(L1, . . . , L2q)]

as required.
Furthermore, these results extend to the robust variations discussed in the

Introduction. This follows via standard techniques, so we defer the correspond-
ing proof (along with a formal definition of robustness) to the Appendix.

4.3 Non-zero density

To conclude our discussion on the density measure, we remark that clearly the
most basic structure we can possibly search for is a single edge. But an induced
subgraph that contains a single edge has non-zero density and vice versa. This
leads to the following cluster problem.

Non-Zero Density Problem

Input: Graphs Gi = (V,Ei), where 1 ≤ i ≤ t.
Objective: A minimum cardinality set S ⊆ V with non-zero density in
each Gi[S].

It can then be seen that our hardness proof also applies to Non-Zero Den-
sity. Thus this very basic problem is extremely hard to approximate!



18 Li, Narayanan, Vetta Complexity of Simultaneous Cluster

Corollary 2. Non-Zero Density is not approximable within 2
1
3 log1−ε n for

any ε > 0, unless NP ⊆ DTIME(npolylogn).

Of course, if it is very hard to search for a single edge then it is not surprising
that quantitative guarantees for practical simultaneous clustering problems are
rare.

5 The Connectivity Measure

Now let’s consider the simultaneous cluster problem using our second quality
measure, namely graph connectivity. Our vertex set is partitioned into two: a
subset T ⊆ V of terminals and a set V \T of steiner vertices. A cluster S ⊆ V is
then considered good if every pair of terminals in S is simultaneously connected
(or k-connected) with respect to each graph. As described in Section 2, notions
of terminal connectivity have been applied to expand our current knowledge
of genes involved in certain biological processes by treating the known genes
in these processes as terminal nodes. Some applications have also treated all
nodes (genes) as terminals to detect clusters of functionally coherent genes from
biological networks where connectivity implies functional similarity.

Once the desired connectivity k is specified, there are two natural optimiza-
tion criteria. The first is a maximization criterion, we may desire a good cluster
that contains as many terminals as possible. Since connectivity is a monotonic
property with regards to the steiner nodes, it can never hurt to add additional
steiner vertices to such a cluster. Consequently, this maximization criterion is
likely to produce very large clusters. Therefore, the second natural criterion is
to minimize the cardinality of a good cluster.

In this section we present both good news and bad. The simultaneous clus-
ter problem is tractable in polynomial time with respect to the maximization
measure, but is very hard to approximate with the minimization measure.

5.1 Terminal Maximization

Consider then our maximization problem.

Maximum Simultaneous k-Connected Steiner Cluster

Input. Graphs Gi = (V,Ei) for 1 ≤ i ≤ t and a set T ⊆ V of terminals.
Objective. Find a cluster S ⊆ V maximizing |S ∩ T |, such that the
terminals in S are k-connected in each induced subgraph Gi[S].

For a fixed connectivity requirement k, this problem is polynomial time
solvable. We remark that this is the case for both vertex-connectivity and edge-
connectivity requirements. We show how to solve the vertex-connectivity version
using the following recursive approach (the approach for edge-connectivity is
similar). We are given a collection G of graphs with vertex set V and terminal
set T . If every pair of terminals are k-connected in every graph Gi ∈ G then we
simply output the cluster S = V .
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If not, by Menger’s Theorem, we can find terminals t1 and t2 that are sep-
arated by a vertex-cut W (with cardinality less than k) in some graph Gj . So,
assume t1 ∈ V1 and t2 ∈ V2, where V1 ∪ V2 = V \W , and let T1 = T ∩ (V1 ∪W )
and T2 = T ∩(V2∪W ). Observe that T1 and T2 need not be disjoint but |T1∩T2|
must be less than k.

We now recurse on the subproblems G1 and G2. Here G1 contains graphs
G1
i = Gi[V − (T − T1)], for all 1 ≤ i ≤ t, and has terminal set T1. Similarly, G2

contains the graphs G2
i = Gi[V − (T − T2)] and has terminal set T2. Note that

each subproblem contains all the steiner nodes.

Finally, when the algorithm terminates on every subproblem we simply out-
put the best cluster obtained amongst all the subproblems. Let’s see that this
algorithm gives a polynomial time algorithm.

Theorem 4. For a fixed connectivity requirement k, there is a polynomial time
algorithm for Maximum Simultaneous k-Connected Steiner Cluster.

Proof. First we need to show that the algorithm gives an optimal solution. The
terminals in the cluster output by each subproblem are k-connected, otherwise
the algorithm would have found a new vertex-cut to recurse on. So the clusters
are feasible solutions. Suppose the optimal solution set of terminals T ∗ is not
output. Then consider the first time at which two terminals t1, t2 ∈ T ∗ are
separated by the algorithm. At this point, let the subproblem consist of the
terminals T̂ and all the steiner nodes, and let W be the vertex-cut separating
t1 and t2. But T ∗ ⊆ T̂ . So W must also separate t1 and t2 in the graph induced
by T ∗ and all the steiner nodes. This is a contradiction as, by definition, the
cluster consisting of T ∗ and all the steiner nodes k-connects all the terminals in
T ∗.

Second we need to show how to implement the algorithm in polynomial
time. We do this in two stages. In Stage I, we only run the method until each
subproblem contains at most k+1 terminals. In Stage II, we solve each of these
subproblems by brute force, that is, for every subset of the terminals in the
subproblem, we check if those terminals are k-connected using all the steiner
nodes, in every graph.

To analyse the running time for Stage I, we show that at most |T | − k
subproblems can be examined in this stage. To search for the vertex-cut, we
only need to run k|T | max-flow algorithms to check all the terminal pairs. Each
flow algorithm takes time O(km) as we can stop if the flow between a pair
exceeds k. We must do this on each of the t graphs, so this search takes time
O(|T | ·k2mt). If there are at most |T |−k subproblems in Stage I then the total
run time for the stage is O(|T |2 · k2mt).

We show by induction that the number of subproblems in Stage I is indeed
at most |T | − k. For the base case, if |T | = k + 1 then we stop immediately.
Consequently, there is only one subproblem to consider. So consider the case
where |T | > k + 1. Suppose |T | is split into T1 and T2 by the vertex-cut. By
induction, the number of subproblems considered for Ti is at most |Ti| − k, for
i = {1, 2}. Moreover, we know that |T1 ∩T2| ≤ k− 1. Thus the total number of
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subproblems considered for T is at most

1 + |T1| − k + |T2| − k ≤ 1 + (|T |+ k − 1)− k − k = |T | − k

as desired.
Now consider the running time for Stage II. When |T | ≤ k + 1 we can

simply use brute force. For every subset of the terminals, check whether those
terminals are k-connected using all the steiner nodes, in every graph. By the
method above this takes time O(|T | ·k2mt) = O(k3mt). There are 2k+1 subsets
and |T | − k subproblems so the run time Stage II is at most O(2k · |T | · k3mt).

Thus the total run time of the algorithm is polynomial for any fixed k.

5.2 Cluster Minimization

On the other hand, if we wish to minimize the number of vertices, the problem
becomes hard again, even for the simplest connectivity requirement k = 1.
Interestingly, it remains very difficult even in the two extremes cases where (i)
there are only two terminals, and (ii) every vertex is a terminal.

Let’s begin with the case of exactly two terminals, say T = {s, t}. Then our
minimization problem is:

Simultaneous s-t Path:
Input: Graphs Gi = (V,Ei) for 1 ≤ i ≤ t, and special vertices s and t.
Objective: A minimum cardinality cluster S ⊆ V inducing an s− t path
in each Gi[S].

Theorem 14. If Simultaneous s-t Path is α-approximable then LabelCo-
ver-Max is 1

72α2 -approximable.

Proof. Take an instance (G,N,Π) of LabelCover-Max where G has bi-
partition (AG, BG). We build an instance of Simultaneous s-t Path by
first building an instance H of Densest Simultaneous Subgraph as in the
proof of Theorem 13 but without the vertices û and v̂. Note that each graph
He ∈ H is bipartite with bipartitions AH = {(u, i)|u ∈ AG, i ∈ [N ]} and
BH = {(v, i)|v ∈ BG, i ∈ [N ]}. We now build a graph Fe from each graph He

by

• adding a source s with edges from s to every vertex of AH , and

• adding a sink t with edges from every vertex of BH to t.

Let F be the collection of graphs Fe built from each graph He ∈ H. Now, a
solution S to our instance F of Simultaneous s-t Path with {û, v̂} added
and {s, t} removed is a solution to the instance H of Densest Simultaneous
Subgraph of the same value.

Now consider the other extreme, where all vertices are terminals. So in any
solution cluster, every pair of vertices in that cluster must be connected in each
induced graph Gi[S].
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Minimum Simultaneous Connected Steiner Cluster

Input. Graphs Gi = (V,Ei) for 1 ≤ i ≤ t.
Objective. A minimum cardinality cluster S ⊆ V (of size at least 2)
such that every pair of vertices in S is connected in each induced graph
Gi[S].

Theorem 15. If Minimum Simultaneous Connected Steiner Cluster
is α-approximable then LabelCover-Max is 1

72α2 -approximable.

Proof. Take an instance (G,N,Π) of LabelCover-Max where G has bi-
partition (A,B). We build an instance of Minimum Simultaneous Con-
nected Steiner Cluster by first building an instance H of Densest Si-
multaneous Subgraph as in the proof of Theorem 13 but without the ver-
tices û and v̂. Note that each graph He ∈ H is bipartite with bipartitions
AH = {(u, i)|u ∈ A, i ∈ [N ]}, BH = {(v, i)|v ∈ B, i ∈ [N ]}.

We build a graph Fe from each graph He by

• adding a vertex s with edges between s and every vertex of AH , and

• adding a vertex t with edges between t and every vertex of BH .

Let F be the collection of (a) graphs Fe built from each graph He ∈ H, and
(b) further graphs Fs, Ft, and Fv (for each v ∈ AG ∪ BG) built over the same
set of nodes. Fs has edges between s and every other vertex, and Ft has edges
between t and every other vertex. For each v ∈ AG ∪BG, Fv has edges between
every vertex of (v, i) (for all values of the label i i.e., for all i ∈ [N ]) and every
other vertex. No other edges are present in these graphs.

Now any solution must contain s, t, a vertex (u, i) for each vertex u ∈ AG
and a vertex (v, j) for each vertex v ∈ BG. Otherwise, the subgraph is not
connected in Fs, Ft, Fu for some u ∈ AG or Fv for some v ∈ BG.

Again, any solution S to our instance F of Minimum Simultaneous Con-
nected Steiner Cluster with {û, v̂} added and {s, t} removed is a solution
to the instanceH of Densest Simultaneous Subgraph of the same value.

Thus we obtain the hardness results of Theorem 5 and Theorem 6.

Theorem 5. Simultaneous s-t Path is not approximable within 2log1−ε n for
any ε > 0, unless NP ⊆ DTIME(npolylogn).

Theorem 6. Minimum Simultaneous Connected Steiner Cluster is not
approximable within 2log1−ε n for any ε > 0, unless NP ⊆ DTIME(npolylogn).

Similar hardness results also extend to the problem of finding an approximate
solution that is required to satisfy connectivity constraint in only a c fraction of
the input graphs. Again, these robustness results are deferred to the Appendix.
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5.3 Lower Bounds for a Fixed Number of Graphs

Polynomial lower bounds can be obtained in terms of the number g of in-
put graphs. Clearly for Simultaneous s-t Path, we can also obtain a g-
approximation given g input graphs by simply taking the union of all solutions
in each individual graph.

In this section, we show for any ε > 0 both Simultaneous s-t Path
and Minimum Simultaneous Connected Steiner Cluster are g1/2−ε-
inapproximable unless NP = ZPP . We use a similar approach to other kε

complexity results for problems with a fixed parameter k [13, 15]. Again, by
the PCP theorem and Raz’s parallel repetition theorem we have:

Theorem 16. [35, 6] There exists a constant γ > 0 (independent of `) such
that the LabelCover-Max problem obtained from instances of Max-3Sat(5)
with ` repetitions cannot be approximated within a factor of 2γ`. (For constant
`, this holds if P 6= NP . For ` = polylog(n), this holds under the assumption
NP 6⊆ DTIME(polylog(n)).)

Here, Max-3Sat(5) simply refers to Max-Sat instances where there are
3 variables in each clause and every variable appears in 5 clauses. Since in-
stances of LabelCover-Max obtained from Max-3Sat(5) with `-repetitions
are (3`, 5`)-regular, we obtain the following corollary.

Corollary 3. There exists a constant γ′ > 0 (independent of `) such that the
d-regular LabelCover-Max problem cannot be approximated within a factor
of dγ

′
. (For constant d, this holds if P 6= NP . For d = nα, this holds under the

assumption NP 6⊆ DTIME(polylog(n)).)

Thus, it suffices to build a g = dβ (for some constant β > 0) instance of our
problem of interest from a d-regular instance of LabelCover-Max to obtain
gε = dγ

′/β inapproximability for our problem.
To improve this to an g1/2−ε-inapproximability result, we use Goldreich

and Sudan’s [20] random sampling technique that reduces the degree of the
instance of LabelCover-Max needed. This allows us to improve the bound
from Corollary 3 to g1/2−ε under the assumption that NP 6= ZPP .

Theorem 17. [14, 28] For any ε > 0, it is hard to approximate instances
of LabelCover-Max where vertices have degrees between d/4 and d within a
factor of d1/2−ε, unless NP = ZPP .

Thus, it suffices to build a g = dβ (for a fixed β > 0) instance of our
problem of interest from a d-regular instance of LabelCover-Max to obtain
d1/2−ε = g1/(2β)−ε′ -inapproximability for our problem.

We are now ready to prove Theorems 7 and 8. In our case, the number of
graphs is linear in the degree of the input graph to LabelCover-Max (i.e.,
β = 1).

Theorem 7. Simultaneous s-t Path is not g1/2−ε-approximable for any
ε > 0 where g is the number of graphs unless NP = ZPP .
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Proof. We reduce our problem from LabelCover-Max and construct an in-
stance of Simultaneous s-t Path whose number of graphs is linear in the
degree of the graph in LabelCover-Max. Take an instance (G,N,Π) of
LabelCover-Max where G has bipartition (A,B). We build an instance of
Simultaneous s-t Path by first building an instance H of Densest Simul-
taneous Subgraph as in the proof of Theorem 13 but without the vertices û
and v̂ (note although G is not regular, this construction is still well defined).
We then build a new instance F of Simultaneous s-t Path using d graphs
from H.

Note that each graph He ∈ H is bipartite with bipartitions AH = {(u, i)|u ∈
A, i ∈ [N ]}, BH = {(v, i)|v ∈ B, i ∈ [N ]}. Since G is bipartite and of maxi-
mum degree d, we can partition its edges into d matchings M1, . . . ,Md. Let
ui,1vi,1, . . . , ui,qvi,q be the edges of Mi. We construct Fi by taking the union of
all (edges in) He, e ∈ Mi and adding a source s and a sink t and the following
edges Ci, Si and Ti.

Ci =

q−1⋃
j=1

⋃
`1,`2∈[N ]

(vi,j , `1)(ui,j+1, `2)

Si =
⋃
`∈[N ]

s(ui,1, `)

Ti =
⋃
`∈[N ]

(vi,q, `)t

Note that every st-path in Fi uses at least one edges from each He, e ∈ Mi

(since each E(He) is an st-cut in Fi). Furthermore, we can obtain an st-path
by choosing (any) one edge from each He, e ∈Mi and the appropriate edges in
Ci, Si and Ti.

Therefore, there is an st-path in all Fi if and only if S induces an edge in
each He ∈ H. The result now follows from Theorem 17.

Theorem 8. Minimum Simultaneous Connected Steiner Cluster is
not g1/2−ε-approximable for any ε > 0 where g is the number of graphs unless
NP = ZPP .

Proof. Take the instance of Simultaneous s-t Path from Theorem 7 above
and add a graph Fs which is a star centered at s and add a graph Ft which is
a star centered at t.

Now, every solution S to our instance of Minimum Simultaneous Con-
nected Steiner Cluster contains s and t (or one of Fs[S] or Ft[S] is discon-
nected). Therefore, all solutions to our instance of Minimum Simultaneous
Connected Steiner Cluster is also a solution to the original instance of
Simultaneous s-t Path.

To complete the proof, we show that any feasible solution S to Simultane-
ous s-t Path corresponds to a feasible solution S∗ = S ∪ {s, t} to Minimum
Simultaneous Connected Steiner Cluster. Fs[S

∗] is connected since
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s ∈ S∗ and every other vertex has an edge to s. Ft[S
∗] is connected since t ∈ S∗

and every other vertex has an edge to t.
Since S is a solution to Simultaneous s-t Path, for any i, there is an st

path
P = {s, (ui,1, `1), (vi,1, `1), (ui,2, `2), (vi,2, `2), . . . , (ui,q, `q), (vi,q, `q), t} in Fi[S]
and since Mi is a perfect matching, this path P contains a vertex (x, j) for each
x ∈ A ∪ B. We now show that every other vertex of Fi has an edge to P , thus
proving Fi[S

∗] is connected.
Indeed, for any vertex (ui,j , k) ∈ AH with ui ∈ A and ui,jvi,j ∈Mi, either

• j = 1 and s(ui,j , k) ∈ Si so (ui,j , k) is adjacent to P , or

• j > 1 and (vi,j−1, `j−1)(ui,j , k) ∈ Ci so again (ui,j , k) is adjacent to P .

We use a symmetric proof for any vertex (vi,j , k) ∈ BH with vi ∈ B and
ui,jvi,j ∈M . Either

• j = q and (vi,j , k)t ∈ Si so (vi,j , k) is adjacent to P , or

• j < q and (vi,j , k)(ui,j+1, `j+1) ∈ Ci so again (vi,j , k) is adjacent to P .

Thus, all the Fi[S
∗] are connected and the theorem follows by Theorem

17.

6 Conclusion and Directions

We have presented algorithmic and complexity results for the problem of finding
clusters supported by multiple graphs, where each graph represents distinct set
of similarity relationships (edges) over the same set of objects (nodes). While
we obtain tractable algorithms for certain measures of cluster quality, we show
that the problem is typically hard to approximate even when we relax many of
the requirements, such as relaxing the problem from many graphs to just two
graphs for the density measure, connectivity among many terminals to just two
terminals, or quality constraints of a solution to be met in only a fraction of the
input graphs.

The implications of our results are two-fold. First, our results explain why
guarantees on the clustering quality or running time have been elusive in the vast
amount of previous empirical and heuristic works on simultaneous clustering of
datasets arising in scientific and commercial domains. Second, our work suggests
alternate problem abstractions may also be suitable for quantitative study.

For example, we could consider a new model where the input graphs have
correlated edge weights, since the hardness of most problems we consider stem
from allowing the graphs to have arbitrary edge weights. Assuming the sim-
ilarity function of different input graphs to be correlated for all edges is not
realistic though, especially in the biological sciences where the datasets are very
noisy, incomplete and heterogeneous (due to factors like the different types of
cellular responses each input network captures, highly incomplete nature of
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networks assembled from small-scale biological studies, bias or batch effect or
technology-dependent artifacts affecting networks inferred from large-scale bi-
ological studies, etc. [24]). However, we could reasonably assume that those
edges present in the optimal solution or subgraph have correlated edge weights
across the input graphs. Introducing this assumption may make the problem
tractable by allowing us to exclude edges that are not correlated in the graphs
before searching for the optimal solution.

Comparative analysis of clustering structures between multiple networks is
another pressing problem in data integration. Given a separation of the input
networks into two classes A and B (say diseased vs. healthy), can we find
subgraphs that cluster well in most of the class A networks and poorly in most
of the class B networks?
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Appendix: Robustness Optimization

Even if we permit the approximate solution to satisfy the quality (density or
connectivity) constraint in only a c fraction of the input graphs, the problems
discussed in Sections 4 and 5 remain very hard. In this section, we formalize
this concept of robustness for each problem and prove that they remain difficult.

The Density Measure

We now formalize the notion of robustness for Densest Simultaneous Sub-
graph. We say that a solution S to an instance of Densest Simultaneous
Subgraph on g graphs G1, . . . , Gg is c-relaxed α-approximate if there exists
cg graphs Gi1 , . . . , Gicg for which denGij

(S) ≥ D∗/α where D∗ is the value of

the optimal (unrelaxed) solution to this instance of Densest Simultaneous
Subgraph. Furthermore, if we can find a c-relaxed α-approximate solution
to instances of Densest Simultaneous Subgraph in polynomial time, we
say that Densest Simultaneous Subgraph is c-relaxed α-approximable (or
c-relaxed approximable within α).

We now prove this “robust” variant of Theorem 13.

Theorem 9. Densest Simultaneous Subgraph is not c-relaxed approx-
imable within
2log1−ε n for any ε > 0 and constant c > 2

3 , unless NP ⊆ DTIME(npolylogn).

Proof. Take an instance (G,N,Π) of LabelCover-Max and build an instance
H of Densest Simultaneous Subgraph as in the proof of Theorem 13. But
instead of adding a single Ĥ graph to the dq graphs He in H, we now add

ĉ = (1−c)dq+1
c graphs Ĥ1, . . . , Ĥĉ each containing only one edge (û, v̂).

For our hardness result, we may assume that all the edges in the LabelCo-
ver-Max instance can be covered, and thus we may assume that any optimal
solution S∗ to the instance of Densest Simultaneous Subgraph induces a
density D∗ of at least 1

2q+2 in each graph as in the proof of Theorem 13.

By our hypothesis, we can approximate D∗ to within an α = 2log1−ε n factor
in a c fraction of the graphs. Thus we obtain a solution S with density at
least 1

2αq+2α in at least a c fraction of the graphs. The total number of graphs

is dq+1
c and S contains both û and v̂ (or it has density zero in more than

(1− c) fraction of all graphs). Similarly, S induces at least one edge in at least

c′ = (dq+1)−ĉ
dq = (2 − 1

c −
1−c
cdq ) fraction of the dq graphs He in H. Finally, by

the construction of Ĥ, S has size at most 2αq + 2α < 3αq. We now use S to
build a solution to the instance of LabelCover-Max.

Let X = {v ∈ G : |Wv ∩ S| > 6α}, where Wv = {(v, i) : i ∈ [N ]}. Now
|X| < 1

2q, otherwise, |S| > 1
2q · 6α = 3αq. Furthermore, as G is d-regular

the vertices in X cover at most half of the dq edges of G; thus the vertices in
X̄ = (A ∪B) \X cover at least (c′ − 1

2 ) fraction of the edges.
Take the set S′ = {(v, i) ∈ S : v ∈ X̄}. From S′, we build a random labelling

by selecting a random node (v, i) in S′ ∩Wv, for each vertex v ∈ X̄. We then
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set `(v) = i. Because |Wv ∩ S| ≤ 6α for all v ∈ X̄, any edge induced by X̄
is covered by this labelling with probability at least 1

36α2 . Thus, this labelling
covers at least

1

36α2
·
(
c′ − 1

2

)
· dq =

1

36α2
·
(

3

2
− 1

c
− 1− c

cdq

)
· dq

edges. Since c is a constant (greater than 2
3 ), for dq large, the term

1

36α2
·
(

3

2
− 1

c
− 1− c

cdq

)
is bounded below by 1

c′′α2 for some c′′. Since the approximation ration α for
LabelCover-Max is an increasing function of n = dq, 1

c′′α2 is bounded below
by 1

α3 and the result follows. Similar to the proof of Theorem 3, this reduction
can be derandomized in a straightforward manner.

The Connectivity Measure

We now formalize the notion of robustness for Simultaneous s-t Path and
Minimum Simultaneous Connected Steiner Cluster. We say that the
problem Simultaneous s-t Path or Minimum Simultaneous Connected
Steiner Cluster is c-relaxed approximable within a factor α if there exists a
polynomial time algorithm which finds a solution S that induces connectivity
between all pairs of terminals in at least a c fraction of the input graphs in the
problem instance and whose size is within a factor α of the size of the optimal
(unrelaxed) solution of the instance.

Theorem 10. Simultaneous s-t Path is not c-relaxed approximable within
2log1−ε n for any ε > 0 and constant c > 1

2 , unless NP ⊆ DTIME(npolylogn).

Proof. Take an instance (G,N,Π) of LabelCover-Max and build an instance
F of Simultaneous s-t Path as in the proof of Theorem 14. Note that the
Fe graphs in this collection F contain the vertices s, t and other vertices that
partitions into sets {W1,W2, . . . ,W2q} with Wv = {(v, i) : v ∈ A ∪ B, i ∈ [N ]}.
Clearly any optimal solution S∗ to the instance of Simultaneous s-t Path
uses at least one vertex from each of the sets Wv, otherwise some graph Fe ∈ F
has no s− t path induced by S∗.

Also observe that if an edge ((u, i), (v, j)) is induced by S∗ in Fu,v then the
corresponding edge in LabelCover-Max is covered, provided we set `(u) = i
and `(v) = j. For our hardness result, we may assume that all the edges in the
input LabelCover-Max instance can be covered. Thus, we may assume the
solution S∗ is of size at most 2q + 2.

Let α = 2log1−ε n. By our hypothesis, we can obtain a solution S of size
at most 2αq + 2α < 3αq that induces an s − t path in at least a c fraction
of the graphs Fe in F . We now use S to build a solution to the instance of
LabelCover-Max.
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Let X = {v ∈ G : |Wv ∩S| > 6α}. Now |X| < 1
2q, otherwise, |S| > 1

2q ·6α =
3αq. Furthermore, as G is d-regular the vertices in X cover at most half of the
dq edges of G; thus the vertices in X̄ = (A∪B)\X cover at least (c− 1

2 ) fraction
of the edges.

Take the set S′ = {(v, i) ∈ S : v ∈ X̄}. From S′, we build a random labelling
by selecting a random node (v, i) in S′ ∩Wv, for each vertex v ∈ X̄. We then
set `(v) = i. Because |Wv ∩ S| ≤ 6α for all v ∈ X̄, any edge induced by X̄
is covered by this labelling with probability at least 1

36α2 . Thus, this labelling
covers at least

1

36α2
· (c− 1

2
) · dq

edges, which is bounded below by 1
α3 for c > 1/2 and large enough dq, as desired.

Again, this process can be derandomized.

Theorem 11. Minimum Simultaneous Connected Steiner Cluster is
not c-relaxed approximable within 2log1−ε n for any ε > 0 and constant c > 4

5 ,
unless NP ⊆ DTIME(npolylogn).

Proof. Take an instance (G,N,Π) of LabelCover-Max where G has bi-
partition (A,B). We build an instance of Minimum Simultaneous Con-
nected Steiner Cluster by first building an instance H of Densest Si-
multaneous Subgraph as in the proof of Theorem 13 but without the ver-
tices û and v̂. Note that each graph He ∈ H is bipartite with bipartitions
AH = {(u, i)|u ∈ A, i ∈ [N ]}, BH = {(v, i)|v ∈ B, i ∈ [N ]}.

We build a graph Fe from each graph He by

• adding a vertex s with edges between s and every vertex of AH , and

• adding a vertex t with edges between t and every vertex of BH .

Let ĉ = (1−c)dq+1
3c−2 (we picked ĉ so ĉ

dq+3ĉ > (1− c)). Let F be the collection

of (a) a set F of graphs Fe built from each graph He ∈ H, and (b) a set F̂
of graphs Fs,1, . . . , Fs,ĉ, Ft,1, . . . , Ft,ĉ, and P1, . . . , Pĉ built over the same set of
nodes. Fs,1, . . . , Fs,ĉ are ĉ copies of the same graph Fs which has edges between
s and every other vertex. Ft,1, . . . , Ft,ĉ are ĉ copies of the same graph Ft which
has edges between t and every other vertex. P1, . . . , Pĉ are ĉ copies of the same
graph P which we now describe. Let A = {a1, . . . , aq}, B = {b1, . . . , bq}. P has

• all edges between s and (a1, `) for all ` ∈ [N ],

• all edges between (aj , `1) and (aj+1, `2) for all j ∈ {1, . . . , q − 1} and
`1, `2 ∈ [N ],

• all edges between (aq, `1) and (b1, `2) for all `1, `2 ∈ [N ],

• all edges between (bj , `1) and (bj+1, `2) for all j ∈ {1, . . . , q − 1} and
`1, `2 ∈ [N ],

• all edges between (bq, `) and t for all ` ∈ [N ],
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No other edges are present in these graphs.
Now any c-relaxed solution must contain s, t, a vertex (u, i) for each vertex

u ∈ AG and a vertex (v, j) for each vertex v ∈ BG. Otherwise, the subgraph is
not connected in Fs, Ft or P and thus all ĉ copies of these graphs.

For our hardness result, we may assume that all the edges in the LabelCo-
ver-Max instance can be covered, and thus we may assume that any optimal
solution S∗ to the instance of Minimum Simultaneous Connected Steiner
Cluster induces a density D∗ of at least 1

2q+2 in each graph as in the proof of
Theorem 13.

By our hypothesis, we can approximate D∗ to within an α = 2log1−ε n factor
in a c fraction of the graphs. Thus we obtain a solution S with density at least

1
2αq+2α in at least a c fraction of the graphs. The total number of graphs is

dq + 3ĉ = dq+1
3c−2 and recall S contains s, t, a vertex (u, i) for some i ∈ [N ] for

each vertex u ∈ AG and a vertex (v, i) for some j ∈ [N ] for each vertex v ∈ BG.

Furthermore, S induces at least one edge in at least c(dq+1)
3c−2 −3ĉ = (4c−3)dq+c−3

3c−2

graphs Fe ∈ F and thus a c′ = (4c−3)dq+c−3
(3c−2)dq fraction of these graphs. Finally,

by the construction of F̂ , S has size at most 2αq+ 2α < 3αq. We now use S to
build a solution to the instance of LabelCover-Max.

Let X = {v ∈ G : |Wv ∩ S| > 6α}, where Wv = {(v, i) : i ∈ [N ]}. Now
|X| < 1

2q, otherwise, |S| > 1
2q · 6α = 3αq. Furthermore, as G is d-regular

the vertices in X cover at most half of the dq edges of G; thus the vertices in
X̄ = (A ∪B) \X cover at least (c′ − 1

2 ) fraction of the edges.
Take the set S′ = {(v, i) ∈ S : v ∈ X̄}. From S′, we build a random labelling

by selecting a random node (v, i) in S′ ∩Wv, for each vertex v ∈ X̄. We then
set `(v) = i. Because |Wv ∩ S| ≤ 6α for all v ∈ X̄, any edge induced by X̄
is covered by this labelling with probability at least 1

36α2 . Thus, this labelling
covers at least 1

36α2 · (c′ − 1
2 ) · dq edges.

Since c is a constant (greater than 4
5 ), for dq large, the term

1

36α2
· (c′ − 1

2
) =

1

36α2
·
(

4c− 3

3c− 2
− 3− c

3c− 2

1

dq
− 1

2

)
is bounded below by 1

c′′α2 for some c′′ (since 4c−3
3c−2 −

1
2 > 0 when c > 4

5 ). Since
the approximation ration α for LabelCover-Max is an increasing function of
n = dq, 1

c′′α2 is bounded below by 1
α3 . Again, this process can be derandomized

and the result follows.
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