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Abstract

We study the problem of creating smooth orthogonal layouts for planar

graphs. While in traditional orthogonal layouts every edge is made of a

sequence of axis-aligned line segments, in smooth orthogonal layouts every

edge is made of axis-aligned segments and circular arcs with common

tangents. Our goal is to create such layouts with low edge complexity,

measured by the number of line and circular arc segments. We show that

every 4-planar graph has a smooth orthogonal layout with edge complexity

3. If the input graph has a complexity-2 traditional orthogonal layout, we

can transform it into a smooth complexity-2 layout. Using the Kandinsky

model for removing the degree restriction, we show that any planar graph

has a smooth complexity-2 layout.
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Figure 1: All Platonic solids with degree 3 or 4 drawn in traditional orthogonal
style with the minimum number of bends per edge and redrawn in the smooth
orthogonal style with better edge complexity.

1 Introduction

Orthogonal graph drawing has a long tradition, dating back to VLSI layouts
and �oor-planning applications [3, 30, 34, 35, 36]. If the input graph is planar,
then it usually required that the output drawing is planar, as well. Even in
cases where the input graph is not planar, there exist common techniques, e.g.,
the planarization phase of the topology-shape-metrics approach [34], in which a
�planar embedding� is computed for a given non-planar graph by replacing the
edge crossings by dummy vertices. Hence, 4-planar graphs, i.e., planar graphs
with maximum degree at most four, play an important role in the �eld of or-
thogonal graph drawing and arise in a natural way due to the port restrictions.
In particular, the goal is to produce a drawing in which each vertex is a point
on the integer grid and each edge is represented by a sequence of horizontal and
vertical line segments, while optimizing various features of the layout. Typical
desirable features include minimizing the used area [35] and minimizing the to-
tal number of bends [21, 34], or, the maximum number of bends per edge [2].
Finding an embedding with the minimum number of bends is an NP-hard prob-
lem [22]; moreover, minimizing the total number of bends might lead to some
edges with many bends. The readability of poly-line drawings decreases as the
number of bends increases and the bend angles decrease. One explanation is
that every bend interrupts the eye movement and requires a change of direction,
with the e�ect depending on the magnitude of the bend angle.

We hope that, in most cases, by replacing poly-line edges with smooth curves
(e.g., composed of two or more circular arcs with common tangents) results in
layouts with improved readability and/or more aesthetic appeal; see Figure 1.
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Figure 2: Part of a Mark Lombardi drawing.

Formally, a smooth orthogonal layout of a 4-planar graph G is one where
(i) each vertex of G is drawn as a point on the plane; (ii) each edge of G is
drawn as a sequence of axis-aligned line-segments and circular arc-segments,
such that consecutive segments in the sequence have a common point of inter-
section and a common tangent at that point that is either horizontal or vertical;
(iii) there are no edge-crossings; and (iv) there cannot be two segments inci-
dent to the same vertex using the same port. Notice that, using the same port
necessarily causes overlaps only in the case of straight-line segments. Hence,
in principle one can accept multiple arc-segments incident to a vertex from the
same direction if they have di�erent radii. We say that a smooth orthogonal
layout is of edge complexity k ≥ 1, if it contains an edge of complexity k and no
edge of complexity k+1, where the complexity of an edge is given by the number
of segments and circular arcs needed to represent the edge. In this paper, we
seek for smooth orthogonal layouts of low edge complexity.

1.1 Motivation

Recent work suggests attractive alternatives that address readability related
issues posed by the presence of bends in polyline drawings. Such work is mo-
tivated by perception research, indicating that representing paths with smooth
geodesic trajectories aids in comprehension [26], as well as by the aesthetic ap-
peal of drawings with smooth curves such as those of American abstract artist
Mark Lombardi [32]. Two features that stand out in Lombardi's work are the
use of circular-arc edges and their even distribution around vertices; see Fig-
ure 2. Such even spacing of edges around each vertex (also known as perfect
angular resolution), together with the use of circular arcs for edges, formally
de�ne Lombardi drawings of graphs [16, 17].

Not all graphs allow for Lombardi realizations and the characterization of
Lombardi graphs is an open problem. One way to visualize non-Lombardi graphs
in a Lombardi fashion is to relax the circular-arc constraint; while vertices still
have perfect angular resolution, the edges can be represented as smooth se-
quences of circular arcs. For example, Duncan et al. [15] describe k-Lombardi
drawings, where each edge is a smooth sequence of k circular arcs.
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Note that vertices of degree four have perfect angular resolution in traditional
orthogonal graph layouts, by virtue of construction, and vertices of lower degrees
have angular resolution within a factor of two of optimal. In this paper, we study
the problem of creating smooth orthogonal layouts, where we use circular arcs
to create smoother curves for the edges in conjunction with the horizontal and
vertical line segments of the edges. In order to obtain smooth curves, we ensure
that each edge is composed of rectilinear line segments and circular arcs with
common tangents.

Our general approach is based on modifying a given traditional orthogonal
layout by moving the vertices as needed, and replacing each bend by a smooth
circular arc of appropriate radius, without introducing edge-crossings. We show
that in many settings this can be accomplished without increasing edge com-
plexity. As a result, we hope that we will eventually obtain layouts in which it is
easier to follow non straight-line edges, which are represented by smooth curves
(as the human eye follows smooth curves; bends interrupt the eye movement
and require changes of direction).

Figure 3 shows that the use of circular arcs can also reduce edge complexity.
It is easy to see that any traditional orthogonal layout of K3 has complexity
at least two; see Figure 3a. Allowing circular arcs reduces the complexity to
one; see Figure 3b. Similarly, the complexity-2 layout of the cube graph can be
transformed into a smooth complexity-1 layout; see Figures 3c-3d. However, as
a di�erent layout of the cube graph demonstrates, we cannot always obtain a
smooth layout of complexity one by simply replacing the segments adjacent to
a bend by a circular arc; see Figure 3e.

1.2 Related Work

Early work on orthogonal layouts was done by Valiant [36] and Leiserson [30] in
the context of VLSI design. Tamassia [34], Tamassia and Tollis [35], and Biedl
and Kant [3] continued this line of research in the context of graph drawing.
The common objectives have been the minimization of the used area, total
edge length, total number of bends, and maximum number of bends per edge.
By default it was often assumed that input graphs were restricted to degree-4
planar graphs. Models incorporating higher degree graphs were introduced later
by Tamassia [34] and Föÿmeier and Kaufmann [21].

Chernobelsky et al. [10] relax the perfect angular resolution constraint in
Lombardi drawings and describe functional force-directed algorithms, which
produce aesthetically appealing near-Lombardi drawings. In addition to the
work on Lombardi drawings, there has been other work on graph drawing with
circular-arc or curvilinear edges for the sake of achieving good angular resolu-
tion [9, 23]. There is also signi�cant work on con�uent drawings [14, 18, 19, 24,
25], where curvilinear edges are used not to separate edges, but rather to bundle
similar edges together and avoid edge crossings. In con�uent drawings, edges are
drawn like train-tracks using locally-monotone curves which do not self-intersect
and which do not have sharp turns. The curves may have overlapping portions,
but no crossings.
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Figure 3: (a) An orthogonal layout of the triangle graph with edge complexity
two. (b) A smooth layout of the triangle graph with edge complexity one. (c)
An orthogonal layout of the cube graph with edge complexity two. (d) A smooth
layout of the cube graph with edge complexity one. (e) An orthogonal layout
of the cube which cannot be improved w.r.t. edge complexity.

Aichholzer et al. [1] show that, for a given embedded planar triangulation
with �xed vertex positions, one can �nd a circular-arc drawing of the trian-
gulation that maximizes the minimum angular resolution by solving a linear
program. Brandes and Wagner [7] provide a force-directed method for visualiz-
ing train schedules using Bézier curves for edges and �xed positions for vertices.
Finkel and Tamassia [20] extend this work with a force-directed method for
drawing graphs with curvilinear edges where vertex positions are not �xed. For
�xed position drawings with cubic Bézier curves, Brandes and Schlieper [5] use
force-directed methods to maximize angular resolution and Brandes et al. [6]
rotate optimal angular resolution templates.

1.3 Our Contribution

We are particularly interested in providing theoretical guarantees about creating
smooth orthogonal layouts, while not increasing edge complexity and not intro-
ducing edge crossings. Initially, we focus on a quite restricted layout model,
referred to as �xed layout model, according to which an orthogonal layout is
given and the placement of the vertices cannot be changed (Section 3). We
prove that we can minimize the number of segments of the given layout, by
appropriately replacing each bend by a circular arc segment, in the case where
all circular arc segments have the same radius (Theorem 1).

We next consider a more �exible model, referred to as �xed shape model,
according to which an orthogonal layout is again given, but in this setting the
shape of the layout (i.e., the port-assignment and the sequence of directional
changes of the edges) should be preserved (Section 4). Among others, we prove
that if the input graph has a complexity-2 traditional orthogonal layout, we can
transform it into a smooth complexity-2 layout (Theorem 2). However, if the
input graph has a complexity-3 traditional orthogonal layout, we can transform
it into a smooth complexity-4 layout (Theorem 3), i.e., the edge complexity
is increased. Theorem 4 and Theorem 5 suggest that if the input graph has
either a complexity-3 traditional orthogonal layout in which all edges turn in
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the same direction, or, a bend-optimal layout, respectively, then it is possible to
preserve the edge complexity in the output smooth orthogonal layout. However,
in general our technique increases the layout area by a factor of n and the edge
complexity by no more than a factor of d3/2 · ke − 1, where k is the complexity
of the input orthogonal layout (Theorem 6). On the other hand, if one wants
to reduce the edge complexity, the area penalty can be exponential, as shown
in Theorem 7.

In Section 5, we study how much the complexity can be reduced if we are
allowed to change the shape of the drawing. We �rst show that every 4-planar
graph admits a smooth orthogonal layout with edge complexity 3 (Theorem 8).
This is close to optimal, since there exists a graph that does not admit a
complexity-1 smooth orthogonal layout (Theorem 9) and an in�nite class of
graphs whose members also do not admit complexity-1 smooth orthogonal lay-
outs if the outerface is �xed (Theorem 10). We also show that any triconnected
3-planar or Hamiltonian 3-planar graph admits a smooth orthogonal layout with
edge complexity 1 (Theorems 11 and 12, respectively). Using the Kandinsky
model for removing the degree restriction (Section 6), we demonstrate that any
planar graph has a smooth complexity-1 layout, if it is Hamiltonian (Theo-
rem 13), or, a smooth complexity-2 layout in general (Theorem 14).

2 Preliminaries

Let G = (V,E) be a simple undirected graph with n vertices, n ≥ 3, and m
edges. For a subset V ′ ⊂ V , we denote by G[V ′] the subgraph of G induced
by V ′. By degG(v) we denote the degree of vertex v in G. A graph is called
k-connected if the removal of k− 1 vertices does not disconnect the graph. Two
vertices whose removal disconnects the graph are referred to as a separation
pair. If G is planar and triconnected, then it has a unique planar embedding
up to the choice of the outerface [11]. A path P is a sequence {z0, z1, . . . , z`} of
distinct adjacent vertices, i.e., (zi, zi+1) ∈ E[G], i = 0, . . . , `− 1.

De�nition 1 (Canonical Ordering [12, 28]) Let Π = {P0, . . . , Ps} be a
partition of V into paths and let P0 = {v1, v2}, Ps = {vn} such that {v2, v1, vn}
is a path on the outerface of G in clockwise direction. For k = 0, . . . s, let
Gk = G[Vk] = (Vk, Ek) be the subgraph induced by Vk = P0 ∪ . . . ∪ Pk, let Ck be
the outerface of Gk. Partition Π is a canonical ordering of (G, v1) if for each
k = 1, . . . , s:

i) Ck is a simple cycle.

ii) Each vertex zi in Pk has a neighbor in V − Vk.

iii) |Pk| = 1 or degGk
(zi) = 2 for each vertex zi in Pk.

A canonical ordering Π is re�ned to a canonical vertex ordering {v1, . . . , vn}
by ordering the vertices in each Pk according to their clockwise appearance
on each Ck, k > 0. Note that a canonical ordering of (G, v1) is not uniquely



JGAA, 17(5) 575�595 (2013) 581

de�ned. Let {P0, . . . , Pk} be a sequence of paths that can be extended to a
canonical ordering of G. A path P of G is a feasible candidate for the step
k + 1 if {P0, . . . , Pk, P} can be extended to a canonical ordering. Let v1 =
c1, c2, . . . , cq = v2 be the vertices from left to right on Ck. Let c` (cr) be the
neighbor of P on Ck such that ` (r) is as small (large) as possible. We call c`
(cr) the left (right) neighbor of P .

De�nition 2 (Leftmost Canonical Ordering [28]) Let Π = {P0, . . . , Ps}
be a canonical ordering. Π is called leftmost if for k = 0, . . . , s − 1 the fol-
lowing is true. Let c` be the left neighbor of Pk+1 and let Pk′ , k + 1 ≤ k′ ≤ s,
be a feasible candidate for the step k + 1 with left neighbor c`′ . Then ` ≤ `′.

3 Smooth Orthogonal Layouts under the Fixed

Layout Model

The most restrictive version of our approach is the one where the layout of the
graph is given and the placement of the vertices cannot be changed. In this
setting, we are only allowed to replace the bends of the edges by circular arcs,
such that adjacent segments have the same horizontal or vertical tangent at
their contact points. This restriction is referred to as the �xed layout model.
An ad-hoc approach would be to replace each bend by a very small circular arc
segment, which would increase the number of segments on the edge from k > 0
to 2k − 1. Such increase in edge complexity might be unavoidable in the �xed
layout setting; see Figure 4.

Figure 4: Edge complexity might increase from k to 2k−1 for �staircase� edges.

In practice, it might be possible to avoid increasing the edge complexity.
One way to achieve this in the �xed layout model is to try to increase the radii
of the circular arcs until one of their adjacent straight-line segments disappear
or the circular segment hits another graphical object that prevents a further
enlargement. In fact, it is easy to minimize the number of segments in the �xed
layout model, if all circular arcs have the same radius, as the next lemma shows.

Theorem 1 Given an orthogonal layout, there exists an O(N logN)-algorithm
that maximizes the uniform radii of the circular arcs in the drawing under the
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�xed layout model, where N is the total number of vertices and bends of the
orthogonal layout.

Proof: The algorithm determines whether a smooth layout of an input radius
is feasible (i.e., leads to a crossing-free solution) by a plane-sweep method. The
status of the sweep line is the order of the edge segments intersecting it. The
event points of the plane sweep algorithm are the vertices and the bends of the
orthogonal layout [33]. Since we are not interested in reporting all possible in-
tersections, the corresponding decision problem can be answered in O(N logN)
time. Then, it is su�cient to apply the randomized optimization technique of
Chan to solve the problem in O(N logN) time [8]. 2

4 Smooth Orthogonal Layouts under the Fixed

Shape Model

In this section, we assume that a layout is given, but now we are allowed to
change the length of the segments of the edges, so long as no segments become
zero length. Speci�cally, in this setting the �shape� of the layout is �xed, i.e.,
if an edge connects to a vertex using the north port, then it must continue to
use the north port and the sequence of directional changes of an edge cannot be
modi�ed. This restriction is referred to as the preserved orthogonal representa-
tion in [34]. Here, we call it the �xed-shape model. Even though this model is
also very restrictive, it provides us with enough �exibility to produce smooth
layouts with low edge complexity.

4.1 Smooth Postprocessing: Layout Stretching

Traditional orthogonal layout algorithms place the vertices of an input 4-planar
graph on an integer grid of size O(n) × O(n). In the following, we describe a
technique which transforms (under the �xed shape model) an orthogonal layout
of a certain edge complexity, into a smooth orthogonal layout with comparable
edge complexity but increased layout area by a factor of n (i.e., from O(n)×O(n)
to O(n2) × O(n)). Our technique can be considered as a postprocessing of a
traditional orthogonal layout, in which the goal is to eventually obtain a smooth
orthogonal layout of similar shape.

We begin with a simple problem, that of postprocessing a traditional orthog-
onal layout in which all edges have complexity 2, so as to obtain a smooth layout
of the same complexity. In this scenario, we use circular arcs of varying sizes
to replace straight-line segments (unlike in Theorem 1, where we used circular
arcs of the same size).

Theorem 2 Let G be an n-vertex 4-planar graph that admits a complexity-2
orthogonal layout Γ in O(n)×O(n) area. There exists an O(n)-time algorithm
that transforms Γ into a complexity-2 smooth orthogonal layout of G in O(n2)×
O(n) area, under the �xed shape model.
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Figure 5: Illustration of horizontal stretching.

Proof: Let l be the length of the longest vertical segment in any complexity-2
edge of the input layout. Consider the vertex v which is one of the endpoints
of that vertical segment of length l. Stretch the entire drawing horizontally by
a factor of l; see Figure 5. Then, in the stretched drawing, the vertical segment
is no larger than its matching horizontal segment. Due to the stretching, the
grid of size l × l in each quadrant of vertex v is empty from other vertices and
edges. Hence, we can safely replace the vertical segment with a quarter-circle
arc, which yields a smooth complexity-2 realization of the edge.

Note that the same argument can be applied to any complexity-2 edge in
the original layout. That is, for any such edge the vertical segment is no larger
than the horizontal segment, and there is an empty square grid in each quadrant
around the vertex, allowing us to replace the vertical segment with a circular
arc. This immediately implies that once this procedure has been used to modify
all complexity-2 edges, the result is a smooth complexity-2 orthogonal layout on
a grid that is a factor of n larger than the input layout, since in worst case l =
O(n). The safe insertion of circular arcs in place of straight-line segments ensures
that if we started without crossings, we also �nish without crossings. Since the
stretching was applied only once, the transformation can be accomplished in
linear time using one plane sweep to stretch the drawing and another one to
introduce circular arcs of appropriate sizes. 2

Theorem 3 Let G be an n-vertex 4-planar graph that admits a complexity-3
orthogonal layout Γ in O(n)×O(n) area. There exists an O(n)-time algorithm
that transforms Γ into a complexity-4 smooth orthogonal layout of G in O(n2)×
O(n) area, under the �xed shape model.

Proof: We utilize the stretching technique described in the proof of Theorem 2.
Then, for complexity-1 or complexity-2 edges of the input orthogonal layout Γ,
the edge complexity does not increase. This also holds for edges that turn only
in the same direction (i.e., right-right, or, left-left); see Figure 6a. However,
for edges that turn in alternating directions (i.e., left-right, or, right-left), the
edge complexity increases from 3 to 4; see Figure 6b. Hence, Γ is eventually
transformed into a complexity-4 smooth orthogonal layout. 2

Edges of complexity-3 that turn in alternating directions are usually called
S-shaped edges or zig-zags. From the proof of Theorem 3, it follows that if the
input orthogonal layout contains no S-shaped edges, then it can be transformed
into a smooth orthogonal layout of edge complexity-3, which implies that edge
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(a) Uniform turns do not a�ect complexity.

(b) Alternating turns increase complexity.

Figure 6: Illustration of horizontal stretching for edges with many bends.

complexity of the input orthogonal layout does not increase. This observation
is summarized in the following theorem.

Theorem 4 Let G be an n-vertex 4-planar graph that admits a complexity-3
orthogonal layout Γ in O(n)×O(n) area that contains no S-shaped edges. There
exists an O(n)-time algorithm that transforms Γ into a complexity-3 smooth
orthogonal layout of G in O(n2)×O(n) area, under the �xed shape model.

Theorem 5 Let G be an n-vertex 4-planar graph for which an orthogonal layout
Γ with the minimum number of bends has complexity k, where k > 1. There
exists an O(n)-time algorithm that transforms Γ into a complexity-k smooth
orthogonal layout of G in O(n2)×O(n) area, under the �xed shape model.

Proof: Since Γ is of minimum number of bends, it contains no S-shaped
edges [34], or equivalently, all edges of complexity more than one turn in the
same direction (e.g., right-right-right). This implies that if we utilize the stretch-
ing technique described in the proof of Theorem 2, the result is a smooth orthog-
onal layout of G, which has the same edge complexity as Γ, but it is a factor of n
larger than the input layout. Now observe that Γ has O(n) bends, thereby O(n)
edge segments. This suggest that (after deleting potential empty rows/columns),
Γ needs O(n)×O(n) area, establishing the bound of O(n2)×O(n) of the theo-
rem. 2

Theorem 6 Let G be an n-vertex 4-planar graph that admits a complexity-
k orthogonal layout Γ in O(n) × O(n) area, where k > 1. There exists an
O(n)-time algorithm that transforms Γ into a complexity-(d3/2 · ke − 1) smooth
orthogonal layout of G in O(n2)×O(n) area, under the �xed shape model.

Proof: Again, we utilize the stretching technique described in the proof of
Theorem 2. As already stated, for complexity-1 or complexity-2 edges or edges
that turn only in the same direction in the input orthogonal layout Γ, the
edge complexity does not increase. However, for edges that turn in alternating
directions (i.e., staircase edges), the edge complexity increases from k to d3/2 ·
ke − 1. To realize this, observe that the number of horizontal segments of the
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stretched layout equals to the number of horizontal segments of Γ (i.e., dk/2e),
while the number of bends of Γ (which are k − 1 in total) are in one to one
correspondence with the circular arc-segments of the stretched layout. This
implies that stretching increases edge complexity by no more than a factor of
d3/2 · ke − 1. 2

4.2 Area Bounds

Our technique for creating smooth orthogonal layouts under the �xed shape
model results in increased drawing area. In particular, when the stretching
technique described in Section 4.1 is applied to an orthogonal layout of a certain
edge complexity, the result is a smooth orthogonal layout that requires increased
layout area from O(n)×O(n) to O(n2)×O(n).

The situation is completely di�erent, if one wants to generate smooth or-
thogonal layouts with complexity exactly one, under the �xed shape model. In
particular, for smooth complexity-1 layouts, the area penalty can be exponen-
tial, as shown in the next theorem.

Theorem 7 There exists an n-vertex 4-planar graph G that admits a
complexity-2 orthogonal layout Γ in O(n) × O(n) area, whose correspond-
ing smooth complexity-1 layout requires exponential area, under the �xed shape
model.

Proof: We show this claim for n = 5k + 1, for some integer k ≥ 1; for all
other values of n we can create such a graph by adding a few degree-1 vertices
to graph G. Graph G = (V,E) and its corresponding complexity-2 orthogonal
layout Γ are illustrated in Figure 7a. Observe that the vertex set V of G is
partitioned into three disjoint sets: Va = {a0, . . . , a2k}, Vb = {b1, . . . , b2k} and
Vc = {c1, . . . , ck}, such that consecutive vertices in Va (Vb, resp.) form a path
that is drawn along a vertical (horizontal, resp.) line in Γ. In the drawing Γ of
G, vertex a0 is drawn at the intersection of these two lines, while consecutive
vertices of the two paths are separated by exactly one unit of length. For each
i = 1, 2, . . . , 2k, if i is even then (ai, bi) ∈ E is drawn with one bend, otherwise
(ai, c(i+1)/2) ∈ E and (ai, c(i+1)/2) ∈ E are both drawn without bends. Clearly,
the area occupied by drawing Γ equals to (2k+ 1)× (2k+ 1), which is quadratic
to the number of vertices of G, since k = O(n).

Now recall that one is not allowed to change the port assignment in the �xed
shape model. Hence, in a smooth orthogonal layout of G with edge complexity-
1, each bent edge of Γ should be replaced by a quarter-circle arc, as illustrated
in Figure 7b. The shape of the remaining edges of G should not be a�ected.
For a vertex v ∈ V , we denote by d(v, a0) the distance of v from vertex a0
in the smooth orthogonal layout derived from Γ. Clearly, d(a0, a0) = 0. For
i = 1, 2, . . . , k − 1, it follows from the planarity of the derived layout that
d(a2i+1, a0) = d(b2i+1, a0) ≥ d(a2i, a0) + 1, and, d(a2i+2, a0) = d(b2i+2, a0) ≥
d
√

2 · d(a2i+1, a0)e, which implies that d(a2k, a0) = d(b2k, a0) = O(
√

2
n
2 ). This

completes the proof of the exponential area requirement. 2
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(a) An orthogonal complexity-2 layout
which �ts in quadratic area.
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(b) Exponential area is required for the cor-
responding smooth complexity-1 layout.

Figure 7: Illustration of exponential area blow-up for complexity-1 smooth or-
thogonal layouts.

5 General Smooth Layouts with Low Complexity

While many 4-planar graphs indeed have complexity-2 orthogonal layouts, and
can hence be transformed into smooth complexity-2 layouts (with the aid of
Theorem 2), this is not true for all graphs. What is known, is that every 4-
planar graph, except the octahedron, has a complexity-3 orthogonal drawing.
The octahedron is a special case of a 4-regular graph which requires complexity
4 (i.e., 3 bends per edge); see Figure 1c. In the following we show that all 4-
planar graphs (including the octahedron) admit smooth complexity-3 layouts.
This is next to optimal, as we also show that for smooth layouts, complexity 2
is necessary.

Theorem 8 Let G be an n-vertex 4-planar graph. There exists an O(n)-time al-
gorithm that computes a complexity-3 smooth orthogonal layout of G in O(n2)×
O(n) area.

Proof: As already stated, any 4-planar graph, except the octahedron, admits an
orthogonal layout of edge complexity 3. This is due to a linear-time constructive
algorithm of Biedl and Kant [3]. Hence, from Theorem 3 immediately follows
that a complexity-4 smooth orthogonal layout of G in O(n2)×O(n) area exists.
Now observe that the main di�culty in getting a better bound are S-shaped
edges (recall Theorem 2). But S-shaped edges can always be eliminated. This
was explicitly shown by Liu, Morgana and Simeone [31], who presented a linear-
time algorithm to �nd an orthogonal layout of a given 4-planar graph in O(n)×
O(n) area, in which (i) each edge is guaranteed to have complexity at most 3,
and, (ii) S-shaped edges do not exist, i.e., all edges turn in the same direction
(again the octahedron is the only exception, as complexity-4 is required). Since
the octahedron admits a complexity-2 smooth orthogonal layout (see Figure 1g),
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by Theorem 2 it follows that any 4-planar graph admits a complexity-3 smooth
orthogonal layout in O(n2)×O(n) area, which can be computed in O(n)-time.

2

The use of circular arcs allows us not only to create smooth orthogonal
layouts without increasing edge complexity, but it sometimes allows us to reduce
the edge complexity. For example, we can compute smooth orthogonal layouts
with reduced complexity for all 4-planar Platonic solids. The tetrahedron, cube,
and dodecahedron, which require complexity-2 in traditional orthogonal layouts,
all have smooth complexity-1 layouts; see Figure 1. However, we cannot always
achieve this, as shown in the next theorem.

Theorem 9 There exists a 4-planar graph that does not admit a complexity-1
smooth orthogonal layout.

Proof: Consider the octahedron graph; it is not di�cult to construct a smooth
layout of complexity 2; see Figure 1g. To show that the graph does not have a
smooth complexity-1 layout we use a 2-part geometric argument. First we show
that there is only one way (up to rotation and scaling) to place the three vertices
on the outerface. Then we show that given the placement of the outerface, there
is no valid placement for the internal vertices.

Consider the octahedron graph and suppose that it has a smooth complexity-
1 layout. As the graph is 4-regular and very symmetric, we can take any face
as the outerface. The outerface is formed by three vertices of degree four, and
its edges must be arranged in such a way that each vertex has two free ports
pointing inside. Given these conditions it is easy to show by examining all
di�erent realizations of the triangle graph that neither of three edges on the
outerface can be a straight-line segment or a quarter-circle arc (see Figure 8a).
In fact, the only way to realize the face and keep the ports inside is with two
half-circle arcs and one 3/4-circle arc (see Figure 8b). Moreover, this feasible
con�guration is unique, up to rotation and scaling.

(a) (b)

Figure 8: (a) Di�erent realizations of the triangle graph with edge complexity
one, in which quarter-circle arcs can be appropriately replaced by 3/4-circle arcs
to obtain all di�erent realizations of the triangle graph. (b) A realization with
two half-circle arcs and one 3/4-circle arc in which the ports are kept inside.
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Note that the only feasible realization of the outerface places the three ver-
tices at the corners of a square (a consequence of the use of two half-circles and
one 3/4-circle). Now we must place the inner three vertices of the octahedron.
Consider one of the two inner vertices that is adjacent to two outer vertices that
are connected by a half-circle. The inner vertex must use two consecutive ports
as connections to the outerface and leave two free ports pointing inside. Using
straight-forward case analysis, it is not di�cult to show that there is no feasible
placement for such a vertex. 2

Note that the results for smooth complexity in many ways mirror the results
for the complexity of orthogonal drawings: (i) In traditional orthogonal graph
drawing, any 4-planar graph (except the octahedron) can be drawn with edge
complexity 3, if one is allowed to choose the outerface and the planar embedding;
in smooth orthogonal graph drawing, any 4-planar graph admit a complexity-3
smooth orthogonal drawing, if one is allowed to choose the outerface and the pla-
nar embedding (Theorem 8). (ii) In traditional orthogonal graph drawing, any
4-planar graph for which the outerface is �xed to be a triangle of degree-4 ver-
tices requires an edge with complexity 4; in smooth orthogonal graph drawing,
any 4-planar graph for which the outerface is �xed to be a triangle of degree-4
vertices requires an edge with complexity 2. We prove this now:

Theorem 10 There exist in�nitely many 4-planar graphs that do not admit
smooth complexity-1 layouts, if the outerface is �xed.

Proof: We construct a class of 4-planar graphs with a �xed outerface consisting
of three vertices of degree four and a cycle with k vertices inside, where k ≥ 3.
The cycle has three special vertices, each of which is connected to a pair of
vertices of the outerface. Note that the case where k = 3 corresponds to the
octahedron discussed above. In the case where k > 3, the three special vertices
of the cycle also have degree 4 and must be connected to a pair of vertices
incident to the outerface. Each of these special vertices must use consecutive
ports to connect to the outerface and must leave two adjacent ports pointing
inside available for their neighbors on the cycle. Just as in the case of the
octahedron, it is impossible to place all three of the special vertices inside the
outerface under these constraints, and use only complexity-1 edges. 2

In the following we turn our attention on subclasses of 4-planar graphs, for
which we can prove that admit complexity-1 smooth orthogonal layouts. In
particular, we prove that all triconnected 3-planar graphs and all Hamiltonian
(not necessarily triconnected) 3-planar graphs admit complexity-1 smooth or-
thogonal layouts.

Theorem 11 Let G be an n-vertex 3-planar triconnected graph. There exists
an O(n)-time algorithm that computes a complexity-1 smooth orthogonal layout
of G in O(n)×O(n) area.

Proof: Kant [27] proved that every 3-planar triconnected graph on n vertices
admits a layout on an n×n/2 hexagonal grid, in which all edges except one are
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drawn either as rectilinear or as diagonal segments. In a high level description,
his algorithm utilizes a leftmost canonical order Π (refer to Section 2) of the
input graph G to draw it. In particular, the algorithm processes each path
of Π in turn. Assuming that zero or more paths of Π have been processed
and P = {z1, z2, . . . , zλ} ∈ Π is the next path of Π to be processed, then all
of its vertices are drawn in unit-distanced points along the next unoccupied
horizontal grid-line on top of the drawing constructed so far, such that (c`, z1)
((cr, zλ), resp.) is drawn as a diagonal (vertical, resp.) line-segment of positive
slope, where c` and cr are the left and right neighbors of P . For example, in
Figure 9a vertices 15 and 4 are the left and right neighbors of path {16, 17}
of the canonical order, respectively. Hence, edges (15, 16), (16, 17) and (17, 4)
are drawn as diagonal, horizontal and vertical line-segments, respectively. Note
that in the drawing the bent edge is the one that connects the �rst with the last
vertex of the canonical order.

2 6 5 4 3
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20

1

(a)

2 6 5 4 3
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19

14

20

1

(b)

Figure 9: (a) Orthogonal layout with exactly one bent edge [27]. (b) A smooth
complexity-1 orthogonal layout derived from the one of Figure 9a.

In order to obtain a smooth orthogonal layout of complexity-1 from the
output orthogonal layout of the algorithm of Kant, we utilize the following
property: If an edge e = (u, v) is drawn as a diagonal segment of positive slope in
the orthogonal layout with endpoints pu = (xu, yu) and pv = (xv, yv), such that
xu > xv and yu > yv, then the triangle formed by pu, pv and (xv, yu) contains
no vertices of the graph (for an example refer to the gray colored triangle of
Figure 9a). Hence, it is safe to replace the diagonal segment connecting pu and
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pv with a quarter circular arc which utilizes the left port of u and the top port
of v. The bent edge can also be drawn with smooth complexity-1, if the �rst
vertex of the canonical order is appropriately placed such that its x-coordinate
is the same as the one of the last vertex of the canonical order; see Figure 9b.
Asymptotically, this does not a�ect the area of the drawing, which remains
quadratic. 2

Theorem 12 Let G be an n-vertex 3-planar Hamiltonian graph and CG be a
given Hamiltonian cycle of G. There exists an O(n)-time algorithm that com-
putes a complexity-1 smooth orthogonal layout of G in O(n)×O(n) area.

Proof: We draw the vertices of G in unit-distanced points along a horizontal
line, say `, from left to right in the order that appear, when traversing CG in
clockwise direction starting from an arbitrarily selected vertex of it. Vertices
adjacent in CG are connected with edges drawn as horizontal line-segments,
except for the one that connects the leftmost with the rightmost vertex of G
along ` which is drawn as half-circle on the top half-plane. Now observe that
CG splits the remaining edges of the graph into two groups: one with edges
inside CG and another with edges outside CG. We route these edges using
half-circles above and below `, respectively. Since the maximum degree of G is
3, we guarantee that no two edges will use the same top or bottom port. In
addition, since the planar embedding is maintained, no crossings are introduced.
To complete the proof, it is easy to see that the area occupied by the drawing
is n×n, i.e., quadratic. Note that the drawing resembles a book embedding. 2

6 Smooth Layouts for High Degree Graphs

A serious limitation for the practical applicability of orthogonal layouts in gen-
eral, and consequently for smooth orthogonal layouts, is the vertex degree
restriction. Several extensions that overcome this restriction have been pro-
posed for orthogonal layouts [34]. A quite common approach is the Podevsnef
model [21], also known as Kandinsky model [4], where the basic idea is to use
square-shaped nodes, placed on a coarse grid, with multiple edges attached to
each side of the square aligned on �ner grid; see Figure 10a.

We will apply our approach for making orthogonal layouts smooth to the
Kandinsky model, requiring that di�erent edges at the same side of a node must
be circular-arcs of di�erent radii. Of course, if the input graph is Hamiltonian,
then similarly to Theorem 12 we can prove the following theorem; for an example
refer to Figure 10b.

Theorem 13 Let G be an n-vertex planar Hamiltonian graph and CG be a given
Hamiltonian cycle of G. There exists an O(n)-time algorithm that computes a
complexity-1 smooth orthogonal layout of G in O(n) × O(n) area, under the
Kandinsky model.

For non-Hamiltonian graphs, a layout algorithm suitable for our model is
the one of Kaufmann and Wiese [29] for point-set embedding with few bends
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(a) (b)

Figure 10: (a) A Podevsnef style layout [21]; (b) A smooth Kandinsky layout
of the same graph.

per edge1. This particular algorithm splits separating triangles by inserting
dummy vertices on appropriate edges and triangulates again to make the graph
4-connected. In this way, the general case can be reduced to the Hamiltonian
case, but an edge may now contain a middle dummy vertex on the horizontal
line, and hence it might consist of two segments, an upper and a lower half-
circle. It is easy to see that this results in a smooth layout (that resembles book
embedding) with edges of complexity at most two, which yields the theorem
below.

Theorem 14 Let G be an n-vertex planar graph. There exists an O(n2)-time
algorithm that computes a complexity-2 smooth orthogonal layout of G in O(n)×
O(n) area, under the Kandinsky model.

7 Conclusion and Open Problems

In this paper, we introduced and presented the �rst combinatorial results for
smooth orthogonal layouts, which follow the paradigms of traditional orthogonal
layouts, but replace right-angle turns with circular arcs. We measured the edge
complexity by the maximum number of straight or circular segments needed for
any edge in the layout. We showed that any complexity-2 orthogonal layout
can be transformed into a smooth complexity-2 layout in linear time. We also
showed that every 4-planar graph has a smooth complexity-3 layout. In both
cases, the price for smooth edges was a linear blowup in drawing area. That
is, while the traditional orthogonal layout can �t in an O(n) × O(n) area, the
smooth layout requires O(n2)×O(n) area, where n is the number of vertices of
the graph. Using the Kandinsky model for removing the degree restriction, we
showed that any planar graph admits a smooth complexity-2 layout. Further,
we showed that while in some cases the use of circular arcs can lower complexity,
there are graphs that do not have smooth complexity-1 drawings, if the outerface
is �xed.

1Alternatively, one could also use the layout algorithm of Di Giacomo et al. [13].
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Of course, there are several natural open problems. In traditional orthogonal
layouts the problem of testing whether a given graph has an embedding with
only straight-line segments is NP-hard. The complexity of the corresponding
problem for smooth complexity-1 layouts is not known. Another question is
whether all graphs that have complexity-2 orthogonal layouts also admit smooth
complexity-1 layouts. More generally, does there exist a 4-planar graph that has
a complexity-k layout but does not have a smooth complexity-(k−1) layout for
any k > 1? Under the Kandinsky model, we proved that all planar graphs admit
complexity-2 smooth orthogonal layouts. So, a natural question that arises in
this context is whether this bound is tight, i.e., do all planar graphs admit
complexity-1 smooth orthogonal layouts?

Many graph drawing tools produce orthogonal drawings without any guar-
antees on the number of bends per edge. In the context of developing post-
processing methods for such tools, it would be desirable to obtain an algorithm
that transforms a complexity-k orthogonal drawing into a smooth complexity-k
orthogonal drawing. Note that while we have shown this is true for k = 2, our
approach does not generalize to k > 2.
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