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1 Introduction

An alliance is a set of vertices (allies) such that any vertex in the alliance has at
least as many allies (including the vertex itself) as non-allies in its neighborhood
of the graph. The alliance is said to be strong if this holds even without including
the vertex itself among the allies. Alliances of vertices in graphs [13] are used
to model among other things alliances of individuals or nations and alliances
appear many places in the literature under various names: Flake et al. [9] refer
to a strong alliance as a community and base their work on the assumption that
web pages related to each other form communities in the web graph. Gerber
and Kobler [11] look at what they refer to as the Satisfactory Graph Partition
Problem where the objective is to partition a graph into two strong alliances.
A partition of a graph into strong alliances can also be viewed as a so called
Nash stable partition of an Additive Hedonic Game [15]. As mentioned above,
alliances have been used to model scenarios that might be planar in nature, so
in this paper we focus on the problem of partitioning a planar graph into two
alliances. In Section 2 we show how to compute such a partition in polynomial
time for any planar graph with minimum degree at least 4. To prove this, we
need an upper bound of n on the bisection width of 4-connected planar graphs
with an odd number of vertices. We prove this upper bound in Section 3.
This tight upper bound is an improvement over the recently published [8] n+ 1
upper bound for planar graphs without separating triangles, and it supports the
folklore conjecture [8], that a general upper bound of n exists for the bisection
width of planar graphs.

1.1 Preliminaries

Consider the connected graph G with vertex set V and edge set E where |V | = n
and |E| = m. The degree d(v) of a vertex v in G is the number of edges incident
to v in G. Similarly, for a subset X ⊆ V we define the degree dX(v) of a vertex
v in the subgraph of G induced by X ∪ {v} as dX(v) = |{u ∈ X : {v, u} ∈ E}|.
We denote the minimum degree of the vertices in G as δ and the maximum
degree as ∆. A graph G is k-connected when at least k vertices are required
to be removed in order to disconnect G. A d-regular graph is a graph where
all vertices have degree d. A clique is a fully connected graph and a maximal
planar graph is a planar graph with the property that the addition of any new
edge destroys planarity. An alliance in G is a non empty set A ⊆ V such
that ∀u ∈ A : dA(u) + 1 ≥ dV−A(u). This definition can be tightened giving
the notion of a strong alliance which is a non empty set A ⊆ V such that
∀u ∈ A : dA(u) ≥ dV−A(u). A partition of G is a collection of non-empty

disjoint subsets V1 . . . Vl of V such that
⋃l

i=1 Vi = V . For a partition of G into
two subsets V1 and V2 we will denote the set of edges crossing this partition
as e(V1, V2) = {{u, v} ∈ E : u ∈ V1 ∧ v ∈ V2}. A bisection of G is a partition
of G into V1 and V2 such that ||V1| − |V2|| ≤ 1 and the bisection width of G is
defined as the minimum |e(V1, V2)| over all bisections. Throughout this paper
when considering a planar graph, we will implicitly consider an embedding of
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the graph. A separating triangle in a planar graph is a triangle where both the
interior and the exterior are non-empty.

1.2 Related Work

The problem of partitioning a graph into two strong alliances is NP-hard if we
put no restrictions on the graph [2]. There are however classes of graphs for
which we can decide whether a partition into strong alliances exists and compute
it in polynomial time. Examples of such classes are graphs with maximum
degree at most 4 and graphs with girth at least 5 and minimum degree at least
3 [2, 3]. Shafique [12] presents among other things results telling precisely when
line graphs can be partitioned into alliances.

For a general graph G, the computational complexity of partitioning G into
two alliances is an open problem [4]. Fricke et al. [10] show that any graph
G contains an efficiently computable alliance with no more than

⌈
n
2

⌉
vertices,

while the problem of deciding whether an alliance with less than k members
exists in G is NP-complete if k is part of the input. This even holds if G is
planar [7].

Fan et al. [8] prove an upper bound of n + 1 for the bisection width for
planar graphs without a separating triangle and an upper bound on n − 2 for
the bisection width for any triangle-free planar graph. The latter upper bound
has subsequently been improved by Li et al. [14] for triangle-free planar graphs.
Diks et al. [6] show how to obtain a partition V1, V2 with min(|V1|, |V2|) ≥ n

3

and no more than 2
√

2∆n crossing edges in linear time for any planar graph.

2 Alliances in Planar Graphs

Our main aim of this section is to show that a partition into two alliances exists
for any planar graph with minimum degree at least 4 and that this partition can
be computed in polynomial time. Before doing this in Section 2.2 we present
more generic results on alliance partitions where we among other things describe
non-trivial infinite families of graphs that can not be partitioned into alliances.

2.1 Generic Observations on Alliance Partitions

If all the vertices in a graph have an odd degree then the graph can be efficiently
partitioned into two alliances by using the decomposition technique by Bazgan
et al. [3]. On the other hand, it is easy to see that any clique with an odd
number of vertices can not be partitioned into alliances. Inspired by this fact
we now present an observation containing a recipe for constructing infinitely
many less trivial examples of graphs that cannot be partitioned into alliances:

Observation 1 Let G(V,E) be a graph and let B1, B2, . . ., Bl be a partition
of V for some l ≥ 2. The graph G can not be partitioned into alliances if the
following conditions hold:

|B1 ∪B2| is odd (1)
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∀u ∈ B1 : d(u) = dB1∪B2(u) = |B1 ∪B2| − 1 (2)

∀i ≥ 2∀u ∈ Bi : dBi−1
(u) > dV \Bi−1

(u) + 1 (3)

Proof: Now assume that V1, V2 is a partition of V into alliances. The conditions
(1) and (2) imply that B1 must be fully contained in V1 or in V2 – otherwise
there would be at least one member of B1 with too few allies since |B1 ∪ B2|
is odd. The condition (3) implies that all vertices in Bi are members of the
alliance containing Bi−1 for i ≥ 2 and we arrive at a contradiction since this
leaves us with an empty alliance. �

Figure (1a) shows an example of a graph satisfying the conditions of Obser-
vation 1 for l = 3 where the B-sets are indicated by the different colors. Bazgan
et al. [4] note that K3,3,3 shown in Figure (1b) can not be partitioned into al-
liances. The following observation shows among other things how to construct
a d-regular graph that is not a clique and impossible to partition into alliances
for any even d ≥ 6. As an example of such a graph we mention the 8-regular
graph with 11 vertices defined by having a complement graph consisting of two
triangles and a 5-cycle.

Observation 2 Let G(V,E) be a regular graph with an odd number of vertices
and d(u) = n − 3 for all u ∈ V . The graph G can be partitioned into two
alliances if and only if G contains a clique with

⌊
n
2

⌋
vertices. Checking whether

such a clique exists can be done in polynomial time.

Proof: If G contains a clique C ⊂ V with
⌊
n
2

⌋
vertices then this clique is an

alliance. The complement graph Ḡ is 2-regular so there are 2
⌊
n
2

⌋
= n− 1 edges

in Ḡ with exactly one endpoint in C and consequently one edge in Ḡ with both
endpoints in V \ C. We therefore conclude that V \ C is an alliance as well.

Now let us on the other hand assume that G does not contain a clique with⌊
n
2

⌋
vertices. In this case it is not hard to see that we can not have an alliance

with
⌊
n
2

⌋
or fewer vertices.

A clique is an independent set in the complement graph and it is easy to
find the size of the biggest independent set in a 2-regular graph in polynomial
time. �

We now turn our attention to graphs for which alliance partitions exist. In
Lemma 1 we characterize a group of general graph partitions that can be refined
into an alliance partition using a polynomial time algorithm. In Section 2.2 we
will use the lemma to obtain a partition into alliances for planar graphs with
minimum degree 4 in polynomial time. Lemma 1 is a precise formulation of
the well known principle [4, 10] that a partition into two sets of vertices forms
a good starting point for obtaining a partition into alliances if the number of
crossing edges is relatively small compared to the cardinality of the smallest set
of vertices.
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(a) A graph satisfying the condi-
tions of Observation 1 for l = 3
where the B-sets are indicated by
the different colors.

(b) The graph K3,3,3.

Figure 1: Examples of graphs that can not be partitioned into alliances.

Lemma 1 A graph G can be partitioned into two alliances if there exists a
partition V1, V2 of G such that

|e(V1, V2)| − 2 min(|V1|, |V2|) < δ − 2 . (4)

The alliances can be computed in polynomial time if V1 and V2 can be obtained
in polynomial time.

Proof: Let V1, V2 be a partition of G satisfying (4). We now run the following
simple algorithm:

1. Let A1 = V1 and A2 = V2.

2. If A1 and A2 both are alliances or if one of them is empty we stop. Oth-
erwise we go to step 3.

3. Assume that A1 is not an alliance (otherwise we process A2 similarly).
There must be a u ∈ A1 with dA1

(u) + 1 < dA2
(u). We now move u from

A1 to A2 and go to step 2.

The number of crossing edges |e(A1, A2)| decreases with 2 or more every time
step 3 is executed so the algorithm must stop after no more than m

2 steps.
Assume that the algorithm stops because A1 is empty and let u be the last
vertex to leave A1. We now consider the point in time where A1 = {u}:

dV (u) = |e(A1, A2)| ≤ |e(V1, V2)| − 2(min(|V1|, |V2|)− 1) .

We obtain a contradiction since (4) implies that the right hand side is less than
δ. We conclude that the algorithm cannot stop with A1 or A2 being empty. It
has to stop with A1 and A2 being alliances. �
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For one application of this lemma we consider some sparse graphs: The
expected number of |e(V1, V2)| is slightly bigger than m

2 for a random bisection
if n is big. So m just has to be slightly less than 2n to ensure a partition into
alliances computable in polynomial time using derandomization. If a big graph
has average degree a little below 4 it can thus be partitioned into alliances. We
omit the technical details on this observation in this paper.

2.2 Alliance Partitions of Planar Graphs

We now prove that all planar graphs with minimum degree at least 4 allow
a partition of the vertices into two alliances and that this partition can be
computed in polynomial time. This is trivially also true for planar graphs with
minimum degree 1 (let one alliance consist of a single vertex with degree 1),
while for planar graphs with minimum degree 2 and 3 we can use Observation 1
and construct examples of graphs that can not be partitioned into alliances.
Figure 2 shows two examples of such graphs where the black vertices and the
gray vertices form the sets B1 and B2 from Observation 1 respectively. It is
worth noting that we do not guarantee the alliance partition to be a bisection.

(a) (b)

Figure 2: Examples of planar graphs that can not be partitioned into alliances.
The black vertices and the gray vertices form the sets B1 and B2 from Obser-
vation 1 respectively.

We are now ready to state and prove the main result of this section.

Theorem 1 Any planar graph with δ ≥ 4 can be partitioned into two alliances
in polynomial time.

Proof: We start by expanding the graph by adding edges until it is a maximal
planar graph which can be done in polynomial time. We now consider two cases:

The expanded graph has a separating triangle: A separating triangle
has vertices both inside and outside of the triangle. Let V1 be the vertices on
the side of the triangle containing the fewest vertices and let V2 = V \V1. There
can be no more than one vertex in V1 having edges to all three vertices in the
separating triangle so |e(V1, V2)| ≤ 2|V1| + 1. This inequality also holds in the
original graph so we can now use Lemma 1. The detection and processing of
the separating triangle case is easily done in polynomial time.
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The expanded graph does not have a separating triangle: In this case
the graph is 4-connected since all maximal planar graphs without a separating
triangle are 4-connected [5] and thus contains a hamiltonian cycle computable
in linear time [1]. Fan et al. [8] show how to efficiently compute a bisection
V1, V2 of V with |e(V1, V2)| ≤ n+ 1 for such a graph. This makes it possible for
us to apply Lemma 1 in the case where n is even but for n odd an upper bound
on n for the bisection width is needed to make inequality (4) hold. In Section 3
we prove Theorem 3 stating the existence of an efficiently computable bisection
V1, V2 with |e(V1, V2)| ≤ n for any 4-connected planar graph G(V,E) with an
odd number of vertices. We now use Lemma 1 in the case where n is odd. �

As mentioned above, Fricke et al. [10] have shown that any graph contains
an alliance with no more than

⌈
n
2

⌉
members. We can now improve this upper

bound for planar graphs with δ ≥ 4 since such graphs can be partitioned into
two alliances that cannot both have more than

⌊
n
2

⌋
members:

Corollary 1 Any planar graph with δ ≥ 4 contains an alliance with no more
than

⌊
n
2

⌋
members.

A planar graph with ∆ < 1
18n can be partitioned into two alliances in poly-

nomial time.

Theorem 2 A planar graph can be partitioned into two alliances in polynomial
time if ∆ < 1

18n.

Proof: For δ = 1 the case is clear. For δ > 1 we use the work of Diks
et al. [6] and obtain a partition V1, V2 of G with |e(V1, V2)| ≤ 2

√
2∆n and

min(|V1|, |V2|) ≥ n
3 in linear time. Finally, we use Lemma 1. �

A similar result holds even for strong defensive alliances.

3 An Upper Bound for the Bisection Width

We now show that a bisection V1, V2 with |e(V1, V2)| ≤ n can be computed
in polynomial time for any 4-connected planar graph with an odd number of
vertices. Some of the techniques used are similar to the techniques used by
Fan et al. [8] but we also use other techniques and the analysis is considerably
more complicated compared to the analysis of Fan et al. Since the bisection
width never increases when removing edges from a graph, it is sufficient to only
consider maximal 4-connected planar graphs with an odd number of vertices.

Lemma 2 A maximal 4-connected planar graph with an odd number of vertices
has a vertex u with d(u) ≥ 5 such that G− u is Hamiltonian. The vertex u and
the hamiltonian cycle of G− u can be found in polynomial time.

Proof: Consider a maximal 4-connected planar graph G with an odd number
of vertices. There is at least one vertex u in G with d(u) ≥ 5 since otherwise
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we would have
∑

v∈V d(v) = 2m = 2(3n − 6) ≤ 4n that could only happen if
n ≤ 5 which would contradict 4-connectedness. The graph G is 4-connected
so the graph G− u has a Hamiltonian cycle computable in polynomial time as
showed by Thomas and Yu [16]. �

(a)

u

v

t

(b)

uL

W

(c)

u

L

W

(d)

u

Figure 3: Illustrations of a configuration. Figure (a) shows the hamiltonian
cycle with its k hamiltonian bisections (the dotted lines) and the cycle length of
edge {v, t}. Figure (b) shows a single hamiltonian bisection where the vertices
are colored according to which side of the bisection they belong to. Also, it
shows L and W for the configuration. Figure (c) shows a compacted neighbor
configuration with L and W . Figure (d) shows a heavy compacted neighbor
configuration where the dotted edges are the inner edges of the configuration
and the dashed edges are the outer edges of the configuration. We point out
that the graph in figure (d) is not 4-connected but meant as an illustration.

Let G be a maximal 4-connected graph with an odd number of vertices and
let u be a vertex in G with d(u) ≥ 5 and C a Hamiltonian cycle in G− u. We
will say that the tuple (G, u,C) represents a configuration of G. For any such
configuration, there are exactly k =

⌊
n
2

⌋
different ways to split C into two con-

nected and equally sized parts. From any such split into two parts, we construct
a hamiltonian bisection V1, V2 of G by adding u to the part where it has the
most neighbors i.e. the part that minimizes |e(V1, V2)| (ties are broken arbitrar-
ily). Refer to Figure 3(a) and 3(b). In the following we let T (G, u,C) denote
the sum of |e(V1, V2)| over the k possible hamiltonian bisections of (G, u,C).
We will sometimes omit the arguments if they are clear from the context. The
cycle length of an edge {v, t} in G− u is the minimum distance between v and t
in the graph induced by the cycle. The contribution to T (G, u,C) of an edge in
G− u is precisely the cycle length of the edge. Refer to Figure 3(a). We let L
denote the length of the longest path along C starting and ending at a neighbor
from u but visiting no other neighbors of u and let W denote the length of the
second longest such path. Refer to Figure 3(b).

We refer to the configuration (G, u,C) as a compacted neighbor configuration

if the neighbors of u can be divided into two subsets N1 and N2 of size
⌊
d(u)
2

⌋
and

⌈
d(u)
2

⌉
respectively such that each subset occupies a connected subpath of

the hamiltonian cycle C. Refer to Figure 3(c). The inner edges are the edges on
the same side of C as u. The inner edges that are not incident to u are naturally
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grouped into (at most) two groups in a compacted neighbor configuration. A
compacted neighbor configuration is called heavy if the edges from both these
groups have cycle lengths 2, 3, 4, . . . , k, k − 1, k − 2, k − 3, . . . (for both groups
we start the sequence from the left) and if the set of outer edges has two edges
of length 2, two edges of length 3, . . . , two edges of length k − 1 and one edge
of length k. Refer to Figure 3(d).

In what follows, we will show that T (G, u,C) < k(n+1) for any configuration
(G, u,C) of a maximal 4-connected planar graph with an odd number of vertices.
Since T (G, u,C) is the sum of bisection sizes for the k hamiltonian bisections
this implies that there exists at least one hamiltonian bisection V1, V2 such that
|e(V1, V2)| ≤ n which then gives us the upper bound on the bisection width. Fan
et al. [8] use the same strategy to prove the n+ 1 upper bound for the bisection
width for planar graphs without a separating triangle but Fan et al. consider a
Hamiltonian cycle in G where we consider a Hamiltonian cycle in G−u making
the analysis considerably more complicated.

To prove T (G, u,C) < k(n+ 1) we will first show that the heavy compacted
neighbor configurations can be considered as a set of worst case configurations
such that for any configuration (G, u,C) there exists a heavy compacted neigh-
bor configuration (G′, u′, C ′) where T (G, u,C) ≤ T (G′, u′, C ′). We then ex-
ploit that the heavy compacted neighbor configurations are simple enough that
T (G′, u′, C ′) < k(n+ 1) can be shown for this set of configurations.

u′u

L

W

Ŵ

L̂

Figure 4: In the configuration (G, u,C) to the left, the hamiltonian bisections
where edges incident to u contribute with bd(u)/2c are shown with dotted lines.
Similarly, in the configuration (Ĝ, u′, C) to the right, the hamitonian bisections
where edges incident to u′ contribute with bd(u′)/2c are shown with dotted
lines.

Lemma 3 If (G, u,C) is a configuration then it is possible to construct a heavy
compacted neighbor configuration (G′, u′, C) where G and G′ have the same
number of vertices and d(u) = d(u′) such that T (G, u,C) ≤ T (G′, u′, C).

Proof: Let (G, u,C) represent an arbitrary configuration. We now remove
those edges in G that are not on C and not incident to u. We then replace
u (and the edges incident to u) with a vertex u′ with d(u) = d(u′) such that
the resulting configuration (Ĝ, u′, C) is a compacted neighbor configuration.
Finally, we put in edges to create the graph G′ such that (G′, u′, C) is a heavy
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(a)

L

u u′

L̂

(b)

L

u u′

L̂

Figure 5: In (a) we show those hamiltonian bisections which fully contain the
vertices on the cycle path corresponding to L in (G, u,C) (to the left) and in
(Ĝ, u′, C) (to the right). In (b) we show those hamiltonian bisections which
does not fully contain the vertices in (G, u,C) (to the left) and in (Ĝ, u′, C) (to
the right).

compacted neighbor configuration. Below, we first argue that the contribution
to T of edges incident to u in G is not higher than the contribution to T of edges
incident to u′ in G′. Secondly, we argue that the contribution to T of edges in
G− u is not higher than the contribution to T of edges in G′ − u′.

Edges incident to u′: We separate our analysis into a case analysis based
on the value of L in G. The values of L and W in Ĝ are denoted by L̂ and Ŵ
respectively.

Case 1: L ≤ k: We consider the following subcases:

– If 2L+d(u)− 2 ≤ 2k we build the compacted neighbor configuration
(Ĝ, u′, C) such that L̂− Ŵ is minimized (0 or 1). Refer to Figure 4.

The contribution to T of edges incident to u′ is k
⌊
d(u)
2

⌋
which is

the maximum obtainable value since u′ always chooses to join the
partition which contributes the least to T . Refer to Figure 4. The
condition 2L + d(u) − 2 ≤ 2k makes it possible for us to obtain the

k
⌊
d(u)
2

⌋
contribution to T from edges incident to u′ and at the same

time obtain L̂ ≥ L and Ŵ ≥ W that is important when we consider
the contribution from the other edges.

– If 2L+d(u)− 2 > 2k we build the compacted neighbor configuration
(Ĝ, u′, C) such that L = L̂ and such that the vertices forming the
long paths in G and Ĝ with length L along C with no neighbors
of u or u′ respectively are the same. Refer to Figure 5. For each
of the k hamiltonian bisections in (Ĝ, u′, C) we now show that the
number of crossing edges incident to u′ has not decreased compared
to the corresponding (same partition of C) hamiltonian bisection in
(G, u,C).

- We first consider a bisection V1, V2 where the vertices on the
path along C of length L = L̂ is fully contained within either
V1 or V2 – say V1. In this case, u′ must choose to join V2. The
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number of neighbors of u′ in V1 is at least as high as the number
of neighbors of u in V1 in G so the number of crossing edges for
such a bisection has not decreased. Refer to Figure 5(a).

- We now consider a bisection where the vertices on the path along
C of length L = L̂ are not fully contained within either side of the
bisection. When u′ has chosen a side of the bisection u′ has only
crossing edges to members of either N1 or N2 (the two groups

of neighbors of u′). If u′ has
⌊
d(u′)
2

⌋
crossing edges the case is

clear. Otherwise, the number crossing edges has not dropped
since every vertex on the other side of the cut and not on the
long path is a neighbor to u′. Refer to Figure 5(b).

Case 2: L > k: We build the compacted neighbor configuration (Ĝ, u′, C)
with L = L̂. Consider a bisection V1, V2 of (Ĝ, u′, C). When u′ chooses side
of the bisection u′ can not have crossing edges to both N1 and N2. If there
are no crossing edges the same would be the case for the corresponding
bisection of the original configuration. Refer to Figure 6(a). The neighbors
of u′ are packed around the path with L̂ − 1 consecutive vertices on the
cycle that are not neighbors of u′ so if there are crossing edges then the
number of neighbors on the other side cannot have decreased. Refer to
Figure 6(b).

Edges not incident to u′: Since C is in both G and G′ the edges on C
obviously contribute with the same to T . We now consider the edges in G not
incident to u and not on C and the edges of G′ not incident to u′ and not on C.
We will refer to these sets of edges as the G-set and the G′-set respectively. We
will now argue that a one-to-one correspondence between the two sets of edges
exists such that any edge in the G-set is matched with an edge in the G′-set
with the same cycle length or a bigger cycle length.

The first thing we do is to consider the inner edges in the G-set that go
between L+1 consecutive vertices on the cycle with only the first and last vertex
being a neighbor of u. Fan et al. [8] show how to eliminate any triangle of such
edges and obtain a new set of edges with higher cycle lengths by replacing some
of the edges and Fan et al. also argue that repeated elimination of triangles
will produce a heavy configuration – we refer to [8] for more details. In this
way we are able to match any edge in the considered subset of the G-set with
an edge in the G′-set with the same or a bigger cycle length but with a cycle
length not exceeding L. We now repeat this argument where we consider the
inner edges in the G-set that go between W + 1 other consecutive vertices on
the cycle with only the first and last vertex being a neighbor of u. By doing
this we are also able to match these edges with edges in the G′-set with the
same or a bigger cycle length but with a cycle length not exceeding W . The
remaining unmatched edges in the G′-set all have cycle length at least W which
makes it possible to match the remaining inner edges in the G-set with an edge
in the G′-set with the same cycle length or a bigger cycle length. We repeat the
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procedure for the outer edges as well. The contribution to T of the edges not
incident to u′ can consequently not decrease during the transformation since all
the edges in the G-set have been matched with an edge in the G′-set with the
same cycle length or a bigger cycle length. �

(b)(a)

L
u

L̂

u′
Lu L̂u′

Figure 6: In (a) we illustrate the case where there are no crossing edges for
a hamiltonian bisection in G and the corresponding bisection of Ĝ. In (b) we
show the bisections where there are crossing edges in which case the number of
crossing edges can not have decreased in Ĝ.

Lemma 4 Let (G, u,C) be a heavy compacted neighbor configuration with d(u)
even. The contribution to T (G, u,C) of the edges incident to u is

d(u)2

4
+W

d(u)

2
− d(u)

2
.

Proof: We group the edges incident to u into pairs such that a pair of edges
cuts C into two pieces with the same number of neighbors of u. For a given
hamiltonian bisection the contribution to T (G, u,C) of a pair is 1 if the end-
points of the edges are separated and 0 otherwise. The shortest route along the

cycle between two vertices in a pair contains (W − 1) + d(u)−2
2 vertices between

the two vertices. There are consequently W + d(u)
2 − 1 bisections that separate

each pair so it is now easy to compute the contribution to T (G, u,C) of the
edges incident to u:

d(u)

2
(W +

d(u)

2
− 1) .

�

Lemma 5 If (G, u,C) is a heavy compacted neighbor configuration then we have
the following:

T (G, u,C) < k(n+ 1) .

Proof:

We divide the proof into three cases.
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Assume that L ≥ k − 1 and that d(u) is even: We compute T in the
following way:

T = 2k+

(
k + 2

k−1∑
i=2

i

)
+

k + 2

k−1∑
i=2

i−
d(u)−3∑
i=1

(W + i)

+

(
d(u)2

4
+W

d(u)

2
− d(u)

2

)
.

The first term is the sum of cycle lengths from the edges on the cycle, the
second term is the sum of cycle lengths for the outer edges, the third term is
the sum of cycle lengths for the inner edges not incident to u, and the fourth
term is the contribution from edges incident to u given by Lemma 4. We now

use
∑k−1

i=2 i =
(

(k−1)k
2 − 1

)
and n = 2k + 1:

T − k(n+ 1) =

(
d(u)2

4
+W

d(u)

2
− d(u)

2

)
−

d(u)−3∑
i=1

(W + i)− 4 .

We now work on a part of this sum multiplied by 4 in order to exclusively have
integers in the computation:

4

(d(u)2

4
+W

d(u)

2
− d(u)

2

)
−

d(u)−3∑
i=1

(W + i)


= (d(u)− 2)d(u) + 2Wd(u)− 4(d(u)− 3)W − 2(d(u)− 3)(d(u)− 2)

= −d(u)2+8d(u)−12+12W−2Wd(u) = −(d(u)−6)(d(u)−2)+12W−2Wd(u)

= −d(u)2 + 8d(u)− 12 + 12W − 2Wd(u) = −(d(u)− 6)(d(u)− 2 + 2W ) ,

and finally we get

T − k(n+ 1) = − (d(u)− 6)(d(u)− 2 + 2W )

4
− 4 < 0 , (5)

where we have used that the degree of u is at least 6.

Now assume that L ≤ k − 2 and that d(u) is even: In this case we get

T =

L∑
i=2

i+

W∑
i=2

i+
d(u)2

4
+W

d(u)

2
− d(u)

2
+ 2k + k2 − 2

=
L(L+ 1)

2
− 1 +

W (W + 1)

2
− 1 +

d(u)2

4
+W

d(u)

2
− d(u)

2
+ 2k + k2 − 2

implying
4T − 4k(2k + 2)

= 2L(L+1)−8+2W (W+1)+d(u)2+2Wd(u)−2d(u)+8k+4k2−8−4k(2k+2)

= 2L(L+ 1) + 2W (W + 1) + d(u)(d(u) + 2W − 2)− 4k2 − 16 .
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We now use W + L− 2 + d(u) = 2k:

4T−4k(2k+2) = 2L(L+1)+2W (W+1)+(2k+2−W−L)(2k+W−L)−4k2−16

= 3L2 +W 2 − 4kL+ 4W + 4k − 16. (6)

We now use L ≥W in (6):

4T − 4k(2k + 2) ≤ 4L2 + (4− 4k)L+ 4k − 16

= 4((L− 1)(L− k + 2)− 2) .

implying

T − k(n+ 1) ≤ (L− 1)(L− k + 2)− 2 < 0 for L ∈ {1, 2, . . . , k − 2} .

Now assume that d(u) is odd: We remove the edge of u from the group with⌈
d(u)
2

⌉
edges that is closest to the path along the cycle corresponding to W . It

is not hard to see that the contribution to T of the edges of u is unchanged after
the removal of this edge. For d(u) > 5 there is consequently a heavy compacted
neighbor configuration considered above with a higher value of T compared to
the original graph. Now consider the case d(u) = 5. We now remove an edge of
u as described above implying no change in the contribution to T of the edges
of u and insert an edge with cycle length W + 1 and obtain a heavy compacted
neighbor configuration with d(u) = 4. We can now use (5) with d(u) = 4 and W
replaced by W + 1 to compute T for this configuration. Since we have inserted
an edge with cycle length W + 1 we have to subtract W + 1 to obtain the value
for T for the original configuration with d(u) = 5:

T − k(n+ 1) = − (4− 6)(4− 2 + 2(W + 1))

4
− 4− (W + 1) = −3 < 0 .

�

We are now ready to present the main theorem of this section:

Theorem 3 A bisection V1, V2 exists with |e(V1, V2)| ≤ n for any 4-connected
planar graph G(V,E) with an odd number of vertices and such a bisection can
be obtained in polynomial time.

Proof: Let G(V,E) be a 4-connected planar graph with an odd number of
vertices. As noted earlier, we can assume that G is a maximal planar graph
without loss of generality. Lemma 2 assures that we can efficiently obtain a
configuration (G, u, c). We now examine all the k hamiltonian bisections of the
configuration. By using Lemma 3 and Lemma 5 we know that at least one of
the hamiltonian bisections satisfies |e(V1, V2)| ≤ n. �
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